
CLINICAL CANCER RESEARCH | TRANSLATIONAL CANCER MECHANISMS AND THERAPY

Predicted Prognosis of Patients with Pancreatic Cancer

by Machine Learning
Seiya Yokoyama1, Taiji Hamada1, Michiyo Higashi1, Kei Matsuo1, Kosei Maemura2,3, Hiroshi Kurahara3,

Michiko Horinouchi1, Tsubasa Hiraki1, Tomoyuki Sugimoto4, Toshiaki Akahane1, Suguru Yonezawa1,

Marko Kornmann5, Surinder K. Batra6, Michael A. Hollingsworth7, and Akihide Tanimoto1

ABSTRACT
◥

Purpose: Pancreatic cancer remains a disease of high mortality

despite advanced diagnostic techniques. Mucins (MUC) play cru-

cial roles in carcinogenesis and tumor invasion in pancreatic

cancers. MUC1 and MUC4 expression are related to the aggressive

behavior of human neoplasms and a poor patient outcome. In

contrast, MUC2 is a tumor suppressor, and we have previously

reported that MUC2 is a favorable prognostic factor in pancreatic

neoplasia. This study investigates whether the methylation status

of three mucin genes from postoperative tissue specimens from

patients with pancreatic neoplasms could serve as a predictive

biomarker for outcome after surgery.

Experimental Design: We evaluated the methylation status of

MUC1, MUC2, and MUC4 promoter regions in pancreatic tissue

samples from 191 patients with various pancreatic lesions using

methylation-specific electrophoresis. Then, integrating these results

and clinicopathologic features, we used support vector machine-,

neural network-, and multinomial-based methods to develop a

prognostic classifier.

Results: Significant differences were identified between the

positive- and negative-prediction classifiers of patients in 5-year

overall survival (OS) in the cross-validation test. Multivariate

analysis revealed that these prognostic classifiers were independent

prognostic factors analyzed by not only neoplastic tissues but also

nonneoplastic tissues. These classifiers had higher predictive accu-

racy for OS than tumor size, lymph node metastasis, distant

metastasis, and age and can complement the prognostic value of

the TNM staging system.

Conclusions:Analysis of epigenetic changes inmucin genes may

be of diagnostic utility and one of the prognostic predictors for

patients with pancreatic ductal adenocarcinoma.

Introduction
Despite improvements in diagnostic tools and treatments, patients

with pancreatic ductal adenocarcinoma (PDAC) have a poor clinical

outcome. At the time of diagnosis, most patients with PDAC are in

advanced stages because the anatomic location of the pancreas and lack

of specific symptoms hamper early detection. Easy infiltration to the

surrounding organs and early distant metastasis, even from a small

primary tumor <2 cm in diameter, enhances the stage progression (1).

Moreover, PDAC is sometimes difficult to distinguish from other

pancreatic diseases, such as chronic pancreatitis, even when endo-

scopic, ultrasound-guided, fine-needle aspiration is performed (2–4).

Indolent tumors such as intraductal papillary mucinous neoplasms

(IPMN) also occur in the pancreas and sometimes transform to

invasive cancer with a poor outcome (5–8). Currently, IPMNs are

the most common cystic neoplasm of the pancreas and are classified

into gastric, intestinal, pancreatobiliary, and oncocytic types (9, 10). A

recent study has demonstrated that the morphologic subtype of IPMN

is an independent prognostic factor (8). The overall 5-year survival rate

for all diagnosed patients with PDAC is presently only 13% in Japan.

Unfortunately, only 10%–20% patients present with resectable disease

at diagnosis of PDAC (11). Five-year survival with tumor removal

alone is generally less than 10%. After resection, the use of adjuvant

chemotherapy doubled 5-year survival to around 16%–21% (12);

however, it can be increased to 38.6% after a successful resection at

stage IIA (13–16). Therefore, it is essential to identify effective

biomarkers to enable early diagnosis and precisely predict the prog-

nosis to recommend additional neoadjuvant and adjuvant therapies

Mucins (MUC) play crucial roles in carcinogenesis and tumor

invasion in pancreatic tumors. The MUC gene product is posttran-

slationally modified, most likely, through extensive O-glycosylation.

MUC1 and MUC4 are large membrane-bound glycoproteins that are

translated as single polypeptides. These mucins undergo intracellular

autocatalytic proteolytic cleavage into two subunits that form stable

noncovalent heterodimers that are transported to the cell surface.

MUC2 is gel-forming secretory mucin that is expressed in many

organs, including the colon, small intestine, and respiratory

tract (17–19). MUC1 contributes to oncogenesis by promoting the

loss of epithelial cell polarity, promoting growth and survival path-

ways, activating receptor tyrosine kinase signaling pathways, and

conferring resistance to the stress-induced cell death pathway (20, 21).

MUC1 cytoplasmic domain has been implicated in the regulation of

the Wnt–b-catenin, p53, and NF-kB pathways, all of which are linked

to tumor progression (19, 22). MUC4 plays an important role in
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epithelial cell proliferation and differentiation by inducing specific

phosphorylation of ERBB2 and enhancing the expression of the cyclin-

dependent kinase inhibitor p27, which inhibits cell-cycle progres-

sion (23, 24). The loss of MUC2 might compromise signaling that

contributes to epithelial differentiation and proliferation through

contact with membrane-bound mucins or alters the differentiation

program of the intestinal mucosa, resulting in an increased probability

of tumor formation (25, 26). In our previous studies, we used pan-

creatic tissue samples and several cancer cell lines to demonstrate that

MUC1, MUC2, and MUC4 expression of mRNA and/or protein are

regulated by hypoxia and/or DNAdemethylation (27–30). However, it

has not been reported how that DNAmethylation of promoter region

effect for intracellular localization of these three mucin proteins.

Furthermore, MUC1 and MUC4 hypomethylation status are statisti-

cally associated with the development of distant metastasis, tumor

stage, and overall survival (OS) for patients with PDAC (31–34).

In machine learning, state-of-the-art classification algorithms, such

as support vector machines (SVM), neural networks (NNET), or

multinomial prediction models, are used for classification and regres-

sion analysis (35–37). Recently, several studies shows that in breast

cancer, nasopharyngeal carcinoma, and non–small cell lung cancer,

several supervised learning methods, such as decision trees using data

of cDNA or tissue microarray refine prognosis (38–41). However, it

was not reported whether these machine learning models could use

DNA methylation status to predict the outcome of patients with

pancreatic tumors.

Therefore, the aim of this study was to develop a machine learning–

based prognostic classifier to predict OS with pancreatic cancers by

integrating multiple DNA methylation statuses of three mucin genes.

In this study, we increased the number of patients that were evaluated

from that of our previous study and performed a sequential analysis of

mucin promoter–associated CpGs by methylation-specific electro-

phoresis (MSE) analysis.

Materials and Methods
Cell lines and culture

Human pancreatic cancer cell lines BxPC3, HPAF2, and Panc1;

human colon adenocarcinoma cell lines Caco2 and LS174T; and

human lung adenocarcinoma cell lines A427 and NCI-H292 were

obtained from the ATCC. HPAF2, LS174T, and Caco2 cells were

cultured in Eagle Minimum Essential Medium (Sigma); PANC1 and

A427 cells were cultured in DMEM (Sigma); and BxPC3 and

NCI-H292 cells were cultured in RPMI1640 medium (Sigma). The

media were supplemented with 10% FBS (Invitrogen), 100 U/mL of

penicillin (Sigma), and 100 mg/mL streptomycin (Sigma). Hypoxic

culture conditions were achieved with amultigas incubator containing

a gas mixture of 94% N2, 5% CO2, and 1% O2 (ASTEC).

Clinical samples

Pancreatic tissue samples

We obtained 300 surgically resected tissues (approximately

2 � 2 � 2 mm in size) from neoplastic and nonneoplastic areas

of 191 patients. Table 1 summarizes the clinicopathologic features

of the 114 neoplastic samples and 186 nonneoplastic samples

(including 109 paired samples). We collected 125 patient samples

(48 neoplastic samples and 120 nonneoplastic samples, including

43 paired samples) from Kagoshima University (Kagoshima,

Japan), from August 2007 to May 2014 and 66 patient samples

(all nonneoplastic and neoplastic paired samples) from Ulm

University (Ulm, Germany), from February 2001 to February

2013. The nonneoplastic tissues were collected around the resec-

tion stump. These samples were checked for pathologic diagnosis

using intraoperative frozen and formalin-fixed paraffin-embedded

(FFPE) tissue sections. On the other hand, neoplastic tissues were

macroscopically collected, processed for FFPE tissue sections,

and diagnosed by a board-certified pathologist. The clinical fea-

tures used in this study were TNM, age, American Society of

Anesthesiologists (ASA) physical status classification score, the

presence or absence of comorbidities, and preoperative chemo-

therapy. Almost all patients had not undergone radiotherapy

before surgery; therefore, we removed the information about

radiotherapy in statistical analysis.

Extraction and quantification of mRNA

tRNA was extracted from the cell lines, human pancreatic tissues,

and pancreatic juices using an RNeasy Mini Kit (Qiagen). Then, the

tRNA (1 mg) was reverse transcribed with a High-Capacity RNA-to-

cDNA Kit (Applied Biosystems), and real-time reverse transcription-

PCR was performed on a Roche LightCycler 96 System using FastStart

Essential DNA Green Master (Roche). Gene expression was normal-

ized to the b-actin mRNA level in each sample. The data were

normalized using the NCI-H292 cell line, and the A427 cell line was

used as a negative control. Primer sets are shown in previously

study (31, 33, 34).

Extraction of DNA and bisulfite modification

DNA from the cell lines, pancreatic tissues, and pancreatic juices

was extracted using a DNeasy Tissue System (Qiagen). The bisulfite

modification of the genomic DNA was carried out using an EpiTect

Bisulfite Kit (Qiagen). The purification of PCR products was carried

out using a Wizard SV Gel and PCR Clean-Up System (Promega KK;

refs. 31, 33, 34).

MSE analysis

MSE analysis was performed using previously described

methods. Briefly, the target DNA fragments were amplified by

nested PCR using bisulfite-treated DNA with the primer sets

detailed in previously study (31–34). Then, the PCR products were

run on a polyacrylamide gel with a linear denaturant gradient at

Translational Relevance

Pancreatic cancer remains a disease of high mortality despite

advanced diagnostic techniques. This study investigates whether

the methylation status of three mucin genes from postoperative

tissue specimens from patients with pancreatic neoplasms could

serve as a predictive biomarker for outcome after surgery. We

evaluated the methylation status of MUC1, MUC2, and MUC4

promoter regions in 300 pancreatic non- and neoplastic tissues

samples from 191 patients with various pancreatic lesions using

methylation-specific electrophoresis. Furthermore, integrating

these results and clinicopathologic features, we used support vector

machine-, neural network-, and multinomial-based methods to

develop a prognostic classifier. Multivariate analysis revealed that

these prognostic classifiers were independent prognostic factors

analyzed by not only neoplastic tissues but also nonneoplastic

tissues. Analysis of epigenetic changes in mucin genes may be of

diagnostic utility and one of the prognostic predictors for patients

with pancreatic ductal adenocarcinoma.
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60�C at 70 V for 14 hours using a D-Code Universal Mutation

Detection System (Bio-Rad Laboratories). Band intensity was quan-

tified by Image J Software (NIH, Bethesda, MD). The demethylation

index was calculated as the proportion of the highest band intensity/

total band intensity of the sample. Subsequently, the demethylation

index for each sample was normalized using data from a hypo-

methylated and hypermethylated cell line. Cell lines with hyper-

and hypomethylation of MUC1 and MUC4 (Caco2 and LS174T,

respectively) were used as control standards. We performed MSE

analysis on duplicate samples.

Statistical analysis and prediction model construction

Data were analyzed using the “R” computing environment version

3.5.2 (42). The normality of the data distribution was evaluated using

the Kolmogorov–Smirnov test. Differences between groups were

analyzed using Welch t test. A nonparametric test of group difference

was performed using the Mann–WhitneyU test. Survival rate analysis

was evaluated using Cox proportional hazards model. Hierarchical

cluster analysis on a set of dissimilarities was performed using the

reproduce package of R. A P < 0.05 was considered statistically

significant.

Construction of an SVM classifier

We constructed the SVM classifier using the kernlab package,

including the ksvm function (37). Methylation analyzed data min-

ing, such as scaling and centering, were performed using the scale

function. C-classification with the linear vanilladot kernel, Gaussian

radial basis function, polynomial kernel, hyperbolic tangent kernel,

Bessel function of the first kind kernel, Laplace radial basis kernel,

and ANOVA radial basis kernel were used in training and predict-

ing. In this study, we used default hyperparameters and cost of

constraints violation for preparing the prediction models. The

quality of the model was assessed using 5-fold cross-validation of

the training data.

Construction of an NNET and a multinomial classifier

Neural networks provide a flexible, nonlinear extension of multiple

logistic regressions to perform classification, pattern recognition, and

prediction modeling. The nnet package, including the nnet function,

was used to construct an NNET classifier (43). The classifier para-

meters were set with a weight decay of 0.1, 2 units in the hidden layer

and 100 as the maximum number of iterations. To construct the

multinomial log-linear model (MU) via the NNET classifier, the

multinom function was employed.

Ethics statement

This study was conducted in accordance with the guiding principles

of the Declaration of Helsinki. The ethical committees of both

Kagoshima University Hospital (Kagoshima, Japan) and Ulm Uni-

versity Hospital (Ulm, Germany) approved sample collection, and

informed written consent was obtained from each patient. All studies

using human materials in this article were approved by the Ethical

Committee of Kagoshima University Hospital (Kagoshima, Japan;

revised 20–82, revised 22–127, and 26-145).

Table 1. Patient and tumor characteristics in the study.

Age

Median (Male/female) 66, (65.3/66.8) Year

Observation period (OP)

Median (Male/female) 22.4, (23.5/21.2) Months

ASA score

Median (Male/female) 2, (2/2)

Number of cases OP Age

(non-/neoplastic) Median Median
Stage Non 30 (29/20) 38.4 59.2

IA 18 (17/2) 22.1 67.3

IB 12 (12/4) 25.4 66.3

IIA 36 (35/26) 16.2 65.8

IIB 64 (63/43) 19.6 69.1

III 3 (3/3) 14.3 68.3

IV 6 (5/6) 11.5 66.5

NA 22 (22/10) 15 54

T 0 21 (20/11) 24.4 59.3

1 20 (19/3) 25.1 67.5

2 17 (17/4) 23.6 66.6

3 98 (96/73) 17.3 67.8

4 4 (3/4) 13.8 68.3

NA 31 (31/19) 60.8 57.9

N 0 90 (86/46) 20.3 64.4

1 69 (68/48) 19.2 69.2

NA 31 (31/19) 60.8 57.9

M 0 153 (149/88) 19.8 66.5

1 6 (5/6) 11.5 66.5

NA 32 (32/20) 60.8 58.7

Number of cases (non-/neoplasm)

Presence Absence
Comorbidities 84 (81/62) 87 (87/43)

Preoperative chemotherapy 130 (127/64) 41 (41/41)

Prognosis of Pancreatic Cancer by Machine Learning
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Results
Mucin expression characteristic analysis and prognosis

differential

Unsupervised hierarchical clustering analysis was performed for

three mucin gene expression datasets including neoplastic and

nonneoplastic pancreatic regions (Fig. 1A). The samples were

divided into two clusters according to the clustering results.

Cluster 1 showed a significantly higher expression level of the

three mucin genes as MUC1, MUC2, and MUC4 compared with

cluster 2 (all P < 0.001; Fig. 1B). Cluster 1 also demonstrated a

significantly poorer prognosis than cluster 2 (HR ¼ 0.52; P < 0.001;

Fig. 1C). As shown in Table 2, this clustering analysis showed the

same result in the nonneoplastic tissue (P < 0.001). In nonneo-

plastic region, cluster 1 showed a significantly poorer prognosis

than cluster 2 (HR ¼ 0.49; P ¼ 0.012; Supplementary Fig. S1A).

Similarly, cluster 1 showed a significantly poorer prognosis than

cluster 2 in the neoplastic region (HR ¼ 0.53; P ¼ 0.032; Supple-

mentary Fig. S1B).

Mucin DNA methylation characteristics and prognosis

differential

Unsupervised hierarchical clustering analysis was performed for

three mucin gene methylation datasets including neoplastic and

nonneoplastic pancreatic regions (Fig. 2A). According to the cluster-

ing results, the samples were divided into four clusters. Cluster 1

showed a significantly higher hypomethylation status of MUC1 and

MUC4 genes than the other clusters (P ¼ 0.003 and P < 0.001,

respectively; Fig. 2B). Cluster 1 also demonstrated a significantly

higher expression level of MUC1, MUC2, and MUC4 than the other

clusters (P ¼ 0.004, P ¼ 0.002, and P ¼ 0.015, respectively; Supple-

mentary Fig. S2). Furthermore, cluster 1 demonstrated a significantly

poorer prognosis than the other clusters (HR ¼ 0.33; P ¼

0.012; Fig. 2C). As shown in Table 2, this clustering analysis did not

identify a significant difference in the nonneoplastic ratio between

Cluster 1 and the other clusters (P < 0.357). In the nonneoplastic

regions, cluster 1 showed a significantly poorer prognosis than the

other clusters (HR ¼ 0.49; P ¼ 0.010; Supplementary Fig. S3A).

Similarly, in the neoplastic regions, cluster 1 also showed a significantly

poorer prognosis than the other clusters (HR ¼ 0.48; P ¼ 0.014;

Supplementary Fig. S3B).

Prediction model classifier and survival in the cross-validation

test

SVM prediction model and performance evaluation

In the leave-one-out cross-validation (LOOCV) test, the SVM

classifier model by C-classification with ANOVA RBF kernel func-

tion using the dataset for DNA methylation of three mucins,

including both nonneoplastic and neoplastic regions, showed good

classification for prognosis after surgery (Fig. 3A). In addition,

ANOVA RBF kernel as a nonlinear kernel showed the best clas-

sification than the other kernels, including linear kernel (Supple-

mentary Table S1). This SVM classification showed no significant

differences in the nonneoplastic ratio between high-risk positive

and negative groups (Supplementary Table S2). In nonneoplastic

regions, the high-risk group indicated by SVM showed a signifi-

cantly poorer prognosis after surgery than the negative group

(Fig. 3B). Similarly, in neoplastic regions, the high-risk group

indicated by SVM also showed a significantly poorer prognosis

after surgery than the negative group (Fig. 3C). In univariate

analysis, patients who were classified as positive by the SVM model

Group of cluster 1 (n = 86)

Group of cluster 2 (n = 185)

HR 0.52 (0.35–0.76) 

*P < 0.001 (log-rank test)
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Cluster analysis of the mRNA expression level of mucin genes. A, Tree generated by cluster analysis of neoplastic and nonneoplastic pancreas tissues for the

expression levels of MUC1, MUC2, andMUC4mRNAs compared with each control cell line. HighmRNA expression levels are indicated in red and low levels in blue. B,

Comparison of expression levels of MUC1, MUC2, and MUC4 mRNAs between cluster 1 and cluster 2. Expression levels show relative quantification (log10). C, Cox

proportional hazard regression analysis of a comparison between cluster 1 and cluster 2. Red solid line, cluster 1; black dashed line, cluster 2.
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were associated with a significantly poorer OS. Multivariate Cox

regression analysis after adjustment for clinicopathologic variables,

such as ASA score, preoperative chemotherapy, comorbidities, and

TNM stage, revealed that the SVM classifier remained a powerful

and independent prognostic factor for OS in the LOOCV test

(Supplementary Table S3). Following several k-fold cross-

validation tests, we performed 3-, 4-, and 10-fold cross-

validations in this study. The SVM classifier showed good classi-

fication for prognosis after surgery in both regions (Supplementary

Fig. S4; Table 3). Multivariate and/or univariate analysis revealed

that SVM classifier was an independent prognostic factor (Supple-

mentary Table S3).

NNET prediction model and performance evaluation

In the LOOCV test, the NNET classifier model using the data-

set for DNA methylation of three mucins, including both non-

neoplastic and neoplastic regions, showed good classification for

prognosis after surgery (Fig. 3D). This NNET classification showed

no significant difference in the nonneoplastic ratio between high-

risk positive and negative groups (Supplementary Table S2). In

nonneoplastic regions, the high-risk group indicated by NNET

showed a significantly poorer prognosis after surgery than the

negative group (Fig. 3E). Similarly, in neoplastic regions, the

high-risk group indicated by NNET also showed a significantly

poorer prognosis after surgery than the negative group (Fig. 3F). In

univariate analysis, patients who were classified as high-risk positive

by the NNET model were associated with a significantly poorer OS.

Multivariate Cox regression analysis after adjustment for clinico-

pathologic variables, such as ASA score, preoperative chemother-

apy, comorbidities, and TNM stage, revealed that the NNET

classifier remained a powerful and independent prognostic factor

for OS in the LOOCV test (Supplementary Table S3). After several

k-fold cross-validation tests, the NNET classifier showed a tendency

toward good classification for prognosis after surgery in both

nonneoplastic and neoplastic regions (Supplementary Fig. S4; Sup-

plementary Table S3). Multivariate and/or univariate analysis

Table 2. Clustering analysis result and clinicophathologic data.

1. mRNA data clustering analysis 2. Methylation data clustering analysis

Cluster 1 Cluster 2 P Cluster 1 Others P

Age Mean � SD 66.93 � 11.2 65.74 � 9.5 0.756 Age Mean � SD 65.63 � 10.6 66.32 � 10.7 0.632

Observation period (OP) Observation period (OP)

Mean � SD 23.72 � 23.4 23.9 � 28.5 0.267 Mean � SD 30.04 � 34.1 21.29 � 19.8 0.709

Tissue region (n) Tissue region (n)
Nonneoplasm 36 150 <0.001 Nonneoplasm 49 137 0.357

Neoplasm 63 51 Neoplasm 36 78

ASA score Mean � SD 1.81 � 0.9 2.33 � 0.8 0.142 ASA score Mean � SD 2.57 � 0.6 1.73 � 0.8 <0.001

Stage (n) Non 12 37 <0.001 Stage (n) Non 14 35 0.018

IA 0 19 IA 1 18

IB 3 13 IB 5 11

IIA 22 39 IIA 25 36

IIB 43 63 IIB 28 78

III 3 3 III 4 2

IV 3 8 IV 2 9

NA 1 31 NA 6 26

T (n) 0 4 27 0.004 T (n) 0 2 29 <0.001

1 2 20 1 1 21

2 7 14 2 5 16

3 62 107 3 55 114

4 3 4 4 4 3

NA 9 41 NA 18 32

N (n) 0 30 102 0.002 N (n) 0 35 97 0.413

1 48 70 1 32 86

NA 9 41 NA 18 32

M (n) 0 75 162 0.115 M (n) 0 64 173 0.29

1 3 8 1 2 9

NA 9 43 NA 19 33

Comorbidities (n) Comorbidities (n)

Presence 54 89 0.026 Presence 58 85 <0.001

Absence 32 98 Absence 21 109

Preoperative chemotherapy (n) Preoperative chemotherapy (n)

Presence 42 149 <0.001 Presence 30 161 <0.001

Absence 44 38 Absence 49 33
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showed that NNET classifier was independent from prognostic

factors (Supplementary Table S3).

MU prediction model and performance evaluation

In the LOOCV test, the MU classifier model using the dataset for

DNA methylation of three mucins, including both nonneoplastic

and neoplastic regions, did not show good classification for prog-

nosis after surgery (Fig. 3G). However, this MU classification

revealed a significant difference in the nonneoplastic ratio between

the high-risk positive and negative groups (P < 0.043; Supplemen-

tary Table S2). In neoplastic regions, the negative group indicated

by MU showed a significantly poorer prognosis after surgery than

the high-risk group (Fig. 3H), but not in nonneoplastic regions

(Fig. 3I). The multivariate Cox regression analysis after adjustment

for clinicopathologic variables such as TNM stage revealed that the

MU classifier was an independent prognostic factor for OS in the

LOOCV test. However, in univariate analysis, patients who were

positive according to the MU model were not associated with

significantly poorer OS (Supplementary Table S3). In k-fold

cross-validation test, the MU classifier demonstrated good classi-

fication ability for prognosis after surgery in the neoplastic region

but not in nonneoplastic region (Supplementary Fig. S4; Supple-

mentary Table S3).

Evaluation of prediction models using training cohort in the

test cohort

To evaluate whether the prediction models constructed using

test datasets could detect high-risk groups in other training

dataset, we split the total dataset into two groups: training and

test datasets. These two groups showed almost similar distribution

in biological analysis results and clinicopathologic features

(shown in Supplementary Table S4). SVM and NNET classifiers

exhibited significantly good classification ability for prognosis

after surgery in not only the neoplastic region but also the

nonneoplastic region (Fig. 4). Multivariate and/or univariate

analysis revealed that these classifiers were independent from

prognostic factors (shown in Supplementary Table S3). The MU

classifier demonstrated good classification ability for prognosis

after surgery in the neoplastic region but not in nonneoplastic

region (Fig. 4G–I).

Discussion
PDAC is an aggressive malignancy with an extremely poor

prognosis due to delayed diagnosis, early metastasis, and resistance

to most cytotoxic agents (1, 13). Thus, it is critical to establish new

diagnostic, prognostic, and therapeutic biomarkers. It has been

previously demonstrated that mucin gene expression (including

MUC1, MUC2, MUC3, MUC4, and MUC5AC) is regulated by

DNA methylation at promoter regions in cancer cell lines (27–30).

In this study, scientific computer prediction model–based SVM and

NNET methods were able to classify between a good and poor

prognosis after surgery on pancreatic cancers. These predicted

models were constructed from the methylation status of three

mucin genes (MUC1, MUC2, and MUC4), which had all previously

demonstrated a significant difference in mucin expression levels in

pancreatic cancers.

To construct a clinical test to predict prognosis after surgery, we

used an expression dataset including nonneoplastic and neoplastic

pancreatic tissues. To determine whether the expression levels of

MUC1,MUC2, andMUC4mRNA could distinguish a poor prognosis

from data, we performed unsupervised hierarchical clustering analysis

Group of cluster 1 (n = 77)

Other clusters (n = 194)
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*P = 0.012 (log-rank test)
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Figure 2.

Cluster analysis of themethylation status ofmucingenes.A,Treegeneratedbycluster analysis of neoplastic andnonneoplastic pancreas tissues from themethylation

status of MUC1, MUC2, and MUC4 genes evaluated by MSE analysis. Hypomethylation is indicated in red and hypermethylation in blue. B, Comparison of the

methylation status of MUC1, MUC2, and MUC4 genes between cluster 1 and the other clusters. C, Cox proportional hazard regression analysis on a comparison

between cluster 1 and other clusters. Red solid line, cluster 1; black dashed line, other clusters.
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using RT-PCR data. These mucin mRNA clustering analyses signif-

icantly separated a poor prognosis cluster. This selected cluster had

higher expression levels of the three mucins than the other cluster. In

our recent histologic studies, we reported that mucin gene expression,

particularly MUC4, was an independent indicator of worse prognosis

in PDAC (5–9).MUC2 is reported as a tumor suppressor gene, and loss

of MUC2 promotes tumor progression in colon (44). However,

another study showed that MUC2 expression may have a poor

prognostic value for differentiated adenocarcinomas in pancreas (45).

The relationship between high expression of three mucins mRNA and
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Figure 3.

Prognosis prediction by machine learning classifier in the LOOCV test. Cox proportional hazard regression analysis on a comparison between the positive

and negative groups as selected by each classifier. Solid line, predicted high-risk group (positive); dashed line, other groups (negative). A, Classification

by SVM model for all samples. B, Classification by SVM model in nonneoplastic tissues. C, Classification by SVM model in neoplastic tissues. D,

Classification by NNET model for all samples. E, Classification by NNET model in nonneoplastic tissues. F, Classification by NNET model in neoplastic

tissues. G, Classification by MU model for all samples. H, Classification by MU model in nonneoplastic tissues. I, Classification by MU model in neoplastic

tissues.
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poor prognosis supported these recent pathologic studies. The selected

cluster showed a significant difference in the nonneoplastic: neoplastic

content ratio compared with the other cluster. In the neoplastic region

data, the selected cluster showed a poorer prognosis than the other

cluster. Interestingly, in the nonneoplastic region data, this selected

cluster also showed a poorer prognosis than the other cluster. These

results suggested that scientific computer methods could identify a

poor prognosis using the combined data of mucin gene expression

even if there was a mixture of nonneoplastic and neoplastic tissue.

A previous study revealed that an analysis of the DNAmethylation

status in promoters of MUC1, MUC2, and MUC4 (MSE analysis of

pancreatic juice samples) could differentiate between gastric-type

IPMN, intestinal-type IPMN, other-type IPMN, and PDAC (33, 34).

The correlation between hypomethylation of the promoter and high

expression levels of mucinmRNA in pancreatic tissue was shown (28).

Furthermore, we have proposed that aberrant methylation of MUC1

and MUC4 promoters are potential prognostic biomarkers for PDAC

and suggested further MSE analysis of human clinical samples to

determine its utility for the early diagnosis of pancreatic neoplasms

and for stratifying patients with respect to modes of treatment (31).

Thus, we used a methylation dataset including nonneoplastic and

neoplastic pancreatic tissue. To establish whether the methylation

levels of these three mucins could distinguish a poor prognosis, we

performed unsupervised hierarchical clustering analysis using MSE

analysis data. The clustering analysis of the three mucin genes’

methylation data significantly separated a poor prognosis cluster. This

cluster group had a higher hypomethylation level ofMUC1 andMUC4

than the other clusters. Moreover, this cluster demonstrated a higher

neoplastic-including ratio than the other clusters, and in neoplastic

regions, this cluster showed a poorer prognosis than the other clusters.

Interestingly, in the nonneoplastic region analysis, this cluster also

showed a poorer prognosis than the other clusters. These results

suggested that scientific computer methods could provide a model

to identify a poor prognosis using the combined data of mucin gene

methylation.

To evaluate whether machine learning prediction models using

state-of-the-art classification algorithms such as SVM and NNET

could distinguish between a poor prognosis group and others, we

constructed prediction models. In LOOCV tests and k-fold cross-

validation tests to evaluate prediction ability, the SVM and NNET

models could significantly judge the identified high-risk group as

having a poor prognosis, but the MU model could not. Multivariate

and univariate analyses showed that the prediction of high-risk by

SVM or NNET model was a prognostic factor significantly indepen-

dent from TNM score, ASA score, preoperative chemotherapy, and

comorbidities. For the neoplastic tissue analysis data, the SVM,

NNET, and MU models could identify the high-risk group. Interest-

ingly, even in the nonneoplastic tissue analysis data, the SVM and

NNET model-selected high-risk group had a significantly poorer

prognosis than others, similar to the neoplastic analysis. Therefore,

these results suggested that the prediction models using cytological

specimens and liquid biopsy samples, which are mixture of nonneo-

plastic and neoplastic cells, might be applicable to high-risk screening

in PDAC.

When the model has high variance and low bias, such as that

showing toomuch optimization for the training dataset, the prediction

model has low prediction performance for data that has never been

learned. To evaluate whether the prediction models constructed from

the test dataset could detect high-risk groups in other training datasets,

we split the total dataset into two groups having almost similar

distribution of biological status and clinicopathologic features. The

SVMandNNET classifiers could significantly distinguish the high-risk

group, which has poor prognosis in the test group that has never been

learned, but the MU model could not. Multivariate and univariate

analyses showed that the prediction of high-risk by SVM and NNET

classifierswas a prognostic factor significantly independent fromTNM

score, ASA score, preoperative chemotherapy, and comorbidities.

These results suggested that SVM and NNET classifiers have low

variance and demonstrated the high ability to distinguish a poor

prognosis. Although a prospective, much larger, and multicenter

randomized trial would be necessary to validate our results, it is

suggested that the SVM- or NNET-based prediction models could

provide a clinical risk test to predict the prognosis after surgery using

MUC1, MUC2, and MUC4 gene methylation analyses. Even though

these SVM and NNET classifiers were a highly accurate predictor of

OS, we are aware that other biomarkers may extend the precision and

predictive value of the classifiers, and newmarkers are being identified

and new techniques developed every year (46, 47). Thus, the SVM and

NNET classifiers may be further improved by including additional

markers.

Table 3. Comparison of prognosis between high-risk and other predicted by k-fold cross-validation test.

A. Support vector machine B. Neural network C. Multinom log-linear

1. 3-fold CV test 1. 3-fold CV test 1. 3-fold CV test

P HR (IC50) P HR (IC50) P HR (IC50)

Total <0.001 0.361 (0.23–0.56) Total <0.001 0.332 (0.22–0.50) Total 0.002 0.500 (0.32–0.78)

Nonneoplasm <0.001 0.344 (0.19–0.61) Nonneoplasm 0.001 0.430 (0.25–0.73) Nonneoplasm 0.018 0.534 (0.31–0.91)

Neoplasm 0.004 0.382 (0.19–0.75) Neoplasm <0.001 0.224 (0.12–0.43) Neoplasm 0.020 0.401 (0.18–0.90)

2. 4-fold CV test 2. 4-fold CV test 2. 4-fold CV test

P HR (IC50) P HR (IC50) P HR (IC50)

Total <0.001 0.330 (0.21–0.51) Total <0.001 0.332 (0.22–0.50) Total <0.001 0.446 (0.29–0.69)

Nonneoplasm <0.001 0.355 (0.22–0.58) Nonneoplasm <0.001 0.232 (0.13–0.41) Nonneoplasm 0.006 0.458 (0.26–0.80)

Neoplasm 0.003 0.263 (0.10–0.66) Neoplasm 0.006 0.445 (0.25–0.80) Neoplasm 0.017 0.426 (0.21–0.88)

3. 10-fold CV test 3. 10-fold CV test 3. 10-fold CV test

P HR (IC50) P HR (IC50) P HR (IC50)

Total <0.001 0.329 (0.21–0.51) Total <0.001 0.341 (0.23–0.52) Total 0.005 0.525 (0.33–0.83)

Nonneoplasm 0.005 0.434 (0.24–0.78) Nonneoplasm <0.001 0.409 (0.24–0.69) Nonneoplasm 0.558 0.817 (0.41–1.62)

Neoplasm <0.001 0.237 (0.12–0.46) Neoplasm <0.001 0.262 (0.13–0.53) Neoplasm <0.001 0.303 (0.16–0.58)
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In summary, this study demonstrated that machine learning

prediction models, based on SVM and NNET, could accurately

distinguish patients with pancreatic cancer after surgery with

substantially different OS. A further study is needed to expand the

clinical sample spectrum, where these classifiers based on SVM or

NNET might work for decision-making regarding follow-up sched-

uling after surgery.
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Figure 4.

Prognosis prediction by machine learning classifier in the test cohort. Cox proportional hazard regression analysis for the comparison between the positive and

negative groups selected by each classifier. Solid line, predicted high-risk group (positive); dashed line, other groups (negative).A,Classification bySVMmodel for all

samples.B,Classification by SVMmodel in nonneoplastic tissues.C,Classification by SVMmodel in neoplastic tissues.D,Classification byNNETmodel for all samples.

E, Classification by NNET model in nonneoplastic tissues. F, Classification by NNET model in neoplastic tissues. G, Classification by MU model for all samples. H,

Classification by MU model in nonneoplastic tissues. I, Classification by MU model in neoplastic tissues.
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