Predicted response of genomic selection for new traits using combined cow and bull reference populations Mario Calus

Mario Calus Yvette de Haas Marcin Pszczola Roel Veerkamp

Animal Breeding & Genomics Centre

Develop innovative and practical breeding tools for improved dairy products from more robust dairy cows

www.robustmilk.eu

Introduction

Genomic selection:

- Beneficial for dairy cattle breeding programs
 - Reduces generation interval
 - Cheaply increases selection intensity
- Allows selection for 'new' traits
 - Relaxes requirement (daughter) performance recording
 - Expensive or hard to measure
- New traits:
 - Progesterone; Energy balance; Methane emission

\rightarrow How promising is this?

Objective

Investigate for a new trait measured on a limited number of cows only (e.g. methane emission):

DGV reliability:

- Using cows only
- When adding sires with known DGV for correlated trait

The selection response

Deterministic simulation

Reliabilities predicted (Daetwyler et al., 2009)

- For cows and bulls separately
- Blended using 'information source method' (Harris & Johnson, 1998)

 Selection response predicted using SelAction (Rutten et al., 2002)

• 4 selection pathways with different generation intervals

Simultaneous selection of new trait and index

Parameters

Cows: 0 - 4000
Bulls: 0, 200, 500, 2000, 5000, 20,000

Trait	h²	DGV reliability	Economic value
Index	0.3	0.64	1
New trait	0.3	0.0 - 0.64	1

 $r_{q}(index, new trait) = -0.5, 0, or 0.5$

Breeding program with 1-stage genomic selection

Results: DGV reliabilities – cows only

Results: DGV reliabilities – cows only

Results: DGV reliabilities – bulls added

 $r_g(index, new) = 0.5$

Results: DGV reliabilities – bulls added

 $r_g(index, new) = 0.5$

Results: DGV reliabilities – bulls added

 $r_g(index, new) = 0.5$

Results: selection response

Results: selection response

Results: selection response

Summarized – impact 2,000 cow reference pop.

\rightarrow DGV reliability = 0.3

Compared to no selection for new trait

r _g (index, new trait)	Response (gen. SD / yr)	Increase response (gen. SD / yr)
0.5	0.1	0.02
0.0	0.06	0.06
-0.5	0.0	0.08
	Negative trend broken	

Conclusions

- Combining cow and bull reference populations can increase reliability DGV of new traits
 - When r_q (index, new trait) $\neq 0$
 - Reduces the required size of cow reference population

 Genomic selection for new traits is beneficial, even with a small cow reference population
 Low DGV reliability is offset by decrease of generation

interval

RobustMilk (www.robustmilk.eu)

Dutch Dairy Board

GreenHouseMilk

