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Experimental and survey-based research suggests that consumers often rely on their intuition and cogni-
tive shortcuts to make decisions. Intuition and cognitive shortcuts can lead to suboptimal decisions and,

especially in high-stakes decisions, to legitimate welfare concerns. In this paper, we propose an extension of a
Bayesian learning model that allows us to quantify the impact of salience—the fact that some pieces of informa-
tion are easier to retrieve from memory than others—on physician learning. We show, using data on actual pre-
scriptions for real patients, that physicians’ belief formation is strongly influenced by salience effects. Feedback
from switching patients—the ones the physician decided to switch to a clinically equivalent treatment—receives
considerably more weight than feedback from other patients. In the category we study, salience effects slowed
down physicians’ speed of learning and the adoption of a new treatment, which raises welfare concerns. For
managers, our findings suggest that firms that are able to eliminate, or at least reduce, salience effects to a
greater extent than their competitors can speed up the adoption of new treatments. We explore the implica-
tions of these results and suggest alternative applications of our model that are relevant for policy makers and
managers.

Key words : consumer learning; quasi-Bayesian learning models; behavioral modeling; medical decision
making; physician learning; new drug adoption

History : Received: October 23, 2008; accepted: November 5, 2010; Eric Bradlow served as the editor-in-chief
and Teck Ho served as associate editor for this article. Published online in Articles in Advance
January 21, 2011.

1. Introduction
Scholars in marketing and economics have developed
Bayesian updating models for consumer (e.g., Erdem
and Keane 1996, Mehta et al. 2008, Roberts and Urban
1988) and physician learning (Coscelli and Shum
2004, Crawford and Shum 2005, Narayanan et al.
2005, Narayanan and Manchanda 2009). Bayesian
learning enables researchers to structurally model the
evolution of an agent’s belief about any uncertain
attribute, e.g., about the quality of a product, by
integrating new information and prior beliefs using
Bayes’ rule. Bayes’ rule is the normative way to
update probabilistic beliefs; i.e., these models assume
that decision makers learn using an optimal rule.
However, many scholars claim that the assump-
tions behind Bayesian learning are not psycholog-
ically or cognitively valid (see, e.g., Camerer and
Loewenstein 2004).
In particular, consumers often deviate from Bayes’

rule by giving more weight to more easily accessible,
i.e., more salient, pieces of information they retrieve
from memory. To model salience effects, we propose a

quasi-Bayesian learning model. Quasi-Bayesian learn-
ing models apply Bayes’ rule to subjectively revised
evidence or prior beliefs (Epstein 2006, Rabin and
Schrag 1999) and may “become the standard way for
translating the cognitive psychology of judgment into
a tractable alternative to Bayes’ rule” (Camerer and
Loewenstein 2004, p. 13).
However, identification and estimation of quasi-

Bayesian models is often difficult, and empirical
applications using revealed preference data are still
rare (for notable exceptions, see Mehta et al. 2004,
2008). In this paper, we study physician learning
regarding the quality of a new treatment, a context
where consumers are particularly sophisticated and
involved in the choice process, as the stakes are high.
Our proposed model fits in the rapidly growing field
of behavioral modeling, a field that seeks to enrich
mathematical models of consumer behavior, which
are typically normative models, with robust psycho-
logical regularities (Häubl et al. 2010, Ho et al. 2006,
Narasimhan et al. 2005).
Despite their specialized training, physicians often

rely on their intuition and are selective in the use
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of new information, deviating from normative rules
in predictable ways, very much like humans in gen-
eral (e.g., Croskerry 2002, Elstein and Schwartz 2002,
Redelmeier 2005). However, the evidence accumu-
lated about physicians’ deviation from optimal rea-
soning and decision making thus far relies solely
on experimental and survey research with physicians
(Bornstein et al. 1999, Estrada et al. 1997, Poses and
Anthony 1991) and participants role-playing as physi-
cians (Medin et al. 1982) rather than research on actual
physician decisions for real patients, as presented in
the present paper.
We calibrate our model on a unique panel data set

of Dutch general practitioner prescription behavior in
the obstructive airways diseases category (i.e., treat-
ments for asthma and chronic obstructive pulmonary
disease). The data were retrieved from the Integrated
Primary Care Information database, which is main-
tained by the School of Medicine of the Erasmus Uni-
versity Rotterdam (for a detailed description, see Vlug
et al. 1999). These data are particularly well suited
to test whether salience interferes with physicians’
formation of treatment quality beliefs and if yes, to
what extent. First, physicians in our data set use paper-
less offices, guaranteeing that the full clinical history
of their patients gets stored in the database, which
allows us to model treatment1 choices using both new
prescriptions and repeat prescriptions. Second, at the
start of our observation period, a new treatment—
AstraZeneca’s Symbicort—was introduced in the cat-
egory we study, which facilitates identification of
dynamics in physicians’ quality beliefs.
Our central hypothesis is that patients who the

physician switches away from a specific treatment
to a clinically equivalent alternative2 become salient
in the physician’s memory. Consider the case of
Dr. Jones, an imaginary general practitioner who sees
about five or six patients with asthma complaints per
week. Dr. Jones decides to prescribe a new brand—
Symbicort—to 20 patients, i.e., about half of the
asthma patients he sees in the first eight weeks after
the launch of Symbicort. Two of these patients, Mrs.
Smith and Mr. Miller, later complain that Symbicort
made them dizzy, nauseated, and tired. To avoid
future complaints, Dr. Jones switches Mrs. Smith and
Mr. Miller to an older treatment alternative.

1 We use the term treatment instead of drug because our empirical
application is focused on treatments with two molecules, a pre-
ventive (anti-inflammatory) and a reliever (bronchodilator), either
prescribed in two distinct inhalers or combined in a single-inhaler
device.
2 Clinically equivalent alternatives are those that can be considered
as substitutes in terms of therapeutic indication. Clinical equiv-
alence among the set of treatments we use in our model was
confirmed by two experts (a lung specialist and the head of the
pharmacy department of the medical school at our university).

In the coming weeks, while meeting with other
asthma patients, Dr. Jones recalls the experiences
of patients who tried Symbicort and continuously
updates his quality beliefs about the new brand. He
recalls, from his medical training, that he should con-
sider the experiences of all his patients with the new
drug (as large a sample as possible). Yet Dr. Jones
seems to recall the complaints of Mrs. Smith and
Mr. Miller much more readily than the feedback pro-
vided by other patients. The complaints of Mrs. Smith
and Mr. Miller are, therefore, particularly influential
in Dr. Jones’ quality belief formation about Symbicort
and in his adoption decision.
The objective of our model is to extend the Bayesian

learning framework to enable it to accommodate the
type of salience effects that Dr. Jones experiences while
he learns about the quality of Symbicort. We find that
a salience effect is indeed present, and it affects physi-
cian learning. As to its magnitude, we find that feed-
back from patients who are salient in the physician’s
mind receives between 7 and 10 times more weight
than feedback from other patients. Physicians’ choices
also exhibit within-patient persistence, suggesting that
physicians (and patients) perceive a cost to switching
treatment.
Finally, our model brings valuable insights for

firms launching new therapies, a high-research pri-
ority area according to life sciences managers and
marketing scholars (Stremersch 2008, Stremersch and
Van Dyck 2009). In particular, salience slows down
the adoption of new treatments. Using counterfactual
simulations, we show that AstraZeneca could have
increased its market share by as much as 8.5 percent-
age points by eliminating salience for its new brand
(Symbicort). Furthermore, if a policy maker is able to
reduce salience across all treatments, physicians adopt
newer combination treatments significantly faster. We
explore the managerial and policy implications of
these findings.

2. Salience in Physician Learning
We now discuss the antecedents and consequences of
salience of patients subject to treatment switching. We
also discuss other drivers of prescription choices.

2.1. Antecedents of Salience of Patients
Subject to Treatment Switching

Salience may result from medical ethics, cognition,
and emotion, which we discuss next, each in turn.
First, medical practice rests on strong ethical founda-
tions. The motto Primum non nocere (first, do no harm)
is a central ethical principle that guides the practice of
medicine (Brewin 1994). Thus, physicians are under
ethical and legal pressure to avoid any (unnecessary)
risk that could potentially harm patients. This pres-
sure may enhance the salience of patients who did not
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react to a treatment as expected and, consequently,
had to be switched to a substitute treatment (an expe-
rience the physician wants to minimize in the future).
Second, psychological and neurological research

suggests that we react more strongly to undesirable
outcomes than to desirable ones (for an overview, see
Baumeister et al. 2001 and Rozin and Royzman 2001).
During learning and information processing, negative
information receives more attention and more elab-
oration than positive information (Baumeister et al.
2001). Switching a patient to a clinically equivalent
treatment is an undesirable outcome for the physician,
as it means the patient’s reaction to the treatment was
different from what the doctor had hoped. Thus, the
salience of switching patients may have a cognitive
rationale.
Third, treatment switching usually reveals discon-

firmation of physician or patient expectations from a
treatment. Along the reasoning of Oliver (1993), dis-
confirmation of expectations provokes not only a cog-
nitive response but also a negative affective response.
Moreover, treatment switching can be seen by some
patients as a correction to a prior decision and, conse-
quently, perceived by the physician as a threat to her
reputation. The ensuing negative emotions alert the
physician to the need to eliminate or reduce the trig-
ger of such threats (Taylor 1991). Salience of switching
patients will then emerge as a natural consequence of
these affective responses and of the human tendency
to respond more strongly to negative than to positive
emotions (Cacioppo and Gardner 1999).

2.2. Consequences of Salience of Patients
Subject to Treatment Switching

Salience interferes with belief formation through the
dynamics of over- and underconfidence about differ-
ent information signals. Griffin and Tversky (1992)
show that when weighting evidence, humans tend to
overreact to the extremeness and vividness of infor-
mation (strength) irrespective of its predictive valid-
ity (weight). Compared with a normative statistical
model—where evidence and prior beliefs are inte-
grated using Bayes’ rule—experimental subjects in
their studies were overconfident about evidence when
strength was high and weight was low, but undercon-
fident when strength was low and weight was high.
According to Griffin and Tversky (1992), the over-

confidence about salient information results from
the combination of two cognitive shortcuts: anchor-
ing and adjustment, and representativeness (Tversky
and Kahneman 1974). A third cognitive shortcut
that can contribute to the influence of salience in
belief formation is the availability heuristic (Tversky
and Kahneman 1974). Experimental and survey-based
research indeed suggests that these heuristics inter-
fere with medical decisions (Klein 2005, Poses and
Anthony 1991, Redelmeier 2005).

As a result, we hypothesize that physicians give
extra weight to feedback provided by easier-to-recall
patients, i.e., those who are switched to an alterna-
tive treatment. The influence of feedback provided by
switching patients will thus be systematically stronger
than what is predicted by a pure Bayesian learn-
ing model.

2.3. Other Drivers of Prescription Choices
In addition to quality beliefs, other effects might
also drive treatment choices. First, we expect patients
to face a switch cost whenever they change treat-
ment, a cost that the physician takes into account in
her treatment choices. This switch cost is estimated
controlling for quality perceptions; thus it captures
a nonquality-based persistence, e.g., the psycholog-
ical impact of changing treatments (see also Chan
et al. 2010). Second, treatments can have serious side
effects, so physicians may be risk averse in their treat-
ment choices. Thus, we allow for risk aversion in
our model specification. Note that substantial debate
exists on physicians’ risk attitude, with some stud-
ies finding physicians to be risk neutral (Chintagunta
et al. 2009, Narayanan et al. 2005, Narayanan and
Manchanda 2009), whereas others find physicians to
be risk averse (Ching and Ishihara 2010, Coscelli and
Shum 2004, Crawford and Shum 2005). Third, we
control for marketing effects using a reduced-form
approach, i.e., by letting marketing expenditures shift
the utility levels of each treatment alternative (for a
similar approach, see Chintagunta et al. 2009).

3. Model Specification
In this section, we first lay down the pure Bayesian
learning component of our model. Next, we extend
this specification by introducing salience in a quasi-
Bayesian fashion. This structure clarifies that our
quasi-Bayesian model nests its pure Bayesian counter-
part. We close the section with the utility specification.
Whenever we use mathematical symbols, i indexes
physicians (i = 1� � � � �N ), p indexes patients (p =
1� � � � � Pi being the patients of physician i), k indexes
encounters (k = 1� � � � �Ki being the encounters of
physician i), and j indexes treatments (j = 1� � � � � J ).

3.1. Pure Bayesian Learning Framework
We define mean quality of treatment j for physician i
(Qij� as a general attribute that summarizes how well,
across all patients of physician i, the treatment pro-
vides symptomatic relief (i.e., relief during asthma
attacks) and maintains patient health (i.e., avoids
recurrence of such attacks) while avoiding severe side
effects (for a similar definition, see, e.g., Narayanan
et al. 2005). However, a certain treatment j will not
work equally well for every patient. Therefore, we
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explicitly model patient heterogeneity, i.e., the across-
patient variability of treatment quality (�2

q� ipj�, in line
with the work of Chintagunta et al. (2009). Thus, we
define the true quality of treatment j for patient p, vis-
iting physician i, as the sum of the true mean quality
of treatment j across all patients of physician i and a
patient-specific deviation from this mean quality; i.e.,

Qipj = Qij + qipj� with qipj ∼N�0��2
q� ipj�� (1)

Next, we assume that, at the start of our data,
each physician has a prior (uncertain) belief about Qij ,
treatment j’s mean quality, and about qipj, the patient–
treatment idiosyncratic deviation. We specify a nor-
mal distribution for these initial beliefs:

Q0� ij ∼N� �Q0� ij ��2
Q0� ij �� (2)

q0� ipj ∼N�q̄0� ipj��2
q0� ipj�� (3)

Here, we assume that q̄0� ipj = 0, i.e., that when see-
ing a new patient, physician i believes that the quality
of treatment j , for that particular patient, is equal to
the population mean. We also assume rational expec-
tations, a common practice in Bayesian learning mod-
els (e.g., Crawford and Shum 2005, Narayanan and
Manchanda 2009). Under this assumption physicians
have correct initial beliefs about mean quality and
quality dispersion across patients, even though they
do not know the quality of each treatment for a spe-
cific patient. In our model this assumption means that
�Q0� ij = Qij and �2

q0� ipj = �2
q� ipj. Starting from these

prior beliefs, physicians learn about treatment qual-
ity in order to (i) reduce the uncertainty surround-
ing their mean quality belief and (ii) learn about each
patient’s idiosyncratic deviation from a treatment’s
mean quality.
We assume physicians learn from their clinical

experience, i.e., from the feedback provided by their
patients. At the start of each medical encounter, a
patient provides a feedback signal about the treat-
ment that was prescribed in her last encounter. These
feedback signals are truthful but noisy. That is, if at
encounter k physician i receives a feedback signal
from patient p about treatment j , we assume this feed-
back signal to be normally distributed:

Fipj� k � Qipj ∼N�Qipj��2
F � i�� (4)

Note that Bayesian learning guarantees that, even
though patients only provide feedback about the
last treatment their physician prescribed them, physi-
cian i’s treatment choices are influenced by the feed-
back received from all patients on all treatments. The
information set of physician i, at encounter k, is then
the clinical history of all her patients, which can be
summarized by the average of each patient’s feedback

signals up to and including encounter k (denoted
as �Fipj� k�.

Our assumptions of normally distributed prior
beliefs and feedback signals guarantee that physi-
cian i’s posterior beliefs are also normally dis-
tributed. Specifically, physician i’s posterior belief, at
encounter k, about the mean (across-patient) quality
of treatment j is

�Qij�k ∼N� �Qij�k��2
Q�ij� k�� (5)

The mean and the variance in Equation (5)
result from the assumption that physician i inte-
grates each patient’s clinical history ( �Fipj� k� with her
prior beliefs according to Bayes’ rule (Chintagunta
et al. 2009; DeGroot 1970; see Online Appendix A for
the derivation. An electronic companion to this paper
is available as part of the online version that can
be found at http://mktsci.pubs.informs.org/). That is,
denoting the number of feedback signals provided by
patient p to physician i about treatment j up to and
including encounter k by n

p

ij� k, we can write

�Qij�k = �2
Q�ij� k

�2
Q0� ij

· �Q0� ij +
∑

p

n
p

ij� k · �2
Q�ij� k

�2
F � i + n

p

ij� k · �2
q� ipj

· �Fipj� k� (6)

where

�2
Q�ij�k =

[
1/�2

Q0� ij +
∑

p

n
p

ij�k/��2
F � i +n

p

ij�k ·�2
q� ipj�

]−1

� (7)

Similarly, physician i’s posterior belief, at encoun-
ter k, about patient p’s idiosyncratic deviation from
this mean quality is defined as

q̃ipj� k ∼N�q̄ipj� k��2
q� ipj� k�� (8)

The mean, in Equation (8), results from physician i’s
Bayesian updating of her initial prior belief about this
deviation (q̄ipj�0� with the observed difference between
the mean of patient p’s feedback signals about treat-
ment j up to and including encounter k� �Fipj� k� and
physician i’s belief, at encounter k, about the mean
quality of treatment j across patients ( �Qij�k�; i.e.,

q̄ipj� k = �2
q� ipj� k

�2
q0� ipj

· q̄0� ipj+
n

p

ij� k · �2
q� ipj� k

�2
F � i

·� �Fipj� k − �Qij�k�� (9)

where
�2

q� ipj� k = �1/�2
q0� ipj + n

p

ij� k/�2
F � i�

−1� (10)

The expected quality (i.e., the mean belief of physi-
cian i� of prescribing treatment j to the patient visit-
ing at occasion k is obtained by adding Equations (6)
and (9). We now introduce salience and, afterward,
discuss dynamics in physicians’ uncertainty about the
quality of each treatment.
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3.2. Introducing Salience
We modify Bayesian learning in order to incorporate
the different roles of information weight and infor-
mation salience, or strength as referred by Griffin and
Tversky (1992). Specifically, weight depends on (i) the
variance of patient feedback signals (�2

F � i�, (ii) the
variances of physician i’s prior quality beliefs (�2

Q0� ij

and �2
q0� ipj�, and (iii) the number of feedback signals

provided by each patient. We introduce a salience
parameter, �ipj� k, which quantifies the extra weight—
when compared with the pure Bayesian learning
weight—given by physician i to the feedback of a
patient, p, who was subject to treatment switching. We
define SWITCHipj� k as a dummy variable that assumes
the value one if, before encounter k, patient p has
been switched away from treatment j and has not yet
been prescribed treatment j again (until the start of
encounter k�. We then introduce the impact of salience
in physician i’s posterior belief about the mean qual-
ity of treatment j as follows:

�Q�
ij�k = �2

Q��� ij� k

�2
Q0� ij

· �Q0� ij

+∑
p

�2
Q��� ij� k · np

ij� k · �1+ �ipj� k · SWITCHipj� k�

�2
F � i + n

p

ij� k · �2
q� ipj

· �Fipj� k� (11)

where

�2
Q���ij�k =

[
1/�2

Q0� ij +
∑

p

n
p

ij�k ·�1+�ipj�k ·SWITCHipj�k�

/��2
F � i +n

p

ij�k ·�2
q� ipj�

]−1

� (12)

Please note that the expression in Equation (12) is
not the variance of physician i’s belief about the mean
quality of j as would be the case in a pure Bayesian
setting. This is because in our model, physicians’
beliefs are affected by salience, and hence, they learn
in a quasi-Bayesian manner (see Boulding et al. 1999,
Rabin and Schrag 1999). After a treatment switch, a
physician changes the relative weight she gives to
the feedback of the switching patient about the aban-
doned treatment vis-à-vis her prior belief and the
feedback of other patients. The resulting posterior
belief will, therefore, necessarily depart from a pure
Bayesian belief. Given that Bayes’ rule is the optimal
way to learn, we expect this departure to be mani-
fested in slower learning. In sum, we specify a quasi-
Bayesian learning model that incorporates salience
effects but is equivalent to a pure Bayesian learning
model in case �ipj� k = 0.
Note that salience predicts a systematic misin-

terpretation of patient feedback about the quality

of abandoned treatments. In contrast, salience does
not predict any systematic bias in physicians’ belief
updating for any other treatment alternative. There-
fore, the physician’s choice of a new treatment will
always reveal that physician’s preference for that
treatment, irrespective of whether the patient was
switched from another treatment or is a new patient.3

To test whether salience is a temporary or per-
manent phenomenon, and whether its magnitude
changes with temporal distance from the focal switch,
we operationalize salience using three parameters:

�ipj� k = �0� i · 	�
ipj� k + ��� i · �1− 	�

ipj� k�� (13)

with the weight given to the immediate magni-
tude of salience (�0� i�, vis-à-vis the long-term mag-
nitude of salience (��� i�, decreasing over time as
follows: 	�

ipj� k = 2/
1 + exp�	�
i · ���k� − ��tsw

ipj ���. Here,
�(k) denotes the calendar date of encounter k, and
��tsw

ipj� k� denotes the calendar date of the last occa-
sion when patient p had to be switched away from
treatment j in favor of one of the clinically equiva-
lent treatments. The rate of decay is governed by the
parameter 	�

i , which is assumed to be positive.
If salience interferes with the formation of mean

quality beliefs, as specified in Equation (11), it will
also interfere with physicians’ beliefs about patient–
treatment idiosyncratic deviations; i.e.,

q̄�
ipj�k = �2

q� ipj�k

�2
q0� ipj

· q̄0� ipj+
n

p

ij�k ·�2
q� ipj�k

�2
F � i

·� �Fipj�k − �Q�
ij�k�� (14)

The posterior belief of a quasi-Bayesian physician
about the quality of treatment j for patient p visiting
at encounter k is then again the sum of her poste-
rior belief about the mean quality of treatment j� �Q�

ij�k�
and her posterior belief about patient p’s idiosyncratic
deviation from this mean (q̃�

ipj� k�; i.e.,

�Q�
ipj� k ∼N� �Q�

ij�k + q̄�
ipj� k��2

Q��� ipj� k�� (15)

The posterior variance in Equation (15) describes
how the uncertainty about the quality of treatment j
for patient p, for a quasi-Bayesian physician, evolves
over time; i.e.,

�2
Q��� ipj� k = var� �Q�

ipj� k�

= var� �Q�
ij�k� +var�q̃�

ipj� k�

+ 2 · cov� �Q�
ij�k� q̃�

ipj� k�� (16)

We provide the derivation of �2
Q��� ipj� k in Online

Appendix B of the electronic companion. If the esti-
mated salience (�ipj� k� is different from zero, it pro-
vides evidence in favor of our hypothesized deviation

3 We thank the associate editor and an anonymous reviewer for
pointing out the need to clarify this issue.
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from Bayesian updating. As a final note, the distri-
bution of physician i’s beliefs, across all patients at
encounter k� results in a structure like the one derived
in Chintagunta et al. (2009).

3.3. Utility Specification
In line with previous research (e.g., Erdem and Keane
1996, Narayanan and Manchanda 2009), we assume
that, at each encounter k, physician i chooses the treat-
ment j that, according to her beliefs, maximizes the
expected utility of patient p� which is given by

Uipj� k = �Q�
ij�k + q̄�

ipj� k − 1
2 · ri · �2

Q��� ipj� k

+ �i ·LASTCHOICEipj� k

+MARKETINGij� k + �ipj� k� (17)

In this specification ri is the absolute risk-aversion
coefficient, which measures each physician’s risk atti-
tude. A positive ri indicates that physicians are risk
averse, i.e., less inclined to prescribe a treatment
when quality uncertainty is larger. Quality uncer-
tainty enters the utility function via �2

Q��� ipj� k, the pos-
terior variance of �Q�

ipj� k, as defined in Equation (16).
The dummy variable LASTCHOICEipj� k assumes the
value one if the physician prescribed treatment j to
patient p in their last encounter and �i is a parame-
ter capturing switch costs, i.e., a propensity of physi-
cian i to prescribe to patient p the same treatment j
that had been prescribed in their last encounter. To
control for the impact of marketing efforts, we use
MARKETINGij� k, which is a flexible function of the
market-level marketing expenditures.4 Finally, �ipj� k is
an error term capturing unobserved drivers of utility
at encounter k. We assume these errors to be normally
distributed and allow for between-treatment covaria-
tion; i.e., �ip� k�Jx1 ∼N(0,�). Our data provide a natural
structure for the correlations across treatments.5

4. Data
The market we study is the obstructive airways dis-
eases category (i.e., asthma and chronic obstructive
pulmonary disease, or COPD)—in particular, the class
of inhaled corticosteroids (ICSs) plus long-acting �2-
agonist (LABA) combinations, in The Netherlands.

4 In short, in MARKETINGij� k we integrate two components:
(i) temporal responsiveness to marketing actions, assumed equal
across physicians, and molecules but changing over time; and
(ii) physician-specific marketing responsiveness, which is assumed
constant over time. We will discuss in greater detail our specifica-
tion of marketing after we have introduced our data.
5 We distinguish between (i) treatment- and encounter-
specific shocks, which are independent across treatments; and
(ii) ingredient- or administration-specific shocks, which can affect
all treatments that share a certain molecular ingredient or route of
administration.

Figure 1 Prescription Shares (Three-Month Moving Average)
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By 2017, global sales of medications for asthma and
COPD are expected to reach $25 billion with ICS-
plus-LABA combinations becoming the leading class
in value (Datamonitor 2008). ICS-plus-LABA com-
binations are recommended for patients with mod-
erately severe asthma (Global Initiative for Asthma
(GINA) 2008) and chronic obstructive pulmonary dis-
ease (Calverley et al. 2007).
We model treatment choice among eight clinically

equivalent treatments. These include six two-inhaler
combinations of the three ICSs (beclomethasone,
budesonide, and fluticasone) and two LABAs
(formoterol and salmeterol) recommended by
clinical guidelines (GINA 2008); and two newer
single-inhaler brands—GlaxoSmithKline’s Seretide
(fluticasone + salmeterol; approved in 1999; branded
as Advair in the United States) and AstraZeneca’s
Symbicort (budesonide + formoterol; approved in
2001). Our data contain the introduction of Symbicort
and cover a period of growing popularity, among
physicians, of ICS-plus-LABA combinations, which is
an ideal setting to model physician learning about the
quality of different treatment alternatives within this
category.
Figure 1 depicts the evolution of prescription shares

over time, in our sample, of the older two-inhaler
treatments and the two newer combination brands.
Roughly one year after the start of the observa-
tion period, Seretide had a higher prescription share
than all the two-inhaler treatments together. Symbi-
cort eventually reached a prescription share similar to
Seretide, but only five years after its entry.
We obtained electronic patient records from July

2001 to June 2006 from the IPCI (Integrated Pri-
mary Care Information) database,6 a panel of general

6 In fact, we have access to prescription data before July 2001, but
we were only able to gather marketing data, which we will describe
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practitioners, maintained by the school of medicine
at our university (for a detailed description, see Vlug
et al. 1999). These physicians use paperless offices,
meaning that the system records the full prescription
history of each patient, including all refills. The data
from this panel are often used for research publica-
tions in medicine and pharmaco-epidemiology. Usage
of the data is supervised by a board of medical pro-
fessionals, and linking the data to other sources at the
individual physician level is prohibited.
The panel contains both single- and multiphysi-

cian practices. To ensure that we model belief for-
mation using all the relevant clinical experience
for each physician, we only use data on single-
physician practices. The data contain 2,398 patients
across 22 physicians and 12,186 prescription choices
(of ICS-plus-LABA treatments).7 We obtained data
on monthly expenditures on marketing (including
detailing, journal advertising, and conferences), for
the respective treatments and time period from IMS
Health. We use these data to construct, for each treat-
ment and occasion, the marketing variable introduced
in Equation (17) as follows:

MARKETINGij� k

=
L∑

l=0

{
�Mkt
1� l · [I�two-inhalers� · (�ICS

2� i · ln�MKTICS
j�m�k�−l + 1�

+ �LABA
2� i · ln�MKTLABA

j�m�k�−l + 1�
)

+ �1− I�two-inhalers�� · �Comb�
2� i

· ln�MKTComb�
j�m�k�−l + 1�

]}
� (18)

Here, L = 6 represents the number of lagged
monthly marketing expenditures that, in our model,
affect a treatment’s utility; I(two-inhalers) is an indi-
cator function assuming the value one if treatment j
combines the preventive ICS and reliever LABA
molecules in two distinct inhalers, and value zero
if these two molecules are combined in the same
inhaler; and m�k� indicates the calendar month of
encounter k (contemporaneous marketing expendi-
tures, i.e., when l = 0� are adjusted for the timing of
the encounter within a given month).
Table 1 presents a switching matrix among two-

inhaler treatments, Seretide and Symbicort. It shows
that physicians tend to switch patients away from

shortly, from July 2001 onward. Still, we used data before July 2001
to initiate the switch cost variable. Moreover, although the formal
approval of Symbicort was in January 2001, in our data, only two
prescriptions are recorded before July 2001.
7 To avoid concerns with patient dropout in our data, we have com-
pared the prescription shares in the full sample with the shares
among patients who have dropped off the panel and found no sig-
nificant differences.

Table 1 Switching Matrix

To
Total

Two-inhaler Switch number of
From treatments Seretide Symbicort rate (%) prescriptions

Two-inhaler 67 140 84 6�24 3�592
treatments

Seretide 43 0 50 1�69 5�506
Symbicort 35 39 0 2�40 3�088

Table 2 Descriptive Statistics—Patient Visits

Measure Mean SD Min Max

No. of prescription occasions 5�08 5�85 1 50
per patient

No. of spells per patient 1�22 0�68 1 10
Spell length 4�16 4�84 1 41

two-inhaler treatments to Seretide (140 switches;
i.e., 30.1% of the 458 switches) or to Symbicort
(84 switches; i.e., 18.3% of the 458 switches). Yet we
also observe 43 switches from Seretide and 35 from
Symbicort to two-inhaler treatments (i.e., 78 switches
in total, or 17% of the 458 switches) as well as between
Seretide and Symbicort. Column “Switch rate (%)”
shows the switching rate as a percentage of the total
number of prescriptions (which are, in turn, displayed
under column “Total number of prescriptions”).
Let us now define a spell as a sequence of con-

secutive prescriptions of the same treatment (Crawford
and Shum 2005). Table 2 shows descriptive statistics
for our data. On average, a patient receives five pre-
scriptions. The average number of spells per patient
is 1.22 (we observe a total of 2,926 spells across the
2,398 patients), and, on average, each spell consists
of 4.16 prescriptions. The average number of spells
is very close to previous studies (Chintagunta et al.
2009, Crawford and Shum 2005). The mean length of
each spell is larger than prior studies because we deal
with patients having a moderate to severe chronic
disease.

5. Estimation and Identification
5.1. Estimation
We estimate our model in a Bayesian fashion using
a Markov chain Monte Carlo (MCMC) approach. We
sample the parameters from their posterior distribu-
tions using a Gibbs sampler (see Casella and George
1992 for a review) together with data augmentation
that allows us to sample the latent utilities and patient
feedback alongside the model parameters (Tanner and
Wong 1987). In addition, in line with Narayanan and
Manchanda (2009), we use a hierarchical Bayes’ struc-
ture to model unobserved physician heterogeneity.
We adapt McCulloch and Rossi’s (1994) Gibbs sam-
pler for hierarchical multinomial probit models to
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account for Bayesian or quasi-Bayesian learning. The
main difference, besides having to use data augmen-
tation to sample patient feedback is that we do not
have a closed-form solution for the posterior distri-
butions of (i) the variances characterizing physicians’
initial uncertainty and patient heterogeneity ({�2

Q0� ij }
and {�2

q0� ipj}), (ii) the variance of patients’ feedback
(�2

F � i�, and (iii) the salience parameters (�0� i, ��� i,
and 	�

i �. To sample these parameters, we apply a
Metropolis-Hastings step (Chib and Greenberg 1995)
within our Gibbs sampler. We specify proper but
diffuse priors for all parameters. The exact imple-
mentation of our Gibbs sampler is given in Online
Appendix C of the electronic companion. We let all
chains converge and use 5,000 subsequent draws to
obtain parameter estimates.

5.2. Identification
The structure of Bayesian learning and the dynamics
in prescription shares—including the introduction of
a new treatment (Symbicort)—help us in identifica-
tion of the learning parameters. When Symbicort is
introduced, physicians are uncertain about its quality,
and learning helps them reduce such uncertainty over
time. The velocity of this reduction depends on the
noise in feedback signals (�2

F � i� and on the variances
characterizing prior quality uncertainty and patient
heterogeneity (�2

Q0� ij and �2
q� ipj�.

To identify �2
Q0� ij and �2

q� ipj� we rely on the attrac-
tiveness of a treatment for new versus old patients.
Bayesian updating guarantees that the uncertainty
surrounding the mean quality of a treatment (�2

Q0� ij �
tends to zero after a large enough number of signals.
At this point, the reluctance of a physician to prescribe
that treatment to a new patient (which also does not
depend on switch costs) enables identification of �2

q� ipj.
The assumption that physicians have rational

expectations enables the dynamics in the choices of
treatments with higher versus lower quality uncer-
tainty to identify risk aversion (ri� and switch
costs (�i�. If quality expectations are on average cor-
rect, relative sluggishness in prescribing treatments
with higher associated uncertainty to new patients
is driven by risk aversion (ri > 0). Sluggishness
in switching revisiting patients to treatments that
the physician has already adopted for new patients
enables identification of the switch cost parameter
(�i�. Thus, an overall unwillingness to try more uncer-
tain treatments identifies risk aversion, whereas an
unwillingness to switch revisiting patients away from
a certain treatment identifies switch costs.
The salience parameters (�0� i, ��� i, and 	�

i ) are
identified by systematic changes in behavior triggered
by the decision to switch a patient to a clinically
equivalent alternative. For instance, if a physician

starts adopting Symbicort to several patients at a cer-
tain pace but, after switching a patient away from
Symbicort, slows down this adoption process more
than what Bayes’ rule would predict, this reduction
in the speed of adoption is captured by �0� i. If the
strength of this effect changes over time, our model
will capture such dynamics through 	�

i and ��� i.
Please note that it is not possible to identify the sign
of the decay parameter separately from the levels of
the two salience parameters. We avoid this identifica-
tion issue by restricting 	�

i to be positive.
For the marketing parameters (�Mkt

1 and �Mkt
2� i �, iden-

tification is straightforward. Controlling for learning
and switch costs, the effect of marketing efforts on the
attractiveness of alternative treatments is identified by
the responsiveness, in terms of prescription choices, of
physicians to variations in the marketing effort vari-
ables. For identification purposes, we assume that the
temporal marketing responsiveness parameters add
up to one.
Unrestricted multinomial probit models suffer from

additional identification issues because choice prob-
abilities are invariant to location or scale transfor-
mations of the latent utilities (Rossi et al. 2005).
Hence, we normalize the scale and location of the
utility levels by restricting the quality of a reference
alternative—the two-inhaler combination of fluticas-
one and salmeterol—to zero and the variance of the
error term of the reference alternative to one. Note
that the latter especially has implications for compa-
rability of estimation results across models (see Swait
and Louviere 1993). Estimates of the utility levels,
variances, marketing effects, as well as risk aversion
and switch costs, will be affected by the restriction in
the variance of the error terms and by the amount of
unexplained variation actually present in the behavior
under consideration.
As a final note, this type of model is demanding in

terms of identification. To guarantee that our results
are robust, we have run our focal models using a
different set of priors. Even though we made pri-
ors much more diffuse, by increasing prior variances
by a factor of 10, results were largely unchanged,
which suggests that identification of our model is
achieved without relying on information contained in
the priors. Furthermore, we have also simulated data
according to our model and were able to recover the
parameters very well.

6. Results
Posterior estimates of the relevant parameters are
obtained directly from the sample of MCMC draws.
To isolate the contribution of salience, we compare
the following models: (M0) a pure Bayesian learning
model, (M1) a quasi-Bayesian learning model with
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static salience (i.e., �i = ��� i = �0� i�, and (M2) a quasi-
Bayesian learning model with dynamic salience. Fol-
lowing the suggestion of Rossi et al. (2005) to
focus on the log-likelihood to verify convergence, we
apply Raftery and Lewis’s (1992) I-stat and Geweke’s
(1992) convergence tests on the log-likelihood for all
three models, which confirmed that the chains have
converged.
Next, we compare the fit of the models using

log-marginal densities (LMDs) and log-Bayes’ fac-
tors (Kass and Raftery 1995). The two quasi-Bayesian
learning models (LMDM1 = −19�518 and LMDM2 =
−19�509) clearly outperformed the pure Bayesian
learning benchmark (LMDM0 = −27�845). This pro-
vides strong evidence that any of the quasi-Bayesian
learning models is a posteriori more likely than the
pure Bayesian learning model, assuming equal prior
probabilities for all models. The log-Bayes’ factor of
the model with dynamic salience (M2) with respect
to the model with nondynamic salience (M1) is also
above five, the threshold suggested by Kass and
Raftery (1995) for strong evidence in favor of the best-
fitting model, which supports dynamics in salience
effects. Finally, including two different patient feed-
back signal variances (one for the first encounter
and another for subsequent encounters) to accommo-
date experience effects in the patient–physician rela-
tionship did not improve the quasi-Bayesian learn-
ing models (M1 and M2) based on log-Bayes’ factors.
We now turn to the parameter estimates and their
interpretation.

6.1. Parameter Estimates

6.1.1. Salience. A key finding from our model is
the strong salience effect triggered by the decision to
switch a patient to an alternative treatment option
(see first three rows of Table 3). When learning about
the quality of a treatment, feedback from patients sub-
ject to treatment switching receives between 7 and
10 times more weight ( ��0� i = 9�05, SD = 0�432; ���� i =
6�31, SD = 0�435; and 	̄�

i = 1�27, SD = 0�566)8 than a
pure Bayesian learning model would predict.
We now turn to the dynamics in salience effects.

We fix 	̄�
i at its mean and compute the magnitude of

salience since the time of a switch until one year after
the switch based on the medians of ��0� i and ���� i. We
find that 56% of the total decay from the immediate
level of salience ( ��0� i� to its steady-state level ( ���� i�
occurs in one year’s time. Thus, we find evidence for
a significant but slow decay in salience.

8 The values of 7 and 10 are obtained by adding one to our esti-
mates of ���� i and ��0� i, as the impact of salience in the utility is
determined by �1 + �ipj� k · SWITCHipj� k�. We use SD to denote the
standard deviation across all the MCMC draws used for posterior
inference.

Table 3 Parameter Estimates (Salience, Switch Costs, Risk Aversion,
and Feedback Error)

Posterior
median Across- Within-

[95% credible physician physician
Parameter intervals] std. dev. std. dev.

Immediate salience 9�05 1�21 1�04
effect (��0� i � �8�18�9�89�

Long-run salience 6�31 1�56 1�05
effect (���� i � �5�43�7�11�

Salience decay (	̄�
i � 1�27 2�18 1�32

�0�14�2�28�
Switch costs (
̄i � 2�78 0�18 0�16

�2�57�3�03�
Absolute risk aversion (r̄i � 0�60 0�86 0�60

�−0�53�1�76�
Patient feedback error (�̄ 2

F � i � 0�66 0�39 0�14
�0�53�0�81�

Notes. The estimates reported in the second column are the medians, across
all MCMC draws, of the population mean parameter in the second level
of our hierarchical model (i.e., the mean in the random coefficients dis-
tribution). In parentheses, we report the 2.5th and the 97.5th percentiles
of the distribution of these MCMC draws. In the last two columns we
report the across-physician standard deviations (the standard deviation of
the physician-specific means of each parameter) and within-physician stan-
dard deviations (the mean of the physician-specific standard deviations of
each parameter), in line with Narayanan and Manchanda (2009).

We also find significant physician heterogeneity
in salience effects. To determine whether physician
heterogeneity is significant, we follow Narayanan
and Manchanda’s (2009) approach of contrasting
each parameter’s across-physician standard devia-
tions with the within-physician standard deviations.
If the physician-specific 95% credible intervals for a
certain parameter do not overlap, then the across-
physician standard deviation of that parameter needs
to be larger than the corresponding within-physician
standard deviation. From the last two columns of
Table 3, we can see that the across-physician variation
is substantially larger than the within-physician vari-
ation, suggesting significant heterogeneity in salience
effects.
Salience has two major effects on prescription

behavior. First, because it represents a departure
from optimal Bayesian learning, it tends to slow
down physician learning about the quality of new
treatments, which delays its adoption by physicians.
Second, in the long run, it benefits treatments that
generate fewer switches (i.e., that have higher quality
or lower treatment heterogeneity, or that are targeted
to patients that will benefit the most from them). In
the next section, we will quantify the overall impact
of the salience effect on the market.

6.1.2. Switch Costs. The parameter measuring
patient switch costs (�̄i = 2�78, SD = 0�121) suggests
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that, on top of uncertainty-driven persistence, physi-
cians exhibit a strong tendency to prescribe the same
treatment for a certain patient even when they believe
that an alternative treatment could perform better for
this specific patient. This finding is in line with the
findings of Chan et al. (2010) and Coscelli (2000).
Physician heterogeneity in these switch costs seems
only marginally significant, as the across-physician
and the within-physician standard deviations are
close to each other.

6.1.3. Absolute Risk Aversion. The mean risk-
aversion parameter is positive, and the standard devi-
ation of the draws is of similar magnitude (r̄i = 0�60,
SD = 0�584). We computed the percentage of draws
indicating risk aversion (i.e., ri > 0� for each of the
physicians in our sample and found that all except
one physician have the majority of the MCMC draws
with positive risk aversion, and for more than half
of the physicians, at least 90% of the draws indicate
risk aversion. Finally, we find that physicians show
significant heterogeneity in their risk attitudes, with
the across-physician standard deviation being much
larger than the within-physician standard deviation
(0.86 versus 0.60), a finding in line with evidence from
medicine (Fiscella et al. 2000).

6.1.4. Patient Feedback Error. To understand the
magnitude of patients’ feedback errors (�̄2

F � i = 0�66,
SD = 0�07) we simulated physician uncertainty about
the mean quality of Symbicort and analyzed how long
it takes a physician to reduce such uncertainty. On
average, a pure Bayesian physician needs to receive
26 patient feedback signals (each patient providing a
single feedback) to reduce her uncertainty by 90%. If
the same physician learns in a quasi-Bayesian fash-
ion, i.e., giving more weight to the feedback of salient
patients, then she needs 38 signals, all from salient
patients, to obtain the same reduction in uncertainty.
Thus, as we would expect from the fact that salience
represents a deviation from optimal Bayesian learn-
ing, salience reduces physicians’ speed of learning,
which, everything else constant, results in slower
adoption. We explore managerial and patient welfare
implications of salience in the next two sections.

6.1.5. Marketing Efforts. We now discuss the
impact of marketing efforts on treatment utility and
choice. We divide marketing responsiveness in two
effects: (i) temporal marketing responsiveness, which
we use to describe how the effect of pharmaceuti-
cal companies’ marketing efforts builds up over time
(an effect we assume common across physicians and
treatments); and (ii) molecule- and physician-specific
marketing responsiveness, which is assumed constant
over time.

Figure 2 Cumulative Temporal Marketing Responsiveness

Months elapsed since marketing investment
0 1 2 3 4 5 6 7

–0.2

0.2

0.6

1.0

Notes. In the horizontal axis we depict the number of months elapsed since
the focal marketing investment. For illustrative purposes we start the graph
from zero; hence “1” in the horizontal axis refers to the contemporaneous
marketing and “7” refers to the sixth lag of temporal marketing respon-
siveness. In the vertical axis, we depict the sum of the temporal marketing
responsiveness parameters up to and including the lag indicated in the hori-
zontal axis. The lines depict the 2.5th (lower dashed line), the median (solid
line), and the 97.5th (upper dashed line) percentiles, across all MCMC draws,
of CTMRL (for L = 1� � � � �7).

To describe temporal marketing responsiveness, in
Figure 2 we depict the cumulative temporal market-
ing responsiveness effect since the period a market-
ing investment is effected until L months have passed
since such investment (i.e., CTMRL = ∑L−1

l=0 �Mkt
1� l with

L = 1� � � � �7). For identification, the sum of the tempo-
ral marketing responsiveness parameters is restricted
to one. Hence, the curves in Figure 2 represent the
fraction of the total marketing responsiveness that
has already affected physician i’s prescription behav-
ior when L months have passed since marketing was
expended. We can conclude that marketing effects
gradually build up from the first to the seventh month
after the investment is made.
In terms of the molecule- and physician-specific

marketing responsiveness, our estimates show that
marketing efforts to promote Seretide and Symbicort
(�̄Comb�

2� i = 0�12, SD = 0�05, and 95% credible interval =
�0�03�0�22) significantly drive prescription choices.
In contrast, marketing expenditures for ICSs (�̄ICS

2� i =
−0�01, SD = 0�05, and 95% credible interval =
�−0�11�0�08) and for LABAs (�̄LABA

2� i = 0�06, SD= 0�05,
and 95% credible interval = �−0�03�0�16) do not sig-
nificantly affect prescription behavior, in line with
prior research showing the effectiveness of pharma-
ceutical marketing to be higher for newer than for
more mature treatments (Narayanan et al. 2005).

6.1.6. Treatment Characteristics. Table 4, summa-
rizes the posterior medians (and 95% credible inter-
vals) for each treatment’s true mean quality ( �Qij�,
initial physician uncertainty about the mean quality
belief (�̄2

Q0� ij �, and patient heterogeneity (�̄2
q� ipj�.
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Table 4 Parameter Estimates: Treatment Quality Perceptions

Treatment alternative �Qij �̄ 2
Q0� ij �̄ 2

q� ipj

1—Fluticasone+ salmeterol 0�87 0�80
�0�68�1�09� �0�60�0�97�

2—Fluticasone+ formoterol −0�06 0�69 1�34
�−0�30�0�22� �0�57�0�85� �1�10�1�67�

3—Beclomethasone+ salmeterol −0�04 1�06 0�76
�−0�30�0�17� �0�81�1�41� �0�61�0�90�

4—Beclomethasone+ formoterol −0�24 0�68 1�09
�−0�46�0�00� �0�56�0�88� �0�91�1�29�

5—Budesonide+ salmeterol −0�02 0�92 0�98
�−0�24�0�18� �0�79�1�07� �0�81�1�16�

6—Budesonide+ formoterol 0�14 0�67 1�04
�−0�10�0�38� �0�57�0�80� �0�88�1�23�

7—Seretide 0�25 0�74 0�80
�0�04�0�46� �0�60�0�94� �0�65�0�93�

8—Symbicort 0�10 1�30 0�89
�−0�12�0�33� �1�05�1�61� �0�74�1�03�

Note. Fluticasone+salmeterol is the reference treatment alternative; Seretide
contains fluticasone and salmeterol, and Symbicort contains budesonide and
formoterol.

In terms of true mean qualities, we find that the
fourth treatment alternative (two-inhalers combin-
ing beclomethasone and formoterol) is the one with
lowest quality, whereas Seretide is perceived as the
best treatment, on average. This finding is consis-
tent with the results from a pure Bayesian learning
model. In fact, the only relevant difference between
the two models is that, in the quasi-Bayesian learning
model, Seretide’s quality is significantly higher than
the remaining alternatives. In contrast, in the pure
Bayesian learning model, the estimate for the mean
quality of Seretide was very close to zero.
In terms of face validity, the results from our quasi-

Bayesian learning model (M2) are consistent with
medical studies, which show that the different treat-
ment alternatives in this category are equivalent in
terms of efficacy and side effects (Marks and Ind
2005). The fact that Seretide seems to be perceived by
the physicians in our sample as having higher mean
quality than the remaining treatments is also consis-
tent with evidence from the industry indicating that
AstraZeneca’s initial differentiation strategy—which
was to allow patients to adjust the dosing of the ICS’s
component—may have been received with skepticism
by many physicians, who believed that a fixed dosing
of ICS was actually one of the advantages of combina-
tion treatments.9 These differences indicate that treat-
ments are also characterized by other dimensions,
such as dosage, administration method, and conve-
nience (Venkataraman and Stremersch 2007).

9 See, for example, Datamonitor’s report named “Symbicort
and Seretide’s battle for the respiratory market”: http://www
.datamonitor.com/store/News/symbicort_and_seretides_battle_for
_the_respiratory_market?productid=489DA887-A5B9-4660-B285
-29D22EC64F6A, accessed April 2010.

The estimates for initial uncertainty about the
mean quality of each treatment also have high
face validity in our model. Symbicort, the newest
treatment, shows the highest mean quality uncer-
tainty (�̄2

Q0� iSYMBI = 1�30, SD = 0�142), whereas Sere-
tide, which had been introduced two years before
the start of our data and was, at the time, already
the most prescribed treatment, shows significantly
lower prior mean quality uncertainty (�̄2

Q0� iSERE =
0�74, SD = 0�089, with all draws having �̄2

Q0� iSYMBI >
�̄2

Q0� iSERE�. Finally, physicians perceive patient hetero-
geneity (�̄2

q� ipj� as similar across all treatments.

7. Effects of Salience on
Market Shares

Having established the presence of strong salience
effects in physician learning, we now quantify the
consequences of this behavioral regularity at the mar-
ket level. We use the posterior draws from the quasi-
Bayesian learning model with dynamic salience (M2)
to simulate market shares under two counterfactual
experiments: (i) our model with salience set to zero
only for Symbicort and (ii) our model with salience
set to zero for all treatments. The first counterfactual
experiment tests whether reducing salience can be a
useful objective for firms to pursue, and the second
tests whether salience produces significant deviations
from normative prescription behavior (a potential
welfare concern).
Figure 3 depicts the results of our counterfactual

experiments. Each bar represents the mean predicted
market share for two-inhaler treatments, Seretide and
Symbicort. Each of the three blocks represents one of
the scenarios we compare. The first thing to note is
that if AstraZeneca would have been able to eliminate
salience for Symbicort (second block in Figure 3), it
would have significantly increased its market share.
The share of Symbicort increased, on average, by
8.5 percentage points (from 0.279 to 0.364) with 99.6%
of the simulations showing an increase in market
share.10 This significant increase in Symbicort’s share
was mainly achieved at the expense of older two-
inhaler alternatives, which lost an average of 5 per-
centage points (from 0.284 to 0.234) with more than
98% of the simulations resulting in a decrease of these
treatments’ share. Hence, if a company alone is able
to eliminate, or at least reduce, salience effects, it can
reap significant market benefits. Moreover, with an
additional counterfactual experiment we find that a
reduction of 50% in salience achieved about one-third
of the total market share effect of a full elimination

10 Note that we compare the realizations of the market shares for
the two models that are based on the same set of realizations for
the patient quality matches, feedback signals, etc.
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Figure 3 Mean Predicted Market Shares With and Without Salience
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of salience. Thus, in §9 we discuss possible salience-
reducing strategies to achieve such a goal.
Finally, the shares predicted by a model with

salience set to zero for all brands show that, in gen-
eral, newer treatments benefit from salience elimina-
tion. The share of two-inhaler treatments decreased,
on average, by 6 percentage points (from 0.284 to
0.224), with 99% of the simulations resulting in
a decrease for these older treatment alternatives.
In contrast, Seretide’s share increased, on average,
by 1.5 percentage points (from 0.437 to 0.453). We
observed increases in 74% of the simulations. The pre-
scription share of the newest entrant—Symbicort—
increased 4.5 percentage points (from 0.279 to 0.324),
with 89% of the simulations showing an increase.
These results indicate that in the market we study,

the prevalence of salience effects in physician learning
resulted in systematic changes in prescription shares,
potentially with an associated welfare loss: salience
(of the feedback) of switching patients slows physi-
cian learning and significantly delays the adoption of
newer treatments in favor of older treatments.

8. Additional Analyses on Salience
Realizing that some concerns may persist regard-
ing the psychological process behind the treatment-
switching effect we document, we conducted addi-
tional analyses to test the robustness of our salience
interpretation. We have run a survey among 156 GPs
and asked these physicians to rate the importance
of different drivers on their decision to prescribe an
older or a newer treatment. Specifically, we compared
our salience explanation with competing psycholog-
ical explanations (fear about the new treatment’s
side effects, need to justify the decision, or potential
regret). Salience was rated as significantly higher, con-
firming our expectations.

Another possible concern is that, in addition to
salience, the treatment-switching effect may be driven
by a correlated unobservable such as detailing. If a
physician’s decision to switch patients away from a
certain treatment and the choice of the new treat-
ment are driven by detailing, and if detailing also
alters long-term market shares, our salience estimate
could be inflated. We used two strategies to allevi-
ate this concern.11 First, in the physician survey we
conducted, we also included detailing as a possible
driver of prescription choices. Detailing was rated as
significantly less important than salience by the 156
physicians. Second, please note that—if we consider
a switch from treatment A to treatment B—salience
predicts a penalty effect in the utility of treatment A,
whereas detailing predicts a bonus effect in the utility
of treatment B. Hence, we estimated a pure Bayesian
learning model where we allow the number of switch-
outs and the number of switch-ins to affect each treat-
ment’s utility. We find that in more than 95% of the
draws, the (negative) effect of switch-outs is substan-
tially stronger than the (positive) effect of switch-
ins. This implies that switches affect the treatment
that was abandoned most, in line with our salience
interpretation.

9. Managerial and Public Policy
Implications

Two major findings emerged from our counterfactual
experiments. First, a firm that is able to eliminate or
reduce salience for its treatment can gain an impor-
tant competitive advantage. Considering that Symbi-
cort had global sales of $3,918 million in the period
2001–2006, the significant increase of 8.5 percentage

11 We thank the review team for bringing this issue to our attention
and suggesting strategies to deal with this problem.
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points in its prescription share when its salience was
set to zero would have represented a gain of $333 mil-
lion in sales. Second, setting salience to zero for all
treatments confirmed that salience delays physician
adoption of new treatments, suggesting a potential
patient welfare loss. But what can one do to reduce
salience effects?
Prior research has demonstrated that several cogni-

tive debiasing strategies can effectively reduce biases
like salience (Arkes 1991, Bradley 2005, Croskerry
2003). In the case of salience, there are at least three
possible debiasing strategies we can think of. First,
psychological effects, like salience, often exert their
influence on judgment because people are unaware
of their impact on judgments and decisions. Thus,
increasing physician awareness about salience effects
should help reduce its impact (Croskerry 2003).
Second, prescription support systems that decrease
physicians’ reliance on memory in their decisions
should help reduce salience effects (e.g., Bradley 2005,
Croskerry 2003). Third, refreshing physicians’ knowl-
edge about the use of Bayes’ rule should also help
reduce salience effects (Hall 2002, Nisbett et al. 1983).
A second type of salience-reducing strategy

involves streamlining marketing actions early in a
treatment’s life cycle. For example, firms could invest
in innovations aimed at reducing patient heterogene-
ity in a new treatment’s quality. If a firm is able to
reduce patient heterogeneity for a new treatment—for
instance, through new product development efforts
aimed at reducing quality dispersion—it benefits both
from a direct and from an indirect increase in the
new treatment’s utility. The former effect occurs
because treatment heterogeneity increases the uncer-
tainty about the quality of the new treatment, whereas
the latter effect occurs because lower treatment het-
erogeneity reduces switching which, in turn, reduces
salience effects.
Finally, our model also suggests that a controlled

roll-out of a new drug may help speed up its adop-
tion. Instead of aggressively targeting all patients
simultaneously, firms may be better off by helping
physicians to more accurately target new therapies to
the patients who will most likely benefit from them.
Such a strategy would represent a win–win situation
whereby physicians avoid prescribing the new ther-
apy to patients that lie on the lower tail of the quality
distribution and, as a consequence, avoid undesirable
switches, reducing salience effects.

10. Alternative Applications of Our
Model in Marketing Science

Beyond the phenomenon studied in this paper, it
is possible to adapt the model we specify to study
other behavioral regularities that can be of inter-
est to marketing scientists. First, our model can be

adapted to test—using scanner panel data—whether
there is empirical evidence for positive (or nega-
tive) spillovers among different elements of a new
brand’s marketing mix. For instance, one could expect
advertising messages to become more influential in
consumer learning when the product is also fea-
tured or on display. Respecifying our salience dummy
to account for these interactions would allow a
researcher to quantify such spillover effects.
Second, our model can also be used to quan-

tify the disproportionate weight given to word of
mouth by dissatisfied versus satisfied consumers (e.g.,
Goldenberg et al. 2007). Following this route would
require data on consumers’ (i) purchase histories,
(ii) social network, and (iii) satisfaction. Our salience
parameter could then be used to quantify the extra
weight given to feedback signals from dissatisfied
peers in consumer learning, a metric for the dis-
proportionate influence of unfavorable information
(Mizerski 1982).
Third, our model can also be used to model con-

firmatory bias, i.e., consumers’ tendency to pay more
attention and weight more heavily information that
confirms their prior beliefs (see also Boulding et al.
1999, Mehta et al. 2008). Our specification allows
a researcher to model confirmatory bias directly
through the weight they give to different consump-
tion signals. For example, if we respecify the switch
dummy in our model as a dummy indicating whether
a certain signal confirms a consumer’s prior expecta-
tion, then positive estimates for �0� i and ��� i can be
used to directly quantify the magnitude of confirma-
tory bias.

11. Conclusion
In this paper, we show that salience interferes with
physician learning. Patients that switch to alternative
treatments are more influential during a physician’s
quality belief formation than patients that continue
their therapy. We extend the Bayesian learning model
to account for these salience effects. To the best of our
knowledge, this is the first paper to uncover salience
effects in physician learning using actual data on
physicians’ prescription choices for real patients. We
find that feedback from switching patients receives
between 7 and 10 times more weight in physician
learning than feedback from other patients. Our find-
ing is in line with experimental evidence that suggests
that physicians are prone to use cognitive shortcuts
like availability, representativeness, and anchoring
and adjustment. Salience results in slower physician
learning about the quality of new treatments, delay-
ing adoption. Consequently, reducing salience effects
ahead of or to a greater extent than competition, all
else equal, may be very beneficial for firms that mar-
ket new treatments (in our case, AstraZeneca with
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Symbicort). Also, public policy officials may find the
reduction of salience effects a worthwhile goal, as it
represents a welfare loss. We have discussed how cog-
nitive debiasing strategies and marketing actions may
reduce salience.

11.1. Limitations and Directions for Future
Research

A first limitation is our interpretation of the
treatment-switching effect we quantify as a salience
effect. The data we use allow us to establish that the
feedback of patients who switch treatments receives
significantly more weight in physicians’ belief for-
mation about the quality of a new treatment than
Bayesian updating predicts. We used robust findings
from psychology and medical decision-making the-
ory and discussed additional self-reported data and
analyses that reinforced our confidence that salience
effects drive this treatment-switching effect. Never-
theless, it would be interesting if future research,
possibly using laboratory experiments, could estab-
lish that the psychological process that underlies the
treatment-switching effect we document is indeed the
salience of the feedback from switching patients.
Second, we model learning solely through patient

feedback. The context we have chosen (single-
physician practices in a geographical market that has
strict regulations on pharmaceutical marketing) lim-
its the impact of alternative sources of information
(like word of mouth and direct-to-consumer advertis-
ing). Still, if physicians’ decisions to switch patients
away from a certain treatment and the choice of
the new treatment are driven by unobserved detail-
ing or advertising, and if detailing also alters long-
term market shares, our salience estimate could be
inflated because of the well-known issue of correlated
unobservables. To alleviate these concerns, we have
conducted additional analyses showing that salience
is significantly more likely to be the driver of the
treatment-switching effect we document. It would be
valuable if future studies would examine the potential
for informative marketing to reduce salience effects.
Third, we assume that, at each encounter, the vis-

iting patient only provides feedback about the last
treatment she or he has been prescribed. We do not
expect this assumption to introduce bias in our esti-
mates. Still, modeling physician learning from mul-
tivariate patient feedback could allow researchers to
better understand how patient and physician per-
ceptions about different treatment alternatives inter-
act with each other. Operationalization of such a
model would require either additional data (e.g., sur-
vey data on which treatments, and what aspects of
the treatment, were discussed in a certain encounter)
or additional assumptions (e.g., structurally model
the amount of feedback allocated to each of the

treatments a patient has previously tried). This is a
very promising area for future research on consumer
learning.
Finally, although we control for unobserved het-

erogeneity both at the patient and physician lev-
els, observed heterogeneity could also be explored
by introducing patient and physician characteristics
explicitly in the model specification. Modeling across-
consumer learning effects and quantifying which con-
sumers are more influential are other areas that
deserve future study.
Overall, this study confirms the usefulness of quasi-

Bayesian learning models. Although such models
come at the cost of increased complexity, they allow
for the integration of the robust insight that human
decision makers often deviate from normative rules in
predictable ways into the well-established normative
Bayesian learning framework.

12. Electronic Companion
An electronic companion to this paper is available as
part of the online version that can be found at http://
mktsci.pubs.informs.org/.
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