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Abstract

Background: Adverse drug reactions (ADRs) are unintended and harmful reactions caused by normal uses of drugs.

Predicting and preventing ADRs in the early stage of the drug development pipeline can help to enhance drug safety

and reduce financial costs.

Methods: In this paper, we developed machine learning models including a deep learning framework which can

simultaneously predict ADRs and identify the molecular substructures associated with those ADRs without defining

the substructures a-priori.

Results: We evaluated the performance of our model with ten different state-of-the-art fingerprint models and

found that neural fingerprints from the deep learning model outperformed all other methods in predicting ADRs. Via

feature analysis on drug structures, we identified important molecular substructures that are associated with specific

ADRs and assessed their associations via statistical analysis.

Conclusions: The deep learning model with feature analysis, substructure identification, and statistical assessment

provides a promising solution for identifying risky components within molecular structures and can potentially help

to improve drug safety evaluation.
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Background

According to the definition by the World Health Organi-

zation (WHO), an adverse drug reaction (ADR) is gen-

erally defined as an unintended and harmful reaction

suspected to be caused by a drug taken under normal

conditions [1]. It has been recognized that ADRs rep-

resent a significant public health problem all over the

world. In the United States, it is estimated that over 2

million serious ADRs occur among hospitalized patients,

which results in over 100,000 deaths each year [2, 3]. Iden-

tifying potential ADRs of drug candidates in the early

stage of the drug development pipeline can improve drug
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safety, reduce risks for the patients and save money for the

pharmaceutical companies.

The information available in the early stages of drug

development is mainly the chemical structure of the drug

candidate. Many existing studies on ADR prediction have

been devoted to analyzing the chemical properties of drug

molecules. Though the mechanisms of ADRs are compli-

cated and may not be well understood, machine learning

techniques are promising solutions to understand and

analyze such complicated problems. In general, the basic

steps of ADR prediction based on structural information

can be broken down into two stages. First, each drug

molecule is represented in a suitable feature vector based

on its chemical structure. Second, a machine learning

algorithm is applied on the resulting feature space to pre-

dict ADRs. So far, most of the existing studies focused on
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the second step, or the method development, to improve

the prediction power [4]. However, how to represent the

drug molecules by a useful set of features and how to

interpret their effects on the final ADR predictions remain

relatively less explored. Note that finding the specific sub-

structures of the drug molecule that is related to an ADR

can be particularly useful for finding the mechanism of

actions of the drug and thus, can be utilized in the early

phase of drug design.

In this paper, we aim to identify and summarize the

chemical substructures of drug compounds that have sig-

nificant associations with ADRs using a machine learning

approach, which can provide insights about the connec-

tion between structural factors and ADRs. In previous

studies [4–8], a set of pre-defined structural features,

or fingerprints, are derived first, and then a predictive

model is built on them. However, such pre-defined chem-

ical fingerprints do not cover all possibilities of chemical

substructures and thus may miss important informa-

tion. Moreover, these chemical fingerprint algorithms are

unsupervised in nature, i.e., they are derived from drug

molecules irrespective of the ADR prediction applica-

tions. Therefore, these fingerprints only contain generic

structural information and may not be optimally asso-

ciated with ADRs. To identify the substructure features

that are not defined a-priori and to improve the pre-

diction power of ADRs simultaneously, we leveraged a

convolutional deep learning framework [9] to integrate

the two stages of ADR predictions, feature creation and

predictive model development, into a single system to

find chemical substructures associated with ADRs. To

make the deep learning framework interpretable enough,

we used attention mechanism [10] for finding the spe-

cific substructures of the drug. Furthermore, we rank

the substructure-ADR association results using statistical

analysis and found literature evidence to validate the drug-

ADR associations. Finally, we group the significant asso-

ciations to further enhance the interpretation of obtained

results.

In brief, the contribution of the paper can be summa-

rized as below:

• We developed a neural fingerprint method in a

simultaneous deep learning framework for ADR

prediction, so that the label information (drug-ADR

association) can be utilized in the feature generation

stage of machine learning process.
• We interpreted the deep learning framework using

the attention framework and analyzed the features to

identify which substructures within the drug

molecules are specifically related to a particular ADR.

Additionally, we used statistical measurements to

evaluate their associations and test whether the

substructures can help to predict ADRs in new drugs.

• We compared our neural fingerprint method with

ten different types of chemical fingerprints and used

them as features in a predictive model to assess their

performance in ADR prediction based on a dataset

collected from drug labels.
• We also systematically analyze the relationships

among the groups of chemical substructures with the

groups of related ADRs.

In the following sections, we will describe our method,

the results we got, related work, discussion and conclu-

sion.

Methods

Overall workflow

The general workflow of this paper is shown in Fig. 1,

which consists of the following steps: constructing deep

learning fingerprint representations, building predictive

models and interpreting those features for characterizing

substructures associated with ADRs. Each of these steps

are discussed below in detail.

Constructing chemical fingerprints

In this article, we propose a deep learning based frame-

work [11, 12] to learn molecular substructures that are

specific to an ADR. The main challenge in representing

the molecular graphs of drugs into features is how to

represent the varying sizes of each drug molecule into

a fixed-size feature representation [13]. To circumvent

this problem, we propose a convolutional deep learning

based framework similar to [9] so that we can utilize deep

learning to simultaneously construct chemical fingerprint

features and assess their associations with ADRs. Figure 2

represents the detailed architecture of the framework.

Intuitively, the neural fingerprint algorithm explores all

possible substructures of the given drug molecules in

the training data upto a particular size (often referred as

radius in literature). Formally, radius of a substructure

is defined as half of the maximum path length between

any two atoms of that substructure. In our neural finger-

print algorithm, we successively explore substructures of

all radius upto a user-provided input hyper-parameter R.

In particular, we design R hidden layers in the deep learn-

ing framework, each corresponding to a particular radius.

Therefore, our framework can search for all possible sub-

structures upto radius R by successive increment of the

radius of the substructure by one in each layer of neural

network. Afterward, the similar structures are summa-

rized into a final feature representations called fingerprint.

At each step (radius), we use an additional attention

mechanism step to map the contribution of each of the

substructures into the final fingerprint. Finally, the finger-

prints are assessed in terms of how well they can predict

ADRs and then, they are interpreted to infer meaningful
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Fig. 1 Overall Framework: The general workflow for ADR prediction

Fig. 2 Neural fingerprint method with attention mechanism for predicting an ADR
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associations. In the following, we will describe the details

substeps of the framework.

• Raw features representations:We represent each

drug into a 2D or 3D graphical structure. Then a set

of chemical features are extracted for each of the

constituent atoms in the drug. In particular, we used

a popular chemical fingerprint algorithm, ECFP [14]

to derive features such as atom’s element, its degree,

the number of attached hydrogen atoms, and the

implicit valence, an aromaticity indicator and bond

type. We summarize all such information of all atoms

of a given drug i into a matrix Xi as the initial input

to the deep learning framework. More formally, given

N total number of drugs andM total number of

ADRs, each drug i ∈ {1, 2, · · · ,N} is represented by a

matrix Xl
i ∈ Rni×dl at each layer (corresponding to a

particular radius) l ∈ {1, 2, · · · ,R}, where ni
represents the number of atoms in drug i and dl
represents the total number of features for each

atom. Let xlij =
[

xij1, xij2, · · · , xijdl
]

∈ Rdl represent

the feature vector of jth atom of ith drug at layer l,

where j ∈ {1, · · · , ni}.
• Convolutional feature maps: The purpose of the

convolutional step is to represent a substructure in a

particular layer into a condensed feature vector. In

every iteration (layer) of the algorithm, each jth atom

of ith drug in current layer l ∈ {1, 2, · · · ,R} is

expanded to include the immediate neighbors of each

atom belonging to that substructure. Then, all atomic

features and bonding information of the atoms

belonging to this expanded substructure at layer l are
concatenated into a large feature vector noted as

xlij ∈ Rdl and transformed into new feature vector

xl+1
ij ∈ Rdl+1 of next layer l + 1 using convolutional

filters. This will represent a substructure denoted by

sl+1
ij for each atom j referred as center and it’s

neighbors explored so far in this new layer. Note that

each substructure can be obtained by starting the

search from multiple atoms belonging to

substructures and thus may be obtained from

multiple centers. To remove such redundancies we

map each substructure xl+1
ij into lower dimensions

using a single layer of neural network with dl input

nodes and dl+1 output nodes. Therefore, a weight

matrix ofHl ∈ Rdl×dl+1 is defined as a convolutional

filter to transform features to next layer as

xl+1
ij = f

(

xlijHl + b
)

, where b ∈ R. Here, Hl is a

hidden-to-hidden filter matrix in each layer l and five

different types of such filters, H1
l · · ·H5

l are used for

each layer in our case, each corresponds to the

number of bonds each atom can have [9]. Also, f is a
smoothing function to make it insusceptible to minor

variations in the substructure. This function is

differentiable with respect to the weightsH and

therefore, it can be estimated from the data in an

efficient manner.
• Attention mechanism for representing multiple

substructures into fixed sized vectors: An

attention layer network is represented on top of the

convolutional features and thus, the network is made

interpretable. Specifically, we pooled the similar

substructures of the convolution feature maps into a

fixed-sized feature vector of size K (hyper-parameter

representing the length of fingerprint) using another

layer of neural network of weights F ∈ Rdl×K .

Moreover, a softmax function is used on top of this

transformation to make it a differentiable index

function, since that has been shown to have concise

set of fingerprint representations for larger drug

molecules [9]. A simple addition function is used to

summarize the activation scores of each atom that

belongs to a particular molecule in the pooling stage

of the convolutional neural network.
• Final pooling to for getting neural fingerprints:

The previous two steps are iterated for each radius of

the molecule upto R times, which is the maximum

radius of the substructure (another hyper-parameter)

using a separate hidden layer to successively explore

all possible substructures upto R hops. In this paper,

we set R = 4. Finally, the fingerprint vectors obtained

from each layer are summarized (pooled) into a final

representation by summing up them into a final

fixed-length fingerprint representation for each drug.

Building predictive models

Once we get a final fingerprint representation for each

drug we use a fully connected neural network to assess

its ability to predict an ADR, as shown in the last step of

Fig. 2. For each ADR, the drugs associated with the ADR

were labeled as positives and the rest of the drugs were

labeled as negatives.We built a predictive model using L2-

norm regularized logistic regression method [15] for each

ADR separately using those fingerprints as features. The

loss function is described below, where Z is the matrix

containing all fingerprints for each drug denoted as zi ∈

RK and f is a non-linear logistic function along with L2

loss imposed on the weights vector w ∈ RK defined on

top of zi. Furthermore, we also want the neural fingerprint

feature representations zi itself to be sparse to enhance

further model interpretability. Optionally, one or more

hidden layer can be introduced between the neural fin-

gerprints and the ADR outcome variable to enhance the

prediction power.

L(Z, y,w)=
∑

i

Cost
(

yi, f (zi ∗ w+b)
)

+λ1 ‖w‖22+λ2 ‖zi‖
2
2
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Here, λ1 and λ2 are hyper-parameter which have to be

learnt from the data.

Interpreting features for substructure analysis

Extraction and interpretation of the important finger-

prints of the drugs may help to derive useful knowledge

about the ADRs. Given a particular ADR, we back-trace

our learnt deep learning framework to find meaning-

ful substructures that are related to that particular ADR.

First, we find the top predictive fingerprints (top panels

of Fig. 2) for a given ADR based on the learned weights

from the final layer of the neural network. Second, for

each important fingerprint, we investigate each layer to

find the atoms of drugs (sij) which have the highest activa-

tion for that particular fingerprint using the attentiveness

weights F andH. Finally, we reconstruct the substructures

by starting from that atom as center and expanding the

neighborhood up to that particular layer.

To mathematically evaluate the connections between

substructures and ADRs, we calculated a confusion

matrix for a given substructure A regarding the specific

ADR X from the SIDER database shown in Table 1. In

this table, a is the number of drugs that contain sub-

structure A and cause ADR X; b is the number of drugs

that do not contain substructure A but trigger ADR X; c

is the number of drugs that contain substructure A but

have no association towards ADR X; and d is the num-

ber of drugs that do not contain substructure A and have

no association towards ADR X. We can calculate p value

using chi-squared test and odds ratio (OR) to evaluate the

association strength between substructure A and ADR X.

Once we extract all significant substructures that are

associated with the ADRs, we aim to further group them

into higher levels, since many of the ADRs are inher-

ently related. For example, Cai et. al. [16] summarized

all available ADRs into a hierarchical graph by organiz-

ing them from specific to generic categories. Therefore, a

pharmaceutical company may be interested in finding the

substructures that are responsible for a particular group of

ADRs, which will provide an early guideline for avoiding

those related substructures or their continuous spectrum

of representations [17]. To this end, we aim to group

all the significant substructures-ADR relations based on

guilt by association principle. In particular, we represent

all such significant substructure-ADR pairs in a bipar-

tite graph, where substructures are represented in one

Table 1 The confusion matrix to evaluate the association

between substructure A and ADR X

Substructure A+ Substructure A-

ADR X+ a b

ADR X- c d

layer and ADRs in another layer and edge between them

represents a significant association obtained from the pre-

vious step. consequently, we apply biclustering algorithms

[18] to find the higher level groupings (bi-cliques) of

substructure-ADR pairs.

Evaluation

In this section, we will describe the evaluation criteria for

our proposed neural fingerprint method.

We evaluated our neural fingerprint method based on

meaningful chemical features (often termed as finger-

prints) from drugs that can be extracted in many different

ways. Ten popular chemical fingerprints were used in our

ADR prediction tasks: Shortest-path, PubChem, MACCS,

CDK Standard, CDK Graph, Klekota-Roth (KR), E-State,

CDK Hybridization, CDK Extended, ECFP6 (circular fin-

gerprints). The detailed descriptions about these finger-

prints are available in [19]. Fingerprints contain informa-

tion about certain chemical properties of each molecule,

such as the number of specific atoms, substructures, atom

pairs.

Among the ten fingerprints, the circular fingerprints

[14] are a recent development by extending Morgan algo-

rithms [20], which was originally designed for the graph

alignment problem to resolve molecular isomorphism.

Although circular fingerprints are similar to neural fin-

gerprints in nature, the circular fingerprint requires large

number of pre-defined features and they are not specific

to ADR.We used a R package [21] for extracting all ten dif-

ferent chemical fingerprints as mentioned above. We gen-

erated different chemical fingerprints for each molecule

with default parameters, except that the maximal radius

parameter was set to 4 for both circular fingerprints and

the neural fingerprint method.

We evaluate the performance of our model based on

two criteria: prediction accuracy and evidences from liter-

atures about the substructure-ADR associations.

Since we built one predictive model for each ADR

separately, in order to compare the performance of

that predictive model across all ADRs, we used three

different methods to evaluate the performance: global,

row-wise(drug-wise), and column-wise(ADR-wise). ForN

drugs and M ADRs (endpoints) we have two matrices, an

N×Mmatrix of original binary labels and anN×Mmatrix

of prediction values. The global evaluation compares all

the N × M original labels versus all the N × M predic-

tion values in one time, while the row-wise and column-

wise evaluations compare the original labels versus the

prediction values by row (drug) and by column (ADR),

respectively.

During our evaluation, we used 10-fold cross-validation

procedure to test our predictive model.We computed sev-

eral standard metrics such as accuracy, precision, recall

(sensitivity), specificity, F1-score, area under the ROC
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curve (AUC) and area under the precision-recall curve

(AUPR) [22] for global and column-wise evaluations. For

row-wise evaluation, since the models were developed

column-wise (by ADRs) as opposed to rows (by drugs),

we only evaluated metrics related to information retrieval

domain such as accuracy, precision, recall (sensitivity),

F1-score and additional, P@K score. The P@K score is

defined as the precision computed for top K predicted

ADRs of each drug. This measure is very popular in

drug discovery domain [23, 24], since it selectively eval-

uates the top ranking predictions instead of everything.

Typically, each drug can have a large number of ADRs

predicted by the computational model (Fig. 3a), which

poses challenge for the domain experts who are inter-

ested in extensive evaluation of some specific ADRs of

their interests. Therefore, it will be very useful to look

at the top-most ADRs first and then evaluate successive

ADRs. We used P@10 based on the common practice in

literature [23].

Finally, we searched for optimal values of the hyper-

parameters of our models such as regularization

parameter(λ1 and λ2), maximum radius for substructures

(R), number of neurons in each hidden-layer, and number

of fingerprints (K) with the best F1-score [22] selected

by cross-validation (CVs). We used batch normalization

to optimize each batch of size 100 using the ADAM

algorithm [25].

For evaluating the substructures obtained from the

neural fingerprint framework, we used literature vali-

dations. If a substructure is strongly associated with a

specific ADR, we may be able to identify new drugs

that contain the specific substructure to cause the spe-

cific ADR. By analyzing the features, we identified sub-

structures which are positively associated with specific

ADRs. In order to test their ADR prediction capability,

we looked for drugs that contain such substructures but

had not been reported to cause the specific ADRs in the

SIDER database. We used our developed models to pre-

dict such drugs for the ADRs, and also looked for reports

of those same drug-ADR associations in the medical

literature.

Results

In this section, we will first describe the data we used.

Then we show results of our neural fingerprint based

framework both in terms of how it improves the pre-

diction power of ADRs and how to find meaningful

substructures that are associated with the ADRs.

Data preparation

We harvested drug-ADR associations from the Side Effect

Resource (SIDER) database [26], which was generated

by mining the text information from drug labels. We

used SIDER version 4.1 (http://sideeffects.embl.de/) as

Fig. 3 The frequencies of ADRs and Drugs: (a) Histogram of number of positive ADRs associated with each drug with average of 106, (b) Histogram

of number of drugs associated with each ADR with average of 86

http://sideeffects.embl.de/
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our training set, which contains 1430 drugs and 6123 side-

effects (Preferred Terms) with 166,128 unique drug-ADR

associations.

We converted the STITCH IDs of drugs from SIDER

into PubChem IDs [27] and downloaded their structure

information from PubChem. SIDER contains both Low-

est Level Terms (LLT) and Preferred Terms (PT) from

MedDRA for ADRs [28]. We selected Preferred Terms for

ADRs as our endpoints, because they contain the higher

level summarization of multiple synonymous or verba-

tim lower level terms. We also analyzed the frequency of

drugs associated with each ADR and it turned out that

the number of drugs associated with ADRs varies a lot as

shown in Fig. 3b. The ADRs with 10 or fewer drugs don’t

have enough positive samples and were removed from the

analysis, thus, we ended up with 1766 ADRs and 1430

drugs from SIDER for ADR prediction and 151,501 total

drug-ADR associations.

Prediction performance

We summarized the prediction performance of eleven dif-

ferent fingerprint algorithms including neural fingerprint

on the SIDER dataset in Fig. 4. Figure 4a represents the

global evaluation of our prediction models on SIDER with

the representation of 50 fingerprints in the final layer

for neural fingerprints and an optimum value of sparsity

threshold λ1 = 0.0001 and λ2 = 0.01 and one hidden layer

with 100 neurons for the final level neural network built

on top of the fingerprints. We can clearly observe that the

circular fingerprints and neural fingerprints performed

the best among all different methods in terms of all eval-

uation metrics except sensitivity. In particular, the neural

fingerprints had the best F1 score and AUC in global

evaluation criteria, while neural fingerprints, circular fin-

gerprints and hybridization fingerprints performed the

best when evaluated column-wise (by ADR) as in Fig. 4b.

In the row-wise evaluation metrics in Fig. 4c, neural fin-

gerprints performed the best in terms of P@10 (precision

at top 10 predictions, where K = 10) with a reasonable F1

score.

Table 2 listed the top 10 ADR prediction models using

neural fingerprints ranked by AUC. We found that our

models performed well on a variety of ADRs in terms

of AUC including (1) skin-related ADRs such as der-

matitis perioral, skin striae and acneiform eruption, (2)

metabolic-related ADRs including alkalosis hypokalaemic

and increased insulin requirement, (3) muscle-related

steroid myopathy and (4) eye related cataract subcapsu-

lar. However, it could be possible that the drugs under

these categories of ADRs have some common structural

properties so that they are easier to be differentiated by

structure-based models.

We also analyzed the relationship between the numbers

of features and prediction performance and included the

Fig. 4 Predictive performance Comparison of different fingerprint methods on SIDER dataset based on (a) global, (b) column-wise (by ADR) and (c)

row-wise (by drug) evaluations
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Table 2 Top 10 ADR models ranked by AUC

ADR concept ID ADR name Number of positive drugs Accuracy Sensitivity Specificity Precision AUC

C0263449 Dermatitis perioral 31 0.945 0.742 0.950 0.247 0.957

C0085570 Alkalosis hypokalaemic 15 0.910 0.867 0.911 0.094 0.935

C0270994 Steroid myopathy 16 0.892 1.000 0.890 0.094 0.931

C0235409 Increased insulin requirement 15 0.852 1.000 0.850 0.066 0.927

C0085660 Aseptic necrosis 18 0.908 0.778 0.910 0.099 0.916

C0877365 Infusion site erythema 11 0.936 0.545 0.939 0.065 0.913

C0271738 Secondary adrenocortical insufficiency 25 0.884 0.880 0.884 0.119 0.908

C0175167 Acneiform eruption 35 0.945 0.714 0.951 0.266 0.905

C0235259 Cataract subcapsular 35 0.913 0.800 0.915 0.192 0.905

C0152459 Skin striae 52 0.977 0.788 0.984 0.651 0.902

The model evaluation metrics during cross-validations are provided

results in Fig. 5. The neural fingerprint method used the

least numbers of features (50 for this study) than other

methods (1024 for most of them) and achieved much bet-

ter performance. Some other methods such as MACCS

and E-State also generate a small number of fingerprints.

It seems that a larger number of fingerprint features do

not necessarily guarantee a better performance in this par-

ticular study of ADR prediction. Based on these results,

we believe the neural fingerprint algorithm has an overall

good performance and would like to use its results for fea-

ture analysis. In the following section, we will describe two

case studies of the associations between chemical sub-

structures and ADRs from the neural fingerprint results.

Case study 1: ADR prediction for aseptic necrosis

The model based on neural fingerprints obtained an F1-

score of 0.176 and an AUC of 0.916 for predicting aseptic

necrosis (C0085660) as an ADR. Through feature analysis,

we identified the top substructures that contributed to the

prediction and highlighted one of them in Fig. 6. We con-

struct the confusion matrix for this substructure as shown

in Table 3 to perform statistical analysis. It turned out

that this substructure is significantly associated with asep-

tic necrosis with a significant chi-square test p-value of

1.20× 10−22 (less than 0.0001) and odds ratio of 141. Our

model predicted 5 drugs with this particular substructure

that are associated with asceptic necrosis, which served as

important features for the model to predict all of them to

cause the ADR of aseptic necrosis. Three out of these five

drugs were labeled in SIDER dataset to cause this ADR,

which are shown in the left panel of Fig. 6 with this partic-

ular substructure highlighted in blue. More importantly,

our model successfully identified the fourth compound,

Clobetasol, as a cause of this ADR. We looked up the

Fig. 5 Number of features used and selected by different methods Panel (a) shows the average number of features defined by different chemical

fingerprint methods in left y-axis and area under the curve (AUC) in right y-axis. Panel (b) shows the average number of significant features that are

predictive of ADRs in left y-axis and AUC in the right y-axis. The proposed neural fingerprint (NFP) have better predictive power than other

fingerprints, although it uses significantly less number of features than other techniques
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Fig. 6 Case Study 1: Drugs structures for the training and prediction of aseptic necrosis (UMLS ID: C0085660). The highlighted substructures within

the chemical structures were identified as important features for predicting this ADR

literature and found D. J. Hogan et al. [29] reported a case

study that long-term use of Clobetasol propionate led to

aseptic necrosis of the hips; therefore, our prediction is

validated and we believe the substructure in Fig. 6 have a

positive association with aseptic necrosis.

Case study 2: ADR prediction for back pain

Likewise, we examined our model prediction on back

pain (C0004604). Pain-related ADRs are usually very hard

to predict, and Wang et al. [30] predicts those with AUCs

0.62 in average even by combining chemical structure

with transcriptome data. Our method, by using only

chemical structure information, obtained an F1-score

of 0.520 and an AUC of 0.590. One of the substructures

that contributed to the prediction is highlighted in Fig. 7.

Though the association between this substructure and

back pain is not statistically significant (p ≥ 0.05) from

the SIDER database, the odds ratio is 3.71 (larger than

1), indicating a positive effect. From Fig. 7, we see that

two compounds with this substructure, AC1L1DUH and

AC1L1IV2, were labeled to cause this ADR in SIDER.

The third compound, Dihydroergotamine, also con-

tains the same substructure but wasn’t labeled to cause

back pain in SIDER. However, our model successfully

predicted this compound to cause back pain. This was

also reported on drugs.com (https://www.drugs.com/

sfx/dihydroergotamine-side-effects.html). These three

molecules are relatively diverse in other parts of their

Table 3 The confusion matrix to evaluate the association

between substructure in Fig. 6 and ADR aseptic necrosis

Drugs have
substructure

Drugs dont have
substructure

Aseptic necrosis 3 15

No aseptic necrosis 2 1410

structures; however, the highlighted substructure is the

major identical part across them which was given an

important weight by our model. From the results of

our feature analysis, it is possible that this substructure

structure is associated with back pain.

Discussion

In this section, we discuss the grouping of obtained signif-

icant substructures and link our ADR prediction methods

with drug safety signal detection.

Higher-level grouping of the obtained substructures

We also represented the significant substructure-ADR

associations into a bipartite graph and then perform a

biclustering algorithm proposed by Cheng and Church

[31] due to its flexibility to find noise-tolerant coherent

bi-clusters. Figure 8 shows the largest bi-cluster contain-

ing the a group of substructures and ADRs. Each edge

in this graph represents a significant substructure-ADR

associations below p-value ≤ 0.05. Interestingly, all of the

ADRs belong to either skin or other related ADRs. On the

other hand, all the significant structures that are associ-

ated with these ADRs are minor structural variations of

each others, often with a change of Halogen atom while

binding with the Benzine group, which may be useful for

inferring useful domain knowledge.

From the above examples, we believe our models not

only have the capability to predict ADRs, but also could

identify the substructures that potentially play an impor-

tant role in causing a specific or a group of ADRs.

After the identification of important substructures, addi-

tional statistical analysis can provide mathematical assess-

ments of such associations. We believe the structure-

based machine learning model combined with feature

extraction, substructure identification, statistical and bi-

clustering analysis provide a systematic evaluation of the

https://www.drugs.com/sfx/dihydroergotamine-side-effects.html
https://www.drugs.com/sfx/dihydroergotamine-side-effects.html
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Fig. 7 Case Study 2: Drugs structures for the training and prediction of back pain (UMLS ID: C0004604). The highlighted substructures within the

chemical structures were identified as important features for predicting this ADR

associations between chemical structures and ADRs. It

may not only help the researchers to study the structural

triggers and provide clues for underlying mechanisms of

ADRs, but it may also guide the drug developers to modify

the suspicious substructures to possibly prevent the ADRs

from happening.

Complementary approach to drug safety signal detection

Our method uses only chemical fingerprints to pre-

dict ADRs which is often available in pre-clinical stages.

Therefore, it can be used as a complementary approach

to post-marketing drug surveillance models, which is

built on the case reports to drug administration agencies

(US FDA’s Adverse Event Reporting System (FAERS) [32]).

In order to further characterize our method against these

models, we conducted additional experiments on four

popular ADRs (Acute Kidney Injury, Acute Liver Injury,

Acute Myocardial Infarction and GI Bleeding) which usu-

ally are studied in the scenarios of safety signal detection.

We adopted OMOP dataset [33] as the gold standard,

and curated 172 drugs in total which have associations

with these four ADRs, similar to Xiao et al. [34]. OMOP

dataset provides both positive and negative drug-ADR

associations which are well-validated by domain experts

Fig. 8 Higher Level representation of significant substructure-ADR associations: Our biclustering algorithms on the bipartite graph containing

significant substructures discovered a family of similar chemical structures from Cortisols that are mostly that are associated with many of skin

related ADRs
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in contrast to SIDER dataset which provides only the pos-

itive associations (the negative associations were assumed

for any missing drug-ADR associations).

We compared our NFP method with Circular fin-

gerprint method on the OMOP benchmark dataset. In

addition, we compared two drug safety signal detec-

tion algorithms: Multi-item Gamma Poisson Shrinker

(MGPS) [35], and Monte-Carlo Expectation Maximiza-

tion (MCEM) [34]. The AUC comparisons on four ADRs

(Acute Kidney Injury, Acute Liver Injury, Acute Myocar-

dial Infarction, and GI Bleeding) and their averages

(ADR-wise evaluation) are summarized in Fig. 9. In addi-

tion, the global evaluation results are also shown for

the two chemical fingerprint methods: NFP+Global and

Circular+Global (the drug-wise evaluation is not feasi-

ble since the number of ADRs are only four here). Our

NFP method significantly outperforms Circular finger-

print method on three ADRs: Acute Kidney Injury, Acute

Liver Injury, and GI Bleeding, and on overall ADR-wise

averages.

Moreover, in Fig. 9, even comparing to MGPS and

MCEM algorithms, our NFP model provided similar per-

formances in terms of AUC. Even, the global NFP model

(AUC = 0.72) slightly outperforms the average of best sig-

nal detection model, MCEM (AUC = 0.71). Note that we

used only chemical structures data which are not as rich

as the FAERS case reports which contain direct infor-

mation about adverse event observations, but still can

achieve reasonable performances in very early stage of

drug design. This further demonstrates that our method

provides a complementary way of ADR prediction to drug

safety signal detection.

Related work

Existing studies for ADR prediction utilized diverse data

sources, such as biological pathways [36], chemical-

protein interactions [37], and post-market surveillance

data, to predict ADRs [38]. However, many of these data

types are based on either experimental results or post-

market reports which take time and money to generate

or harvest [39]. In order to predict ADRs for a drug

candidate in an early stage of drug development, predic-

tions need to be made using limited available information

such as chemical structures [4, 7]. The existing structure-

based approaches can be summarized into two categories,

similarity-based approaches and machine learning-based

approaches.

The similarity-based approaches predict ADRs by look-

ing for molecules that are structurally similar to the exist-

ing drugs [23, 40, 41]. Though they are relatively simple

to implement, these methods are less effective if the exist-

ing and predicted drugs are diverse in structure. Also, they

treat all the structural features with equal weight and do

not optimize for each specific ADR.Moreover, thesemod-

els are harder to interpret for finding chemical structures

responsible for ADRs.

The machine learning-based approaches utilize the

molecular fingerprints [19] such as PubChem fingerprints

[42] and the circular fingerprint [14] to build up models

for ADR prediction using various types of models, such

as Bayesian network [43], decision tree [44], and canon-

ical correlation analysis based approaches [4]. However,

most of the existing machine learning-based approaches

define the fingerprints a-priori from domain knowledge

[4, 6–8] and thus are not able to explore all possible

Fig. 9 AUC comparisons of NFP method with three models on OMOP benchmark dataset: OMOP data consists of gold standards of four ADRs:

Acute Kidney Injury, Acute Liver Injury, Acute Myocardial Infarction, and GI Bleeding. The other ADR prediction model is Circular fingerprint method.

Signal detection methods include MGPS and MCEM, and results come from [34]
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chemical substructures. Moreover, they separated the fin-

gerprint generation and the model development phases

into two separate steps. Recently, a deep learning method

emerged to learn a concise set of fingerprints automat-

ically from the given set of drugs without using any

prior knowledge [9]. However, such method was devel-

oped for predicting drug solubility and has not been

applied for ADR prediction. In addition, very few studies

aimed to interpret [8, 43] the obtained models, although

these studies were interested in only one [8] or a very

few pre-selected ADRs [43]. Therefore, how to systemati-

cally extract meaningful chemical substructures from the

obtained figherprints, how to evaluate their associations

with ADRs and how to summarized them into higher level

groupings are not well explored, which are the focuses of

our study.

Conclusion

In this paper, we harvested drug-ADR associations from

the SIDER database, and generated ten different types

of chemical fingerprints from molecular structures. We

developed L2 norm regularized logistic regression mod-

els for all fingerprints to predict ADRs, and also lever-

aged a convolutional deep learning framework to integrate

neural fingerprint generation and model development.

We evaluated the performance of all eleven models and

found that the neural fingerprints achieved the best

overall performance. Based on the outputs from the

neural fingerprints, we extracted the chemical substruc-

tures of the drugs that might be associated with spe-

cific ADRs, evaluated their associations using statistical

analysis and found evidence in two case studies. The

proposed structure-based models can not only obtain

good performance in ADR prediction, but also iden-

tify the potential connections between substructures and

ADRs. This study provides a useful workflow for drug

developers to identify risky substructures and may poten-

tially help to improve the safety evaluation of pipeline

drugs.

This study can be extended in multiple directions in the

future in terms of both features and models. Sometime,

the severity of a particular ADR is available in the SIDER

dataset, which can be taken into account during model

development. At the same time, since ADRs have some

hierarchical structures, it is possible to develop some hier-

archical classifiers to improve prediction performance.

Furthermore, other types of available data sources such as

chemical-protein binding and gene expression data can be

integrated into our models for a data-driven approach for

ADR prediction.
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