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Abstract. Mechanical contraction and relaxation of the heart play an
important role in evaluating healthy and diseased cardiac function. Me-
chanical patterns consist of complex non-linear 3D deformations that
vary considerably between subjects and are difficult to observe on 2D
images, which impacts the prediction accuracy of cardiac outcomes. In
this work, we aim to capture 3D biventricular deformations at the end-
diastolic (ED) and end-systolic (ES) phases of the cardiac cycle with
a novel geometric deep learning approach. Our network consists of an
encoder-decoder structure that works directly with light-weight point
cloud data. We initially train our network on pairs of ED and ES point
clouds stemming from a mixed population of subjects with the aim of
accurately predicting ED outputs from ES inputs as well as ES outputs
from ED inputs. We validate our network’s performance using the Cham-
fer distance (CD) and find that ED and ES predictions can be achieved
with an average CD of 1.66 ± 0.62 mm on a dataset derived from the
UK Biobank cohort with an underlying voxel size of 1.8 × 1.8 × 8.0 mm
[8]. We derive structural and functional clinical metrics such as myocar-
dial mass, ventricular volume, ejection fraction, and stroke volume from
the predictions and find an average mean deviation from their respective
gold standards of 1.6% and comparable standard deviations. Finally, we
show our method’s ability to capture deformation differences between
specific subpopulations in the dataset.

Keywords: Cardiac Deformation Prediction · Point Cloud Autoencoders
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1 Introduction

Cardiovascular diseases are the most common cause of death in the world, ac-
counting for 32% of all annual fatalities in 2019 [10]. A major driver behind
this is the often insufficient understanding of cardiac pathologies, particularly
the relationship between structural changes and cardiac function. Furthermore,
the differentiation between subject subpopulations in terms of cardiac function
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is often not taken into account. All of these affect predictions of clinical out-
comes and consequently complicate the application of personalised treatment
plans. In an attempt to address this issue, we aim to gain a more comprehensive
understanding of the structure-function interactions in the heart. To this end,
we propose a novel point cloud autoencoder network (PCN) to capture 3D car-
diac deformation and model subpopulation-specific cardiac mechanical function.
While deep learning on point cloud data has recently been applied to multiple
problems in cardiac image analysis, such as segmentation [12], disease classifi-
cation [4], and surface reconstruction [1], this work proposes, to the best of our
knowledge, the first point cloud-based deep learning approach for cardiac de-
formation modelling. Grid-based deep learning techniques have previously been
used for survival prediction [2], image registration [6], and motion-modelling for
image sequences [5] but have not investigated subpopulation differences. We im-
prove upon the closest prior work in this area [7] in several ways. Firstly, we
utilize 3D instead of 2D data which enables us to capture real cardiac deforma-
tion and allows us to calculate clinical metrics based on volumetric changes in the
cardiac cycle, such as ejection fraction (EF) and stroke volume (SV). Secondly,
we work directly with point cloud data, rather than pixel information, which is
more memory-efficient and has a straighforward expansion to 3D. Thirdly, the
PCN is more efficient at working with surface models than grid-based networks,
allowing us to scale to considerably higher surface densities. Finally, we employ
the PCN to predict both phase directions, i.e. end-systolic (ES) cardiac shape
conditioned on structural end-diastolic (ED) inputs as well as ED outputs from
ES inputs, allowing us to model both cardiac contraction and relaxation.

2 Methods

We first provide a brief overview of our dataset before explaining the network
architecture and training procedure of our proposed method.

2.1 Dataset

Our dataset consists of ∼500 female and ∼500 male subjects that were randomly
chosen from the UK Biobank study [8]. We select cine MRI acquisitions at both
ED and ES phases of the cardiac cycle for each subject and use the multi-step
pipeline described in [1] to obtain corresponding 3D point cloud representations
of the biventricular anatomy.

2.2 Network Architecture

Our method takes as input a multi-class point cloud that represents the biventric-
ular anatomy at either end of the cardiac cycle (ED or ES) and is tasked to pre-
dict the corresponding deformed anatomical surface at the other extreme phase
of the cardiac cycle. The network architecture consists of an encoder-decoder
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Fig. 1. Architecture of the proposed point cloud autoencoder network. The input point
cloud consists of n points, each of which is stored as a 4-dimensional vector (x,y,z point
coordinates and a class label). The network outputs both a coarse low-density point
cloud and a dense high-resolution point cloud with separate 3D coordinates to represent
class information.

structure inspired by the Point Completion Network [13] and its application to
cardiac image analysis [1] (Fig. 1).

We use an extended version of the PointNet++ architecture [9] as our encoder
by adding a conditional input to each point to indicate its cardiac substructure
and multiple fully connected layers to facilitate the processing of the complex
multi-class biventricular anatomy point clouds. The decoder first uses a shared
multi-layer perceptron (MLP) to predict a low-resolution multi-class point cloud
(coarse output) with the aim of capturing the global anatomical structure. This
is followed by a FoldingNet [11] step, which outputs a high resolution multi-class
point cloud (dense output) with accurate shapes both on a local and global level.

2.3 Training

The loss function of our network consists of two terms, one acting on the coarse
prediction (Lcoarse) and the other on the dense output (Ldense). In both cases,
the predictions are compared to the gold standard point cloud using the Chamfer
distance. A weighting parameter α is multiplied with the dense loss in the com-
bined loss term to put more emphasis on generating a globally realistic shape at
the beginning of training, while encouraging both high local and global accuracy
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in later training stages. Accordingly, we start training with a low α of 0.01 and
then gradually increase it during training until it reaches a value of 5.0.

3 Experiments and Results

For experiments in Sections 3.1-3.3, all networks were trained on ∼800 pairs
of ED and ES point clouds, stemming in equal proportions from female and
male subjects. At test time, ∼75 pairs of ED and ES point clouds were used as
separate test sets for both female and male subjects.

3.1 Prediction Quality

In order to evaluate our network’s prediction performance of both biventricular
contraction and relaxation, two separate networks, one for each phase direction
(ED to ES and ES to ED), were trained and tested jointly on both female and
male subject data. We visualize the input, predicted, and gold standard point
clouds of multiple sample cases from the unseen test dataset of the ES prediction
task in Fig. 2 and of the ED prediction task in Fig. 3.

Fig. 2. ES prediction results of our method on two sample cases of the unseen test
dataset.

Next, we quantify the performance of both the ED prediction and the ES
prediction networks by calculating the Chamfer distances between the network
predictions and the corresponding gold standard point clouds in the test set.
We report the results separately for each sex and for the three ventricular sub-
structures (left ventricular (LV) endocardium, LV epicardium, and right ven-
tricular (RV) endocardium) to evaluate both overall and subpopulation-specific
prediction quality, as well as enable a more localized assessment of deformation
accuracy (Table 1).

Our method achieves Chamfer distances similar to the voxel resolution of the
original MRI acquisition across all classes, sexes, and phases, while LV and ES
prediction show slightly better results than RV and ED prediction.



Predicting 3D Cardiac Deformations With Point Cloud Autoencoders 5

Fig. 3. ED prediction results of our method on two sample cases of the unseen test
dataset.

Table 1. Prediction results of the proposed method on the test dataset.

Sex Input
Phase

Predicted
Phase

Class Chamfer Distance
(mm)

Female

ED ES

LV endocardium 1.35 (±0.65)

LV epicardium 1.39 (±0.57)

RV endocardium 1.69 (±0.77)

ES ED

LV endocardium 1.64 (±0.73)

LV epicardium 1.61 (±0.81)

RV endocardium 2.04 (±0.86)

Male

ED ES

LV endocardium 1.37 (±0.47)

LV epicardium 1.38 (±0.35)

RV endocardium 1.75 (±0.50)

ES ED

LV endocardium 1.89 (±0.70)

LV epicardium 1.68 (±0.43)

RV endocardium 2.16 (±0.62)

Values represent mean (± standard deviation (SD)).

3.2 Cardiac Anatomy Prediction

In order to assess the predictive ability of our method from a clinical perspective,
we first convert both the point clouds predicted by our method in Section 3.1
and the gold standard point clouds of the test dataset to multi-class surface
meshes using the Ball Pivoting Algorithm [3]. We then calculate the LV volume,
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LV mass, and RV volume for the predicted and gold standard meshes for both
phase directions and report the results split by sex in Table 2.

Table 2. Cardiac volume metrics calculated from meshed point clouds predicted by
our method.

Sex Input
Phase

Predicted
Phase

Clinical Metric Gold Stan-
dard

Prediction %
Diff

Female

ED ES

LV ES volume (ml) 49 (±11) 49 (±9) 0.0

RV ES volume (ml) 62 (±15) 62 (±12) 0.0

LV mass (g) 86 (±14) 88 (±14) 3.4

ES ED

LV ED volume (ml) 123 (±23) 121 (±22) 1.6

RV ED volume (ml) 146 (±25) 144 (±23) 1.4

LV mass (g) 86 (±14) 85 (±14) 1.2

Male

ED ES

LV ES volume (ml) 64 (±14) 63 (±11) 1.6

RV ES volume (ml) 89 (±16) 86 (±14) 3.4

LV mass (g) 121 (±24) 120 (±20) 0.8

ES ED

LV ED volume (ml) 153 (±29) 150 (±24) 2.0

RV ED volume (ml) 187 (±28) 183 (±25) 2.1

LV mass (g) 121 (±24) 121 (±22) 0.0

Values represent mean (± SD) in all cases.

Overall, we find good alignment between the predicted and gold standard
scores in both means and standard deviations across all metrics, prediction tasks,
and sexes. Differences tend to be greater for male hearts and ED predictions.

3.3 Cardiac Function Analysis

Since cardiac deformation is assessed using function-specific metrics in clinical
practice, we also calculate ejection fraction (EF) and stroke volume (SV) of all
test predictions and gold standard data for both chambers and phase direc-
tions, separating male and female subjects, to provide further validation of our
method’s performance in modelling biventricular deformations (Table 3).

We observe an average difference between the gold standard and predicted
values of 1.72% indicating good overall prediction performance. Similar to the
clinical anatomy metrics reported in Table 2, female hearts and ES predictions
show slightly better scores.
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Table 3. Cardiac function metrics calculated from meshed point clouds predicted by
our method.

ES Prediction ED Prediction

Sex Clinical Metric Gold Stan-
dard

Ours % Diff Ours % Diff

Female

LV EF (%) 60 (±7) 60 (±6) 0.0 60 (±5) 0.0

LV SV (ml) 75 (±17) 75 (±18) 0.0 73 (±14) 2.7

RV EF (%) 65 (±23) 65 (±22) 0.0 63 (±19) 3.1

RV SV (ml) 85 (±19) 84 (±19) 1.2 85 (±23) 0.0

Male

LV EF (%) 58 (±6) 59 (±6) 1.7 57 (±6) 1.7

LV SV (ml) 90 (±21) 90 (±21) 0.0 86 (±17) 4.4

RV EF (%) 59 (±18) 58 (±16) 1.7 56 (±19) 5.1

RV SV (ml) 102 (±31) 104 (±18) 2.0 98 (±30) 3.9

Values represent mean (± SD) in all cases.

3.4 Subpopulation-Specific Cardiac Deformations

After evaluating our network’s prediction performance on the entire test set, we
also aim to analyze whether the PCN is able to extract features specific to certain
subgroups in the data, enabling subpopulation-specific deformation modelling.
To test this hypothesis, two separate networks were first trained on point cloud
data pairs from exclusively female subjects, one in the ED to ES and the other
in the ES to ED direction. They were then tested on data from both female
and male subjects to investigate potential sex-specific differences in cardiac de-
formation prediction. Results are presented in Fig. 4 displaying the respective
histograms of the CDs for each sex (different colors) and for both directions
of deformation prediction (different subfigures). We find statistically significant
differences in the prediction performance between male and female hearts for
both prediction tasks (Kolmogorov-Smirnov (KS) test: p-value < 0.001).

4 Discussion

The results in Table 1 demonstrate that our method achieves high prediction
accuracy with average CDs comparable to the voxel size of the underlying im-
ages (1.8× 1.8× 8.0 mm) [8]. Low standard deviations of approximately 0.5 mm
indicate a robust prediction performance and show that our method is capable
of accurately capturing the highly variable and complex non-linear 3D biven-
tricular contraction and relaxation patterns. This is further corroborated by the
qualitative prediction results in Fig. 2 and 3, which show good alignment be-
tween prediction and gold standard on both a global and local scale for both
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Fig. 4. Comparison of prediction performance on both female and male subjects using
networks trained on only female cases. The Chamfer distances between prediction and
gold standard point clouds were calculated for all female (green color) and male (blue
color) cases in the test dataset. The resulting distributions of the Chamfer distances for
each sex are presented as two histograms. The relative frequency (y-axis) indicates how
often CD values fall within each of the pre-defined distance ranges (x-axis). Results
are depicted for both ES prediction (left) and ED prediction (right).

phase directions. Since we work with lightweight point cloud data instead of the
grid-based data structures used in previous approaches, we are able to achieve
these results on surface representations with higher resolution and hence greater
anatomical accuracy. This is only made possible by the PCN architecture which
allows for fast and memory-efficient point cloud processing compared to previ-
ous deep learning approaches requiring regular grid structures. We observe that
results are slightly better for predictions of ES from ED than vice versa and
for female test subjects compared to males. We suspect that these lower overall
CDs are likely caused by the fact that female hearts and hearts at ES are of
smaller average size than male hearts and hearts at ED, while still retaining the
same point cloud resolution. The difficulty in precisely locating the ES frame in
an image sequence could also affect these results. When considering both volu-
metric cardiac anatomy and cardiac function metrics, our method’s predictions
result in very similar values to the reference values. This provides further evi-
dence of the accuracy of the predicted shapes, both on their own and in relation
to their respective input point clouds, and is crucial for the acceptance of more
complex data-driven methods in clinical practice, as the results are in line with
established clinical image-based biomarkers. From the histograms in Fig. 4, it
can be seen that when training PCNs on just female point cloud data pairs and
then testing on a mixed-sex population, the CDs for female subjects are signif-
icantly lower than those for male subjects. To better compare the distributions
of CDs between test groups, the KS test was applied to assess histogram sim-
ilarity. We find p-values below 0.001 in both phase directions, which indicate
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statistically significant differences between the distributions. This supports the
hypothesis that cardiac shape deformation is subpopulation-specific. When given
one subpopulation to train on, the network extracts deformation patterns that
are unique to that subpopulation in the data and cannot be found in the other,
thereby performing better during test time.

5 Conclusion

We have shown in this work that point cloud autoencoder networks are highly ca-
pable of modelling global and local non-linear cardiac deformations and predict-
ing relevant clinical metrics with a high level of accuracy. Their memory-sparse
set-up makes them more efficient than grid-based methods, easily scalable to
higher resolutions, and suitable for use in larger network architectures. Further-
more, we have observed that PCNs can be used to extract subpopulation-specific
cardiac deformations, which opens up a range of future research avenues.
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