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Abstract

Infectious diseases can be considered to spread over social networks of people or animals. Mainly owing
to the development of data recording and analysis techniques, an increasing amount of social contact data
with time stamps has been collected in the last decade. Such temporal data capture the dynamics of social
networks on a timescale relevant to epidemic spreading and can potentially lead to better ways to analyze,
forecast, and prevent epidemics. However, they also call for extended analysis tools for network
epidemiology, which has, to date, mostly viewed networks as static entities. We review recent results of
network epidemiology for such temporal network data and discuss future developments.

Introduction
Infectious diseases are a major threat to public health—
estimated to account for 43% of the global burden of
disease (where the burden of health is measured in the
number of years of healthy life lost http://www.who.int/
trade/glossary/story036/en/). To mitigate their spreading,
we need to understand pathogenesis, environmental
factors, and the social structure of contagion. Network
theory has become a valuable framework to study the last
one—the role of the contact patterns in epidemics. Social
networks among individuals (i.e. humans and animals), as
the one shown in Fig. 1 affect the possibility, extent, and
speed of epidemic spreading. Lately, contact pattern data
with precise temporal information of the contacts (i.e.,
timing and duration of contacts) between individuals have
been collected in various situations. The aim in this report
is to discuss the relevance of such data, collectively called
the temporal networks [1,2], to theoretical epidemiology.

Network epidemiology has proved an indispensable
approach for understanding epidemics of infectious dis-
ease, often acknowledged in medical epidemiology, math-
ematical biology, andmore recently network science [3-15].
A recent practical example of network epidemiology is the

GLEAMviz platform that succeeded in forecasting the 2009
H1N1 pandemic [16] (also see [17,18]). An implicit
assumption behind most network epidemiology studies is
that a link (i.e., contact) between two individuals is an
incessant pathway for contagion. This is clearly a strong
simplification of reality. In fact, data possessing precise
temporal information of the events of a (potentially
contagious) contact between individuals, collected from
humans and other animals, are available nowadays. In a
temporal network approach to such datasets, we view a link
as dynamic entity and assume that contagion can occur
only inside the time window in which the two individuals
interact. With this view in mind, the static approach of
network epidemiology may miss a great deal of what is
happening in reality.

An early example of such temporal network epidemiology
is found in the analysis of sexually transmitted infections
(STIs). First of all, STIs lend themselves naturally tonetwork
epidemiological approaches because a contact is well-
defined and in many cases stable on the timescale of the
epidemics. In a conventional survey, one asks respondents
about the sexual partners over some certain time frame,
often spanning several years, to generate a static sexual
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contact network [19-22]. However, if we consider the
temporal aspect of contacts of a given individual, a disease
can be transmitted fromanold partner to a newpartner, via
the focal individual, but not vice versa [21,23-25]. An early
attempt to account for the difference between sexual
contact patterns—like people being serial monogamists
or having concurrent partnerships—was the concurrency
measure proposedbyKretzschmar andMorris [26,27]. This
measure is based on the network of contacts that have
happened by a given time. Because the concurrency
measure is based on a network of accumulated contacts,
it does not incorporate all the temporal information that a
temporal network could. Nevertheless, the philosophy
behind it rests on a temporal network thinking and thus
Kretzschmar and Morris‘s work is a precursor of temporal
network epidemiology.

As mentioned above, these days we have access to an
increasing amount of temporal network data. The most
common instance is data of online social contacts [28-31],
although it is perhaps not directly related to epidemic
spreading (other than computer and email viruses).

Another temporal network data source of human com-
munication that people have investigated ismobile phone
calls [25,32-37]. Yet more relevant, as it logs actual
physical proximity (and thus potential disease-spreading
events), is data recorded from humans wearing Bluetooth
sensors of mobile phones [38-40], Radio-Frequency
Identification Devices [41,42], and infrared modules
[43-46]. In particular, the SocioPatterns project (http://
www.sociopatterns.org/) [41,42] collected data from a
community hospital [47] and a primary school [48],
where epidemic spreading is an important issue. On a
slower timescale, airport networks, which mediate global
epidemic outbreaks, are also dynamic [49]. Pertaining
to infections of animals, data obtained from, for example,
sheep [50], cattle [51-53], ants [54], and zebra [55] have
been analysed in different contexts. As mentioned, this
is probably only the beginning—we will have access to an
increasing number of such temporal network datasets in
the near future. Then, we will also need a temporal
network approach to understand the role of contact
patterns in epidemics. By exploiting the information in
temporal networks, we can better describe, predict, and

Figure 1. Example network

The network of sexual contacts between Icelandic men. Data from [19]. More specifically, this is the network of contacts confirmed by both the actors.
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control epidemics than by only relying on static-network
epidemiology. Essentially, ignoring temporal correlations,
as a static network approach does, can lead to an over- or
underestimation of the speed and extent of an outbreak.
Notwithstanding, temporal-network epidemiology, both
analytical and computational, is still in its infancy, and
more powerful methods are urgently needed. We will
expand on this topic and discuss emergent issues and
unsolved problems. We focus on the following two
specific problems in this report.

Effects of temporal networks on epidemic spreading and
the need of developing analysis methods
Recent analysis, mainly numerical, showed that statistics of
outbreaks (such as their final size and speed of spreading)
differ considerably between empirical temporal networks
and corresponding static networks. However, how and
when they are different is not sufficiently understood. We
describe the results of some key studies, compare them,
and identify the problems inherent in the current temporal
network approaches to epidemics.

Disease prevention methods
A basic issue in epidemiology, both in theory and practice,
is to develop methods to mitigate disease spreading by
immunizing individuals or restrict their interaction with
others. By exploiting temporal information of the contacts,
it may be possible to contrive disease prevention strategies
that outperform existing ones. We describe very recent
approaches in this direction (there are only a few papers
though) and suggest where this kind of study should be
directed.

Our main thesis is that the use of temporal contact
networks makes it possible to better describe, predict,
and control epidemic spreading in many practical situa-
tions. In the first main section, we describe temporal
networks and illustrate differences between them and the
conventional static networks. In the second main section,
we briefly introduce mathematical epidemic models that
are often used in theoretical and numerical studies of
epidemic spreading on networks. The third main section
describes recent results on epidemic spreading on tem-
poral networks. The fourth main section is devoted to
(preliminary studies of) prevention measures on temporal
networks. Finally, we will discuss unsolved issues and
future directions.

Temporal networks
From a static social-network viewpoint, a link between a
pair of individuals usually indicates that the two
individuals interact at least oncewithin a sampling period.
The collection of links and the participating individuals
form a network (Fig. 1 shows an example). Epidemic

spreading on networks has been an intensively investi-
gated topic involving different research fields [3-15]. In
this section, we will discuss some interesting examples.

The temporal network is an emerging modelling frame-
work for understanding epidemic spreading on social
networks [1,2]. The “atoms”makingupa temporal network
are the contacts (sometimes called events). A contact is the
interaction between two individuals such that a disease can
spread from one to another. The contact is either treated as
lasting for a certain amount of time or as instantaneous.
A link may contain multiple contacts between the same
pairs of individuals occurring at different times. In fact,
different contacts on the same link may have different
impacts on dynamics on networks and hence on epidemic
spreading [46]. In addition to the time, the duration of
contact is an important component of a temporal network
that affects epidemic spreading. Peer-to-peer infection
would occur if the contact has a long duration.

An example of a temporal network is depicted in Fig. 2(A)
and even this small example clearly shows the impor-
tance of considering how networks vary with time. In
Fig. 2(A), an infectious diseasemay spread from individual
A to D via B. However, the converse cannot occur. This is
because there is at least one “temporal path” from A to D
but not vice versa [1,56-58].

If we disregard the timing information in the temporal
network shown in Fig. 2(A), we obtain the static,
aggregated network shown in Fig. 2(B). If we simulate
an outbreak on the aggregated network, a chain of
infection from A to D may occur, and vice versa. This is
because the static network shown in Fig. 2(B) is undirected
(i.e., only bidirectional links are assumed), which
corresponds to the fact that the contacts in Fig. 2(A) are
implicitly assumed to be bidirectional. There is no way of
encoding all the information contained in Fig. 2(A) into
Fig. 2(B). The lesson here is that we may be misguided if
weonly use aggregated static networks.Onemay argue that
a real temporal network lastsmuch longer than that shown
in Fig. 2(A), so that temporal paths could exist between any
ordered pair of individuals to provide pathways for
pathogens. In fact, this is generally true. However, even in
such a case, the likelihood with which a chain of infection
from A to D occurs and that of the inverse chain (i.e. from
D to A) are usually different. Furthermore, the fact that
pathogens may mutate or other factors affecting the dis-
ease spreading may change on a fairly short timescale is a
reason to restrict the sampling time.

Another well-documented phenomenon that occurs in
real temporal networks and is relevant to epidemiology is
the “bursty” nature of events (i.e. a mixture of short and
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long intervals between contacts). In many types of
empirical data, the intervals between the contacts invol-
ving a certain pair of individuals follow a long-tailed
distribution [30,59,60], as shown in Fig. 3(A). Most such
inter-contact times are relatively short, but a few are very
long. In addition, successive inter-contact times are often
positively correlated. In contrast, an implicit but crucial
assumption underlying most theoretical and numerical
analysis of epidemic dynamics in well-mixed populations
and static networks is that inter-contact times obey an
exponential distribution without correlation between
different contacts. An example contact sequence generated
under this assumption is shown in Fig. 3(B). The two
sequences shown in Fig. 3 have the same number of
contacts. The sequence shown in Fig. 3(B) lacks bursts,
which contrasts with the sequence shown in Fig. 3(A),
which shows the bursty nature of real temporal network
data. The bursty nature of data may change the current
understanding of epidemic dynamics on networks [61].

Epidemiological models
The SIR model
Themathematical epidemiologicalmodel that is probably
the most widely used for theorizing about and emulating
epidemics is the so-called Susceptible-Infected-Recovered
(or, succinctly, the SIR)model [9,62-65]. In the individual-
based version of the SIR model, with which we are
concerned in the present report, each individual belongs to

either a susceptible (S), infected (I), or recovered (R) state
at any given time. The simplest version of the SIR model
without demographic factors is defined as follows.When a
susceptible individual and an infected individual interact,
the formermay be infected at an infection rate, denoted by
b (Fig. 4(A)). Precisely speaking, the susceptible individual
contracts infection with probability b Dt within a short
time intervalDt. With probability 1 – bDt, the susceptible
individuals stays in the susceptible state throughout the
intervalDt.Dt can be identified with a discrete simulation
time step. If a susceptible individual interacts with k
infected individuals at the same time, which is usually
assumed in the case of epidemic simulations on static
networks (see Fig. 4(B) for the case of k = 3), the susceptible
individual is infected with probability 1 – (1 – b Dt)k ≈ k
b Dt within small timeDt. The intervalDt is chosen to be
small enough tomake this probability sufficiently small, to
avoid the effect of time discretization. An infected
individual is assumed to recover with rate m, irrespectively
of the state (i.e., susceptible, infected, or recovered) of
other individuals in the neighborhood. In other words,
each infected individual transits to the recovered state with
probability mDt within timeDt.

In theSIRmodel, “R” corresponds to the recovered statewith
immunity. Therefore, once an individual has entered the
recovered state, the individual will never be infected again.
When the initial population is a mixture of susceptible and

Figure 2. Temporal network and its aggregated counterpart
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(A) Example temporal network with four individuals. (B) Aggregated static network corresponding to the temporal network shown in (A). The vertical
lines show contacts between pairs of individuals.
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Figure 3. Bursty nature of inter-contact times

(A) Contact sequence that obeys a long-tail distribution. We generated it based on the behaviour of a sex buyer [25]. (B) Contact sequence whose
inter-contact time distribution obeys an exponential distribution (i.e., Poisson process) with the same mean. The numbers of contacts in the two
sequences are equal to each other.

Figure 4. SIR model

susceptible (S)

infected (I)
recovered (R)

infection

recovery µ

(A) (B)

(A) Schematic of infection and recovery in the SIR model. Infection occurs at rate b per contact and recovery occurs at rate m. (B) The rate at which
the susceptible individual is infected is proportional to the number of infected neighbors in the SIR model.
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infected individuals (usually the number of infected indivi-
duals is initially set to one for modelling purposes), the SIR
dynamics stops with amixture of susceptible and recovered
individuals. Then, the final number of the recovered
individuals is called the final (epidemic) size and represents
the total damage to the population caused by an epidemic
wave. Mathematically, the “R” state can also signify death if
the rate of encounters that an individual makes with other
individuals is independent of the population size; the dead
individual does not infect anybody and is not infected by
anybody, which is functionally equivalent to a recovered
and immune individual. For this reason, the SIR model is
widely used to represent infectious diseases in which one-
shot epidemic waves can occur and the mortality is high or
the recovery implies immunity. Examples include influenza,
SARS, measles, and mumps.

An important contribution ofmathematical epidemiology
to medicine is the concept of basic reproduction number
and epidemic threshold [5,9,64]. The basic reproduction
number, conventionally denoted by R0, is the expected
number of secondary infections of an infected individual
in a population of all susceptible individuals. If R0 exceeds
unity, the epidemics can spread to a finite fraction of the
population, meaning that epidemic spreading is a thresh-
old phenomenon. The epidemic threshold is equivalent to
R0 = 1, where R0 = bk/m. Many studies have measured R0
for different diseases and societies even though it is only
directly related to an epidemic threshold in the context of
the well-mixed SIR model. In temporal networks both the
temporal structure and the network topology can move
the threshold away from R0 = 1.

The SEIR model
To explore more realistic models, one often uses exten-
sions and variants of the SIR model, generally termed
compartmental models [5,9,64]. One such example is
the susceptible-exposed-infected-recovered (SEIR) model,
whereby a new state “E” (for exposed) is added between
susceptible and infected. The interaction between suscep-
tible and infected individuals causes the former to transit
to the latent exposed state. An exposed individual is
infected but not infectious. After staying in the exposed
state for some time, the exposed individual transits to the
infected state to be able to infect others.

The SI model
For theoretical purposes, the susceptible-infected (SI)
model is also used. The SI model is unrealistic in that an
individual stays in the I state forever, but it captures the
incipient stage of an outbreak. The SI model is devoid of
the R state. Therefore, if there is at least one infected
individual in the population, the SI dynamics necessarily
ends up with the entire infected population. The SI model

is used to investigate transient dynamics, in particular, the
speed of infection in the initial and middle stages of
epidemic spreading. For example, the analysis of the SI
model on static networks revealed that the initial epidemic
spreading is faster when the individuals have different
numbers of contacts; (see Fig. 1 for an example) than
when they all have the same number of contacts [66,67].
When infected individuals are rare in an early stage, the SI
and SIR models behave almost the same because there are
few recovered individuals.

Epidemic spreading on temporal networks
In this section, we describe the main findings regarding
epidemic spreading on temporal networks. Explanation
of this important topic has only recently started using a
combination of real data, numerical simulations, and
theory. A major research strategy for now is to compare
the results (e.g. final size and spreading speed) obtained
for temporal networks with those for randomized
networks. Randomized networks are temporal or static
networks generated by randomizing the original tem-
poral networks, with some of the properties of the original
networks conserved. A network obtained by randomi-
zing the times of each contact is such an example. This
randomization preserves the number of contacts on each
link and the structure of the aggregated network,whereas it
destroys the temporal structure of the contact sequence on
each link. Randomized networks serve as null models.
If epidemic spreading is different between the original and
randomized networks, we can infer the properties of
temporal networks that are responsible and those that are
not responsible for the observed difference [2].

In the following, we will introduce the results obtained
in the last few years. We note that the fact that temporal
network effects influence epidemic spreading has been
recognized longer than this, see e.g. [26,27,50,52,68-71].
However, systematically exploring different effects of
temporal networks, or the corresponding aggregated net-
works, on epidemic spreading is a more recent theme. We
survey some key studies that explored effects of temporal
networks on the final size and time evolution of epidemic
spreading. In order not to digress from the main points, we
donotmentionother aspects (e.g., temporal networks yield
longer persistence of infection than the aggregated network
in late stages of spreading [61,72-74]). We also briefly
mention mathematical modelling (see [75] and references
therein).

Karsai et al. numerically simulated the deterministic SI
dynamics on the temporal network data of phone calls
between people [76]. By the deterministic SI dynamics,
we mean that in this model a contact between a pair of a
susceptible individual and an infected individual always
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causes infection; this assumption reduces the number of
parameters to be investigated. The mobile phone data
contain about 4.5 million individuals, 9 million links,
and 31 million events (i.e. phone calls). They compared
transient spreading dynamics in temporal networks and
that in randomized networks, whereby their different
randomization methods destroy temporal structure of
the data to different extents. The authors showed that
epidemic spreading slows down on temporal networks
compared with different randomized networks. They also
corroborated their results with two other datasets, but
without going into so much detail as the phone-call data.
Similar conclusions are supported by their follow-up
study [77], an approach based on the so-called average
temporal path length [58], and different numerical
simulations of the susceptible-infected-susceptible (SIS)
model (whereby the recovered individual turns back to
the susceptible state and is possibly reinfected, represent-
ing endemic diseases) on artificial temporal network
data [78]. In contrast, Rocha et al. [79] observed that
randomizing the time stamps sped up disease spreading
in a network of sexual contacts between prostitutes and
their sex buyers. The cause of this difference is still an
open question. One hypothesis to be tested is that while
the links of the dataset analysed in [76,77] are typically
active throughout the sampling time, the links in Rocha
et al.‘s data last only for a short period (still, within this
period, the contacts can be bursty as seen in Fig. 3(A)).
An interesting general question is to identify temporal
network structure that speeds up or slows down disease
spreading. The results in [58], with a dataset different from
the one analysed in [76,77], also suggest that the temporal
nature of networks enhances rather than suppresses
epidemic spreading (figure 6b in [58]). Also in a variant
of the SI model, in which multiple infection attempts by
infected individuals within a short time is necessary for a
susceptible individual tobe infected, epidemic spreading is
more facilitated by empirical temporal structure compared
to randomized reference data [80].

Miritello et al. numerically investigated stochastic SIR
dynamics with a fixed recovery time on a mobile phone
dataset containing 20 million individuals [37]. They
observe that, when the per-contact infection probability
(corresponding to infection rate b shown in Fig. 4(A)) is
large, the final size of the infected population for the tem-
poral network data is smaller than that for the randomi-
zed temporal network, consistent with the results in [76].
Because of the bursty nature of the data (Fig. 3(A)), newly
infected individuals have to wait longer for the next
encounter with a susceptible individual, which opens a
pathway for infection. Therefore, the authors conclude, a
global outbreak is suppressed on this type of temporal
network structure [37]. This mechanism should be

common to the system studied in [76]. In contrast, at
small per-contact infection probabilities, where the final
size of the infected population is presumably small,
temporal networks yield a larger final size than the
randomized networks do. Different numerical simulations
with the SI model support similar conclusions [81].
Miritello et al. [37] conclude that group conversation
contacts (i.e., correlations between the contact sequences of
adjacent links–see Fig. 5–which are also treated in [77])
inherent in the data are responsible for the promotion of
local contagion at a low per-contact infection probability.
Because of the correlated occurrence of the contacts on
adjacent links, a newly infected individual tends to meet a
susceptible “prey” sooner in the original temporal network
than in the case of the randomized networks.

Stehlé et al. investigated stochastic SEIR epidemics on the
temporal network recorded in a two-day medical con-
ference [82]. They numerically showed that the final size
of the infected population does not differ between the
original temporal network and the aggregated network.
The origin of the discrepancy in the results in different
studies is unclear. Evenmathematical analysis of epidemic
spreading models with dynamic contacts (without using
real data) yields opposite results. In a model based on
the SIR dynamics, temporal dynamics of links speeds up
epidemic spreading [83], whereas another SIS-based
model with dynamic contact changes concludes the
converse [84].

Prevention of epidemic spreading using
temporal networks
One potentially important application of temporal
network studies is to construct efficient immunization
protocols. Faced with an evolving outbreak, society
might only have resources to produce a limited amount
of vaccine. This might not be such a big problem in
practice because only a fraction of individuals in a
population needs to be immunized for stopping
epidemics (in other words, to achieve herd immunity).

Figure 5. Correlated contact sequences on adjacent links

time

C

B

A

A

The contact times on two adjacent links (i.e., two links sharing an individual –
in this case “A”) are often correlated with each other.
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Mathematically we can phrase the problem as “how can
we immunize a given fraction of the population to
mitigate the disease as effectively as possible?” Two
things are important to understand in coping with the
immunization problem.

Firstly, in practice, we can only use local information. In
other words, we can obtain information about specified
individuals and their experience, but hardly map out all
contacts of the entire population. In [85], Cohen et al.
proposed an elegantmethod for static networks where one
picks individuals at random, asks them to name an
acquaintance that they meet regularly (such that the
disease can be transmitted from one to the other), and
immunize the acquaintance.With this procedure, so-called
the neighbor immunization (sometimes, this procedure is
known as ring vaccination, but this terminology is not
always consistent), the probability of immunizing indivi-
duals with many network neighbors—obviously impor-
tant for preventing disease spreading—increases.

Secondly, the immunization problem would benefit
from accurately predicting future contacts and is there-
fore a temporal problem. Therefore, temporal informa-
tion can be exploited in containing an outbreak. To this
end, Lee et al. [86] extended the neighbor immunization
protocol for static networks [85] to temporal networks.
One of their protocols works by asking a randomly
chosen individual to name the acquaintance that he or
she met most recently. Lee et al. showed that this
protocol outperforms the standard neighbor immuniza-
tion on several empirical temporal networks [86].

In the context of mobile phone malware epidemics, Tang
et al. examined a containment strategy based on
temporal networks [87]. Their intervention method was
to propagate a patch message, the reception of which
immunized a mobile phone against the malware. In the
context of infectious disease spreading of humans, this
protocol would be analogous to word-of-mouth type
information spreading combined with voluntary means
of lowering the probability of acquiring the infection,
such as vaccination, pre-exposure prophylaxis [88], use of
condoms, and hand washing. They showed that the
so-called temporal closeness centrality, which is a score
calculated for each node and intuitively quantifies the
abundance of epidemic pathways from/to the node, is an
efficient measure for prioritizing the mobile phones into
which the patch message is injected.

We are not aware of other immunization methods that
exploit both the network topology and the temporal
structure of contacts. As the studies mentioned above
suggest, exploiting temporal information likely leads to

improvement of network-based immunization protocols.
This idea is currently an understudied question. Various
link-prediction techniques, in which occurrence of con-
tacts in the future is predicted based on the temporal
network data at hand [89-91], may offer a promising
approach to this problem.

What does the future hold?
The results of studying disease spreading and its preven-
tion on temporal networks seem to be model dependent.
In addition, they are likely to also depend on datasets.
So far, most studies have employed different models and
datasets and this complicates the comparison between
different studies and any comprehensive understanding
of them. To better understand and intervene in epidemic
spreading using temporal networks, we need a more sys-
tematic comparison across different epidemic models and
datasets. To this end, platforms that make network data
available for academic researchers are very valuable. Some
projects generously make their data, including tempo-
ral network data, open for academic use (e.g. Socio
Patterns project http://www.sociopatterns.org/datasets/
and Stanford Large Network Data Collection http://snap.
stanford.edu/data/).

Other future challenges include exploring the intersec-
tion between temporal networks and metapopulation
networks. The metapopulation network is a modeling
framework in which a node (called the metapopulation)
in a network is a place (like home, school, or workplace)
rather than an individual. Individuals move from one
metapopulation to another, and at the same time, disease
transmission can occur between individuals in the same
metapopulation. Such a framework has been investigated
in mathematical epidemiology for a couple of decades
[64, 92, 93], and more recent network epidemiology has
deepened the results and also established strong linkage
between data and models [15]. This framework was also
used by the GLEAMviz project to predict the H1N1 pan-
demic [16]. Human travel certainly has temporal compo-
nents [33, 94], and links of metapopulation networks
may also be dynamic, but on a slower timescale [49].
A recent study reports that introduction of dynamics to
links changes the final size of the SIR model on meta-
population networks [95]. Applying temporal network
analysis of epidemic spreading to metapopulation net-
works may thus be a fruitful direction to take.

Related to the intersection between the metapopulation
framework and temporal networks is the analysis of the
effects of travel restriction. A majority of such studies,
many of which are based on metapopulation networks,
suggest that travel restriction is a poor strategy to contain
epidemic outbreaks [96-103]. There are, however,
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dissonant results that find travel restriction effective
[103,104]. Traveling is a highly temporal phenomenon,
such that travel restriction implemented at right
moments of time may be effective in containing epi-
demic spreading.

It may also be an important question to determine the
equivalent of the basic reproduction number R0 and
epidemic threshold for temporal networks. It is recently
debated that R0 is misused in situations to which its
original definition does not apply or when its reliable
estimation is difficult in practice [65,105-107]. Another
interesting question may be what the traditional basic
reproduction number tells us about outbreaks in
temporal networks. Even more fundamental perhaps, it
would be interesting to examine how much improve-
ment temporal-network methods can make on static-
network models in fitting to empirical outbreak data.

Another challenge for applications is to identify specific
pathogens and situations for which temporal network
approaches are useful. Although social contacts are
dynamic in general, analytical and computational
methods for static network epidemiology are more
powerful than those for temporal networks. Therefore,
we can be content with results derived from static
network epidemiology in the limit of slow network
dynamics relative to the epidemic dynamics. In contrast,
typical childhood diseases such as mumps, measles, and
pertussis can transmit infection upon short and non-
intense contacts between individuals, such that descrip-
tions under the temporal network framework may be
useful. Another possible example is foot-and-mouth
disease, which is highly contagious among livestocks
[108]. Contact patterns of livestocks such as cattle and
sheep form temporal networks because they move
among premises because of trading [50-53]. It could
furthermore be interesting to study improvements of
medical practice that today operate on the contact
network, such as contact tracing (where individuals
testing positive for a pathogen have to name their recent
contacts so that they can be called for testing). Perhaps
temporal-network methods can give improved estimates
of how far back in time it is necessary to pursue the
tracing.
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