
Predicting Anatomical Therapeutic Chemical (ATC)
Classification of Drugs by Integrating Chemical-Chemical
Interactions and Similarities
Lei Chen1, Wei-Ming Zeng1, Yu-Dong Cai2,5*, Kai-Yan Feng3,4, Kuo-Chen Chou5*

1 College of Information Engineering, Shanghai Maritime University, Shanghai, China, 2 Institute of Systems Biology, Shanghai University, Shanghai, China, 3 Shanghai

Center for Bioinformation Technology, Shanghai, China, 4 Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences,

Shanghai, China, 5 Gordon Life Science Institute, San Diego, California, United States of America

Abstract

The Anatomical Therapeutic Chemical (ATC) classification system, recommended by the World Health Organization,
categories drugs into different classes according to their therapeutic and chemical characteristics. For a set of query
compounds, how can we identify which ATC-class (or classes) they belong to? It is an important and challenging problem
because the information thus obtained would be quite useful for drug development and utilization. By hybridizing the
informations of chemical-chemical interactions and chemical-chemical similarities, a novel method was developed for such
purpose. It was observed by the jackknife test on a benchmark dataset of 3,883 drug compounds that the overall success
rate achieved by the prediction method was about 73% in identifying the drugs among the following 14 main ATC-classes:
(1) alimentary tract and metabolism; (2) blood and blood forming organs; (3) cardiovascular system; (4) dermatologicals; (5)
genitourinary system and sex hormones; (6) systemic hormonal preparations, excluding sex hormones and insulins; (7) anti-
infectives for systemic use; (8) antineoplastic and immunomodulating agents; (9) musculoskeletal system; (10) nervous
system; (11) antiparasitic products, insecticides and repellents; (12) respiratory system; (13) sensory organs; (14) various.
Such a success rate is substantially higher than 7% by the random guess. It has not escaped our notice that the current
method can be straightforwardly extended to identify the drugs for their 2nd-level, 3rd-level, 4th-level, and 5th-level ATC-
classifications once the statistically significant benchmark data are available for these lower levels.
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Introduction

Nowadays, the Anatomical Therapeutic Chemical (ATC)

classification system, recommended by the World Health Orga-

nization (WHO), is the most widely recognized classification

system for drugs. This classification system divides drugs into

different groups according to the organ or system on which they

act and/or their therapeutic and chemical characteristics.

Accordingly, the ATC classification is very helpful for studying

utilization of drugs and categorizing them according to different

purposes, therapeutic properties, chemical and pharmacological

properties (see Report of the WHO Expert Committee, 2005;

World Health Organ Tech Rep, Ser:1–119). In the ATC

classification system, drugs are classified into 14 main classes

(http://www.whocc.no/atc/structure_and_principles/). In order

to understand this kind of complicated classification system, some

efforts have been made [1,2]. In a pioneer study, Gurulingappa et

al. [2] proposed a method to study the ATC-classification system

by combining the information extraction and machine learning

techniques. However, their method can be used to identify the

drug compounds only within the class of ‘‘Cardiovascular

System’’, one of the 14 main ATC classes.

During the past decade, many compound databases, such as

KEGG (Kyoto Encyclopedia of Genes and Genomes) [3,4], have

been established. From these databases many compounds and

their properties can be acquired. Such abundant informations

provide an opportunity to analyze ATC classification system in

greater detail. Encouraged by the successes of using machine

learning and data mining methods to investigate complicated

problems in a variety of biological areas [5,6,7,8,9], the present

study was initiated in an attempt to develop a powerful method by

which one can identify query drugs compound among all their 14

posible main classes.

According to a recent comprehensive review [10], to establish a

really useful statistical predictor for a biological system, we need to

consider the following procedures: (i) construct or select a valid

benchmark dataset to train and test the predictor; (ii) formulate the

samples concerned with an effective mathematical expression that

can truly reflect their intrinsic correlation with the target to be

predicted; (iii) introduce or develop a powerful algorithm (or

engine) to operate the prediction; (iv) properly perform cross-
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validation tests to objectively evaluate the anticipated accuracy of

the predictor. Below, let us describe how to deal with these steps

one by one.

Materials and Methods

Recently, the information of protein-protein interactions have

been used for predicting various attributes of proteins (see, e.g.,

[11,12,13]), implying that interactive proteins are more likely to

share common biological functions [11] than non-interactive ones

[14]. Likewise, it is more likely that two interactive drug

compounds may have the similar biological function. Actually, it

is generally accepted that compounds with similar physicochem-

ical properties often involve in similar biological activities [1].

Accordingly, it is reasonable to assume that the interactive drugs

may likely belong to the same ATC-class, and so do those drugs

with similar structures. Based on such rational, let us construct the

following benchmark to develop a new method for identifying the

ATC-classes of drugs.

Benchmark Dataset
The dataset for drugs was obtained from the public available

database KEGG [3,4] at ftp://ftp.genome.jp/pub/kegg/

medicus/drug/drug (June, 2011). There are totally 9,758 drugs.

After excluding those without the information of ATC-codes, the

remaining are 4,376 drug samples, from which further screening

was performed to remove those without the information of both

chemical-chemical interactions and chemical-chemical similarities.

After the above winnowing procedures, we finally obtained the

benchmark dataset S containing 3,883 drugs classified into 14

main ATC-classes, as can be formulated by

S~S1|S2|S3|S4|S5|S6| � � �|S14 ð1Þ

where S1 represents the subset for the 1st main ATC class called

‘‘Alimentary tract and metabolism’’, S2 the subset for the 2nd

main ATC class ‘‘Blood and blood forming organs’’, S3 the subset

for the 3rd main ATC class ‘‘Cardiovascular system’’, and so forth

(cf. Table 1); while | represents the symbol for ‘‘union’’ in the set

theory. For convenience, hereafter let us just use C1, C2, C3, …,

C14 as the tags of the 14 classes. A breakdown of the 3,883 drugs

into the 14 main ATC-classes is given in Table 1. For the codes of

these drugs in each of the 14 classes, see Supporting Information

S1. During the course of constructing the benchmark dataset,

the information from http://www.genome.jp/kegg-bin/get_htext?

br08303.keg was used that collected the drug compounds and their

ATC classification information from http://www.whocc.no/

atc_ddd_index/ and provided the ATC code for each drug.

Because some drugs may belong to more than one main ATC-

class, like the case in dealing with proteins with multiple location

sites [15,16,17], it is instructive to introduce the concept of the

‘‘virtual drugs’’ as illustrated as follows. A drug compound

belonging to two different ATC-classes will be counted as 2

virtual samples even though they have an identical chemical

structure; if belonging to three different classes, 3 virtual samples;

and so forth. Accordingly, the total number of the different virtual

drug samples is generally greater than that of the total different

structural drug samples. Their relationship can be formulated as

follows [18]

N(vir)~N(struct)z
XM
Q~1

Q{1ð ÞN(Q) ð2Þ

where N(vir) is the number of total different virtual drug samples

in S, N(struct) the number of total different structural drugs,

N(1) the number of drugs belonging to one ACT-class, N(2) the

number of drugs belonging to two ATC-classes, and so forth; while

M is the number of total main ACT-classes (for the current case,

M~14 (cf. Table 1).

For the current 3,883 drugs in S, 3,295 occur in one class, 370

in two classes, 110 in three classes, 37 in four classes, 27 in five

classes, 44 in six classes, and none in seven or more classes

(Figure 1). Substituting these data into Eq.1, we have

N(vir)~N(struct)z(1{1)|3295z(2{1)|370

z(3{1)|110z(4{1)|37z(5{1)|27

z(6-1)|44z
X14

L~7

(L{1)|0

~3883z370z220z111z108z220~4912

ð3Þ

which is fully consistent with the figures in Table 1 and the data

in Supporting Information S1.

Prediction Based on Chemical-Chemical Interactions
Based on the fact that the interactive compounds often involve

in similar biological activities [11], it is feasible to predict the ATC-

class of a query drug using the information of chemical-chemical

interactions, as described below.

STITCH (Search tool for interactions of chemicals) [19] is a

large database containing known and predicted interactions

between chemicals and between proteins derived from experi-

ments, literature and other databases. We downloaded the

information of chemical-chemical interactions from http://stitch.

embl.de:8080/download/chemical_chemical.links.v2.0.tsv.gz.

Each of these interactions was evaluated by a confidence score,

ranging from 1 to 1000, to reflect the likelihood of its occurrence.

For any two drugs d1 and d2, their interaction confidence score was

denoted by Qi(d1,d2). Particularly, if the interaction between d1

and d2 does not exist in STITCH, their interaction confidence

score was set as zero, i.e., Qi(d1,d2)~0.

Suppose that a training dataset Strain consists of n drugs

dk(k~1,2, � � � , n), and that the 14 main ATC-classes are denoted

by C~½C1,C2, � � � ,C14�, where C1 represents ‘‘Alimentary tract

and metabolism’’, C2 ‘‘Blood and blood forming organs’’, and so

forth (see Table 1). The ATC-classes of any drug di can be

formulated as

C(di)~ ci,1, ci,2, � � � , ci,14

n o
(i~1, 2, � � � , n) ð4Þ

where

ci,j~
1, if di belongs to Cj

0, otherwise

�
(i~1,2, � � � , n; j~1,2, � � � , 14) ð5Þ

According to the chemical-chemical interaction approach, the

likelihood for a query drug d belonging to Cj, denoted as

P(i) d.Cj

� �
, can be calculated by

P(i) d.Cj

� �
~max

dk[Strain Qi d,dkð Þ:ck,j (j~1,2, � � � ,14) ð6Þ

where dk[Strain means that dk is an element of the training dataset

ATC Classification of Drugs

PLoS ONE | www.plosone.org 2 April 2012 | Volume 7 | Issue 4 | e35254



S
train

. According Eq.6, the likelihood that d belongs to Cj can be

formulated as the maximum of the interaction confidence scores

between d and those drugs that belong to Cj in the training dataset

Strain. Obviously, the larger the score is, the more likely that d

belongs to Cj . When P(i) d.Cj

� �
~0, it means that the

probability for the drug d belonging to the class Cj is zero. Given

a query drug compound d, suppose the outcome derived from

Eq.6 is

P (i) d.C8ð ÞwP(i) d.C1ð ÞwP(i) d.C2ð Þw � � �

wP (i) d.C14ð Þw0
ð7Þ

which means that the highest probability for the drug d belonging

to the ATC-class is C8 (‘‘Antineoplastic and immunomodulating

agents’’), followed by C1 (‘‘Alimentary tract and metabolism’’), and

so forth (cf. Table 1). If there is a tie between two terms in Eq.7,

then the probabilities for the drug belonging to the two

corresponding classes are the same. But this kind of tie case rarely

happened.

Note that the outcome of Eq.6 might turn out to be trivial, i.e.,

P(i) d.Cj

� �
~0 (j~1,2, � � � ,14) ð8Þ

indicating that no chemical-chemical interaction exists for the

query drug d in the training dataset Strain; i.e.,

Qi d,dkð Þ~0 (for dk[S
train or k~1,2, � � � , n) ð9Þ

Under such a circumstance, no meaningful result would be

obtained by the ‘‘interaction-based’’ method, and we should

instead use the ‘‘similarity-based method as described in the next

section.

Prediction Based on Chemical-Chemical Similarities
Likewise, based on the fact that the compounds with similar

physicochemical properties often have the same biological

activities [1], we can also use the information of chemical-

chemical similarities as another feasible avenue to predict the

ATC-class for a query drug. To realize this, let us first introduce

how to use graphical representation to measure the similarity

between two drug compounds.

Graphical approaches can provide intuitive pictures and useful

insights for studying and analyzing complicated biological systems,

as demonstrated by many studies on a series of important

biological topics (see, e.g., [20,21,22,23,24,25,26,27,28,29,30]).

Here, a special graphic approach was utilized to estimate the

Table 1. Breakdown of the benchmark dataset S according to the 14 main ATC classes.

Tag The 1st-level ATC class Number of drugs

C1 Alimentary tract and metabolism 540

C2 Blood and blood forming organs 133

C3 Cardiovascular system 591

C4 Dermatologicals 421

C5 Genito-urinary system and sex hormones 248

C6 Systemic hormonal preparations, excluding sex hormones and insulins 126

C7 Antiinfectives for systemic use 521

C8 Antineoplastic and immunomodulating agents 232

C9 Musculo-skeletal system 208

C10 Nervous system 737

C11 Antiparasitic products, insecticides and repellents 127

C12 Respiratory system 427

C13 Sensory organs 390

C14 Various 211

Number of total virtual drugs N(vir) 4,912a

Number of total structural different drugs N(struct) 3,883b

aSee Eqs.2–3 for the definition about the number of virtual drugs, and its relation with the number of structural different drugs.
bOf the 3,883 structural different drugs, 3,295 belong to one class, 370 to two classes, 110 to three classes, 37 to four classes, 27 to five classes, and 44 to six classes. See
Supporting Information S1 for the detailed drug codes listed in each of 14 ATC-classes.
doi:10.1371/journal.pone.0035254.t001

Figure 1. An illustration to show the distribution about the
numbers of ATC-classes a same drug may belong to. For the
3,883 drugs in S, 3,295 belong to one class, 370 to two classes, 110 to
three classes, 37 to four classes, 27 to five classes, 44 to six classes, and
none to seven or more classes.
doi:10.1371/journal.pone.0035254.g001

ATC Classification of Drugs
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similarity of two compounds. Hattori et al. [31] first proposed a

means to measure the similarity of two compounds via their graph

representations. Since each chemical structure can be easily

represented by a 2D (two-dimensional) graph where vertices stand

for atoms and edges for bonds between them, the similarity of two

compounds can be estimated by the Jaccard coefficient [32,33]

based on their maximum common subgraph. The similarity scores

between compounds by this method can be obtained from the

website at http://www.genome.jp/ligand-bin/search_compound.

According to the graphical method by Hattori et al. [31], given two

drug compounds d1 and d2, their similarity score was denoted by

Qs(d1,d2). When the similarity score between d1 and d2 does not

exist in http://www.genome.jp/ligand-bin/search_compound,

their similarity was set as zero; i.e., Qs(d1,d2)~0.

Thus, the prediction method based on the chemical-chemical

similarities can be formulated in a way almost completely parallel

to that of the chemical-chemical interactions as done in the

preceding section.

Now, instead of Eq.6, we have

P(s) d.Cj

� �
~max

dk[Strain Qs d,dkð Þ:ck,j (j~1,2, � � � ,14) ð10Þ

where the superscript and subscript ‘‘s’’ stands for the 1st letter of

‘‘similarity’’, implying that the calculation is now based on

‘‘chemical-chemical similarity’’ instead of ‘‘chemical-chemical

interaction’’ as done in Eq.6.

Prediction by Integrating the Interaction-Based and
Similarity-Based Methods

Given a query drug compound d , when the integrated method

was used to identify its ATC-class, the prediction involved the

following two steps.

Step 1. The interaction-based method (cf. Eq.6) was first

applied to identify its ATC-class.

Step 2. If the probabilities thus obtained for the drug

belonging to all the 14 ATC-classes were zero as indicated in

Eq.8, meaning no meaningful results were obtained at all, then

the prediction would continue using the similarity-based method

(cf. Eq.10).

Jackknife Cross-Validation
In statistical prediction, the following three cross-validation

methods are often used to examine the quality of a predictor:

independent dataset test, subsampling (or k-fold crossover) test,

and jackknife test [34]. However, of the three test methods, the

jackknife test is deemed the least arbitrary that can always yield a

unique result for a given benchmark dataset [35]. The reasons are

as follows. (i) For the independent dataset test, although all the

samples used to test a predictor are outside the training dataset

used to train the prediction engine so as to exclude the ‘‘memory’’

effect or bias, the way of how to select the independent samples for

testing the predictor could be quite arbitrary unless the number of

independent samples is sufficiently large. This kind of arbitrariness

might lead to completely different conclusions. For instance, a

predictor achieving a higher success rate than the other for a given

independent testing dataset might not able to keep so when tested

by another independent testing dataset [34]. (ii) For the

subsampling (or k-fold crossover) test, the concrete procedure

usually used in literatures was the 5-fold, 7-fold or 10-fold cross-

validation. The problem with this kind of subsampling test was

that the number of possible selections in dividing a benchmark

dataset would be an astronomical figure even for a very simple

dataset, as elucidated in [35] and demonstrated by Eqs.28–30 in

[10]. Therefore, in any practical subsampling cross-validation

tests, only an extremely small fraction of the possible selections

were taken into account. Since different selections would always

yield different results even for a same benchmark dataset and a

same predictor, the subsampling test could not avoid the

arbitrariness either. A test method unable to generate a unique

outcome should not be deemed as a good one. (iii) In the jackknife

test, all the samples in the benchmark dataset will be singled out

one-by-one and tested by the predictor trained by the remaining

samples. During the process of jackknifing, both the training

dataset and testing dataset are actually open, and each sample will

be in turn moved between the two. The jackknife test can exclude

the ‘‘memory’’ effect. Also, the arbitrariness problem as mentioned

above for the independent dataset test and subsampling (or k-fold

crossover) test can be avoided because the outcome obtained by

the jackknife cross-validation is always unique for a given

benchmark dataset. Accordingly, the jackknife test has been

widely recognized and increasingly adopted by many investigators

to examine the quality of various predictors (see, e.g.,

[36,37,38,39,40,41,42,43,44,45,46,47]). Accordingly, in this study

we are to use the jackknife test to examine the prediction quality as

well.

Accuracy Measurement
For any given set of query drugs, we can obtain a series of

candidate ATC-classes using the aforementioned prediction

methods. Ranked by the likelihood according to their descending

order, the prediction accuracy can be defined as

ACj~
CPj

N
(j~1,2, � � � , 14) ð11Þ

where CPj denotes the number of drugs whose j-th order predicted

ATC-class is one of the true ATC-class, and N denotes the total

number of query drugs whose ATC-classes are to be identified.

According to such a definition, the result of higher ACj with smaller

j or lower ACj with larger j indicates that the predicted hits are

more concentrated meaning a better prediction. Obviously, the

result with high 1st-order prediction accuracy AC1 always

represents a good quality of prediction.

The average number of ATC-classes for the N query drugs is

defined as

AN~

PN
i~1

Ti

N
ð12Þ

where Ti is the number of ATC-classes for the i-th query drug.

Thus, another parameter for measuring the proportion of the true

classes successfully identified by the first m-order prediction hits

can be calculated as [13]

Lm~

PN
i~1

Pi,m

PN
i~1

Ti

ð13Þ

where Pi,m denotes the number of the first m predicted candidate

ATC-classes that are the true ATC-classes for the i-th drug in the

dataset. Usually, m could take the smallest integer that is equal to

or greater than AN; i.e.,

ATC Classification of Drugs
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m~
AN, if AN is an integer

1zInt AN½ �, otherwise

�
ð14Þ

where the operator Int means taking the integer part of the

quantity right after it. Again, the result of larger Lm with smaller m

implies a better prediction with less uncertainty.

Results and Discussion

For clarity, the original benchmark dataset S of 3,883 drugs (cf.

Supporting Information S1) can be separated into two subsets; i.e.,

S~S(i)|S(s) ð15Þ

where S(i) contains 2,144 drugs that had the chemical-chemical

interaction information, while S
(s)

contains (3,883{2,144)~

1,739 drugs that had no chemical-chemical interaction informa-

tion. Listed in Table 2 are the results obtained by the

aforementioned three different prediction methods in identifying

the 14 main ATC classes for the drugs investigated. By examining

the table, we can observe the following.

Performance of the Interaction-Based Method
For the 2,144 drugs in S(i) we could use Eq.6 to conduct the

prediction. The results thus obtained are listed in column 2 of

Table 2, from which we can see that the 1st-order prediction by

the jackknife test on the 2,114 drugs was 67.72%. The success

rates generally followed a descending trend with increasing of the

order number, indicating that the predicted ATC-classes were well

sorted for each of the samples investigated. The average number of

the ATC-classes in S
(i)

was AN~2664=2144~1:24 (see Eq.12).

Thus, it follows according to Eq.14 that m~2, meaning that the

first 2-order predictions should be taken into consideration.

Substituting these data into Eq.13, we obtained the overall

success rate by the predictions of the first two orders for the 2,144

drugs in S
(i)

was Lm~71:51%, indicating that the interaction-

based method is quite promising in identifying the ATC-classed of

drugs. However, this method could only be used to deal with those

drugs that had the chemical-chemical interaction information.

Performance of Similarity-Based Method
For the remaining 1,739 drugs in the dataset S(s) (cf. Eq.15)

that did not have the chemical-chemical information, the

similarity-based method (cf. Eq.10) was used as a backup, and

the results thus obtained are shown in column 3 of Table 2. It can

be seen from there that the 1st-order prediction by the jackknife

test on the 1,739 drugs was 78.49%. The average number of ATC-

classes for the drugs in S
(s)

was AN~2248=1739~1:29 (see

Eq.12), and hence we have m~2 (Eq.14), meaning that the first

2-order predictions should be taken into account. Substituting

these data into Eq.13, we obtained the overall success rate by the

first two orders predictions for the 1,739 drugs without the

chemical-chemical interaction information was 75.31%, indicating

that the similarity-based method was quite promising as well.

At a first glance at Table 2, it looks like that the success rates by

the similarity-based method (Eq.10) are higher than those by the

interaction-based method (Eq.6). However, since the success rates

by the two methods as reported in Table 2 were derived from two

different datasets, S
(i)

and S
(s)

(cf. Eq.15) respectively, they might

not able to reflect the true superiority between the two methods.

To make a comparison between them in a more fair manner, let us

construct a new dataset, denoted as S(izs). It consists of 2,138

drugs with each containing both chemical-chemical interaction

and chemical-chemical similarity informations. The details of such

a dataset is given in Supporting Information S2.

Listed in Table 3 are the results obtained by the methods in

identifying the 14 main ATC classes for the 2,138 drugs in the

S(izs)dataset. As we can see from the table, the 1st-order

prediction accuracy by the interaction-based method was

67.40%, while that by the similarity-based method was 40.36%.

The average number of ATC-classes for the drugs in S(izs) was

1.24 (see Eq.12), and hence we have m~2 (Eq.14), meaning that

the first 2-order predictions should be taken into account.

Substituting these data into Eq.13, we obtained the overall

success rate by the 1st two orders predictions for the 2,138 drugs in

S(izs) by the interaction-based method (Eq.6) was 71.26%, while

that by the similarity-based method (Eq.10) was only 43.69%,

indicating that the interaction-based method is superior to the

similarity-based method in identifying the ATC-classes of drugs.

That is why in the integrated method the first step was to use the

interaction method (Eq.6) to identify the ATC-classes for any

query drugs. When, and only when no meaningful result was

obtained by the interaction-based method, was the similarity-

based method (Eq.10) used as a backup to continue the prediction

(see the Section of ‘‘Prediction by Integrating the Interaction-

Based and Similarity-Based Methods’’).

Performance of Integrated Prediction Method
Shown in the 4th column of Table 2 are the results obtained by

the integrated method in identifying the 14 main ATC classes for

the 3,883 drugs in the benchmark dataset S. As we can see there,

the 1st-order prediction accuracy was 72.55%. The average

numbers of ATC-classes for the drugs in S was

AN~4912=3883~1:27 (see Eq.12). Thus, it follows according

to Eq.14 that m~2, meaning that the first 2-order predictions

Table 2. The jackknife success rates by three different
methods in identifying the drugs among the 14 main ATC-
classes.

Prediction order Interaction-baseda Similarity-basedb Integratedc

1 67.72% 78.49% 72.55%

2 21.13% 18.86% 20.11%

3 13.43% 8.63% 11.28%

4 7.18% 5.23% 6.31%

5 4.76% 2.88% 3.91%

6 3.54% 1.73% 2.73%

7 1.63% 0.12% 0.95%

8 0.75% 0.35% 0.57%

9 0.75% 0.12% 0.46%

10 0.56% 0.06% 0.33%

11 0.09% 0.00% 0.05%

12 0.28% 0.00% 0.15%

13 0.09% 0.00% 0.05%

14 0.05% 0.00% 0.03%

aUsing Eq.6 on the 2,144 drugs in the benchmark dataset S that had the
chemical-chemical interaction information.
bUsing Eq.10 on the 3,883{2,144~1,739 drugs in the benchmark dataset S

that had no chemical-chemical interaction information.
cUsing the integrated method by hybridizing Eq.6 and Eq.10 on the 3,883
drugs in the benchmark dataset S as given in Supporting Information S1.
doi:10.1371/journal.pone.0035254.t002

ATC Classification of Drugs
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should be taken into consideration. Substituting these data into

Eq.13, we obtained the overall success rate by the first two orders

predictions for the drugs in S was 73.25%.

These results indicate that the integrated method performed

quite well in identifying drugs among their 14 main ATC-classes,

and that more attention should be paid to the results hit by the first

two order predictions because they covered more than 70% of the

true ATC-classes.

Finally, it is instructive to point out that although the above

demonstrations were given for identifying query drug compounds

among their main (or 1st level) classification, the method developed

here can be straightforwardly extended to cover the 2nd, 3rd, 4th,

5th or any lower-level classification as long as the corresponding

statistically significant datasets for training the predictor are

available.

Supporting Information

Supporting Information S1 List of the 4,376 drugs in the ATC

classification system extracted from KEGG.

(PDF)

Supporting Information S2 This dataset S(izs) contains 2,138

drugs classified into 14 main ATC classes. Each of the drugs listed

here contains both chemical-chemical interaction and chemical-

chemical similarity informations. Among the 2,138 different drugs

(2,655 virtual drugs), 1,838 belong to one class; 190 to two classes;

57 to three classes, 19 to four classes, 14 to five classes, and 20 to

six classes. None of the drugs listed here belongs to seven and more

classes.

(PDF)
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2. Gurulingappa H, Kolářik C, Hofmann-Apitius M, Fluck J (2009) Concept-based

semi-automatic classification of drugs. Journal of chemical information and

modeling 49: 1986–1992.

3. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes.

Nucleic acids research 28: 27–30.

4. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for

representation and analysis of molecular networks involving diseases and drugs.

Nucleic acids research 38: D355–D360.

5. Chou KC (2001) Prediction of protein cellular attributes using pseudo amino

acid composition. PROTEINS: Structure, Function, and Genetics (Erratum:

ibid, 2001, Vol44, 60) 43: 246–255.

6. Cai YD, Lu L, Chen L, He JF (2010) Predicting subcellular location of proteins

using integrated-algorithm method. Molecular Diversity 14: 551–558.

7. Chou KC, Shen HB (2008) ProtIdent: A web server for identifying proteases and

their types by fusing functional domain and sequential evolution information.

Biochem Biophys Res Comm 376: 321–325.

8. Cai YD, Liu XJ, Xu X, Zhou GP (2001) Support vector machines for predicting

protein structural class. BMC bioinformatics 2: 3.

9. Chou KC, Shen HB (2007) Signal-CF: a subsite-coupled and window-fusing

approach for predicting signal peptides. Biochem Biophys Res Comm 357:

633–640.

10. Chou KC (2011) Some remarks on protein attribute prediction and pseudo

amino acid composition (50th Anniversary Year Review). Journal of Theoretical

Biology 273: 236–247.

11. Sharan R, Ulitsky I, Shamir R (2007) Network-based prediction of protein

function. Molecular systems biology 3: 88.

12. Huang T, Shi XH, Wang P, He Z, Feng KY, et al. (2010) Analysis and

prediction of the metabolic stability of proteins based on their sequential

features, subcellular locations and interaction networks PLoS ONE 5: e10972.

13. Hu L, Huang T, Shi X, Lu WC, Cai YD, et al. (2011) Predicting functions of

proteins in mouse based on weighted protein-protein interaction network and

protein hybrid properties. PLoS ONE 6: e14556.

14. Karaoz U, Murali TM, Letovsky S, Zheng Y, Ding C, et al. (2004) Whole-

genome annotation by using evidence integration in functional-linkage networks.

Proc Natl Acad Sci U S A 101: 2888–2893.

15. Chou KC, Shen HB (2010) A new method for predicting the subcellular

localization of eukaryotic proteins with both single and multiple sites: Euk-

mPLoc 2.0 PLoS ONE 5: e9931.

16. Wu ZC, Xiao X, Chou KC (2011) iLoc-Plant: a multi-label classifier for

predicting the subcellular localization of plant proteins with both single and

multiple sites. Molecular BioSystems 7: 3287–3297.

17. Chou KC, Wu ZC, Xiao X (2012) iLoc-Hum: Using accumulation-label scale to

predict subcellular locations of human proteins with both single and multiple

sites. Molecular Biosystems 8: 629–641.

18. Chou KC, Shen HB (2007) Review: Recent progresses in protein subcellular

location prediction. Analytical Biochemistry 370: 1–16.

19. Kuhn M, von Mering C, Campillos M, Jensen LJ, Bork P (2008) STITCH:

interaction networks of chemicals and proteins. Nucleic Acids Res 36:

D684–688.

20. Chou KC, Forsen S (1980) Graphical rules for enzyme-catalyzed rate laws.

Biochemical Journal 187: 829–835.

21. Zhou GP, Deng MH (1984) An extension of Chou’s graphic rules for deriving

enzyme kinetic equations to systems involving parallel reaction pathways.

Biochemical Journal 222: 169–176.

22. Chou KC (1989) Graphic rules in steady and non-steady enzyme kinetics.

Journal of Biological Chemistry 264: 12074–12079.

23. Chou KC (1990) Review: Applications of graph theory to enzyme kinetics and

protein folding kinetics. Steady and non-steady state systems. Biophysical

Chemistry 35: 1–24.

24. Althaus IW, Gonzales AJ, Chou JJ, Diebel MR, Chou KC, et al. (1993) The

quinoline U-78036 is a potent inhibitor of HIV-1 reverse transcriptase. Journal

of Biological Chemistry 268: 14875–14880.

25. Chou KC, Kezdy FJ, Reusser F (1994) Review: Steady-state inhibition kinetics

of processive nucleic acid polymerases and nucleases. Analytical Biochemistry

221: 217–230.

Table 3. A comparison between the similarity-based method
(Eq.10) and the interaction-based method (Eq.6) in identifying
the 2,138 drugs in the S(izs) dataset (cf. Supporting
Information S2).

Prediction order Similarity-based Interaction-based Difference

1 40.36% 67.40% 27.04%

2 13.89% 21.09% 7.20%

3 9.17% 13.47% 4.30%

4 5.99% 7.16% 1.17%

5 3.32% 4.91% 1.59%

6 2.76% 3.46% 0.70%

7 0.65% 1.54% 0.89%

8 0.23% 0.75% 0.52%

9 0.09% 0.75% 0.66%

10 0.05% 0.56% 0.51%

11 0.05% 0.09% 0.04%

12 0.00% 0.33% 0.33%

13 0.09% 0.09% 0.00%

14 0.05% 0.05% 0.05%

doi:10.1371/journal.pone.0035254.t003

ATC Classification of Drugs

PLoS ONE | www.plosone.org 6 April 2012 | Volume 7 | Issue 4 | e35254



26. Andraos J (2008) Kinetic plasticity and the determination of product ratios for

kinetic schemes leading to multiple products without rate laws: new methods
based on directed graphs. Canadian Journal of Chemistry 86: 342–357.

27. Chou KC (2010) Graphic rule for drug metabolism systems. Current Drug

Metabolism 11: 369–378.
28. Zhou GP (2011) The disposition of the LZCC protein residues in wenxiang

diagram provides new insights into the protein-protein interaction mechanism.
Journal of Theoretical Biology 284: 142–148.

29. Chou KC, Lin WZ, Xiao X (2011) Wenxiang: a web-server for drawing

wenxiang diagrams. Natural Science 3: 862–865.
30. Zhou GP (2011) The Structural Determinations of the Leucine Zipper Coiled-

Coil Domains of the cGMP-Dependent Protein Kinase I alpha and its
Interaction with the Myosin Binding Subunit of the Myosin Light Chains

Phosphase. Proteins & Peptide Letters 18: 966–978.
31. Hattori M, Okuno Y, Goto S, Kanehisa M (2003) Development of a chemical

structure comparison method for integrated analysis of chemical and genomic

information in the metabolic pathways. Journal of the American Chemical
Society 125: 11853–11865.

32. Jaccard P (1912) THE The Distribution of the Flora in the Alpine Zone. 1. New
Phytologist 11: 37–50.

33. Watson GA (1983) An algorithm for the single facility location problem using the

Jaccard metric. SIAM Journal on Scientific and Statistical Computing 4:
748–756.

34. Chou KC, Zhang CT (1995) Review: Prediction of protein structural classes.
Critical Reviews in Biochemistry and Molecular Biology 30: 275–349.

35. Chou KC, Shen HB (2008) Cell-PLoc: A package of Web servers for predicting
subcellular localization of proteins in various organisms (updated version: Cell-

PLoc 2.0: An improved package of web-servers for predicting subcellular

localization of proteins in various organisms, Natural Science, 2010, 2, 1090–
1103). Nature Protocols 3: 153–162.

36. Esmaeili M, Mohabatkar H, Mohsenzadeh S (2010) Using the concept of
Chou’s pseudo amino acid composition for risk type prediction of human

papillomaviruses. Journal of Theoretical Biology 263: 203–209.

37. Georgiou DN, Karakasidis TE, Nieto JJ, Torres A (2009) Use of fuzzy clustering

technique and matrices to classify amino acids and its impact to Chou’s pseudo
amino acid composition. Journal of Theoretical Biology 257: 17–26.

38. Chou KC, Wu ZC, Xiao X (2011) iLoc-Euk: A Multi-Label Classifier for

Predicting the Subcellular Localization of Singleplex and Multiplex Eukaryotic
Proteins. PLoS One 6: e18258.

39. Mohabatkar H, Mohammad Beigi M, Esmaeili A (2011) Prediction of GABA(A)
receptor proteins using the concept of Chou’s pseudo-amino acid composition

and support vector machine. Journal of Theoretical Biology 281: 18–23.

40. Chou KC, Shen HB (2010) Plant-mPLoc: A Top-Down Strategy to Augment
the Power for Predicting Plant Protein Subcellular Localization. PLoS ONE 5:

e11335.
41. Wu ZC, Xiao X, Chou KC (2012) iLoc-Gpos: A Multi-Layer Classifier for

Predicting the Subcellular Localization of Singleplex and Multiplex Gram-
Positive Bacterial Proteins. Protein & Peptide Letters 19: 4–14.

42. Gu Q, Ding YS, Zhang TL (2010) Prediction of G-Protein-Coupled Receptor

Classes in Low Homology Using Chou’s Pseudo Amino Acid Composition with
Approximate Entropy and Hydrophobicity Patterns. Protein & Peptide Letters

17: 559–567.
43. Lin J, Wang Y (2011) Using a novel AdaBoost algorithm and Chou’s pseudo

amino acid composition for predicting protein subcellular localization. Protein &

Peptide Letters 18: 1219–1225.
44. Mohabatkar H (2010) Prediction of cyclin proteins using Chou’s pseudo amino

acid composition. Protein & Peptide Letters 17: 1207–1214.
45. Xiao X, Wu ZC, Chou KC (2011) iLoc-Virus: A multi-label learning classifier

for identifying the subcellular localization of virus proteins with both single and
multiple sites. Journal of Theoretical Biology 284: 42–51.

46. Lin WZ, Fang JA, Xiao X, Chou KC (2011) iDNA-Prot: Identification of DNA

Binding Proteins Using Random Forest with Grey Model. PLoS ONE 6:
e24756.

47. Wang P, Xiao X, Chou KC (2011) NR-2L: A Two-Level Predictor for
Identifying Nuclear Receptor Subfamilies Based on Sequence-Derived Features.

PLoS ONE 6: e23505.

ATC Classification of Drugs

PLoS ONE | www.plosone.org 7 April 2012 | Volume 7 | Issue 4 | e35254


