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Abstract

This paper provides detailed insights into predictability of the entire stock and bond
return distribution through the use of quantile regression. This allows us to examine
specific parts of the return distribution such as the tails or the center, and for a suf-
ficiently fine grid of quantiles we can trace out the entire distribution. A univariate
quantile regression model is used to examine stock and bond return distributions
individually, while a multivariate model is used to capture their joint distribution.
An empirical analysis on US data shows that certain parts of the return distrib-
utions are predictable as a function of economic state variables. The results are,
however, very different for stocks and bonds. The state variables primarily predict
only location shifts in the stock return distribution, while they also predict changes
in higher-order moments in the bond return distribution. Out-of-sample analyses
show that the relative accuracy of the state variables in predicting future returns
varies across the distribution. A portfolio study shows that an investor with power
utility can obtain economic gains by applying the empirical return distribution in
portfolio decisions instead of imposing an assumption of lognormally distributed
returns.
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1 Introduction

Return predictability has been one of the most debated and analyzed topics within the
financial literature during the last 20 years. However, despite still being at the forefront
of the current research agenda, surprisingly little is known about predictability of other
parts of the return distribution than the conditional mean and variance. In many areas
of financial economics knowledge is required of either the entire return distribution or
other parts of the distribution than the conditional mean. In asset pricing higher-order
moments such as skewness and kurtosis have proven useful to explain variation in stock
returns (see e.g. Harvey and Siddique, 2000, and Dittmar, 2002). In risk management,
focus is usually on the lower tails of the return distribution. In portfolio management
under standard preferences such as constant relative risk aversion, investors generally
require an estimate of the entire distribution of future returns. Hence, understanding
return predictability in more detail has great economic importance in many areas of
financial economics.

This paper goes beyond predictability of the conditional mean and variance and ex-
amines predictability of the entire stock and bond return distribution as a function of
economic state variables. The idea is to use quantile regression as originally introduced
by Koenker and Basset (1978), which enables us to analyze predictability of different
parts of the distribution as captured by specific quantiles. For example, by choosing the
0.05-, 0.50-, and 0.95-quantile, respectively, we can examine predictability of the lower
tail, center, and upper tail of the distribution. Choosing a sufficiently fine grid of quan-
tiles, we can analyze predictability of the entire distribution. The issue of predictable
return distributions is not confined to individual assets. It is also highly relevant for
joint distributions, which are used extensively in, for example, portfolio decisions and
risk management. Only in the special case of independence between assets, can we use a
combination of estimates from univariate quantile regressions. In general, we need an ap-
proach that can take the dependence structure into account when providing an estimate
of the joint distribution. I use the multivariate quantile regression model introduced by
Chakraborty (2003) to analyze predictability of the joint stock and bond return distri-
bution as a function of economic state variables. The multivariate model allows us to
specify quantiles in a manner similar to the univariate model, but with the difference
that we now need to specify quantile combinations representing different parts of the
joint distribution. For example, by choosing the (0.05,0.05)-quantile, we can examine
predictability of the joint lower tail of the distribution, while the (0.05,0.95)-quantile
represents the joint outcome of the return on the first asset falling in the lower part of
the distribution and the return on the second asset falling in the upper part of the dis-
tribution. By choosing a sufficiently fine grid of quantile combinations, we can examine
predictability of the entire joint distribution.

Predictability is evaluated both in- and out-of-sample. It is very likely that empirical
forecasting models are, to some extent, almost always misspecified in the sense that the
functional form of the model may be incorrect and/or that all the relevant state variables
are not included compared to the true data-generating process. The relevant question



in the present context is, thus, not if the economic state variables correctly predict the
different parts of the return distribution, but if any of the state variables perform better
than others, and if the relative accuracy of competing forecasts is different across the
distribution. It is not unlikely that a state variable is a relatively good forecaster of, for
example, the lower tail of the distribution, while at the same time it is a relatively bad
forecaster of the upper tail. Likewise, it is also possible that the relative accuracy of
competing forecasts is very different across the tails and the center of the distribution.

Besides enabling us to evaluate predictability of the joint return distribution, the mul-
tivariate quantile model has an additional interesting feature. In the univariate quantile
model the proportion of observations falling below the a-quantile is a by construction.
In the multivariate quantile model the corresponding proportion is unknown from the
outset except in the special case of independence between assets. By comparing the
actual proportion to the proportion given independence, we can obtain detailed insights
into the dependence structure between assets and map out in which part of the joint
distribution, the dependence is present. In general, the multivariate quantile regression
model gives a very flexible approach to modeling time-varying joint distributions that do
not depend on any specific parametric assumptions.

As a final contribution, this paper contains an out-of-sample portfolio study to evalu-
ate if it bears economic significance to model the empirical return distribution instead of
imposing a distributional assumption, which is often done in portfolio decisions. The in-
vestor is assumed to have power utility, which generally implies that we need to obtain an
estimate of the entire return distribution, except if returns are lognormally distributed.
The combination of power utility and lognormality implies that we only need estimates
of the first two moments of the return distribution. I compare the certainty equiva-
lent return (CER) based on knowledge of the entire return distribution obtained from
quantile regression with the CER based on the assumption that returns are lognormally
distributed.

Based on monthly US data from 1941:5 to 2008:12, the main findings of this paper are
as follows. First, for both stocks and bonds it is possible to predict certain parts of the
return distribution, also even if the conditional mean is unpredictable. However, there
are large differences between stocks and bonds. Conditional on the set of state variables
used in this paper, the slope coefficients for stock returns are very similar across the
distribution, which is also verified by formal testing. This implies that the state vari-
ables, generally, only predict location shifts in the stock return distribution. In contrast,
the slope coefficients for bond returns are very different across the distribution. Fur-
thermore, this difference shows itself in quite different ways, which implies that the state
variables predict very different changes in the bond return distribution, including changes
in volatility and skewness. Second, the joint distribution between stock and bond returns
is also predictable. Based on the multivariate model, I furthermore show that stocks and
bonds are dependent, which implies that a simple combination of quantile forecasts from
the univariate setup will not suffice when attempting to capture the joint distribution.
This is also verified in an out-of-sample analysis. Third, the out-of-sample analysis shows
that the state variables’ relative predictive ability varies a lot over the return distribu-



tion. This holds for both individual and joint distributions, and suggests that in order
to obtain the best possible forecast of a future return distribution, a combination of dif-
ferent state variables might be preferable compared to single state variables. Fourth, the
portfolio study shows that it can be associated with economic gains for an investor with
power utility to model the empirical return distribution in portfolio decisions compared
to imposing a lognormal distributional assumption about returns. The results are, how-
ever, very different for stocks and bonds. For stocks, where the state variables basically
only capture location shifts, the CER is highest under the lognormal assumption. For
bonds, where the state variables capture time-variation also in higher-order moments,
the CER is highest under the empirical return distribution.

This paper is closely related to a recent paper by Cenesizoglu and Timmermann
(2008). They were the first to propose the use of quantile regression to examine pre-
dictability of the entire return distribution. In an empirical application they apply the ap-
proach to stock returns and show that while the conditional mean is often unpredictable,
predictability of different parts of the distribution, such as the tails and shoulders, shows
itself more clearly. They also examine the economic significance of predictability of stock
return quantiles through an asset allocation exercise. The present paper is motivated by
the idea introduced by Cenesizoglu and Timmermann (2008) and extends their analysis
in a number of ways. Regarding methodology, this paper proposes to model joint dis-
tributions through the use of multivariate quantile regression. Regarding the empirical
analysis, this paper examines predictability of both stock and bond return distributions,
including their joint distribution. Furthermore, it evaluates the relative accuracy of the
state variables in forecasting the different parts of the distribution out-of-sample. Fi-
nally, it compares the optimal portfolio choice based on the empirical return distribution
captured through quantile regression with the portfolio choice obtained by imposing a
distributional assumption on returns.

Besides the paper by Cenesizoglu and Timmermann (2008), the present paper is
related to many different strings of the financial literature. Naturally, the paper is closely
related to the literature on predictability of the mean or volatility of stock and bond
returns, especially the papers examining predictability as a function of different state
variables; see e.g. Ilmanen (1995), Kirby (1997), Marquering and Verbeek (2004), Welch
and Goyal (2008), Paye (2009), Lettau and Ludvigson (2010), and Viceira (2010). By
choosing a very fine grid of quantiles when performing quantile regression, we can obtain
an estimate of the entire future return distribution. Hence, the approach facilitates
forecasts of the entire distribution instead of only specific moments, and in that sense the
paper is also related to the literature on density forecasting; see e.g. Tay and Wallis (2002)
and Corradi and Swansson (2006). As previously mentioned the multivariate quantile
model used in this paper provides a very flexible way to model joint distributions. The
need to conduct multivariate modeling has spurred the use of, for example, copulas (see
e.g. Patton, 2004) and regime-switching models using mixtures of multivariate normal
distributions (see e.g. Ang and Bekaert, 2002, and Guidolin and Timmermann, 2007).
This paper complements the literature on multivariate modeling by introducing a non-
parametric alternative to the existing methods. The multivariate quantile model is used



to model the joint distribution between stock and bond returns, and through the model’s
feature of mapping out in which part of the joint distribution the dependence is present,
the paper supplements the rapidly growing literature on stock and bond comovement;
see e.g. Ilmanen (2003), Connolly et al. (2005), Guidolin and Timmermann (2006),
Christiansen and Ranaldo (2007), and Baele et al. (2010). Finally, the paper adds to the
growing number of papers using quantile regression in finance. Quantile regression has,
for example, been used to classify investment styles (Basset and Chen, 2001), test the
capital asset pricing model (Barnes and Hughes, 2002), and directly model the quantile
in value-at-risk models (Engle and Manganelli, 2004).

The rest of the paper is organized as follows. In Section 2, I outline the univariate
and multivariate quantile regression models used throughout the empirical part of the
paper. Section 3 describes the data. Section 4 and 5 present the empirical results based
on univariate and multivariate models, respectively. Section 6 shows results from the
portfolio study, and finally, Section 7 contains some concluding remarks. The Appendix
describes the algorithm used to estimate the multivariate quantile regression model.

2 Modeling the return distribution

In the following, I outline both the univariate and multivariate models, and the estima-
tion procedure. The univariate models follow from the seminal work by Koenker and
Basset (1978), and can be estimated using linear programming as originally suggested by
Koenker and d’Orey (1987). The concept of multivariate quantiles is far from trivial due
to the lack of inherent ordering in the multidimension. Chaudhuri (1996) proposes a way
to extend the notion of univariate quantiles to the multivariate case, and Chakraborty
(2003) generalizes this to the regression setting. Estimating multivariate quantile mod-
els has proven very complicated, primarily due to problems with lack of equivariance
of the parameter estimates under general nonsingular transformations of the response
vectors. To account for this problem, Chakraborty (2003) proposes a transformation-
retransformation procedure based on so-called ’data-driven coordinate systems’. I will
use the approach suggested by Chakraborty (2003) to estimate the multivariate models.

2.1 Univariate quantile regression models

The usual starting point in the literature on return predictability is models of the form

Yir1 = Mt + 0r€441,

where ;1 is a scalar containing returns either in levels or in logs, and p; and o; denote the
conditional mean and volatility, respectively. ;.1 is a return innovation with mean zero
and variance one. Based on this framework a large literature has explored whether the
conditional mean or volatility of returns vary over time. In the literature on predictability



of the mean return it is common to use the following setup

Yt+1 = th + €411,

where it is assumed that p; = 5x,, and x; is a vector of dimension £, with k denoting the
number of state variables used to predict future returns (usually including a constant).
This implies that the mean return forecast can be written as

E (yt+1 | ~7:t) = /3th

where F; denotes the time ¢ information set. The disadvantage of using this approach
is that we only obtain an estimate of the center of the return distribution. Consider the
case with only one state variable that has a positive slope coefficient. If the state variable
increases at time t we expect the return to increase at time t + 1. However, the approach
does not tell us if this increase is associated with an increase in risk or if the entire return
distribution simply shifts to the right. In other words, this approach does not provide
clear insights into the risk-return relation that is key in, for example, understanding
pricing of financial assets and determining the mix of risky assets in portfolio decisions.
This can partially be accommodated by also predicting future volatility, ;. However,
the risk associated with, for example, skewness and kurtosis is still unaccounted for when
restricting attention to only the first two moments of the distribution.

In this paper, I want to go beyond predictability of the mean and variance in order
to obtain a much more detailed picture of return predictability. The idea is to model the
conditional a-quantile, g, (y1+1 | F), of the return distribution through the use of state
variables. This implies the following model

Qo (yt+1 ‘ ft) = BaXy,

where the local effect of x; on the a-quantile is assumed to be linear, but since the
parameters are allowed to vary across quantiles, the model is very flexible.! By consid-
ering a large number of quantiles, we can trace out the entire future return distribution
P (y1+1 < Q) = o, where @, = Bax; is the time ¢ conditional quantile. In this way, we
can obtain a very detailed picture of time-variations in the return distribution. In partic-
ular, by using quantile regression it is possible to obtain valuable insights into whether
return predictability tracks time-varying expected returns, time-varying risk, or a com-
bination of both. Time-varying risk in this model is not restricted to volatility but can
be any higher-order moment of the return distribution, including skewness and kurtosis.
As an example, consider the case with only one state variable. If the quantile slope coef-
ficients are symmetric around zero and increasing as a function of the quantile, then an
increase (decrease) in the state variable will lead to an increase (decrease) in volatility.
If instead the lower quantile slope coefficients are very negative while the median and
the upper quantile slope coefficients are close to zero, then an increase (decrease) in the

!Based on the work by Engle and Manganelli (2004), Cenesizoglu and Timmermann (2008) include
last period’s conditional quantile and the absolute value of last period’s return as predictor variables.
To make the univariate results directly comparable to the multivariate results, I only include exogenous
state variables as predictor variables.



state variable will lead to a more (less) negatively skewed return distribution. The use of
quantile regression can in this way provide a very detailed picture of return predictability
in terms of the entire future return distribution. In Section 4.1, I will use the empirical
results to explain the different shapes of the distribution in more detail.

To illustrate a few special cases consider the setup with only one predictor variable

Qo (Z/t+1 ! ft) = 60,01 + 51,a5l7t-

If 31,4 = 0 for all values of o, we get the special case with time-invariant quantiles. This
corresponds to the ’prevailing mean’ model often claimed to outperform time-varying
expected returns in out-of-sample forecasts (see e.g. Welch and Goyal, 2008). This special
case will be named the 'prevailing quantile’ (PQ) model in the following. Another special
case is where [3; , is constant across all values of «, which corresponds to the standard
prediction model where the state variable x; simply shifts the conditional mean of the
return distribution.

Koenker and Basset (1978) provided the seminal work on quantile regression models.
Following their work, regression quantiles are defined as

T-1

Ba = arg min Lo (Y1 — BaXt) s
g min ; (y+ )
where T' is the sample size and
La (Z/t+1 - ﬁaxt) = (CY -1 {yt+1 - Baxt < 0}) (yt+1 - ﬁaxt) 9 (1)

with 1 {-} denoting the indicator function. The general idea is to replace the conventional
quadratic loss function used in ordinary least squares to obtain the conditional mean
function by the check loss function (1), which instead allows estimation of the conditional
quantile function. In the special case where o = 0.5, the check loss function simplifies
to the absolute loss function, which is the appropriate loss function to use in median
regression. An alternative representation of the check loss function (1) is

Lo (Y141 — Baxt) = |yr+1 — Baxe| + (200 — 1) (Y11 — Baxt) -

This representation of the loss function is convenient to bear in mind when turning to
the multivariate case.

Consistency and asymptotic normality of regression quantiles is well established in the
literature, see e.g. Koenker (2005) who give a thorough exposition of quantile regression.
Bo will be estimated using linear programming as originally suggested by Koenker and
d’Orey (1987).2 Standard errors will be obtained through (x,y)—bootstrapping, which
entails drawing (X, ys+1) pairs with replacement from the 7" — 1 pairs of the original
sample, each with equal probability. This form of the bootstrap has been widely used

2More specifically, I apply a modified version of the Koenker and d’Orey (1987) version of the Barro-
dale and Roberts (1974) simplex algorithm as implemented in the statistical software program EViews.



in applications of quantile regression and in contrast to the alternative of bootstrapping
residuals, it does not require identically distributed error terms to yield a valid esti-
mate of the asymptotic covariance matrix. This makes (z,y)—bootstrapping preferable
in quantile regression since accounting for heteroscedasticity is exactly one of the moti-
vations behind applying this tool. Buchinsky (1995) conducts a comprehensive Monte
Carlo study of several estimators of the asymptotic covariance matrix and finds that the
(x,y)—bootstrapping procedure yields the best results. The size of the bootstrap sam-
ples will be set equal to the original sample size. Buchinsky (1995) finds that for some
estimators a bootstrap sample size smaller than the original sample size can yield more
accurate results, but the performance of the (z,y)—bootstrapping procedure is robust to
this choice.

2.2 Multivariate quantile regression models

In the multivariate setup, the aim is to estimate

Yir1 = B%; + €441, (2)

where y; ;1 is now a vector of dimension d, with d denoting the number of dependent
variables. This implies that 8 now has dimension d x k. In this case the conditional
quantile function is given as

Ao (Vi1 | Fr) = Baxe,

where o now is a vector of quantiles.

To illustrate the setting, take the case with two dependent variables: y; and ys».
By estimating (2) using quantile regression, we can trace out the joint distribution,
P (y1.441 < Gayt and Y2441 < Qayt), which only in the special case of independence is equal
to the product of the two marginal probabilities, P (y1++1 < Quyt) X P (Y211 < Qant) =
Q1 X (g, which we can obtain from the univariate models. As an example consider the
case where y; and y, denote the return on stocks and bonds. Using this model we will
be able to analyze if prespecified state variables can predict, say, the joint outcome of
stock returns in the lower tail and bond returns in the upper tail. Furthermore, we
can obtain an estimate of the entire future joint return distribution of stocks and bonds
needed in, for example, portfolio decisions. Two things are worth noticing here. First,
for given values of a the slope coefficients (and thereby the quantile forecasts) are not
necessarily identical in the univariate and the multivariate setup. This is due to possible
dependence between the dependent variables. Second, in the univariate setup, we know
that the probability of falling below a given a-quantile is «. In the multivariate setup,
we only know this probability from the outset in the special case of independence as
mentioned above. In the general case, we can obtain a measure of the joint probability
by calculating an in-sample coverage probability.

The multivariate approach can, in general, yield important insights into the depen-
dence structure of two or more variables. Often simple linear correlation is used as a
measure of dependence, and given the variables are multivariate normally distributed,
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this measure also completely characterizes the dependence structure. However, in the
more general case where the distribution, for example, is affected by asymmetries, this
measure no longer gives an adequate description of the dependence structure. The need to
model the dependence between two or more variables also in the presence of asymmetries
has spurred the use of, for example, copulas (see e.g. Patton, 2004) and regime-switching
models using mixtures of multivariate normal distributions (see e.g. Ang and Bekaert,
2002, and Guidolin and Timmermann, 2007). The multivariate quantile approach pre-
sented in this paper complements the literature on multivariate modeling by proposing
a non-parametric alternative to the existing methods. Furthermore, given simple linear
correlation actually does provide an adequate measure of the dependence structure, we
still only know the ’average’ dependence. The measure provides no insight into which
outcomes generate the correlation. Again, take the example with stock and bond returns
and assume these are bivariate normally distributed implying that the linear correlation
gives a complete description of the dependence structure. We know stocks and bonds
are correlated, but which return outcomes generate this correlation? Is it, for example,
stock returns in the lower tail of the return distribution jointly with bond returns in the
upper tail? Or stock and bond returns jointly in the lower or upper tail? By choosing
a sufficiently fine grid of quantiles, we can trace out the joint distribution and compare
in-sample coverage probabilities to the probabilities given independence (the product
of the quantiles), and thereby obtain insights into which return outcomes generate the
correlation between stocks and bonds.

In contrast to the univariate case there is no inherent ordering in the multidimension,
which presents a big challenge in performing multivariate quantile regression. Chaudhuri
(1996) proposes a way to extend the notion of univariate quantiles to the multivariate
case. The idea is to index multivariate geometric quantiles, based on Euclidean distances,
using the elements of the d-dimension open unit ball. The corresponding quantiles not
only give the idea of ’extreme’ or ’central’ observations but also about their orientation
in a multivariate data cloud. Chaudhuri (1996) establishes existence and uniqueness of
multivariate geometric quantiles, and furthermore he proves consistency and asymptotic
normality.

Chakraborty (2003) generalizes this idea and defines regression quantiles in the mul-
tivariate linear model (2) as

T-1
Ba = arg min Z La (yt+1 - Baxt) )
BaeRka —1
where the loss function is given as
L, (Yt+1 - 5aXt) = H}’t+1 - Baxt” +u’ (Y41 — Baxt) . (3)

|-|| denotes the Euclidean norm and the index vector u is an element of the open unit
ball B = {u lueR ||ul| < 1}. Note here that a vector u for which ||ul| is close to

one corresponds to an ’extreme’ quantile, while a vector u for which ||ul| is close to zero
corresponds to a 'central’ quantile. Often it is of interest to compare the multivariate es-
timates to the corresponding univariate estimates. Furthermore, it is often more intuitive

8



to choose the quantiles for which to estimate the model (i.e. a)) and then map these into
the open unit ball (i.e. u) than to choose the index vector u directly. To accommodate
this, note that we can obtain a 1-1 mapping from the open square (0,1)? in which « is
defined to the d-dimensional open unit ball as

Igll
u=-—>xg, (4)
el

where ||g||,, = max{|gi|,...,|gq4|} and g = 2« — ¢, with ¢ denoting a d-dimensional
vector of ones. Hence, after choosing the quantiles, «, for which we want to estimate the
multivariate model, we can map these into the open unit ball using (4), and then proceed
with the estimation from there.

However, as Chakraborty (2003) notes the geometric regression quantiles obtained by
minimizing (3) are not equivariant under arbitrary nonsingular transformations of the
response vectors and they are not even equivariant under coordinatewise scale transfor-
mations. This implies that regression quantiles obtained by minimizing (3) directly are
very dependent on the choice of coordinate system, which is not desirable. Chakraborty
(2003) introduces a transformation-retransformation procedure to resolve the problem of
lack of equivariance. The fundamental idea in this procedure is, first, to form an appro-
priate ’data-driven coordinate system’ (i.e. transform the response vectors), and then to
formulate the model in terms of that coordinate system.? Next, the idea is to estimate the
model based on the transformed response vectors before, finally, retransforming the pa-
rameter estimates so as to express everything in terms of the original coordinate system.
Chakraborty (2003) shows that the estimates following this procedure are equivariant,
and he also proves existence and uniqueness as well as consistency and asymptotic nor-
mality. The Appendix contains the algorithm used in the present paper to estimate the
multivariate quantile model, including how to choose the ’data-driven coordinate system’;
for additional details, see Chakraborty (2003). As in the univariate case, standard errors
will be obtained through (z,y) —bootstrapping.

Recently, a series of papers show that several state variables have a non-linear effect on
the conditional mean of future stock and bond returns (see e.g. Rapach and Wohar, 2005,
McMillan and Wohar, 2009, and Guidolin et al., 2009). Non-linearity can also be present
in conditional quantile models and does not necessarily imply added difficulty in the
estimation procedure of univariate models compared to the linear case; see e.g. Koenker
and Park (1996) and De Gooijer and Zerom (2003). However, I restrict my attention to
linear models in order to have a common setup in the univariate and multivariate case.
To my knowledge the problem of estimating non-linear multivariate quantile models has
not yet been addressed.

3Chaudhuri and Sengupta (1993) introduced the idea of ’data-driven coordinate systems’.
Chakraborty and Chaudhuri (1996) used this idea and introduced a transformation-retransformation
procedure to construct the multivariate median, while Chakraborty (1999) considered the regression
analog.



3 Data

I examine predictability of stock and bond return distributions using a set of nine state
variables, all of which have previously been used in the literature on predictability of the
conditional mean and volatility. I use US monthly data from 1941:5 to 2008:12, where
the starting date is dictated by data availability. Stock returns are obtained as the return
(including dividends) on the S&P500 Index and bond returns are measured as the return
on 5-year Treasury bonds. The 30-day T-bill rate is subtracted from stock and bond
returns to obtain excess returns. The data on stocks, bonds, and bills is obtained from
the Center for Research in Security Prices (CRSP).

The set of state variables contains two valuation ratios. The dividend-price ratio (DP)
is calculated as the 12-month moving sum of dividends paid on the S&P Index divided by
ultimo price. Likewise, the earnings-price ratio (EP) is calculated as the 12-month moving
sum of earnings on the S&P Index divided by ultimo price. The data used to construct
these valuation ratios is obtained from Robert Shiller’s website. Furthermore, the set of
predictor variables contains two corporate finance variables. The dividend payout ratio
(DE) is the ratio of dividends to earnings, while net equity expansion (NTIS) is the ratio
of 12-month moving sums of net issues by NYSE listed stocks divided by the total end-of-
year market capitalization of NYSE stocks. Stock variance (SVAR) computed as the sum
of squared daily returns on the S&P500 Index is also included as a state variable. NTIS
and SVAR are obtained from Ivo Welch’s website. The set of state variables also contains
three bond yield measures. The Treasury-bill rate (TBL) is the 8-month Treasury Bill:
Secondary Market Rate from the economic research data base at the Federal Reserve
Bank at St. Louis (FRED). The term spread (TMS) is the difference between the long-
term government bond yield from Ibbotson’s Stocks, Bonds, Bills and Inflation Yearbook
and TBL. The default spread (DFS) is the difference between yields on BAA and AAA-
rated corporate bonds obtained from FRED. Finally, inflation (INFL) is the return on
the Consumer Price Index (All Urban Consumers) from the Bureau of Labor Statistics.
This state variable is a common broad macroeconomic indicator.

Many papers have used a similar set of predictor variables to examine stock return
predictability. For example, Welch and Goyal (2008) provide a comprehensive study of
these variables’ ability to predict the conditional mean stock return (both in- and out-of-
sample).? Other studies use similar state variables to predict both the conditional mean
and volatility; see e.g. Marquering and Verbeek (2004) and Lettau and Ludvigson (2010).
Cenesizoglu and Timmermann (2008) also use a broad set of state variables to examine
predictability of the entire stock return distribution. The literature on bond return
predictability is much less voluminous. Examples of papers examining predictability of
the conditional mean bond return include Ilmanen (1995) and Kirby (1997). In a recent
paper, Viceira (2010) examines predictability of both the conditional mean and volatility
using the short rate and the yield spread as predictor variables. Finally, using vector
autoregressions a number of papers have examined predictability of the conditional mean

4See Welch and Goyal (2008) for a non-exhaustive list of papers examining predictability of the
conditional mean stock return using the individual state variables.
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of both stock and bond returns; see e.g. Campbell et al. (2003), Engsted and Pedersen
(2010), and Viceira (2010).

4 Univariate return distributions

In this section, I report results on predictability of stock and bond returns in a univariate
setup. Section 4.1 contains in-sample results using both quantile regression and least
squares estimated over the entire sample period. The results obtained using quantile
regression yield insights into predictability of different parts of the return distributions,
while the results obtained using least squares only contain information on predictability
of the conditional mean return. Section 4.2 contains an out-of-sample analysis of forecasts
based on the quantile regression framework.

4.1 In-sample return predictability

Table 1 shows the slope coefficients when excess stock returns are regressed on each of
the nine state variables using either least squares (Panel A) or quantile regression (Panel
B). To obtain a sufficiently detailed picture of the return distribution, I perform quantile
regression for av = {0.05,0.10, 0.20, ...,0.90,0.95}. t-statistics are shown in parentheses.
For least squares the t-statistics are based on White (1980) heteroscedasticity-consistent
standard errors, and for quantile regression they are based on (z,y)—bootstrapped stan-
dard errors as outlined in Section 2.1. For ease of readability, slope coefficients with
an associated t-statistic larger than 1.96 or smaller than -1.96 are boldfaced. For least
squares a slope coefficient significantly different from zero means that the state variable
in question significantly predicts an increase or decrease in next period’s mean excess
return. For quantile regression a significant slope coefficient for a given a-quantile means
that the state variable significantly predicts an increase or decrease in next period’s a-
quantile of the return distribution. If the a-quantile slope coefficients are significantly
different it implies time-variation in higher-order moments of the return distribution.
This can be tested using the slope equality test proposed by Koenker and Basset (1982).
Panel C shows the Wald statistics from this test with p-values in brackets.

Panel A shows that five of the nine state variables predict the mean excess stock
return. The slope coefficient on the dividend-price ratio and earnings-price ratio is sig-
nificantly positive, while it is significantly negative for stock variance, T-bill rate, and
inflation. These results are consistent with evidence from the existing literature and
economic theory. Turning to the results based on quantile regression, Panel B shows
that eight of the nine state variables predict at least some part of the return distribu-
tion. For example, the dividend-price ratio predicts the center and upper shoulder of
the return distribution, while inflation predicts the center and lower shoulder. For visual
evaluation the slope coefficients and associated 95% confidence bands using both least
squares and quantile regression are displayed in Figure 1. Ignoring statistical significance
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for a while and just focusing on the value of the slope coefficients, we observe that the
individual state variables predict the future return distribution in quite different ways.
For example, the slope coefficients for the dividend-price ratio are all positive and of
similar magnitude. This implies that an increase in the dividend-price ratio leads to an
increase of roughly same magnitude in all return quantiles, i.e. an upward location-shift
of the return distribution with no changes in volatility, skewness or any other higher-
order moment. In contrast, the slope coefficients on stock variance are mainly negative
except for the highest quantiles. Furthermore, the median slope coefficient is of similar
magnitude as the least squares slope coefficient indicating symmetry in the future return
distribution. In this case, an increase in the state variable leads to a downward shift in
the return distribution and an increase in volatility since the upper quantiles will increase
and the lower quantiles decrease. Testing for slope equality across the quantiles (Panel
C) reveals that only stock variance captures time-variation in higher-order moments of
the stock return distribution. The remaining eight state variables either do not capture
time-variation in any moment of the return distribution or only of the first moment.

Table 2 and Figure 2 show the corresponding results for excess bond returns, which
are quite different from those obtained for stock returns.” While only four of the nine
state variables predict mean bond excess return, all state variables predict at least some
part of the return distribution. Furthermore, the slope equality test shows that seven
of the nine state variables significantly capture time-variation in higher-order moments
of the bond return distribution. The state variables predict the future bond return
distribution in quite different ways. For example, the T-bill rate significantly predicts
the entire distribution except the center. The slope coefficients for the upper part of the
distribution are positive, while they are negative for the lower part. Furthermore, the
slope coeflicient for the median is close to zero and roughly equal to the least squares slope
coefficient indicating symmetry in the return distribution. Comparing slope coefficients
for the 1 —a and a-quantile, we also find evidence of symmetry in the distribution. These
results imply that an increase in the T-bill rate does not shift the excess bond return
distribution neither upwards nor downwards, but it increases the distribution’s dispersion,
i.e. volatility increases. A similar result is observed for the default spread. However,
in this case the increase in dispersion is accompanied by an upward location-shift as
seen from the slope coefficient for both the median and the mean. Another example is
inflation. This state variable captures time-variation in the third moment. The slope
coefficients are negative for all quantiles as well as the mean indicating a downward shift
in the return distribution when inflation increases. However, only for the median and
the lower quantiles are the slope coefficients significantly negative. Furthermore, the
slope coefficients for the lower quantiles are much larger in absolute value than the slope
coeflicients for the upper quantiles. This implies that an increase in inflation leads to a
more negatively skewed bond return distribution since the lower quantiles will decrease
a lot while the upper quantiles will remain roughly the same (or decrease slightly). As
a final example, consider the term spread. This state variable is generally considered to

>From Figure 1 and 2 it is clear that, in general, the quantile slope coefficients are estimated with high
precision. In some cases (especially for bonds) also even more so than the least squares slope coefficients.
Only in the extreme tails do we for some state variables observe a noticeable decrease in precision.
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be the 'best’ predictor of future bond returns. From Panel A it is clear that the least
squares slope coefficient is positive, which is in line with theory and existing evidence,
but it is not statistically significant. In contrast, the slope coefficients for the center and
upper shoulder are all highly significant. Hence, the conditional median is predictable,
but the conditional mean is not. Here it is important to note that in contrast to quantile
regression, least squares is highly sensitive to outliers, which can lead to unpredictable
conditional means although the conditional median is in fact predictable.

In general, the results presented in this section show that lack of predictability of
the mean return does not necessarily imply that other parts of the return distribution
are unpredictable. Predictability can be present in the first, second, third, or any other
higher-order moment of the return distribution. The results also illustrate how the differ-
ent state variables predict future asset returns in quite different ways in terms of location-
shifts, volatility and skewness etc. These findings complement our existing knowledge of
return predictability in the traditional sense, i.e. of the conditional mean. For example,
an expected increase in future stock returns due to an increase in the dividend-price ratio
is not associated with changes in risk, while an expected decrease in future bond returns
due to an increase in inflation is associated with an increase in downside risk. These
results yield important insights into the risk-return relation that is key in, for example,
understanding the pricing of financial assets.

The risk-return trade-off for a given asset is usually measured by its conditional Sharpe

ratio
E R

EVia

where F;R;. is the mean excess return from time ¢ to ¢ + 1 conditional on information
available at time ¢ and FE,V;,; is a measure of the standard deviation of excess return,
again conditional on time t information. The Sharpe ratio is an intuitively appealing
characterization of the price of risk, since it measures how much return an investor can
get per unit of asset volatility. In classic asset pricing models such as the capital asset
pricing model by Sharpe (1964), the expected risk premium varies proportionally with
expected volatility, which implies that the Sharpe ratio should be constant over time. The
expected risk premium is allowed to vary over time, but it must be perfectly positively
correlated with expected volatility, i.e. the amount of risk must also be time-varying.
More recent asset pricing models such as the habit model by Campbell and Cochrane
(1999) allow the price of risk to vary over time, which implies that the expected risk
premium and volatility need not be perfectly positively correlated.

SRt -

During the last 20 years numerous papers have established that the expected risk
premium on stocks varies over time, but researchers are still debating whether this is
due to time-varying price of risk or time-varying amount of risk. Based on the dividend-
price ratio, earnings-price ratio, T-bill rate, and inflation, the results in Table 1 provide
evidence of time-varying price of stock market risk, since the conditional mean excess
return based on these state variables is time-varying (Panel A), but the distribution
including volatility (amount of risk) does not change over time (Panel C). For stock
variance both the conditional mean excess return and volatility vary over time, but the

13



price of stock market risk is still time-varying. If stock variance increases, the numerator
in the Sharpe ratio decreases while the denominator increases, and vice versa. Hence, the
expected risk premium and volatility are negatively correlated, resulting in a time-varying
Sharpe ratio.

Table 2 reveals evidence of time-varying price of risk also for bonds, but in a different
way than for stocks. For example, based on the dividend-price ratio, earnings-price
ratio, payout ratio, and T-bill rate the amount of risk varies over time (Panel C), but the
expected risk premium is constant (Panel A). Hence, the denominator in the Sharpe ratio
varies over time, but the numerator is time-invariant. Based on net equity expansion,
stock variance, and default spread both the expected risk premium and the amount of
risk vary over time, and in contrast to the case with stocks and stock variance as state
variable, they are positively correlated. However, it is not directly evident from Table 2
if they are perfectly correlated implying constant bond market price of risk.

Risk is not confined to be measured by volatility. Similar to the Sharpe ratio, we
can construct a characterization of the price of risk, which measures how much return an
investor can get per unit of, say, asset skewness or kurtosis. The use of quantile regression
allows for a robust and straightforward way to calculate the third and fourth moment of
the return distribution (see e.g. Cenesizoglu and Timmermann, 2008), which in turn can
provide more detailed insights into the risk-return relation than captured by the Sharpe
ratio. An in-depth analysis of the risk-return relation is outside the scope of this paper,
and hence I leave it for future research.

4.2 Out-of-sample forecasts

A key issue in the return predictability literature is out-of-sample evaluation. It is very
likely that empirical forecasting models are, to some extent, almost always misspecified
in the sense that the functional form of the model may be incorrect and/or that all the
relevant state variables are not included compared to the true data-generating process.
However, it is still relevant to examine the relative accuracy of competing forecasts. In
the present context the relevant question is whether a given state variable is better at
forecasting a given return quantile than the other state variables. For each quantile,
I perform pairwise comparisons based on the check loss function (1) and the testing
procedure proposed by Diebold and Mariano (1995). The test is very simple and entails
calculating the loss differential

dista = (@ = 1{ys1 — Gy < O0}) (wer1 — Qo) — (@ — 1 {wp1 — in,t < 0}) (yes1 — int) :

at each point in time in the out-of-sample evaluation period. ¢,, and E]\gé’t are quantile
forecasts for state variable ¢ and j, respectively, based on information only up to time .
The null of equal forecast accuracy can then be tested as

b= T A(0,1), (5)

var (Ea)
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where d,, is the average of dy+1, over the out-of-sample period. I apply a recursive scheme
in generating out-of-sample forecasts. Initially, I estimate the models based on data from
the start of the sample and up to 1969:12. I then generate forecasts for return quantiles
in 1970:01 and compare these to realized returns in the same period. Next, I add the
data from 1970:01, reestimate the models, and generate forecasts for return quantiles in
1970:02, which I then compare to realized returns in that period. This recursive scheme
is repeated up to the end of the sample period resulting in a total of 468 out-of-sample
forecasts for the period 1970:01 to 2008:12.

Table 3 shows t-statistics from the pairwise loss differential tests for the lower tail
(Panel A), center (Panel B), and upper tail (Panel C) of the return distribution. In each
panel the results based on stock returns are shown below the main diagonal while the
results based on bond returns are shown above the main diagonal. The loss differential
is calculated as the loss from the variable on the vertical axis minus the loss from the
variable on the horizontal axis. Hence, a positive (negative) entry in the table implies
that there is higher (lower) loss associated with the variable on the vertical axis than the
variable on the horizontal axis, i.e. the variable on the horizontal (vertical) axis yields
a relatively better forecast for that particular quantile. Again, for ease of readability
t-statistics larger than 1.96 or smaller than -1.96 are boldfaced. In addition to the nine
state variables, Table 3 also includes results based on the prevailing quantile (PQ) model,
i.e. a model without state variables. This is the quantile equivalent to the 'prevailing
mean’ model often claimed to outperform time-varying expected returns in out-of-sample
forecasts.

Regarding stock returns, the forecast accuracy is only significantly different in three
pairwise comparisons. The default spread forecasts the lower tail significantly better
than the payout ratio, and inflation forecasts the center significantly better than both
stock variance and the term spread. Ignoring statistical significance for a while and just
focusing on the sign of the loss differential, a number of interesting results appear. For
example, in the lower tail the average loss associated with stock variance is lower than the
average loss associated with the other eight state variables and PQ. In contrast, in the
center and the upper tail this is the case for inflation and the default spread, respectively.
Hence, the relative predictive accuracy of the individual state variables differs across the
return distribution. State variables that perform relatively well in the lower tail might
not perform equally well in the upper tail and vice versa. Likewise for the state variables
that perform relatively worse than the other state variables. In the center the term spread
is associated with higher average loss than the other eight state variables and PQ, and
in the upper tail this is the case for the T-bill rate.

In the literature on stock return predictability, it is often argued that state variables
do not predict the future return better than the prevailing mean (see e.g. Welch and
Goyal, 2008). The results in Table 3 support a similar argument concerning the entire
return distribution. None of the state variables predict the lower, center, or upper tail
of the stock return distribution significantly better than the prevailing quantile. In fact,
with exception of the dividend-price ratio, stock variance, and default spread in the lower
tail, inflation in the center, and default spread in the upper tail, PQ is always associated
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with the relatively lowest loss.

Turning to bond returns, the loss differential is in many cases statistically significant.
For example, in both the lower and upper tail, the default spread is a significantly better
forecaster than all the other state variables (except stock variance in the upper tail and
the T-bill rate in both tails). Inflation also predicts the lower tail significantly better than
the majority of other state variables. If we just focus on the sign of the loss differential
we see that the T-bill rate is a relatively good forecaster of both the lower and upper
tail, while it performs relatively worse than all the other state variables in predicting the
center of the distribution. In contrast, the term spread is a relatively good forecaster
of the center, but it performs worse than all the other state variables in the tails of the
distribution. The term spread is often considered to be the ’best’ forecaster of future
bond returns. The results in Table 3 show that the relatively good predictive ability of
this state variable is confined to the center of the distribution, and completely vanishes
in the tails.

5 Multivariate return distributions

Often we need an estimate of a future joint return distribution. For example, in portfolio
choice problems, where the investor is allowed to invest in more than one risky asset,
or in various risk management problems. In general, this calls for a multivariate model.
Only in the special case of independence between the relevant assets, can we rely on
a combination of univariate models. In this section, I use the multivariate quantile
model presented in Section 2.2 to analyze the joint distribution between stock and bond
returns. In Section 5.1, I use the multivariate quantile model to examine if stocks and
bonds are independent, and if not, in which parts of the distribution the dependence
is present. If stocks and bonds are independent, the joint quantile forecasts are simply
equal to the quantile forecasts from the univariate models. Next, Section 5.2 examines
the joint in-sample predictability of stock and bond returns. Finally, Section 5.3 contains
an out-of-sample analysis. I calculate the out-of-sample loss differential between quantile
forecasts from the univariate and joint models. This can be used to evaluate if it matters
to take the dependence structure between stocks and bonds into account in forecasting. I
also perform pairwise out-of-sample loss differential tests similar to those shown in Table
3. Similar to the univariate case, these tests can help identify if any of the state variables
are better than the others in predicting various parts of the joint stock and bond return
distribution out-of-sample.

5.1 Are stocks and bonds independent?

Dependence can be evaluated by calculating in-sample coverage probabilities. These
probabilities are calculated by, first, estimating the quantile model over the entire sam-
ple period. Next, based on the estimated coefficients, in-sample quantile forecasts are
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constructed. Finally, in-sample coverage probabilities in the univariate and bivariate
case, respectively, are calculated as

T-1

CP,=—— Z 1 (yes1 < Qo) s

t=1

T-1

1 — ~
Z 1 (Y1041 < Qogt and Y201 < Qagrt) -
=1

CPal,az - ﬁ

In the univariate case, we know that C'P, = «a by construction. In the bivariate case,
however, we only know the in-sample coverage probability from the outset if the variables
are independent, in which case C'F,, o, = a1 X a2. Hence, if the joint coverage probability
is different from the product of the two quantiles, we can conclude that the variables are
dependent. Furthermore, by choosing a sufficiently fine grid of quantile combinations,
we can determine in which part of the joint distribution the dependence occurs.

Table 4 shows in-sample coverage probabilities for 11 different quantile combinations
(cvs, ap) with «g denoting the quantile for stocks and «a; the quantile for bonds. The
quantile combinations (0.05,0.05), (0.50,0.50), and (0.95,0.95) denote the joint lower tail,
center, and upper tail of the stock-bond return distribution, while (0.05,0.95) denote the
joint outcome of stock returns in the lower tail and bond returns in the upper tail, and
vice versa for (0.95,0.05). The other quantile combinations can be interpreted similarly.
By choosing a sufficiently fine grid of quantile combinations, we can trace out the entire
joint distribution. In the final column the coverage probabilities given independence are
shown. The first thing worth noticing in Table 4 is that, as expected, the results are
quite robust across state variables and the prevailing quantile model. Hence, the overall
conclusions about the dependence between stocks and bonds do not depend on specific
state variables or the assumption about time-varying return distributions.

From Table 4 it is clear that stocks and bonds are not independent. The in-sample
coverage probabilities are generally quite different from the coverage probabilities given
independence. From the first five quantile combinations where a; = ay, we see that the
joint stock-bond distribution contains more probability mass in the joint tails compared
to the case with independence. For example, roughly 20% of the observations lie above
(0.95,0.95). If stocks and bonds are independent, this number should only be 10%. Most
noticeable is, however, the coverage probability associated with the quantile combination
(0.05,0.95). Given independence only 5% of the observations should be in this part
of the distribution, but the coverage probability is roughly 20%. Moreover, since the
coverage probability associated with the quantile combination (0.05, 0.50) does not reveal
a similar overrepresentation (compared to the case with independence), we can conclude
that part of the dependence is due to stock returns falling in the lower tail jointly with
bond returns in the upper shoulder. In other words, the joint outcome of very low
stock returns and high bond returns appears more frequently than if stocks and bonds
were independent. These observations are also clearly visible in Figure 3, where each
quadrant shows the coverage probability for the relevant quantile combinations based on
the prevailing quantile model (with probabilities given independence in parentheses).
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Based on the entire sample period, the correlation between stocks and bonds is roughly
0.10. This is an ’average’ measure of dependence and it does not provide insights into
which return outcomes are responsible for the comovement. This insight can, however,
be obtained based on coverage probabilities as in Figure 3. Note that outcomes along
the main upward sloping diagonal generate positive correlation, while outcomes along
the main downward sloping diagonal generate negative correlation. A growing literature
documents time-varying correlation between stocks and bonds (see e.g. Ilmanen, 2003,
Connolly et al., 2005, Christiansen and Ranaldo, 2007, and Baele et al., 2010), with cor-
relation being both positive and negative. According to Figure 3 the positive correlation
is mainly due to the joint outcome of very high stock returns and moderately high bond
returns. The joint outcome of low stock and bond returns do not appear to contribute
to the positive correlation. Figure 3 also shows that the negative correlation is primarily
driven by the joint outcome of very low stock returns and moderately high bond returns.
Although this helps us understand which return outcomes generate the correlation be-
tween stocks and bonds, it is also clear from Figure 3 that the stock-bond distribution is
affected by asymmetries, which basically implies that simple linear correlation does not
give an adequate measure of dependence between stocks and bonds. This is consistent
with Guidolin and Timmermann (2006), who based on a regime switching model find
evidence of nonlinear dynamics in the joint distribution of stock and bond returns.

By choosing a more fine grid of quantile combinations, it is possible to obtain a more
detailed picture of the dependence structure between stocks and bonds. For the purpose
of this paper, however, the results in Table 4 and Figure 3 are sufficient to conclude that
stocks and bonds are not independent, and hence, we need to resort to the multivariate
setup when an estimate of the future joint return distribution is required.

5.2 Joint in-sample return predictability

Table 5 shows the slope coefficients and associated t-statistics estimated in the multi-
variate setting for stock (Panel A) and bond (Panel B) returns for five different quantile
combinations. As in Tables 1 and 2, slope coefficients with an associated t-statistic larger
than 1.96 or smaller than -1.96 are boldfaced. From Table 5 it is clear that at least part of
the joint stock-bond distribution is predictable as a function of economic state variables.
Consider, for example, the default spread. This state variable significantly predicts both
the joint lower and upper tail of the stock-bond distribution, as well as the joint outcome
of stock returns in the lower tail and bond returns in the upper tail, and vice versa. The
implication of the results in Table 5 is that the joint distribution between stocks and
bonds is time-varying. Furthermore, based on the size and sign of the coefficients it is
clear that this time-variation is not restricted to only location-shifts, but also concerns
the shape of the distribution.

According to the in-sample coverage probabilities in Table 4 and Figure 3, stocks and
bonds are dependent. Another way to evaluate dependence is to compare the jointly
estimated slope coefficients with those estimated in the univariate setup. Consider, for
example, stock variance in Table 5, Panel A. For a, = 0.95, the slope coefficient for
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stock returns is equal to 0.711 and 1.132 for a; = 0.05 and 0.95, respectively. If stocks
and bonds are independent, the slope coefficient for stock returns for a given a,-quantile
should be constant across the aj-quantile and equal to the slope coefficient in the uni-
variate setup. This coefficient is estimated to be 3.336, and thus these results illustrate
that we need to account for the dependence structure between stocks and bonds when we
model their joint distribution. Figure 4 illustrates this point more clearly. The solid line
gives the univariately estimated slope coefficient for the 0.95-quantile for stock returns as
a function of stock variance, while the line with circles gives the corresponding estimates
in the multivariate setup for different values of the a;-quantile. Figure 4 shows that for
ap = 0.50 and 0.60, the slope coefficient in the multivariate setting is higher than the
slope coefficient in the univariate setting, while it is lower for the remaining aj-quantiles.

These results indicate that the conditional joint distribution between stocks and bonds
cannot be captured by simply combining the univariately estimated distributions. When-
ever an estimate of the joint distribution between stocks and bonds is required, we thus
need to resort to the multivariate model.

5.3 Out-of-sample joint forecasts

The fact that stocks and bonds are dependent does not necessarily imply that multivari-
ate quantile forecasts perform better out-of-sample than a combination of univariately
estimated quantile forecasts. To evaluate if it matters to take the dependence into ac-
count in out-of-sample forecasting, I calculate out-of-sample loss based on (3) and the
parameter estimates from both the univariate and multivariate setup using the recursive
scheme outlined in Section 4.2. Based on these loss series, I calculate the differential
test (5). The results are shown in Table 6. Again, for ease of readability ¢-statistics
larger than 1.96 or smaller than -1.96 are boldfaced. A positive (negative) entry implies
that the out-of-sample loss associated with forecasts from the univariate setup is higher
(lower) than the loss associated with forecasts from the multivariate setup. From Table
6 it is clear that in some cases, a combination of quantile forecasts constructed based
on the univariate setup performs best out-of-sample, although the difference is not sig-
nificant. However, the vast majority of test statistics are positive and many of these
are also statistically significant. Hence, the conclusion obtained from Table 6 is that it
clearly matters to take the dependence between stocks and bonds into account, also in
out-of-sample forecasts.

The next natural question is: Do any of the state variables perform better in out-
of-sample joint forecasting than others? To answer that question, I perform pairwise
loss differential tests similar to those in Table 3, but now based on the multivariate loss
function (3). Results for five different quantile combinations are shown in Table 7. In
Panel A, the results for the joint lower (upper) tail are shown below (above) the main
diagonal, while Panel B shows the results for the joint center of the distribution. Finally,
below (above) the main diagonal Panel C shows the joint outcome of stock returns in
the lower (upper) tail and bond returns in the upper (lower) tail. From Table 7 it is
clear that many of the loss differentials are statistically significant in the ’tails’ of the
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distribution, but not in the center.

In terms of the state variables’ relative out-of-sample performance, Table 7 reveals
clear differences between the different parts of the joint distribution. In the joint lower tail
(0.05,0.05), the T-bill rate performs significantly better than all the other state variables,
while the term spread performs worse. In the joint upper tail (0.95,0.95), the relatively
best forecaster is the default spread, while the worst is the dividend-price ratio. In both
cases the differences are statistically significant. Turning to Panel C, we see that for
(0.05,0.95) the results are very similar to those for (0.05,0.05). Again, the T-bill rate is
the relatively best forecaster, while the term spread is the worst. Hence, these results
seem robust for stock returns in the lower tail, irrespective of bond returns falling in
the lower or upper tail. Likewise, for (0.95,0.05) we find that the default spread is the
relatively best forecaster similar to the case with (0.95,0.95). However, for (0.95,0.05) the
T-bill rate is now the relatively worst forecaster. Regarding the center of the distribution,
inflation is the relatively best forecaster, while the term spread is the worst.

The results in Table 7 are in general consistent with those from the univariate setting
as shown in Table 3. The relative importance of stocks and bonds differs, however, in
the different parts of the joint distribution. The relative good and bad performance
in the center of the joint distribution by inflation and the term spread, respectively,
can be ascribed to stocks. Likewise, the relative bad performance by the T-bill rate in
(0.95,0.05) seems to be due to its poor ability to forecast the upper tail of the stock
return distribution. In contrast, the relatively good and bad performance of the T-bill
rate and the term spread, respectively, in (0.05,0.05) and (0.05,0.95) can be ascribed to
bonds.

6 A portfolio study

To examine if it bears any economic significance to take the empirical return distribu-
tion into account, this section contains a portfolio study. In general, investors require
an estimate of the entire distribution of future returns to make their portfolio decisions.
Only with certain utility and/or distributional assumptions, knowledge of the first two
moments of the return distribution is sufficient (see e.g. Campbell and Viceira, 2002). 1
perform an out-of-sample portfolio study based on an investor with power utility defined
over next period’s wealth and under unknown return distributions estimated using quan-
tile regression. I compare these results to the special case where returns are assumed to
be lognormally distributed. In this case, we obtain a simple closed-form solution to the
optimal portfolio choice, which is consistent with mean-variance analysis, and hence only
requires knowledge of the first two moments of the return distribution.
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6.1 Optimal portfolio choice

I consider both a univariate setting, where the investor only has access to one risky
asset (either stocks or bonds) and a risk free asset, and a multivariate setting, where
the investor has access to two risky assets (both stocks and bonds) as well as the risk
free asset. First, I describe the setting in the univariate case. In this case the budget
constraint is given as

Wi =W, (1 + wt§t+1 + (1 —wy) Rfﬁ)
=1+ wiRiy1 + Ryy,

where w; denotes the fraction of wealth invested in stocks and bonds, respectively, at
time ¢t. The remainder 1 — wy is invested in the risk free asset. R;.; denotes the return
on the risky asset at time ¢t +1, R, denotes the return on the risk free asset at time ¢ 41
but known at time ¢, and R;,; denotes the excess return on the risky asset at time ¢ + 1
calculated as Ry = Riy1 — Ry Without loss of generality, W, is set equal to 1.

The investor is assumed to have standard power utility (CRRA) defined over next
period’s wealth
Wiy
1—7’
where v denotes the relative risk aversion parameter. To obtain the optimal portfolio
choice, the investor solves the following optimization problem

U(Wia) =

, 1+ w Ry + Rpy)' ™"
wy :argmax/( ! i+iy 1) [ (Rea|Fy) Ry, (6)

where f (R;41|F:) is the conditional probability distribution of future excess returns based
on the information set at time ¢. Hence, in the general case, the investor needs an estimate
of the entire future return distribution. To solve for the optimal portfolio choice, we can
either impose assumptions about f (R;y1|F;) or discretize the integral in (6). To make
the approach simple and consistent across the univariate and multivariate setup, I choose
to discretize the integral in the following way

(1 + wi Qo054 + Rf,t)l_7 R

w; = arg max 1 X P(0,0.05)
09 (1 + wté\a,t + Rﬁt)l_’y ~
+ Z 1—~ X P(a—0.05,a-+0.05)
a=0.1
1—’—11}6]\0_957—}-}%7 1= ~
+ ( : 1 _ty 1) X D(0.95,1);

using the quantile grid o = {0.05,0.10,0.20,...,0.90,0.95}. g, is the one-period a-
quantile forecast based on time ¢ information, and P41 42) is the in-sample coverage prob-
ability between o' and a?. With exception of the lower and upper tails, the a-quantile
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forecasts are assumed to be located at the midpoint between the a!- and o?-quantiles.
For example, for go1,: the associated probability is calculated as the proportion of in-
sample observations that fall between the 0.05- and 0.15-quantile. Note, this assumption
basically implies that the model must be estimated for 19 quantiles at each point in time.
In the univariate case, P(a1,q2) = a?—al, and can thus be determined without calculating
in-sample coverage probabilities. Due to dependence between the variables, the relevant
probabilities in the multivariate case need to be determined based on in-sample coverage
probabilities (see Table 4). To maintain a consistent notation between the univariate and
multivariate setup, I apply the above notation also in the univariate case. Maximization
is done by grid search over the interval 0 to 1 with stepsizes of 0.01. Hence, no-short sale
and no-borrowing constraints are imposed from the outset.

An alternative to estimating the entire return distribution is to impose a distributional
assumption. I consider the case where returns are assumed to be lognormally distributed,
which implies the following optimal portfolio choice (cf. Campbell and Viceira, 2002)

. Eirea —rpe+ S
wy = 5
YOy

where returns are now measured in logs. F,;7;,; denotes the mean log return on the
risky asset at time ¢ + 1 conditional on time ¢ information, and o? denotes the return
variance also conditional on time ¢ information. I consider both the case where F;r; 4
is estimated using least squares and the same state variables as in the 'quantile’ setup
and the case where only the historical average is used to forecast future returns (denoted
by C in Table 8). o2 is estimated as the sample variance based on time ¢ information.°®
To make the results comparable to the case where the empirical return distribution is
applied, wy is restricted to lie between 0 and 1. If the optimal w, is larger than 1, it is
set to be equal to 1, and if the optimal w; is smaller than 0, it is set to be equal to 0.

In the multivariate setup where the investor has access to both stocks and bonds, the
budget constraint is given as

Wip1 =14+ wiRs 1 + wtbRb,tH + Ry,

where w; and w? denote the portfolio weight in stocks and bonds, respectively. The

remainder 1 — wj — w? is invested in the risk free asset. This implies the following

maximization problem

11—
. 1+ wiRgs11 + Wl Ry i1 + Ry,
W = argmax// ( L 1 :7 s ft) f(Rs,t+1aRb,t+1|Ft) dRs,t+1de,t+1,

s b
’LUt 7’LUt

where w; is a vector consisting of optimal stock and bond weights, and f (R 11, Rpt+1]|Ft)
is the conditional joint probability distribution of future excess stock and bond returns

°T have also used a GARCH(1,1) model to forecast future volatility, but this makes no noticeable
difference, and hence, for the sake of brevity these results are not reported.
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based on the information set at time t. In discretized form, this can be rewritten as

~ 1—
(1 + W:eCI(O.l,O.l),t + Rf,t) B y ~(0,0.1)

~a—0.2,a+0.2)

Po.9,1)

w, = aréfulgax s Po.0.1)
~ 1— ~ 1—
n (1 + Wi(0.1,0.9) + Rf,t) K o 709.1) n (1 + Wid(0.9,0.1),t T Rf,t) ! o 700.1)
1—~ P(0,0.1) 1—~ Po.9,1)
~ 1—y 0.
+ (1 + qu(OQ,OQ),t + Rf,t) /\(0 9 1) + Z + Wtq 0.1 Ot) t + Rf’ ) % /\(OL*O.Q,CWFO.Q)
1—~ D(o.9,1) e 1—~ (0,0.1)
. ~ 1-
i (1 + WiQa01) + th) « 500D i (1+ wWidogae + Rre)
_ Pa—0.2,a+0.2) _
1 v a=0.3 1 v
+Wtqa09 T th) ~(0.9,1)
ZO 1— ol X (a—0.2,a+0.2)

0.7 0.7
Z Z 1 + Wtq(oq,ozz)t + Rf7 ) v ~a1—0.2,01+0.2)
1 — v (a2—0.2,a2+40.2)°

=0.3 a2=0.3

where, for simplicity, I only use the quantile grid ov = {0.10,0.30,0.70,0.90}. Q(a;,a,),¢ is

a vector of jointly estimated quantile forecasts, Where a1 and «y are the quantiles for the

first and the second variable, respectively. ﬁfm o) denotes the in-sample probability of

the return on the first variable falling between the o'~ and a’-quantile, while at the same
time the second variable falls between the o*- and a'-quantile. This approach can easily
be applied to a much finer quantile grid at the cost of more quantile computations.” As
in the univariate case, optimization is done by grid search over the interval 0 to 1 with
stepsizes of 0.01. Furthermore, I impose the restriction that the sum of the portfolio
weights are not allowed to be larger than one.

In the multivariate case the optimal portfolio weights using the lognormal assumption
about returns are given as (cf. Campbell and Viceira, 2002)

1 o?
— Iy (Eg, — %
y " ( Tl — LTfg + 5 ) )

where 3, ! is the inverse of the variance-covariance matrix of returns, ¢ is a vector of ones,
T;,1 is the vector of log returns on the risky assets, and o2 is a vector consisting of the
diagonal elements of ;. The mean return vector and the variance-covariance matrix are
estimated in the same way as in the univariate case. Again, to ensure results comparable
to those based on the empirical return distribution, portfolio weights smaller than 0
are set to be equal to 0 and portfolio weights larger than 1 are set to be equal to 1.
Furthermore, if both weights are positive and the sum of the weights is larger than 1,

"The grid applied here implies that at each point in time the multivariate model must be estimated
for 21 quantile combinations. The more fine grid applied in the univariate case would result in 217
quantile combinations.
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then both weights are reduced to ensure that the sum is 1, while still maintaining the
ratio between the two weights.

The out-of-sample portfolio study follows the same recursive scheme used to evaluate
out-of-sample forecast performance in Sections 4.2 and 5.3. The portfolio weights, w; or
w;, give rise to a realized utility next period of U (ng). Based on the realized utility
we can assess the economic significance by calculating the certainty equivalent return

() 1/(1-7)
CER = ((1 ) U <W:>) -1,

t=1

where 1/T* S U (W) is the mean realized utility and T* is the total number of ob-
servations in the out-of-sample period. In the case with v = 1 (log utility) the CER is

calculated as -
1
ER = — W | —1.
CER = exp <T* tEZI U( t))

The CER is defined as the certain return required by the investor for him to be indifferent
between accepting the certain return and following the portfolio strategy, which can
potentially give a higher return but at the cost of uncertainty. The higher the CER, the
more attractive is the uncertain alternative. In the present context, the CER is measured
after realization of the portfolio strategy, and thus provides a basis for assessing the
economic significance. The CER can be compared directly across investment strategies.

6.2 Empirical results

Table 8 shows the per annum CER in the case where the investor besides the risk free asset
can invest in stocks (Panel A), bonds (Panel B), and both stocks and bonds (Panel C).
Results are shown for three values of the relative risk aversion coefficient representing
low or medium risk aversion (v = 1), high risk aversion (v = 5), and very high risk
aversion (v = 10). Each panel gives the CER obtained using knowledge of the empirical
return distribution captured through quantile regression and by assuming lognormally
distributed returns. In each panel, the highest CER for each state variable across the
empirical and lognormal distribution is boldfaced.

The average return on the 30-day T-bill, which represents the risk free alternative for
an investor with a 1-month investment horizon, is approximately 4% per annum. From
Table 8 it is clear that the CER is only below 4% for the very risk averse investor who
is not restricted to invest in bonds. In all other cases, access to risky assets provide
economic gains to the investor, in some cases of more than 6% per annum compared to
the risk free alternative. Table 8 also shows that for the investor with low or medium
risk aversion who is restricted to invest in either stocks or bonds, stocks is the most
attractive investment asset, while bonds are preferable for the highly risk averse investor.
For example, based on the term spread the CER for stocks is almost 3% higher than for
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bonds based on v = 1, while the CER for bonds is more than 4.5% higher than for stocks
based on v = 10.

From Panel A it is clear that nothing is gained by estimating the entire stock return
distribution compared to assuming lognormality. In almost all cases, the CER based on
the lognormal assumption is higher than the CER based on the empirical distribution.
Losses obtained by estimating the entire stock return distribution are as large as almost
3% per annum. For bonds, however, the results are completely reversed. Gains obtained
by taking the entire bond return distribution into account are as large as 1.5% per
annum. The clear difference between stocks and bonds in terms of the losses or gains
obtained by estimating the entire return distributions compared to imposing a lognormal
assumption and only estimating the mean and the variance is not necessarily surprising.
From the slope equality test in Table 1 it is clear that the state variables basically only
capture location shifts in the stock return distribution. Hence, if stock returns are (close
to) lognormally distributed the only effect from estimating the entire return distribution
through quantile regression is increased uncertainty due to a higher number of parameters
to be estimated. From the confidence bands in Figure 1 it is clear that this uncertainty
can be quite large, especially in the tails of the distribution. In contrast, the results
in Table 2 show that the state variables capture much more than location shifts in the
bond return distribution. Hence, the use of quantile regression to capture the entire bond
distribution contributes with information not captured by the lognormal distribution, and
according to Panel B in Table 8 this additional information is economically significant.

Panel C reveals very mixed results regarding the economic significance of estimating
the entire joint distribution compared to assuming that stocks and bonds are jointly
lognormally distributed. Based on the evidence from Panels A and B, this result is not
surprising. The difference in CER is in some cases very large. For the earnings-price
ratio and v = 1, the CER is almost 2.5% higher per annum for the empirical return
distribution compared to the lognormal distribution. For the payout ratio this result is
reversed and here the difference is more than 3% per annum. It is important to note
that a very coarse quantile grid has been used in the multivariate portfolio study. Hence,
the results in Panel C are affected both by differences across stocks and bonds in terms
of the state variables predictive ability, and by a very coarse estimate of the entire joint
distribution. However, despite these reservations, the results do illustrate that gains can
be made by estimating the empirical return distribution instead of imposing a lognormal
distributional assumption.

7 Concluding remarks

This paper provides detailed insights into predictability of the entire stock and bond
return distribution through the use of quantile regression. The traditional focus on
predictability of either the mean or volatility of returns is in many areas of financial
economics insufficient. The use of quantile regression allows us to examine specific parts
of the return distribution such as the tails or the center, and for a sufficiently fine grid of
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quantiles, we can trace out the entire distribution. The idea of using quantile regression
to examine predictability of individual return distributions can also be applied to joint
return distributions.

An empirical analysis on US data shows that certain parts of both the stock and
bond return distribution are predictable as a function of a set economic state variables,
also even if the mean is unpredictable. The analysis also shows large differences be-
tween stocks and bonds in terms of predictability. Although certain parts of the stock
return distribution are significantly predictable, the effect across the return distribution
is, in general, not significantly different, which implies that the state variables only pre-
dict location shifts. This is in clear contrast to the bond return distribution, where the
state variables predict changes in the entire distribution, including volatility and skew-
ness. The empirical analysis also shows that, to a certain extent, the joint stock-bond
return distribution is also predictable. The relative accuracy of the different state vari-
ables in predicting stocks and bonds out-of-sample varies across the return distribution.
Some state variables perform relatively good in the tails of the distribution, while oth-
ers perform relatively good in the center. A similar result is found for the joint return
distribution between stocks and bonds.

Overall, quantile regression gives a very flexible empirical approach to model return
distributions, free of the usual parametric assumptions. This applies in both the uni-
variate and multivariate case. The quality of the empirical model in terms of capturing
the actual return distribution both in- and out-of-sample is of course conditional on the
economic state variable used to predict future returns. An out-of-sample portfolio study
based on an investor with power utility shows that for bonds it bears economic signifi-
cance to apply the empirical return distribution captured through quantile regression in
portfolio decisions compared to imposing a lognormal distributional assumption about
returns. This is not the case for stocks, which can be explained by the fact that for this
asset the state variables capture only location shifts. Given stock returns are (almost)
lognormally distributed, the use of quantile regression basically only increases uncertainty
due to the higher number of parameters to be estimated. For the multivariate case where
the investor can invest in both stocks and bonds, the results are mixed, which follows
naturally from the differences between stocks and bonds in the individual cases. Another
important limitation to the multivariate portfolio study is the very coarse quantile grid
used to capture the joint distribution.

This paper examines the predictive ability of individual state variables on the stock
and bond return distribution. The out-of-sample analysis shows that the relative predic-
tive ability of the state variables varies a lot across the return distributions. This suggests
that a combination of state variables would be fruitful in capturing the entire distribution
compared to individual state variables. Cenesizoglu and Timmermann (2008) apply an
equal-weighted combination of quantile forecasts across a set of individual state variables
in order to incorporate information from all state variables without having to estimate
additional parameters. The disadvantage of this approach is that the individual state
variables’ relative good forecasting ability in different parts of the distribution is not fully
utilized. Instead a recursive procedure that continuously applies the relatively best state
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variables to forecast the different return quantiles would be a way to ensure the best
possible estimate of the future return distribution. I leave this as an interesting topic for
future research.
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9 Appendix: Algorithm to carry out multivariate
quantile regression

The aim is to estimate
Yir1 = 0%, + e, 1<t<T-1 (7)

where y,,1 is a (d x 1) response vector, x; is a (k X 1) vector of regressors, 3 is a (d X k)
coefficient matrix, and e;;; is a (d x 1) error vector.

1. Estimate (7) using least squares to obtain an estimate, f], of the covariance matrix
) associated with the distribution of the error vector e from the data.

2. Define S to be the set of all subsets of d + k& (number of response variables plus
number of regressors) indices from the set {1,2,...,7 — 1}, i.e.

A={a:ac{l1,2,...,T—1} and #{i:i € a} =d},

B={b:bcC{l,2,..T—1} and #{i:i € b} =k},
S={#=aUb:ac A be B, anb=10}.

3. Fix 0 = {il, ...,ik,jl, ...,jd} S S.

4. Construct W () to be a k x k matrix with x;,,...,%;, as columns.

k
5. Construct H (f) to be a d x k matrix with y;,,...,y;, as columns.

6. Construct P (f) to be a dxd matrix with y;, —H () [W (0)] ' x;,, ..., y;,—H (8) [W (8)] " x;,

as columns.

7. Compute

8. Compute
[trace {V (0)}] /2

n(0) = ,
) [det {V (6)}]"/2

and note that n (9) > 1.

9. Minimize n () with respect to § € S and call this 0. According to Chakraborty
(2003), we can reduce the amount of computation time required for searching for the
optimal 6 by stopping whenever n () is sufficiently close to 1. Steps 1-9 represent
the search for the optimal ’data-driven coordinate system’.

10. Repeat steps 4-6 using 0 to obtain P (@\) .

11. Choose the values in the index vector, u, which is an element of the open unit
d-dimensional ball B = {u|u € R?, |lu|| <1}. ||| denotes the Euclidian norm.
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12. Form the transformed index vector

P§1

. Il £ut0
v|6) = [P()]
O = o™

13. Estimate the multivariate regression quantiles as

O O] e}

_ - (8)
P <9> y:+1 represents the transformation of the response vector based on the

"data-driven coordinate system’. As we transform the response vector, we also

need to modify the orientation of the index vector u. This is done in step 12 as
S oa N1-1
P <9> u, and to preserve the Euclidean norm of the vector u, [P (9)] u is

PO)]

v (5) in (8). Finally, the v (5) th regression quantiles computed using the trans-

Bo = 2%3122 {H [P @} - (Yes1 — Baxt)
t¢0

rescaled by multiplying with ||ul| / . Hence, u in (3) is replaced by

formed response vector are retransformed back to the original coordinate system.
11
[P (0)] BaX; represents this step.

Chakraborty (2003) shows that Newton-Raphson like algorithms can be used to
compute transformation-retransformation regression quantiles from multivariate obser-
vations, i.e. to perform the minimization in (8). I apply this approach combined with
the BFGS method to avoid evaluating the Hessian directly.
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10 Tables and figures
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Table 1. Slope coefficient estimates for stock returns in the univariate setting.

DP EP DE NTIS SVAR TBL TMS DFS INFL

Panel A: Slope coefficients based on least squares

0.302 0.123 0.007 -0.003 -1.069 -0.114 0200 0.185 -1.126
(3.10) (2.34) (0.53) (-0.03) (-273) (-2.21) (1.69) (0.47) (-3.39)

Panel B: Slope coefficients based on quantile regression

0.05 0.361 0.114 -0.009 0.296 -6.220 -0.149 0.196 -0.735 -1.600
(147)  (0.94) (-0.26) (1.25) (-3.77) (-0.96) (0.56) (-0.88) (-1.50)
0.10 0.305 0.138 -0.007 0.281 -5.483 -0.175 0.548 -1.239 -1.361
(1.54)  (1.32) (-0.16) (1.22) (-2.45) (-1.91) (2.03) (-1.43) (-1.51)
020 0.151 0.049 0.010 -0.050 -2.074 -0.169 0.428 -0.436 -1.416
(1.23)  (0.87) (0.57) (-0.34) (-1.04) (-2.48) (2.81) (-0.79) (-2.90)
0.30 0.179 0.058 0.024 -0.066 -1.077 -0.184 0.192 -0.438 -1.740
(1.22)  (0.70) (1.13) (-0.69) (-1.05) (-2.59) (1.17) (-0.89) (-4.04)
040 0203 0.041 0.020 -0.049 -1.205 -0.186 0.225 -0.568 -1.759
(1.36)  (0.50) (1.21) (-0.43) (-1.55) (-2.81) (1.72) (-1.00) (-4.68)
0.50 0.226 0.092 0.006 -0.060 -1.025 -0.181 0.118 0.149 -1.415
(2.14)  (1.50) (0.41) (-0.80) (-1.12) (-2.91) (1.21) (0.33) (-4.02)
0.60 0.285 0.110 0.012 0.035 -0.384 -0.113 0.069 0.399 -1.378
(257)  (2.07) (0.79) (0.38) (-0.35) (-1.85) (0.50) (1.02) (-3.57)
0.70 0.433 0.128 0.011 0.026 -0.487 -0.107 0.046 0.525 -0.658
(2.89) (1.67) (0.65) (0.17) (-0.32) (-1.30) (0.26) (0.98) (-1.25)
080 0.403 0.141 0.022 -0.086 1.826 -0.109 0.146 0.748 -0.427
(3.70)  (2.69) (1.21) (-0.74) (1.17) (-1.76) (1.02) (1.20) (-0.72)
0.90 0.292 0.154 -0.004 -0.261 3.269 -0.047 0.200 1.049 -0.407
(2.38)  (2.02) (-0.16) (2.19) (2.12) (-0.67) (1.02) (1.57) (-0.79)
0.95 0258 0.212 0.007 -0.246 3.336 0.016 0410 2.320 -0.646
(1.26) (1.52) (0.20) (-1.13) (0.81) (0.12) (1.53) (2.03) (-0.96)

Panel C: Wald test statistic from slope equality test

645 453 548  10.83 2208 4.80 1159 9.69  9.06
0.776] [0.921] [0.857] [0.371] [0.015] [0.904] [0.313] [0.468] [0.526]

Notes: In Panel B, the numbers in the first column denote the quantiles for which the regression is
carried out. In Panel A and B, numbers in parentheses denote t-statistics. In Panel C, numbers in
brackets denote p-values. Slope coefficients for which the t-statistic is higher than 1.96 or lower than
-1.96 are boldfaced.
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Table 2. Slope coefficient estimates for bond returns in the univariate setting.

DP EP DE NTIS SVAR TBL  TMS DFS INFL

Panel A: Slope coefficients based on least squares

0.002 -0.012 0.008 -0.082 0.442 0.010 0.097 0.330 -0.242
(-0.08) (-0.61) (1.86) (-2.66) (2.21) (0.36) (1.69) (1.98) (-1.98)

Panel B: Slope coefficients based on quantile regression

0.05 0.007 -0.063 0.047 0.061 0234 -0.238 0.064 -1.428 -1.586
(0.04) (-0.81) (2.37) (0.73) (0.44) (-3.59) (0.45) (-4.69) (-5.96)
0.10 0.155 -0.018 0.030 0.049 0217 -0.226 0.051 -1.164 -1.140
(2.66) (-0.41) (3.45) (0.86) (0.53) (-8.33) (0.63) (-2.96) (-5.65)
020 0.107 0.015 0.020 0.014 0.123 -0.151 0.033 -0.526 -0.545
(3.84)  (0.56) (4.51) (0.26) (0.56) (-5.40) (0.62) (-2.33) (-3.48)
0.30 0.076 0.018 0.014 -0.046 0.077 -0.089 0.085 -0.145 -0.343
(4.28) (1.44) (3.46) (-1.10) (0.33) (-4.61) (1.87) (-0.97) (-2.68)
040 0.030 0.008 0.010 -0.067 0.209 -0.050 0.140 0.140 -0.122
(2.10)  (1.13) (3.64) (-2.29) (0.82) (-3.99) (3.92) (1.17) (-1.99)
0.50 0.000 -0.002 0.003 -0.069 0.516 0.004 0.139 0.323 -0.076
(0.02) (-0.28) (1.12) (-3.69) (2.01) (0.25) (4.43) (3.56) (-2.41)
0.60 -0.047 -0.020 -0.003 -0.083 0.602 0.052 0.168 0.631 -0.057
(-3.02) (-2.62) (-0.70) (-3.31) (2.76) (3.27) (4.25) (4.20) (-0.90)
0.70 -0.105 -0.039 -0.006 -0.126 0.709 0.112 0.215 1.032 -0.103
(-4.35) (-3.15) (-1.26) (-4.46) (2.65) (6.65) (4.32) (6.12) (-1.43)
0.80 -0.148 -0.053 -0.004 -0.165 0.628 0.160 0.199 1.286 -0.173
(-5.00) (-2.12) (-0.62) (-4.04) (1.87) (6.51) (2.80) (5.00) (-0.97)
0.90 -0.145 -0.034 0.007 -0.168 1.199 0.246 0.115 1.763 -0.305
(-1.88) (-0.73) (0.87) (-2.59) (1.71) (6.17) (1.29) (9.35) (-0.96)
0.95 0056 0.053 -0.002 -0.124 1.896 0.292 0.002 1.706 -0.009
(0.34)  (0.79) (-0.12) (-1.31) (245) (5.05) (0.02) (3.38) (-0.02)

Panel C: Wald test statistic from slope equality test

9721 3144 3941 1557 10.22 185.23 20.08 116.54  43.79
[0.000] [0.001] [0.000] [0.113] [0.421] [0.000] [0.029] [0.000] [0.000]

Notes: In Panel B, the numbers in the first column denote the quantiles for which the regression is
carried out. In Panel A and B, numbers in parentheses denote t-statistics. In Panel C, numbers in
brackets denote p-values. Slope coefficients for which the t-statistic is higher than 1.96 or lower than
-1.96 are boldfaced.
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Table 3. Loss differential in the univariate setting.

DP EP DE NTIS SVAR TBL TMS DFS INFL PQ

Panel A: a = 0.05

DP -0.25 0.7  0.24 144 145 -0.64 2.70 2.59 2.33
EP 0.78 0.94 0.46 1.14 167 -0.54 3.24 3.05 153
DE 1.55 1.24 -0.70  -036 135 -1.35 2.38 2.13 -0.12
NTIS 0.23 -0.22 -0.96 1.13 146 -0.78 2.93 2.85 1.98
SVAR -1.46 -1.54 -1.73 -1.65 1.27  -1.13 2.63 2.41 1.92
TBL 0.20 0.01 -0.31  0.09 1.38 -1.91 029 -0.18 -1.18
TMS 0.42 0.27 -0.02 0.33 1.39  0.27 3.19 3.28 1.39
DFS -0.28 -1.06 -2.07 -0.46 1.39 -0.33 -0.54 -0.66 -2.48
INFL 0.20 0.00 -0.34 0.08 1.33 -0.01 -0.28 0.32 -2.23

PQ 0.25 -049 -1.62 -0.09 148 -0.16 -0.41 0.85 -0.15

Panel B: o = 0.50

DP 1.64 0.68 2.65 095 -0.83 175 162 3.16 2.05
EP 0.60 -0.17  2.50 0.54 -1.08 158 140 3.01 1.49
DE -0.08 -0.26 2.02 0.57 -1.27v 167 1.16 156 0.59
NTIS 0.66 0.49 0.53 -1.57 -2.18 0.23 -0.79 -1.73 -2.27
SVAR 0.79 064 076 0.23 -1.21 1.20 0.78 0.22 -0.32
TBL -0.04 -0.16 0.01 -0.36 -0.52 213 136 1.70 1.29
TMS 0.85 0.70 094 0.40 0.15 0.68 -0.73  -1.23 -1.49
DFS 0.74 0.61 058 0.03 -0.21 036 -0.41 -0.70  -1.16
INFL -148 -165 -1.74 -1.88 -1.96 -1.09 -2.19 -1.85 -3.18

PQ -0.39 -0.89 -0.18 -1.04 -1.18 -0.11 -1.22 -1.32 1.68

Panel C: o = 0.95

DP 0.12 0.11  0.27 1.25 118 -0.75 2.53 0.15 143
EP 0.00 0.04 0.13 1.07 126 -0.73 2.79 0.04 0.88
DE -0.50 -0.46 0.08 1.13 141 -0.88 2.65 -0.00 0.72
NTIS 0.01 0.01 0.57 084 1.07 -0.76 2.21 -0.09 0.53
SVAR -0.02 -0.02 0.23 -0.03 0.62 -1.71 1.85 -1.19 -0.72
TBL 0.51 042 1.25 048 0.29 -1.64 0.8 -1.27 -0.90
™S -0.03 -0.03 0.76 -0.05 0.00 -0.81 248 092 1.46
DFS -0.85 -0.89 -0.50 -1.16 -0.43 -1.11 -1.15 -2.48 -2.16
INFL -0.73 -0.61 -0.73 -0.75 -0.32 -1.67 -1.08 0.25 1.13

PQ -0.79 -0.74 -1.80 -090 -0.39 -143 -1.16 0.17 -0.32

Notes: The table shows t-statistics from pairwise out-of-sample loss comparisons. t-statistics higher
than 1.96 or lower than -1.96 are boldfaced. In each panel, numbers below the main diagonal give the

results for stocks, while numbers above the main diagonal give the results for bonds.

36



Table 4. In-sample coverage probabilities in the multivariate setting.

(v, ) DP EP DE NTIS SVAR TBL TMS DFS INFL PQ Ind.

0.05,0.05
0.10,0.10
0.50,0.50

( ) 0.006 0.007 0.007 0.006 0.007 0.003 0.004 0.007 0.005 0.007 0.003
( ) 0.021 0.022 0.023 0.023 0.023 0.016 0.023 0.023 0.019 0.023 0.010
( ) 0.269 0.276 0.273 0.275 0.269 0.269 0.277 0.276 0.270 0.275 0.250
(0.90,0.90) 0.683 0.675 0.677 0.682 0.676 0.683 0.681 0.671 0.682 0.676 0.810
(0.95,0.95) 0.787 0.797 0.799 0.799 0.794 0.793 0.794 0.788 0.799 0.797 0.903
(0.05,0.95) 0.195 0.195 0.197 0.200 0.205 0.200 0.191 0.207 0.190 0.195 0.048
(0.95,0.05) 0.023 0.021 0.021 0.023 0.022 0.015 0.020 0.020 0.019 0.022 0.048
(0.05,0.50) 0.009 0.007 0.005 0.004 0.009 0.007 0.005 0.011 0.004 0.009 0.025
(0.50,0.05) 0.011 0.011 0.010 0.010 0.010 0.005 0.009 0.009 0.006 0.010 0.025
(0.50,0.95) 0.471 0.464 0.472 0.477 0.470 0.476 0.475 0.480 0.475 0.472 0.475
(0.95,0.50) 0.539 0.540 0.543 0.529 0.522 0.515 0.528 0.522 0.539 0.541 0.475

Notes: For each quantile combination, the table gives the in-sample coverage probabilities calculated
over the entire sample period, 1941:5-2008:12. The final column gives the coverage probability given
independence (the product of the quantiles).
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Table 5. Slope coefficient estimates in multivariate quantile regression.

(cvs, ) DP EP DE NTIS SVAR TBL  TMS DFS INFL
Panel A: Slope coefficient estimates for stock returns

(0.05,0.05) 0.111 -0.018 0.034 -0.042 -1.796 -0.320 0.328 -1.169 -2.202
(0.96) (-0.25) (2.07) (-0.38) (-2.02) (-4.75) (2.61) (-2.84) (-4.72)

(0.50,0.50) 0.269 0.118 0.015 -0.040 -0.677 -0.176 0.205 -0.036 -1.410
(3.39) (2.37) (1.02) (-0.44) (-0.70) (-3.36) (2.22) (-0.08) (-5.60)

(0.95,0.95) 0.422 0.224 -0.007 -0.166  1.132 0.098 -0.025 1.852 -0.414
(3.24)  (2.94) (-0.43) (-1.31) (0.68) (1.72) (-0.16) (3.74) (-0.94)

(0.05,0.95) 0.284 0.095 0.015 0.156 -3.362 -0.161 0.283 -1.234 -1.623
(2.04) (1.33) (0.62) (1.20) (-2.96) (-2.38) (1.93) (-2.74) (-3.19)

(0.95,0.05) 0.267 0.130 -0.005 -0.099 0.711 -0.074 0.168 0.988 -0.708
(2.66) (2.13) (-0.34) (-1.09) (0.53) (-1.22) (1.32) (2.12) (-1.57)

Panel B: Slope coefficient estimates for bond returns

(0.05,0.05) -0.076 -0.109 0.039 -0.033 -0.697 -0.191 0.189 -1.291 -1.256
(-0.80) (-1.76) (3.40) (-0.44) (-0.88) (-3.45) (1.54) (-5.02) (-2.77)

(0.50,0.50) -0.004 -0.007 0.006 -0.069 0.440 -0.002 0.138 0.362 -0.128
(-0.30) (-1.02) (1.95) (-2.96) (1.77) (-0.14) (3.42) (3.07) (-1.75)

(0.95,0.95) 0.100 0.088 -0.006 -0.212 2.295 0.233 -0.050 2.388 0.434
(0.88) (1.27) (-0.39) (-2.84) (1.89) (5.00) (-0.40) (5.61) (0.95)

(0.05,0.95) 0.044 0.058 -0.005 -0.211 2.694 0.196 0.040 2.024 0.329
(0.46) (1.14) (-0.31) (-4.18) (2.62) (3.82) (0.38) (5.80) (0.79)

(0.95,0.05) -0.049 -0.082 0.032 -0.039 -0.510 -0.200 0.164 -1.221 -1.344
(-0.66) (-1.75) (2.93) (-0.79) (-1.00) (-3.54) (1.65) (-4.15) (-3.46)

Notes: For each quantile combination, the table gives the slope coefficients for stock and bond returns.

Numbers in parentheses denote t-statistics. Slope coefficients for which the t-statistic is higher than 1.96

or lower than -1.96 are boldfaced.
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Table 6. Loss differential between joint and univariate quantile estimation.

(cvs, ) DP EP DE NTIS SVAR TBL TMS DFS INFL PQ
(0.05,0.05 1.99 1.84 1.55 0.96 2.42 3.60 0.28 1.81 1.46 1.79
(0.10,0.10 0.65 0.20 0.48 -0.74 048 2.26 -1.54 0.04 0.44 0.12
(0.50,0.50 -0.09 1.60 -0.46 -1.70 0.84 0.48 -0.30 1.82  -1.38 0.24
(0.90,0.90 -0.14 1.40 1.90 2.84 293 -022 3.39 290 2.04 231
(0.95,0.95 149  3.14 3.21 4.64 4.79 1.56 4.74 5.02 3.22 3.83
(0.05,0.95 1.59 1.12 1.01 0.00 1.55 2.80 -0.61 0.40 0.80 0.91
(0.95,0.05 -0.16 1.76 177 3.65 3.58 -0.13 3.81 3.28 2.28 2.55
(0.05,0.50 0.80 1.25 0.60 0.66 -0.42 -1.69 2.53 0.64 1.55 1.41
(0.50,0.05) 13.79 16.25 14.03 15.75 12.38 13.37 16.84 14.58 16.93 16.46
(0.50,0.95 0.67 1.06 -1.70 -145 -1.67 -0.09 0.07 -0.60 -0.03 -0.33
(0.95,0.50) 15.85 17.90 14.19 13.88 16.12 11.94 17.75 15.39 17.57 17.51

Notes: For each quantile combination, the table gives the t-statistics from out-of-sample loss comparisons

between joint and univariate quantile estimation. t-statistics higher than 1.96 or lower than -1.96 are

boldfaced.
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Table 7. Loss differential in the multivariate setting.

DP EP DE NTIS SVAR TBL TMS DFS INFL PQ

Panel A: a = (0.05,0.05) and o = (0.95,0.95)

DP 4.17 3.69 4.50 3.88 3.14 2.86 6.06 2.37 4.31
EP 5.04 220 3.34 290 186 147 5.34 0.82 2.46
DE -1.23 -3.72 1.96 1.89 0.03 -0.60 3.42 -2.41 -0.09
NTIS 4.21 094 3.88 033 -1.34 -2.06 2.62 -2.94 -2.08
SVAR -1.17 -3.72 0.17 -3.64 -1.56 -2.12 2.10 -2.75 -1.98
TBL -3.01 -4.34 -3.12 -4.51 -2.38 -0.46 3.51 -1.36 -0.06
TMS 2.82 115 4.08 069 3.23 5.77 3.64 -1.10 0.63
DFS 0.03 -4.93 138 -3.75 1.27  3.32 -3.02 -3.89 -3.55
INFL 029 -1.79 145 -2.11 0.90 4.47 -2.90 0.30 2.34

PQ 2.18 -3.71 2.69 -3.41 241 3.66 -2.49 177 044

Panel B: a = (0.50, 0.50)

DP
EP 0.32
DE 0.11  -0.03

NTIS 0.73 0.73  0.56

SVAR 080 0.73 0.67 0.01

TBL -0.06 -0.12 -0.16 -0.44 -0.49

T™S 0.62 056 063 0.06 0.05  0.53

DFS 026 0.14 013 -0.64 -0.65 0.17 -0.60
INFL -1.44 -154 -2.16 -2.03 -2.04 -1.06 -2.03 -1.84

PQ 0.09 -035 -023 -1.00 -1.06 0.03 -0.84 -0.67 1.97
Panel C: o = (0.05,0.95) and a = (0.95,0.05)

DP 3.09 4.12 458 4.19 027 3.01 6.74 3.56 4.88
EP 5.04 2.81 3.88 3.38 -099 2.19 6.61 2.46 3.67
DE -1.87 -4.03 1.50 141 -3.48 0.38 3.16 026 0.08
NTIS 1.94 -0.78 2.67 034 -3.25 -0.95 152 -1.28 -1.82
SVAR -2.33 -3.58 -1.10 -3.06 -3.23 065 190 -1.07 -1.64
TBL -3.62 -4.87 -3.52 -4.14 -1.13 3.05 3.99 3.86 2.98
TMS 247 119 4.13 146 3.52 6.44 2.30 -0.25 -0.35
DFS  -1.03 -4.30 084 -2.51 2.00 3.11 -3.01 -2.54 -3.57
INFL  -045 -2.22 117 -144 144 4.55 -3.06 0.17 -0.19
PQ 091 -3.78 3.28 -1.45 2.62 4.23 -2.49 173 091

Notes: The table shows t-statistics from pairwise out-of-sample loss comparisons. t-statistics higher
than 1.96 or lower than -1.96 are boldfaced. In Panel A, numbers below the main diagonal give the

results for the quantile combination (0.05,0.05), while numbers above the main diagonal give the results
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for the quantile combination (0.95,0.95). In Panel C, numbers below the main diagonal give the results
for the quantile combination (0.05,0.95), while numbers above the main diagonal give the results for the
quantile combination (0.95,0.05).
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Table 8. Certainty equivalent return.

v DP EP DE NTIS SVAR TBL TMS DFS INFL PQ/C

Panel A: Stocks

Emp. dist.
1 879 9.19 8.77 8.97 9.64 849 10.57 9.19 9.86 9.19
5 549 5.43 4.19 4.39 499 572 660 4.02 6.74 4.09
10 4.85  3.78 3.80 0.92 4.37 3.79 227 312 4.18 3.56
Logn. dist.
1 890 9.55 9.81 10.14 10.35 8.71 10.21 9.14 10.51 10.11
5 7.29 7.12 559 5.80 6.39 5.76 7.22 5.80 7.88 6.02
10 6.48 6.43 5.49 3.79 582 5.33 3.87 5.06 5.63 5.77
Panel B: Bonds
Emp. dist.
1 773 7.80 T7.43 725 7.68 T7.64 7.79 7.76 8.37 7.69
5 6.85 6.88 7.02 660 6.95 T7.11 7.31 7.02 7.73 7.08
10 6.08 6.15 6.72 6.26 6.27 6.56 6.92 6.15 7.18 6.45
Logn. dist.
1 6.70 641 6.85  7.25 7.05 7.61 680 7.07 6.85 6.85
5 6.42 6.32 6.59 6.98 6.73 6.69 6.48 6.73 6.50 6.48
10 6.19 6.12 6.24 6.67 6.45 6.23 6.28 6.29 6.28 6.26
Panel C: Stocks and bonds
Emp. dist.
1 9.24 1066 7.11 10.04 9.17 8.92 10.27 9.16 9.16 9.19
5 6.91 6.50 4.02 6.17 653 6.29 7.03 5.30 6.72 4.72
10 4.99 4.06 3.37 2.94 4.89 357 231 348 344 3.57
Logn. dist.

1 900 831 10.27 859 9.29 841 1018 7.66 10.21 9.07
5 667 563 6.93 550 6.99 750 7.75 508 8.48 6.56
10 383 4.29 5.08 4.15 5.50 5.77 4.44 4.73 6.34 5.03

Notes: The table gives the per annum certainty equivalent return (in per cent) for an investor with
power utility and coefficient of relative risk aversion 7y. In Panel A the investor can only invest in stocks
and a risk free asset, in Panel B the investor can only invest in bonds and a risk free asset, and in Panel
C the investor can invest in both stocks and bonds as well as a risk free asset. Each panel shows the
results when quantile regression is used to obtain an estimate of the distribution (Emp. dist.) and when
returns are assumed to be lognormally distributed from the outset (Logn. dist.). For each state variable

the highest certainty equivalent return across Emp. dist. and Logn. dist. is boldfaced.
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Figure 1. Slope coefficient estimates for stock returns in the univariate setting.
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Notes: The solid horisontal line gives the least squares slope coefficient with the shaded area indicating

the 95% confidence interval. The line with circles gives the slope coefficients from quantile regression,

with the lines with crosses indicating the 95% confidence interval.
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Figure 2. Slope coefficient estimates for bond returns in the univariate setting.
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Notes: The solid horisontal line gives the least squares slope coefficient with the shaded area indicating
the 95% confidence interval. The line with circles gives the slope coefficients from quantile regression,

with the lines with crosses indicating the 95% confidence interval.
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Figure 3. Joint distribution between stocks and bonds.
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Notes: Each quadrant gives the in-sample coverage probability for the relevant quantile combination
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Figure 4. Slope coefficient estimates for stock returns as a function of stock variance.
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Notes: The solid horisontal line gives the univariately estimated 0.95-quantile slope coefficient for stock
returns as a function of stock variance. The line with circles gives the corresponding estimates in the

multivariate setup for different values of the bond quantile.
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