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ABSTRACT: Protein−protein interactions (PPIs) are vital
to all biological processes. These interactions are often
dynamic, sometimes transient, typically occur over large
topographically shallow protein surfaces, and can exhibit a
broad range of affinities. Considerable progress has been made
in determining PPI structures. However, given the above properties, understanding the key determinants of their
thermodynamic stability remains a challenge in chemical biology. An improved ability to identify and engineer PPIs would
advance understanding of biological mechanisms and mutant phenotypes and also provide a firmer foundation for inhibitor
design. In silico prediction of PPI hot-spot amino acids using computational alanine scanning (CAS) offers a rapid approach for
predicting key residues that drive protein−protein association. This can be applied to all known PPI structures; however there is
a trade-off between throughput and accuracy. Here we describe a comparative analysis of multiple CAS methods, which
highlights effective approaches to improve the accuracy of predicting hot-spot residues. Alongside this, we introduce a new
method, BUDE Alanine Scanning, which can be applied to single structures from crystallography and to structural ensembles
from NMR or molecular dynamics data. The comparative analyses facilitate accurate prediction of hot-spots that we validate
experimentally with three diverse targets: NOXA-B/MCL-1 (an α-helix-mediated PPI), SIMS/SUMO, and GKAP/SHANK-
PDZ (both β-strand-mediated interactions). Finally, the approach is applied to the accurate prediction of hot-spot residues at a
topographically novel Affimer/BCL-xL protein−protein interface.

P rotein−protein interactions (PPIs) play a central regu-
latory role in the majority of cellular signaling processes.

Aberrant PPIs lead to disease and represent intervention points
for targeted therapeutics, motivating efforts to discover small-
molecule or peptide/peptidomimetic ligands.1−7 PPIs generally
occur between significantly larger and topographically
shallower surfaces than the lock-and-key-like pockets found
in conventional drug targets, for example, enzymes and
receptors, such as G-protein coupled receptors (GPCRs),
making PPIs a challenge for ligand discovery.2,5,8−12 Significant
recent successes, for example, ABT-19913 and RG7112,14 have
countered the perception that PPIs are undruggable. None-
theless, it is not clear which PPIs will be therapeutically
tractable and relevant to disease,15−17 a problem that may be
explored using chemical probes.18 In turn, this prompts the
question: which PPIs might feasibly be modulated with small
molecules or peptides/peptidomimetics? Though significant
progress has been made in structurally characterizing PPIs, in
order to understand the molecular basis of recognition it is also
necessary to establish the determinants of favorable interaction,

that is, which amino-acid residues contribute most to binding.
Such information is essential in understanding biological
mechanism, rationalizing dynamic conformational transitions,
interpreting the functional role of mutation, and identifying
starting points for inhibitor design.
Cunningham and Wells first used experimental alanine

scanning to map PPIs.19 In this approach, variant proteins or
peptides with Xaa-to-Ala mutations are used to evaluate the
role of each amino acid side chain in a PPI. Assuming the
absence of any changes in the backbone conformation of the
protein, the changes indicate the contribution that the side
chain makes to the binding free energy. Such studies have
established that the thermodynamic driving force for PPIs can
be dominated by a few key amino acid residues, termed hot-
spots20 or hot regions.21 This experimental approach has been
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widely applied,22 but it is time-consuming and difficult to
implement across entire protein−protein interactomes.23

Moreover, assay-dependent variations in binding affinities
make comparative analyses of the literature problematic.24

In silico methods can be implemented to predict hot-spot
residues from extant protein structures,24−28 and efforts have
been made to classify PPIs in the Protein Data Bank (PDB)29

by secondary or tertiary structure at the interfaces and to
predict hot-spot residues en masse.30−32 For computational
alanine scanning (CAS), the binding free energies for the
native and variant PPIs are calculated and the difference in
these two values (ΔΔG) is used to evaluate the participation of
the variant amino acid in the interface. Several approaches to
CAS have been based on classical molecular dynamics
simulations to capture the free energy change on amino acid
variation. These methods include: Free Energy Perturba-
tion,33−35 Thermodynamic Integration,34−36 the popular
hybrid MM/PBSA method37 that has recently been improved
by inclusion of interaction-entropy calculation,38 and by
localizing the simulation volume around the residue in
question.39 The Flex_ddG method in Rosetta28 uses a
combination of sophisticated Monte Carlo sampling, mini-
mization, and specialized force fields to provide one of the
most accurate current methods for CAS. We compare our new
fast approach, BudeAlaScan, with this method and other rapid
methods that use a variety of scoring functions, which fall
broadly into the following categories: physicochemical energy
functions or statistical functions. Examples currently accessible
via web servers include KFC,40 HotPoint,41 DrugScore-PPI,42

and PredHS.43 We chose FoldX44,45 as one of the first methods
for rapid computational alanine scanning using a physicochem-
ical force field, Rosetta Flex_ddG28 as the most recent tool
exploiting physicochemical energy terms, and BeAtMuSiC46

and mCSM47 as tools employing statistical potentials and
machine learning. We have avoided CAS methods that rely on
molecular dynamics simulations for conformational sampling
as being slow for high throughput calculations.
Typically, fast CAS methods operate on single structures and

thus do not account for protein dynamics. In some cases, the

methods can be, and have been, performed on multiple
structures,25,48−50 for example, from NMR ensembles or MD
trajectories. This is an important consideration given that
many PPIs exploit intrinsically disordered regions (IDRs)51

and transient or dynamic noncovalent contacts can play
important mechanistic roles in recognition.52,53 Here we
perform a comparative analysis of common fast tools for
CAS enabling informed consensus selection of hot-spot
residues. This is benchmarked against an extensive literature
data set and further validated through experimental analyses of
four diverse PPIs, for which further analyses of NMR
ensembles or molecular dynamics trajectories provides insight
on dynamics to identify bona f ide hot-spot residues.
FoldX is based on empirical potentials built from optimized

combinations of various physical energy terms.44,45 The
original Robetta method54 is a physical energy function
parametrized on a monomeric protein data set (Pro-
Therm).55,56 The Rosetta method used herein is Flex_ddG,
based on the ΔΔG monomer method, using both the current
general Rosetta force field,28 Ref2015, and the specialized force
field Talaris2014.28,57−59 BeAtMuSiC46 is a coarse-grained
predictor of changes in binding free energy induced by point
mutations and uses a set of statistical potentials derived from
known protein structures. The statistical potentials are trained
on data from ProTherm56 and validated using the SKEMPI
database.60 SKEMPI is a database of 3047 binding free energy
changes upon mutation collated from the literature, for PPIs
with known structure. In this study, we used all the ΔΔG data
for the 748 single mutations to alanine present in the SKEMPI
database that were compiled, ratified, and published recently.26

The method mCSM47 describes the protein environment upon
mutation using signature vector patterns for each amino acid
and was trained and tested on SKEMPI.60 Finally,
BudeAlaScan, which we introduce here, is an empirical free-
energy approach adapted from a small-molecule-docking
algorithm, BUDE,61 using the standard force field (version
heavy_by_atom_2016.bhff) provided with the current BUDE
release 1.2.9. BudeAlaScan is a command-line application
where the user assigns each protein of the complex as the

Figure 1. Schematic overview of approach for experimentally validated predictive alanine scanning using different methods. Different structural
starting points can be used (single structure, black; NMR ensemble, blue; MD ensemble, orange) together with different in silico hot-spot residue
prediction tools. Users can navigate through this workflow in different ways according to their requirements.
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receptor and the ligand. The application varies the ligand
residues for alanine and reports the interfacial ΔΔG as ΔGALA

− ΔGWT (hence a hot residue will have a positive value). For
residues in the wild-type complex that may carry a charge
(types DERKH) a rotamer library is used to estimate and
account for the configurational entropy loss on forming an
interfacial salt bridge. We will make a web-based graphical user
interface available for BudeAlaScan in due course. All our
selected tools for this comparison could be used to perform
calculations on the SKEMPI data set or had been trained on
this data set, further supporting our choice of in silico tools.
To compare the predictive capability of the five methods

further, we perform detailed experimental analyses from the
predictions on three diverse PPI targets: (i) the NOXA-B/
MCL-162 interaction, an important current target in oncol-
ogy;63 (ii) the SIMS/SUMO64 interaction, representative of a
number of regulatory PPIs that depend on the SUMOylation
post-translational modification;65 (iii) the GKAP/SHANK-
PDZ interaction,66 which performs a scaffolding function at
synaptic junctions.67 Example i is an α-helix-mediated PPI,
while examples ii and iii are both β-strand-mediated

interactions. Thus, these provide diversity in secondary
structure interfaces and biological functions. Comparison of
predicted and experimental data reveals that averaging the
ΔΔG values for each residue across the five methods leads to
more accurate prediction than any single method alone.
Finally, we present further support for the implementation of
this approach through prediction of hot residues for a
topographically novel Af f imer/BCL-xL PPI in which two
loops project into a hydrophobic cleft. This allowed selection
of a minimal number of residues that were experimentally
validated.

■ RESULTS AND DISCUSSION

Scope of the Methods. The CAS methods used here
process structure types differently, that is, single X-ray crystal
structures, NMR ensembles, MD trajectories. Figure 1
illustrates the capabilities of each in silico prediction tool and
how structures are processed (see also Table S1 and
Computational Methods in Supporting Information (SI)).
BudeAlaScan is the only tool that allows processing of

Figure 2. Comparison of experimental (SKEMPI) and predicted ΔΔG values for different prediction tools: (a−f) correlation plots (solid line is the
1:1 correlation) for predicted versus experimental ΔΔG for each of (a) BudeAlaScan, (b) FoldX, (c) Flex_ddG Talaris, (d) Flex_ddG Ref2015, (e)
BeAtMuSiC, (f) mCSM, (g) Average, (h) Fraction Correct overall, and (i) Fraction Correct by residue type. Data for panels c and d are taken from
Barlow et al.28 and plotted assuming 1 REU = 1 kcal/mol.
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structure ensembles and scanning of multiple mutations to
alanine at a time (i.e., hot-residue clusters).
Different in Silico Prediction Tools Function in

Different Ways and Provide Varying Results. First, we
compared the results of alanine scanning on the SKEMPI data
set for each of the tools, focusing on PPIs with natural amino
acids and without post-translational modifications. Data for
FoldX, mCSM, BeAtMuSiC, and BudeAlaScan were calculated
in-house, while data for the Rosetta ddG methods were taken
from the literature.28,46 This analysis took 8 min for FoldX, 5
min for BudeAlaScan, and 1−2 h per amino acid variation for
Rosetta Flex_ddG on a single core of a linux X86_64
workstation running at 3.5 GHz. The Pearson correlation
coefficient between the computed and experimental data in
Figure 2 are given in Table 1.
The predictive performance of BudeAlaScan is comparable

with Rosetta Flex_ddG and BeAtMuSiC. mCSM outperforms
the physicochemical based methods, but it should be
emphasized that this machine-learning approach is trained on
the SKEMPI data it is fitting. Classifying the SKEMPI data as
being positive (a hot residue) ΔΔG ≥ 4.184 kJ/mol, neutral
(little effect) 4.184 kJ/mol < ΔΔG > −4.184 kJ/mol, or
negative (affinity enhancing) ΔΔG ≤ −4.184 kJ/mol allows
the determination of the fraction of correct predictions (FC).
These results vary across the series (FC 0.51−0.78, see Figure
2h and Tables S2 and S3), although crucially different residues
are correctly or incorrectly predicted from tool to tool.
Calculating the fraction correct within each of these three
categories (positive, neutral, and negative, Supporting
Information, see Figure S1) reveals that the accuracy in
correctly predicting a hot-residue decreases for all methods
(FC ≈ 0.6) with FoldX performing least well. Conversely, the
accuracy in predicting neutral residues increases for all
methods (FC ≈ 0.8) apart from FoldX. There are only four
negative examples in the SKEMPI set where mutation to
alanine improves binding, and only FoldX predicts 2 of these,
albeit in the context of many false negative predictions.

BudeAlaScan uses a set of side-chain rotamers to estimate the
configurational entropy loss on forming interactions involving
DERKH residues and a fixed backbone. FoldX performs a local
side-chain relaxation and Rosetta Flex_ddG allows local
backbone and side-chain sampling. When operating on a
single structure, none of the methods has sufficient conforma-
tional sampling, consideration of dynamics, or explicit
solvation to provide the accuracy that might be achieved
through more computationally intensive methods.26,28,40−47

PPI’s may possess interfaces where the binding energy is
evenly distributed across the surface or concentrated in a few
hot residues or regions. Prediction of the most influential
residues in the former case is likely to be hampered by the
accumulation of systematic errors. Thus, when using a single
method, it is necessary to exercise caution in prioritizing one
predicted residue over another based on the magnitude of its
predicted ΔΔG.

Comparison of Computational and Experimental
Alanine Scanning for Three Representative PPIs. While
the SKEMPI data set provided an extensive set of data from
the literature, as noted previously this is drawn from multiple
different studies exploiting different assay methods, motivating
our choice to supplement our comparative analysis with high-
quality in-house experimental data. For comparison between
prediction and experiment, we focused on protein/peptide
interactions for several reasons: (1) peptide interacting motifs
(PIMS)68 play a crucial role in many PPIs and are known to be
effective starting points69 for chemical probe discovery
campaigns; (2) a significant proportion of structures in the
PDB are protein/peptide interactions with the peptide excised
from the full-length protein; (3) ease of preparation/
purification and standard N-terminal fluorescent labeling
support quantification and a consistent assay format.

Experimental Alanine Scanning. Experimental alanine
scanning was performed for structural representatives of
three target systems: NOXA-B/MCL-1 (2JM6), SIMS/
SUMO (2LAS), and GKAP/SHANK-PDZ (1Q3P). Each of

Table 1. Pearson Correlation Coefficient between Experimental and Predicted ΔΔG Values for Mutations to Alanine in the
SKEMPI Dataset

Flex_ddG

BUDE FoldX Talaris2014 Ref2015 BeAtMuSiC mCSM Average

Pearson R 0.50 0.28 0.51 0.49 0.47 0.66 0.60

fraction correct 0.76 0.51 0.76 0.74 0.72 0.77 0.78

Table 2. Kd and IC50 Values for NOXA-B/MCL-1 (2JM6), SIMS/SUMO (2LAS), and GKAP/SHANK-PDZ (1Q3P) Variantsa

NOXA wt L78A R79A R80A I81A D83A V85A

Kd (nM)b 10 ± 1 e 19 ± 3 e 1300 ± 50 4300 ± 200 e

IC50 (μM)c 1.77 ± 0.03 7000 ± 2000 8.3 ± 0.3 1.9 ± 0.3 1220 ± 70 13000 ± 8000 1200 ± 200

SIM wt D2705A N2706A E2707A I2708A E2709A V2710A

Kd (μM)d 3.7 ± 0.3 4.2 ± 0.1 4.0 ± 0.2 6.6 ± 0.2 2.7 ± 0.1 18.9 ± 0.9 71 ± 9

IC50 (μM)c 30 ± 1 e e 45 ± 4 e e 205 ± 7

SIM I2711A I2712A V2713A W2714A E2715A K2716A K2717A

Kd (μM)b 26 ± 2 65 ± 8 110 ± 20 60 ± 20 12.5 ± 0.7 10.7 ± 0.8 6.4 ± 0.6

IC50 (μM)c e 351 ± 12 e 684 ± 264 e e e

GKAP wt E1A A2G Q3A T4A R5A L6A CONH2

Kd (μM)d 2.8 ± 0.1 10.2 ± 0.5 7.0 ± 0.6 1.46 ± 0.08 1200 ± 200 9.5 ± 0.7 f 260 ± 50

IC50 (μM)c 11 ± 1 91 ± 5 14.0 ± 0.3 10.3 ± 0.9 f 14.1 ± 0.9 f f
aAmino acid numbering taken from PDB ID. bFluorescence anisotropy direct titration. cFluorescence anisotropy competition assay. dIsothermal
titration calorimetry. eNot tested. fDid not bind/inhibit.
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the proteins was expressed in E. coli, and a series of labeled and
unlabeled variant peptides was synthesized and purified (see
SI). A number of different biophysical assays were
implemented for each target (Table 2 and Figure 3). For
NOXA-B/MCL-1 (Figure 3a), a competition fluorescence
anisotropy (FA) assay (Figure 3b and SI, Figure S2a and Table
S4) was used in which titration of variant peptides was used to
displace a FITC-labeled NOXA-B sequence from MCL-1 (Kd

of the FITC-labeled tracer = 80 nM). ΔΔG values were
calculated using the difference in IC50 values. We also carried

out a smaller number of direct titrations using FITC-labeled
variant peptides with results concordant to those obtained by
competition titration (see SI, Figure S2b and Table S5).
Circular dichroism (CD) spectroscopy (see SI Figure S4)
established that the effects of the amino-acid changes on
helicity of the peptides were small compared to effects arising
from side-chain contacts with the protein target.
For SIMS/SUMO (Figure 3c), a full series of FAM-labeled

13-residue SIMS peptides was prepared with each amino acid
sequentially exchanged for alanine. Direct FA titration against
SUMO (Figure 3d and SI, Figure S5, Table S6) provided Kd

values that were used to determine ΔΔG based on comparison
with the wild-type (Kd of the FAM-labeled wild-type tracer =
3.7 μM). As a secondary evaluation, several unlabeled peptides
were used to compete against the FAM-labeled wild-type
peptide for the SUMO binding site, and again the results were
consistent with those obtained from direct titration (see SI,
Figure S6 and Table S7). Here, CD spectra (see SI, Figure S7)
indicated that all peptides were unstructured in solution except
for the Glu2709 → Ala and Glu2715 → Ala; both of these
variants promoted an alternative conformation with significant
β-strand content. Given that such a conformation might be
expected to bind more effectively due to preorganization, we
interpret the moderate loss in potency observed for both
variants as indicating a minor role for the side chains in the
PPI.
Finally, for GKAP/SHANK-PDZ (Figure 3e), isothermal

titration calorimetry (Figure 3f and SI, Figure S8 and Table
S8) was used to obtain Kd values (WT Kd = 800 nM) from the
titration of variant peptides (including the C-terminal amide
and Ala2 → Gly variants) against SHANK-PDZ, while a
competition assay using a FITC-labeled GKAP peptide was
elaborated to give IC50 values (see SI, Figure S9 and Table S9).
The two methods yielded similar values, while CD spectra (see
SI, Figure S10) indicated that the 6-residue peptides were
unstructured in solution as expected. Average ΔΔG values for
each of the six predictive methods and the experimental data
were then compared (Figures 4 and 5).

Computational Alanine Scanning. Computational alanine
scans were carried out for the same three target systems:
NOXA-B/MCL-1 (2JM6), SIMS/SUMO (2LAS), and
GKAP/SHANK-PDZ (1Q3P). We chose the simplest
approach, namely, a single structure, in the first round of
CAS; hence only the first structure of each NMR ensemble for
2JM6 and 2LAS was used along with the crystal structure
1Q3P. Each structure was subjected to each of six
representative computational alanine-scanning methods. The
GKAP sequence had an alanine (Ala2), and Gly was used to
evaluate the role of this side chain. Crucially, crystallographic
analyses suggested a key role for the C-terminal carboxylate,
not just the side chains. Since BudeAlaScan is built on BUDE,
it is simple to submit the modified backbone to BUDE itself to
dissect out the roles of the side chain and carboxylate
independently yielding a ΔΔG of 19.6 kJ/mol for replacing the
carboxylate by the corresponding amide compared with the
experimental value of 11.4 kJ/mol (Table 2). This feature is
unique to BudeAlaScan among the in silico methods and,
therefore, applicable to multiple other unconventional changes
to peptide structure (vide inf ra).
Based on comparison of the in silico and experimental data,

in each case, most of the computational methods correctly
identified the majority of experimentally defined hot residues
(Figures 4 and 5), but they differed in the residues predicted

Figure 3. Experimental alanine scanning results for PPIs (amino acid
numbering taken from PDB ID): (a) NMR structure for NOXA-B/
MCL-1 (PDB ID 2JM6, model 1)), (b) representative competition
fluorescence anisotropy inhibition curves for inhibition of the FITC−
Ahx−NOXA-B/MCL-1 (50 mM Tris, 150 mM NaCl, 0.01% Triton-
X, pH 7.4. using FITC−Ahx−NOXA-B as a tracer at 25 nM
concentration and MCL-1 at 200 nM concentration) interaction using
variant NOXA-B peptides, (c) NMR structure for SIMS/SUMO
(PDB ID 2LAS, model 1), (d) representative fluorescence anisotropy
titration curves for interaction of FAM labeled variant SIMS peptides
with SUMO (20 mM Tris, 150 mM NaCl, 0.01% Triton-X, pH 7.4,
using 50 nM FAM−PEG−SIM tracer), (e) crystal structure for
GKAP/SHANK-PDZ (PDB ID 1Q3P), (f) representative isothermal
titration calorimetry curves for interaction of acetylated GKAP variant
peptides with SHANK-PDZ (20 mM Tris, 150 mM NaCl, pH 7.5, at
25 °C, 150 μM SHANK-PDZ).
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incorrectly. For example, mCSM predicted Thr4 in GKAP as a
hot-residue particularly well and with good accuracy, but
wrongly predicted Arg5 as a hot-residue in GKAP. On the
other hand, BudeAlaScan over-predicted the contribution of
Arg79 in NOXA-B, but under-predicted Asp83. Encouragingly,
by taking the average ΔΔG of all the methods for each residue,
all but two hot-spot residues were correctly predicted giving a
fraction correct of 0.92 (Table 3). One residue (Ile2711) is
predicted rather well, but the experimental value is close to the
selection criterion of 4.184 kJ/mol and the predicted and
experimental values straddle this cutoff. The other (Val2713) is
solvent exposed and hydrophobic, favors beta structure, and is
poorly predicted by all methods; hence it may perform a
structural role in supporting the extended β-strand con-
formation required for binding, rather than contributing to the
PPI per se.
The Use of Multiple Structures Improves Predictive

Alanine Scanning and Includes the Role of Dynamic
Conformational Variation. A single protein structure, for
example, that determined by X-ray crystallography, represents
a single point on the global potential-energy landscape, but it is

well established that proteins in their native state occupy a
family of conformations clustered around such a local
minimum. In other words, proteins are dynamic and show
thermally induced fluctuations in their native folded states.
This dynamic behavior makes accurate predictions of the free
energy difference between two variants difficult to achieve with
a single pair of structures. A number of the tools we evaluate
could be used for this purpose, however, here as a proof-of-
concept we used BudeAlaScan to probe these fluctuations. The
BUDE force field goes some way to mitigating the effects of
dynamics by using a soft-core potential to ameliorate
geometrical inaccuracies in a structure. BudeAlaScan also
employs multiple rotamers for side chains that can carry charge
(DERKH) to account for entropic loss on freezing such side
chains in interfacial salt bridges. However, we anticipated that
greater accuracy would be achieved using an ensemble of
conformations that include backbone flexibility. There are two
ways to do this: by using (a) structures from solution phase
NMR ensembles or (b) snapshots from molecular dynamics
(MD) simulations. Although the two methods typically report
on different time scales, the purpose here is not to compare the

Figure 4. Comparison of experimental (from this work) and predicted ΔΔG values for different prediction tools: (a−f) correlation plots (dotted
line is the 1:1 correlation) for predicted versus experimental ΔΔG for each of (a) BudeAlaScan, (b) FoldX, (c) Flex_ddG Talaris, (d) Robetta, (e)
BeAtMuSiC, (f) mCSM, (g) Average, (h) Fraction Correct overall, and (i) Fraction Correct by residue type. There are 6 fewer points for panel d
due to Robetta automatically defining the interface. Data for panels c and d are plotted assuming 1 REU = 1 kcal/mol.
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data from NMR with MD, rather to highlight that either can be
useful in establishing where potential hot-residues are
persistent. Crucially, such an approach begins to acknowledge
the dynamic and conformationally varied nature of PPIs. The
calculation of interaction energies with BUDE is very fast;
hence BudeAlaScan rapidly processes ensembles of conforma-
tions. For our analysis, each structure was subjected to a 1 μs
MD simulation, and the BudeAlaScan calculation was carried
out on each of 100 snapshots (every 10 ns of a 1 μs trajectory).
In addition, BudeAlaScan was performed on each of the
submitted models in the NMR ensembles for the two PPIs
with NMR structures. In general, the predictions improved
through the use of this approach for all targets (Figure 6).
These data also allow the average strength and persistence of

interactions to be assessed as a standard deviation: residues
that are tightly packed into the interface with little conforma-
tional freedom tended to show low standard deviations. This
behavior is exemplified by Leu78, Ile81, and Val85 for the
NOXA-B/MCL-1 interaction (Figure 6a). In contrast, the
surface-exposed residues Arg79 and Asp83 for the NOXA-B/
MCL-1 interaction that transiently form salt bridges exhibit
higher standard deviations. SIMS/SUMO shows similar

behavior (Figure 6b). The smaller interface in GKAP/
SHANK (Figure 6c) is much more mobile and shows large
standard deviations throughout the sequence. In the absence of
a corresponding NMR structure, we are unable to say if this is
a consequence of excessive mobility in the MD simulation,
although the poorer match with experimental alanine scanning
results suggests this is the case. The match between prediction
and experiment is generally somewhat improved by using
ensembles of structures. Hence, the Pearson correlation
coefficient for NOXA-B/MCL-1 and SIMS/SUMO between
the BudeAlaScan data and experiment is 0.58 for single
structures (Figure 5a,b) and 0.66 and 0.62 for the MD and
NMR ensembles, respectively (Figure 6a,b).

Use of Multiple Tools to Predict Hot-Residues at a

Topographically Distinct PPI. Having experimentally
validated the approach with three model systems, we applied
the workflow to a novel protein−protein interface with a
different topography. For this, we selected a recently described
PPI between an Affimer and BCL-xL,

70 which, like MCL-1, is
an antiapoptotic member of the BCL-2 family of apoptotic
regulators (Figure 7a).71 In this structure, two nine-residue

Figure 5. Comparison of predictive and experimental ΔΔG values (bars represent experimental data for each target): (a) NOXA-B/MCL-1 (PDB
model 1); (b) SIMS/SUMO (PDB model 1); (c) GKAP/SHANK-PDZ (chains A and C). Two data points for FoldX are missing from the plot
since they are less than −5.0 kJ/mol (R79A and W2714A).

Table 3. Pearson Correlation Coefficient between Experimental and Predicted ΔΔG Values for Mutations to Alanine in This
Work

BUDE FoldX Flex_ddG Talaris2014 Robetta BeAtMuSiC mCSM Average

Pearson R 0.58 0.52 0.56 0.71 0.71 0.36 0.76

fraction correct 0.80 0.68 0.72 0.88 0.84 0.68 0.92
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loops from the Affimer interact with the BH3 helix binding
cleft on BCL-xL.
Predictions for each loop were performed using each of the

tools, and the average ΔΔG was determined (Figure 7b). We
then selected three residues to test experimentally: two
predicted to be hot-residues (Trp41 and Trp44), and one
predicted as not being a hot-residue (Trp76) according to the
average values of ΔΔG across the six methods. The parent and
variant Affimer sequences were cloned, expressed, and purified
and then tested in a competitive FA assay, that is, by
displacement of FITC−BID fluorescently labeled peptide from
BCL-xL. These experiments fully confirmed the predictions
(Figure 7c and SI, Table S9). Crucially, at least one of the
individual prediction tools would not have predicted these
residues accurately, further validating the use of comparative
analyses.

■ CONCLUSIONS

We outline effective approaches for rapid predictive in silico
examination of PPI interfaces. This employs multiple computa-
tional tools, allowing comparative analyses to predict hot-
residues accurately. In the broader context of providing
improved and accessible methods for in silico Ala scanning,
we introduce BudeAlaScan. This is a versatile tool for the rapid
analysis of PPIs using X-ray structures, NMR ensembles, or
snapshots from MD trajectories as input files. Exploiting six in
silico prediction tools illustrates that use of multiple methods
leads to improved accuracy in the prediction of hot-residues.

We demonstrate this further by comparing the predictions with
experimental studies for three different PPIs. We note that the
predicted ΔΔG values for single-alanine variants vary between
the in silico methods and also change through structural
ensembles analyzed with any single method. Thus, in terms of
informing on the role of individual amino acids in PPIs and
developing starting points for ligand design, we advocate using
a combination of methods to predict hot-residues and hot-
spots. Additional use of NMR ensembles or snapshots from
MD trajectories allows an assessment of the persistence of
noncovalent interactions. Taken together this allows prioritiza-
tion of potential hot-residues to reduce the number of
predictions that require experimental validation and provides
greater confidence in those that should be selected for mimicry
in ligand based design.

■ METHODS

Computational Methods and MD. SKEMPI Data Set and
Predictions. The set of 748 single mutations to alanine from the
SKEMPI database with associated binding data is that described by
Barlow et al.28 and provided in that paper’s Supporting Information
(jp7b11367_si_002.xlsx).

FoldX. The program FoldX was downloaded from http://
FoldXsuite.crg.eu and used in AlaScan mode with default parameters.

Rosetta. Flex_ddG. Data were taken from the Supporting
Information of previously published work28 for benchmarking against
SKEMPI. Mutations specific to this work were calculated using the
flex_ddG method in Rosetta Commons release and the flex_ddG.xml
script provided in the SI of Barlow et al.28 The Talaris 2014 force field
was used, and each result is the average of 50 repeats.

Figure 6. Comparison of BudeAlaScan predicted and experimental ΔΔG values (gray bars). Green, average and standard deviation of 100
structures from 1 μs MD simulations; blue average and standard deviation of 20 (2JM6) and 10 (2LAS) NMR structures; (a) NOXA-B/MCL-1;
(b) SIMS/SUMO; (c) GKAP/SHANK-PDZ.

ACS Chemical Biology Articles

DOI: 10.1021/acschembio.9b00560
ACS Chem. Biol. XXXX, XXX, XXX−XXX

H

http://pubs.acs.org/doi/suppl/10.1021/acschembio.9b00560/suppl_file/cb9b00560_si_003.pdf
http://FoldXsuite.crg.eu
http://FoldXsuite.crg.eu
http://dx.doi.org/10.1021/acschembio.9b00560


Robetta. Mutations specific to this work were also calculated with
the Robetta server, http://robetta.bakerlab.org or via the Rosetta
Commons release.
BudeAlaScan. BudeAlaScan is a command-line python application

for computational alanine scanning. It employs ISAMBARD5 for
structure manipulation and a customized version of the Bristol
University Docking Engine (BUDE)6 for energy calculations. The
program was run in scan mode with default parameters. The
application is available via the BAlaS server: http://coiledcoils.chm.
bris.ac.uk/balas
BeAtMuSiC. Data used in the BeAtMuSiC publication were taken

from the MCSM Web site, http://biosig.unimelb.edu.au/mcsm/data,
for benchmarking against SKEMPI. Mutations specific to this work
were calculated using the BeAtMuSiC server: http://babylone.ulb.ac.
be/beatmusic.
mCSM. The mCSM data were calculated in-house by querying the

server http://biosig.unimelb.edu.au/mcsm/protein_protein with a
python script.
Molecular Dynamics Simulations. All simulations were performed

using the GROMACS 5.1.4 suite and the following general protocols.
Structures from the protein database (SIMS/SUMO 2LAS; GKAP/
SHANK-PDZ 1Q3P; NOXA-B/MCL-1 2JM6) were processed with
the GROMACS tool chain. The utility pdb2gmx was used to add
hydrogen atoms consistent with pH 7 and virtual-site hydrogens for
mobile groups and parametrize the protein with the amber99SB-ildn
force field. The protein was placed in an orthorhombic box 2 nm

larger than the protein in each dimension and filled with TIP3P water
containing 0.15 M sodium chloride ions to give a charge-neutral
system overall. After 10000 steps of steepest descent minimization,
molecular dynamics was initiated with random velocities while
restraining the protein backbone to its original position with a force
constant of 1000 kJ/nm for 0.2 ns. Simulations were developed for a
further 1 μs without backbone position restraints under periodic
boundary conditions. The Particle Mesh Ewald’s method was used for
long-range electrostatic interactions, while short-range Coulombic
and van der Waals energies were truncated at 1.2 nm. The
temperature was maintained at 310 K using the v-rescale method
and the pressure at 1 bar with the Berendsen barostat. The use of
virtual-site hydrogens allowed a 5 fs time step for the leapfrog
integrator. Bond constraints were implemented with the LINCS
method, and SETTLE was used for waters. Trajectories were
processed and analyzed with the GROMACS tools and visualized
with VMD 1.9.3.

Expression and Purification of Proteins. Proteins were
expressed using standard protocols and characterized as described
in the Supporting Information.

Peptide Synthesis and Purification. Peptides were prepared
using microwave assisted solid-phase FMoc based synthesis using a
CEM Liberty Blue peptide synthesizer and purified by reverse phase
HPLC. Full details and characterization are available in the
Supporting Information.

Figure 7. Application of predictive workflow to a topographically distinct protein−protein interaction. (a) Affimer/BCL-xL cocrystal structure
(PDB ID 6HJL), highlighting residues Trp41, Trp44, and Trp76 (orange) identified for experimental characterization (Affimer in cyan, BCL-xL in
green). (b) Predicted ΔΔG values calculated using each predictive tool together with average values for alanine variants of residues within the two
9-residue variable loops of the Affimer scaffold; gray boxes show ΔΔG limits estimated from the experimental W to A changes; residues 41 and 44
≥ 15 kJ/mol, residue 76 ≤ 1 kJ/mol, (3 points for Foldx, D43A, E46A, and W76A, are missing from the plot as their values are less than −5 kJ/
mol). (c) Competition fluorescence anisotropy inhibition curves for inhibition of the FITC−BID/BCL-xL interaction (20 mM Tris, 150 mM NaCl,
0.01% Triton X-100, pH 7.4, using FITC−BID as a tracer at 25 nM and BCL-xL at 100 nM concentration) using variant Affimer sequences.
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Isothermal Titration Calorimetry (ITC). ITC experiments were
carried out using Microcal ITC200i instrument (Malvern) at 25 °C in
20 mM Tris, 150 mM NaCl, pH 7.5, buffer. SHANK-PDZ was
dialyzed against the buffer prior to experiment; lyophilized peptides
were dissolved in the same buffer. SHANK-PDZ (150 μM) was
present in the cell and titrated with 1.4−2 mM peptide solutions
loaded into the syringe using 2 μL injections with 120 s spacing
between the injections for 20 injections. Heats of peptide dilution
were subtracted from each measurement raw data. Data was analyzed
using Microcal Origin 8 and fitted to a one binding site model.
Fluorescence Anisotropy. Fluorescence anisotropy assays were

performed in 384-well plates (Greiner Bio-one). Each experiment was
run in triplicate, and the fluorescence anisotropy was measured using
a PerkinElmer EnVisionTM 2103 MultiLabel plate reader with
excitation at 480 nm (30 nm bandwidth), polarized dichroic mirror at
505 nm, and emission at 535 nm (40 nm bandwidth, S and P
polarized) for FAM and FITC labeled peptides. The excitation and
emission wavelengths for BODIPY labeled BAK peptide were set to
531 and 595 nm, respectively. The excitation and emission
wavelengths for FITC labeled BID peptide were set to 490 and 535
nm, respectively.
Direct Binding Assays. Fluorescence anisotropy direct titration

assays were performed with protein concentration diluted over 16−24
points using 1/2 dilutions. Twenty microliters of buffer was first
added to each well. Twenty microliters of a solution of protein was
added to the first column. The solution was well mixed, and 20 μL
was taken out and added to the next column and so on. This
operation consists of serial dilution of the protein across the plate.
Finally, 20 μL of tracer was added to the wells. For control wells, the
tracer peptide was replaced with an identical volume of assay buffer,
and plates were read after 1 h.
Competition Binding Assays. FA competition assays were

performed in 384 well plates with the concentration of variant
peptide competitor typically from 10 to 1500 μM, diluted over 16−24
points in 1/2 regime with fixed protein and tracer concentrations. For
control wells, the tracer peptide was replaced with an identical volume
of assay buffer. The total volume in each well was 60 μL. Plates were
read after 1 h (and 16 h for BCL-xL assays) of incubation at RT.
Additional details on buffer composition, reagent concentration for

individual PPIs, and data analyses are given in the Supporting
Information.
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