
1Scientific REPORTS | 7:42362 | DOI: 10.1038/srep42362

www.nature.com/scientificreports

Predicting antimicrobial peptides 
with improved accuracy by 
incorporating the compositional, 
physico-chemical and structural 
features into Chou’s general 
PseAAC
Prabina Kumar Meher1, Tanmaya Kumar Sahu2, Varsha Saini2,3 & Atmakuri Ramakrishna Rao2

Antimicrobial peptides (AMPs) are important components of the innate immune system that have 

been found to be effective against disease causing pathogens. Identification of AMPs through wet-
lab experiment is expensive. Therefore, development of efficient computational tool is essential 
to identify the best candidate AMP prior to the in vitro experimentation. In this study, we made an 
attempt to develop a support vector machine (SVM) based computational approach for prediction of 

AMPs with improved accuracy. Initially, compositional, physico-chemical and structural features of 
the peptides were generated that were subsequently used as input in SVM for prediction of AMPs. 
The proposed approach achieved higher accuracy than several existing approaches, while compared 

using benchmark dataset. Based on the proposed approach, an online prediction server iAMPpred has 

also been developed to help the scientific community in predicting AMPs, which is freely accessible at 
http://cabgrid.res.in:8080/amppred/. The proposed approach is believed to supplement the tools and 
techniques that have been developed in the past for prediction of AMPs.

Antimicrobial peptides (AMPs) are important innate immune molecules, which have been found to be e�ective 
against several pathogenic micro-organisms like bacteria, virus, fungi, parasites etc1. AMP constitutes the �rst 
line of host defense against microbes2, where it causes the cell death of microbes either by disrupting its cell 
membrane or its intracellular functions3,4. Due to growing resistance of microbial pathogens against chemical 
antibiotics, AMPs have received attention as an alternative in recent years5. Speci�cally, due to the broad spectrum 
of activity and low propensity for developing resistance, AMPs are gaining popularity in clinical applications6.

Development of sequence-based computational tools can be helpful in designing the e�ective antimicrobial 
agents by identifying the best candidate AMP prior to the synthesis and testing against pathogens in wet-lab7. In 
this direction, computational tools like AntiBP1, AMPER8, CAMP3, AntiBP29, AVPpred10, ClassAMP11, iAMP-2L7 
and EFC-FCBF12 have been developed for the prediction of AMPs. �e binary (0, 1) and compositional features 
were used in AntiBP and AntiBP2 respectively to map the peptide sequences onto numeric feature vectors, where 
the numeric vectors were used as input in arti�cial neural network (ANN)13 and support vector machine (SVM)14 
respectively for prediction of antibacterial peptides. In CAMP, random forest (RF)15, SVM and ANN supervised 
learning techniques were employed for prediction of AMPs, based on di�erent physico-chemical (PHYC) fea-
tures of peptides. In AVPpred, four di�erent models viz., AVPmotif, AVPalign, AVMcompo and AVPphysico 
were developed for prediction of antiviral peptides only. �e ClassAMP11 tool was developed for predicting the 
propensity of a peptide sequence as antibacterial, antiviral or antifungal peptide, by using SVM and RF machine 
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learning techniques. In an another study, a two-level multi-class predictor was developed for identi�cation of 
AMPs, based on Chou’s pseudo amino acid composition16 and fuzzy k-nearest neighbor7. Recently, Veltri et al.12 
have developed a machine learning based computational approach for improved recognition of AMPs.

�e above mentioned methods have their own advantages in generating knowledge for the prediction of 
AMPs. However, further improvement in prediction accuracy is required to minimize the number of false pos-
itives. In this study, we made an attempt to develop a computational approach for prediction of antibacterial, 
antiviral and antifungal peptides with higher accuracy. In this approach, combinations of compositional, PHYC 
and structural (STRL) features were used to map the peptide sequences onto numeric feature vectors, which were 
subsequently used as input in SVM for prediction. �e proposed approach was found to perform better than sev-
eral existing approaches for predicting AMPs, when comparison was made using bench mark dataset.

Material and Methods
As summarized and demonstrated by a series of recent publications17–22, in compliance with Chou’s 5-step rule23, 
to establish a really useful sequence-based statistical predictor for a biological system, the following �ve guide-
lines should be followed: (a) construct or select a valid benchmark dataset to train and test the predictor; (b) 
formulate the biological sequence samples with an e�ective mathematical expression that can truly re�ect their 
intrinsic correlation with the target to be predicted; (c) introduce or develop a powerful algorithm (or engine) to 
operate the prediction; (d) properly perform cross-validation tests to objectively evaluate the anticipated accuracy 
of the predictor; (e) establish a user-friendly web-server for the predictor that is freely accessible to the public. In 
the following sections, we have described how to deal with these steps one-by-one.

Dataset. Positive. To construct the positive dataset, antibacterial, antiviral and antifungal peptide sequences 
were collected from publicly available databases (or datasets). Speci�cally, antibacterial peptides were collected 
from CAMP, APD324 and AntiBP2; antiviral peptides were collected from CAMP, APD3, LAMP25 and AVPpred; 
antifungal peptides were collected from CAMP, LAMP and APD3. �e sequences having non-standard amino 
acids were then removed followed by removal of redundant sequences, similar to earlier studies7,12,26. Since AMPs 
are mostly 10–100 amino acids long1, sequences having less than 10 amino acids were also excluded from further 
analysis. A summary of the positive datasets is given in Table 1.

Negative. �e non-antibacterial and non-antiviral peptides were collected from AntiBP2 and AVPpred respec-
tively. �ese non-antibacterial and non-antiviral peptides were respectively used as the negative dataset against 
the antibacterial and antiviral peptides. Further, these non-antibacterial and non-antiviral peptides were consid-
ered together as the negative dataset against the antifungal peptides. Similar to the positive dataset, sequences of 
the negative dataset were also processed. A summary of the negative datasets is also given in Table 1.

Feature generation. Since the peptide sequences are the strings of amino acids, they need to be mapped 
onto numeric feature vectors before being used as an input in supervised learning classi�ers. In this study, three 
di�erent categories of features i.e., compositional, PHYC and STRL were considered. In particular, 3 compo-
sitional (amino acid composition-AAC, pseudo amino acid composition-PAAC and normalized amino acid 
composition-NAAC), 3 PHYC (hydrophobicity, net-charge and iso-electric point) and 3 STRL (α -helix propen-
sity, β -sheet propensity and turn propensity) features were considered (Table 2) for prediction of AMPs. �e 
compositional and PHYC features were computed by using the “Peptide” package27 of R-so�ware28, whereas the 
STRL features were computed by using the TANGO so�ware29 available at http://tango.crg.es/. �e TANGO 
server was �rst used by Torrent et al.30 for recognition of AMPs. Furthermore, to know the importance of each 
feature in predicting the antibacterial, antiviral and antifungal peptides, information gain was computed for all 
the 66 features [AAC (20) +  PAAC (20) +  NAAC (20) +  PHYC (3) +  STRL (3)]. To compute the information gain, 
the InfoGainAttributeEval function available in RWeka31 package was used.

SVM-based prediction. We used SVM for prediction of AMPs because it is a non-parametric (does not 
make any assumption about the underlying probability distribution of the input dataset) and most widely used 
supervised learning technique in the �eld of bioinformatics, attributed to its sound statistical background32. 
�e predictive ability of SVM, mainly depends upon the type of kernel function that maps the input data to a 
high-dimensional feature space, where the observations belong to di�erent classes are linearly separable by a 
optimal separating hyper plane. In this work, the radial basis function (RBF) was used as kernel, due to its wide 
and successful application in most of the AMP prediction studies1,9–10,33. Further, in RBF kernel, default values of 
parameters gamma (gamma =  1/number of attributes) and cost (C =  1) were used to train and test the prediction 
model. �e svm function available in the e1071 package34 of R-so�ware was used to execute the SVM model. �e 
scaling option was kept as TRUE in svm function, while training the model.

Dataset Bacterial Viral Fungal

Positive
CAMP3, APD324, 
AntiBP29 {3417}

CAMP, APD3, LAMP25, 
AVPpred10 {739}

CAMP, LAMP, 
APD3 {1496}

Negative AntiBP2 {984} AVPpred {893}
AntiBP2, AVPpred 
{1384}

Table 1.  Summary of the positive and negative datasets. �e value inside bracket {} is the number of 
sequences collected in that category.

http://tango.crg.es/
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Performance evaluation. We considered di�erent performance metrics viz., sensitivity (Sn), speci�city 
(Sp), accuracy (Ac) and Matthew’s correlation coe�cient (MCC) to evaluate the performance of the proposed 
approach. Since, the conventional formulae of these metrics are not quite intuitive, particularly MCC, Chen  
et al.35 derived a new set of equations for the above mentioned metrics based on the Chou’s symbols used in stud-
ying protein signal peptide cleavage sites36. �e new formulae for these metrics are given in equation (1)
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where +N represents the total number of AMPs investigated, 
−

+N represents the number of AMPs incorrectly 
predicted as non-AMPs, −N represents the total number of non-AMPs investigated and 

+

−N represents the number 
of non-AMPs incorrectly predicted as AMPs. �e formulae given in equation (1) has made the meaning of Sn, Sp, 
Ac, and MCC much more intuitive and easier-to-understand, particularly for the meaning of MCC, as concurred 
by a series of studies published very recently19–20,37–41. �e above formulae are valid only for the single-label sys-
tems, whereas for the multi-label systems, whose emergence has become more frequent in system biology42–43 and 
system medicine22,44–45, a di�erent set of metrics is needed as elaborated in Chou46.

Training and validation. In an unbalanced dataset (i.e., the number of AMPs and non-AMPs are not same), 
machine learning based classi�er may produce results biased towards the major class47 (having large number of 
sequences than the other class). �erefore, number of sequences of the major class was kept same as the number 
of sequences present in the minor class to train the prediction model e�ectively. Here, sequences of the major 
class were randomly drawn from the available sequences. Since one random set from major class may not be ade-
quate to judge the generalized predictive ability of the classi�er, one thousand random samples (drawn without 
replacement from major class) were used. Further, in each sample (consists of AMPs and non-AMPs) a 10-fold 
cross validation48 procedure was employed to assess performance of the predictor. Furthermore, to assess the 
impact of size (number of sequences) of dataset, three datasets with di�erent sample sizes were used (Table 3).

Comparison with existing methods. Performance of the proposed approach was compared with that of 
latest AMP prediction tools viz., CAMP3, iAMP-2L7, EFC-FCBF12, EFC +  307-FCBF12. �e comparison was 
made by using the Xiao et al. benchmark dataset7 (http://www.jci-bioinfo.cn/iAMP/data.html). In this dataset, 
the training set contains 770 antibacterial peptides and 2405 non-AMPs and the test set contains 920 AMPs and 
920 non-AMPs. �e same datasets have been used by Veltri et al.12 to evaluate the performance of EFC-FCBF 
and EFC +  307-FCBF approaches. Further, performances of the methods were compared in terms of area under 
receiving operating characteristics curve49 (AUC-ROC), area under precision-recall curve50 (AUC-PR) and 
MCC. For a binary classifier, recall is same as Sn (as defined in equation-1) and precision is defined as 
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Development of prediction server. An online prediction server was also developed using hyper text 
markup language (HTML) and hypertext preprocessor (PHP), where a developed R-code was executed in the 
backend upon submission of peptide sequences in the FASTA format. �e user can submit single or multiple 
sequences having only standard amino acid residues. �is web server can be used to predict the probabilities 
with which a candidate peptide sequence can be classi�ed into antiviral, antibacterial and antifungal categories.

Feature category Features in each category #Features

Compositional
Amino acid composition (AAC) 20

Normalized AAC (NAAC) 20

Structural (STRL)

Pseudo AAC (PAAC) 20

α -helix propensity 1

β -sheet propensity 1

Turn propensity 1

Physico-chemical (PHYC)

Iso-electric point 1

Hydrophobicity 1

Net-charge 1

Table 2.  Summary of the feature sets.

http://www.jci-bioinfo.cn/iAMP/data.html
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Results
Performance analysis for predicting the antibacterial peptides. �ree di�erent sample sizes (100, 
500, 983) were used for prediction of antibacterial peptides. Prediction accuracies for the sample size 983 are 
given in Table 4, whereas for the sample sizes 100 and 500 accuracies are provided in Supplementary Table S1. 
It is observed that the prediction accuracies are more precise (low standard error) for the sample size 983 as 
compared to that of sample sizes 100 and 500. Further, low prediction accuracies are observed with the compo-
sitional features alone, whereas 2–6%, ~1%, 2–4% and 4–5% increment in sensitivity, speci�city, accuracy and 
MCC are observed respectively while the compositional, PHYC and STRL features are used together (Table 4 and 
Supplementary Table S1).

Performance analysis for predicting the antiviral peptides. For the sample size 738, performance 
metrics of the proposed approach in predicting the antiviral peptides are given in Table 5, whereas for the sample 
sizes 100 and 500 accuracies are provided in Supplementary Table S2. It is seen that the prediction models based 
on the sample size 738 are more stable (low standard error) as compared to those based on sample sizes 100 and 
500. Similar to antibacterial peptides, low prediction accuracies are also observed while only compositional fea-
tures are used, whereas sensitivity, speci�city, accuracy and MCC are observed to be increased by 1–3%, 1%, ~1% 
and 1–3% respectively while all the three features are accounted together (Table 5 and Supplementary Table S2). 
Besides, it is seen that the accuracies in predicting the antiviral peptides are low as compared to the antibacterial 
peptides.

Dataset

Bacterial Viral Fungal

#ABP #nonABP #AVP #nonAVP #AFP #nonAFP

1st set 100 100 100 100 100 100

2nd set 500 500 500 500 500 500

3rd set 983 983 738 738 1383 1383

Table 3.  Number of sequences present (sample size) in three di�erent datasets used for prediction of 
antibacterial, antiviral and antifungal peptides. #ABP: Number of antibacterial peptides, #nonABP: Number 
of non-antibacterial peptides, #AVP: Number of antiviral peptides, #nonAVP: Number of non-antiviral 
peptides, #AFP: Number of antifungal peptides, #nonAFP: Number of non-antifungal peptides. In all the cases 
the instances were randomly drawn (without replacement) from the available number of instances present in 
the respective classes.

Features

Performance metrics

Sn ± SE Sp ± SE Ac ± SE MCC

AAC +  PAAC 91.16 ±  0.71 93.41 ±  0.49 92.29 ±  0.36 0.85 ±  0.007

AAC +  NAAC 91.29 ±  0.79 93.44 ±  0.49 92.37 ±  0.45 0.85 ±  0.009

PAAC +  NAAC 91.29 ±  0.65 93.37 ±  0.51 92.33 ±  0.37 0.85 ±  0.007

AAC +  PAAC +  NAAC 91.35 ±  0.69 93.48 ±  0.52 92.41 ±  0.41 0.85 ±  0.008

AAC +  PAAC +  PHYC +  STRL 93.81 ±  0.55 94.96 ±  0.40 94.39 ±  0.35 0.89 ±  0.007

AAC +  NAAC +  PHYC +  STRL 93.87 ±  0.61 94.85 ±  0.39 94.36 ±  0.36 0.89 ±  0.007

PAAC +  NAAC +  PHYC +  STRL 93.86 ±  0.65 94.91 ±  0.38 94.39 ±  0.35 0.89 ±  0.007

AAC +  PAAC +  NAAC +  PHYC +  STRL 93.85 ±  0.59 94.98 ±  0.36 94.69 ±  0.38 0.89 ±  0.008

Table 4.  Performance metrics of SVM in predicting antibacterial peptides for the sample size 983. SE: 
Standard Error.

Features

Performance metrics

Sn ± SE Sp ± SE Ac ± SE MCC

AAC +  PAAC 85.60 ±  0.56 90.72 ±  0.61 88.16 ±  0.38 0.76 ±  0.008

AAC +  NAAC 85.42 ±  0.58 90.59 ±  0.69 88.00 ±  0.41 0.76 ±  0.008

PAAC +  NAAC 85.47 ±  0.61 90.68 ±  0.59 88.08 ±  0.40 0.76 ±  0.008

AAC +  PAAC +  NAAC 85.49 ±  0.61 90.77 ±  0.62 88.13 ±  0.40 0.76 ±  0.008

AAC +  PAAC +  PHYC +  STRL 88.67 ±  0.56 91.49 ±  0.68 90.08 ±  0.42 0.80 ±  0.008

AAC +  NAAC +  PHYC +  STRL 88.46 ±  0.59 91.57 ±  0.64 90.01 ±  0.39 0.80 ±  0.008

PAAC +  NAAC +  PHYC +  STRL 88.69 ±  0.59 91.49 ±  0.57 90.09 ±  0.34 0.80 ±  0.007

AAC +  PAAC +  NAAC +  PHYC +  STRL 88.65 ±  0.65 91.42 ±  0.67 90.08 ±  0.40 0.80 ±  0.008

Table 5.  Performance metrics of SVM in predicting antiviral peptides for the sample size 738. SE: Standard 
Error.
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Performance analysis for predicting the antifungal peptides. In case of antifungal peptides, pre-
diction accuracies for the sample size 1383 are given in Table 6 and accuracies for the sample sizes 100 and 500 
are provided in Supplementary Table S3. It is observed that the accuracies are more precise for the sample size 
1383 as compared that of sample sizes 100 and 500. Similar to antibacterial and antiviral peptides, a decreas-
ing trend in accuracies is observed for all the sample sizes, while PHYC and STRL features are not included 
in prediction. In particular, sensitivity, speci�city, accuracy and MCC are increased by 1–2%, ~1%, ~1% and 
1–2% respectively while compositional features are used along with the PHYC and STRL features (Table 6 & and 
Supplementary Table S3). Furthermore, the accuracies for predicting the antifungal peptides are found higher 
than that of antiviral peptides and lower than that of antibacterial peptides.

Feature importance. Based on top the model (AAC +  PAAC +  NAAC +  STRL +  PHYC), information gain 
for all the features was computed by using the largest sample size and are shown in Fig. 1. From the �gure, it 
can be seen that the values of information gain are almost same for both the AAC and NAAC features. Further, 
it is observed that the information gain is highest for the feature net-charge followed by iso-electric point, while 
predicting the antibacterial and antifungal peptides. On the other hand, highest information gain is observed 
for the composition of amino acid C, while predicting the antiviral peptides. Furthermore, the STRL features are 
found less important (low information gain) than that of PHYC features and several compositional features. In 
particular, values of information gain are seen ≥ 0.05 for the amino acid compositions K, E. G, P, C and I in case 
of antibacterial and antifungal peptides, whereas it is ≥ 0.05 for the amino acid compositions R, K, W, S, T, P, H, 
C and I in case of antiviral peptides. Besides, values of information gain are observed close to zero for the amino 
acid compositions {N, W, V, L, M, F, H, Y}, {N, E, L, F} and {A, Y, N} in predicting the antibacterial, antiviral and 
antifungal peptides respectively. �e values of information gain for other amino acids are observed to lie between 
0 and 0.05.

Performance analysis for predicting the AMPs. For prediction of AMPs in general, positive data-
set of AMPs was constructed by combining the antibacterial, antiviral and antifungal peptides, whereas neg-
ative dataset (non-AMP) was constructed by combining the non-antibacterial and non-antiviral peptides 
collected from AntiBP2 and AVPpred respectively. Besides, AMPs available in the LAMP were also included 
in the positive dataset. Finally, a dataset consisting of 5155 AMPs and 1384 non-AMPs was prepared. Similar 
to antibacterial, antiviral and antifungal, prediction of AMPs was also made with three di�erent sample sizes 
i.e., 100, 500 and 1383. Moreover, the prediction was made only for the AAC + PAAC + PHYC + STRL and 
PAAC + NAAC + PHYC + STRL feature combinations, as little higher accuracies were obtained with these com-
binations in earlier predictions. �e values of di�erent performance metrics (averaged over 10-fold) are given in 
Table 7. From the table it is seen that the sensitivity, speci�city and accuracy are >  90% for all the sample sizes. 
In addition, the performance of SVM with the above mentioned feature sets were also assessed by using Xiao 
benchmark training dataset, based on three di�erent sample sizes (100, 500 and 769). �e values of di�erent per-
formance metrics (averaged over 10-folds) are given in Table 8. From the table it is observed that the sensitivity, 
speci�city and accuracy are ~94%, whereas for MCC it is ~88%. It is further seen that the prediction accuracies 
are more precise (low standard error) for the sample size 769.

Comparative analysis. To further assess the predictive ability as compared to the existing approaches, per-
formance of SVM with PAAC + NAAC + PHYC + STRL feature set (we call it iAMPpred) was compared with 
the performances of latest AMP prediction tools, by using Xiao benchmark dataset7. �e results are given in 
Table 9. We observed that the accuracies of iAMPpred are much higher than that of all the four models of CAMP. 
In particular, it is observed that the AUC-ROC, AUC-PR and MCC values of iAMPpred are ~15%, ~20% and 
~30% higher than all the four models of CAMP respectively. �ough, iAMPpred and iAMP-2L performed at par 
in terms of MCC, AUC-ROC of iAMPpred is observed ~3% higher than that of iAMP-2L. Further, it is seen that 
the prediction accuracies (AUC-ROC, AUC-PR and MCC) of iAMPpred are also higher than that of EFC-FCBF 
and EFC +  307-FCBF (Table 9).

Comparison of iAMPpred with AntiBP2. �e performance of the iAMPpred was also compared with 
that of AntiBP2 (http://www.imtech.res.in/raghava/antibp2/) by considering the same dataset used in AntiBP2 
that contains 999 antibacterial peptides and 999 non-antibacterial peptides. Since 5 sequences in the negative 

Features

Performance metrics

Sn ± SE Sp ± SE Ac ± SE MCC

AAC +  PAAC 90.71 ±  0.29 93.14 ±  0.24 91.93 ±  0.16 0.84 ±  0.003

AAC +  NAAC 90.82 ±  0.32 93.22 ±  0.25 92.02 ±  0.19 0.84 ±  0.004

PAAC +  NAAC 90.76 ±  0.35 93.16 ±  0.25 91.96 ±  0.23 0.84 ±  0.005

AAC +  PAAC +  NAAC 90.77 ±  0.32 93.22 ±  0.21 92.00 ±  0.18 0.84 ±  0.004

AAC +  PAAC +  PHYC +  STRL 92.33 ±  0.37 94.36 ±  0.22 93.35 ±  0.22 0.87 ±  0.004

AAC +  NAAC +  PHYC +  STRL 92.32 ±  0.32 94.36 ±  0.23 93.34 ±  0.20 0.87 ±  0.004

PAAC +  NAAC +  PHYC +  STRL 92.25 ±  0.29 94.38 ±  0.25 93.31 ±  0.17 0.87 ±  0.003

AAC +  PAAC +  NAAC +  PHYC +  STRL 92.30 ±  0.27 94.41 ±  0.25 93.35 ±  0.18 0.87 ±  0.004

Table 6.  Performance metrics of SVM in predicting antifungal peptides for the sample size 1383. SE: 
Standard Error.

http://www.imtech.res.in/raghava/antibp2/
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dataset were having non-standard amino acid residues they were excluded from the analysis, and the comparison 
was made using 999 positive and 994 negative sequences. �e ROC and PR curves (averaged over 10-folds) are 
shown in Fig. 2. We observed that the areas covered under ROC and PR curves for iAMPpred are little higher 
than that of AntiBP2 respectively. �is is in accordance with the results presented in Table 4 i.e., the values of 
performance metrics for PAAC +  NAAC +  PHYC +  STRL feature set (feature set used in iAMPpred) are higher 
than that of AAC feature set (feature set used in AntiBP2).

Figure 1. Information gain for all the 66 features [AAC (20) + PAAC (20) + NAAC (20) + PHYC (3) + STRL 
(3)] in predicting antibacterial, antiviral and antifungal peptides. 

Feature
Sample 

size

Performance metrics

Sn ± SE Sp ± SE Ac ± SE MCC

AAC +  PAAC +  PHYC +  STRL

100 93.19 ±  2.32 95.13 ±  2.20 94.16 ±  1.56 0.88 ±  0.031

500 90.50 ±  1.30 93.68 ±  0.91 92.09 ±  0.73 0.84 ±  0.014

1383 90.60 ±  0.66 92.98 ±  0.44 91.79 ±  0.39 0.84 ±  0.008

PAAC +  NAAC +  PHYC +  STRL

100 92.50 ±  2.62 95.39 ±  2.26 93.95 ±  1.66 0.88 ±  0.033

500 90.41 ±  1.31 93.77 ±  0.99 92.09 ±  0.75 0.84 ±  0.015

1383 90.75 ±  0.82 92.94 ±  0.44 91.84 ±  0.40 0.84 ±  0.008

Table 7.  Accuracies of the proposed approach for the prediction of antimicrobial peptides. SE: Standard 
Error.
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Comparison of iAMPpred with AVPpred. �e performance of iAMPpred was further compared with 
that of AVPpred, by using training [T544(p) +  544(n)] and test [V60(p) +  60(n)] datasets available in AVPpred 
server (http://crdd.osdd.net/servers/avppred/collection.php?show= dataset). As the accuracies were reported to 
be higher for AVPcompo and AVPphysico models10, they were only considered for comparison. �e ROC and 
PR curves for the test set are shown in Fig. 3. It is observed that the areas covered under both ROC and PR curves 
for iAMPpred are higher than that of both AVPcompo and AVPphysico models. Further, the AVPphysico model 
performed better than AVPcompo, which is similar to the observation made in �akur et al.10.

Performance analysis of ClassAMP. �e performance of ClassAMP, which is meant for predicting the 
function type of AMPs, was also analyzed by using the Xiao testing dataset. Surprisingly, all the non-AMPs (920) 
were falsely predicted as AMPs (in any of the three classes) with more than 0.6 probabilities in case of SVM, 
whereas 915 were falsely predicted as AMPs while RF was used. On the other hand, only 34 and 8 AMPs were 
falsely predicted as non-AMPs in SVM and RF respectively. �is implies that the ClassAMP might be biased 
towards predicting AMPs. Besides, the accuracies were found higher in iAMPpred as compared to that of 
ClassAMP in predicting the propensity of a peptide sequence as antibacterial, antiviral or antifungal peptides.

Feature Sample size

Performance metrics

Sn ± SE Sp ± SE Ac ± SE MCC

PAAC +  NAAC +  PHYC +  STRL

100 96.28 ±  1.76 95.58 ±  2.00 95.93 ±  1.30 0.91 ±  0.026

500 94.46 ±  0.72 93.83 ±  0.91 94.15 ±  0.53 0.88 ±  0.011

769 94.10 ±  0.61 93.59 ±  0.81 93.84 ±  0.50 0.88 ±  0.010

AAC +  NAAC +  PHYC +  STRL

100 95.88 ±  1.95 95.57 ±  1.97 95.72 ±  1.35 0.91 ±  0.026

500 94.51 ±  0.81 93.73 ±  0.93 94.12 ±  0.62 0.88 ±  0.012

769 94.08 ±  0.52 93.63 ±  0.83 93.85 ±  0.49 0.88 ±  0.009

Table 8.  Prediction accuracies of the proposed approach in predicting the antimicrobial peptides using 
Xiao training dataset. SE: Standard Error.

Methods AUC-ROC (%) AUC-PR (%) MCC

CAMP-SVM 64 53 0.43

CAMP-RF 73 76 0.40

CAMP-ANN 80 NA 0.61

CAMP-DA 81 76 0.49

iAMP-2L 95 NA 0.90

EFC-FCBF 96 95 0.73

EFC +  307-FCBF 95 98 0.86

iAMPpred 98 99 0.91

Table 9.  Estimates of AUC-ROC, AUC-PR and MCC for di�erent AMP prediction methods based on 
independent test dataset. Methods which provide continuous prediction values, we reported AUC-PR. 
Otherwise, “NA” is shown when methods only report a binary (AMP or nonAMP) prediction.

Figure 2. ROC and PR curves of iAMPpred and AntiBP2 for the prediction of antibacterial peptides. �e 
performance of iAMPpred is found little higher than AntiBP2.

http://crdd.osdd.net/servers/avppred/collection.php?show=dataset
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Analysis of organism-specific AMP prediction. Performance of iAMPpred was also assessed for predic-
tion of AMPs speci�c to six di�erent source organisms viz., plants, bacteria, cattle, insects, �shes and amphibians. 
AMPs for these organisms were collected from APD3 database (1348 AMPs from amphibians, 47 from cattle, 137 
from �shes, 341 from insects and 216 from bacteria). �e 920 non-AMPs of Xiao testing dataset was considered 
as the negative dataset against each of the positive datasets. �e prediction accuracies in terms of di�erent perfor-
mance metrics (averaged over 10-fold cross validation) are given in Table 10. Highest accuracy in terms of MCC 
are observed for amphibians (0.97) followed by cattle (0.94), plants (0.93) and insects (0.92). Interestingly, accu-
racies for all the organisms are observed > 96%, which suggests that the iAMPpred is also e�cient in predicting 
the organism-speci�c AMPs.

Online prediction server: iAMPpred. An online prediction server “iAMPpred” has been developed to 
predict the propensity of a peptide sequence as antibacterial, antiviral and antifungal peptides. Snapshots of the 
web pages showing the execution of iAMPpred for an example dataset along with the results are shown in Fig. 4. 
For user guidance with regard to feature generation, prediction method and input-output, links have been pro-
vided in the main menu. �e sequences with probabilities of being antiviral, antibacterial and antifungal peptides 
are displayed in the result page. For reproducible research, links to download the trained datasets (http://cabgrid.
res.in:8080/amppred/about.html) are also provided. �e prediction server is freely accessible at http://cabgrid.
res.in:8080/amppred.

Discussion
AMPs are natural antibiotics gaining attention as an alternative to the chemical antibiotics. Identi�cation and 
designing of AMPs via wet lab experiments may be resource intensive. �us, computational identi�cation will 
supplement to the designing of new antimicrobial agents. �is paper presents a SVM-based computational 
approach that can be used for predicting the e�ective AMPs with higher accuracy as compared to several existing 
approaches.

In this investigation, combinations of compositional, PHYC and STRL features were used to map the peptide 
sequences onto numeric feature vectors that were subsequently used as input in SVM for prediction of AMPs. 
�ough, AAC9,10 and PAAC7,26 features have been used in earlier studies, the NAAC feature is used for the �rst 
time in our study for AMP prediction. Moreover, α -helix, β -sheet and turn propensity features were also used as 
they were reported to play an important role in discriminating the AMPs from non-AMPs30. Furthermore, Most 
of the earlier methods were evaluated based on a single dataset of AMPs, collected either from CAMP or APD/
APD2 database. On the other hand, the sequences of AMPs used in this study were thought to be more represent-
ative as they were collected from several AMP databases. From information gain analysis, net-charge was found to 

Figure 3. ROC and PR curves of iAMPpred and AVPcompo, AVPphysico models of AVPpred for 
predicting the antiviral peptides. �e �gure shows that the performance of iAMPpred is better than 
AVPcompo and AVPphysico models of AVPpred.

Source Organism Sn Sp Ac MCC

Amphibian 98.81 98.26 98.58 0.97

Bacteria 86.19 98.91 96.55 0.88

Plant 93.70 99.02 97.82 0.94

Fish 81.54 99.46 97.24 0.87

Insect 91.69 99.46 96.90 0.92

Cattle 98.33 99.89 98.44 0.94

Table 10.  Performance metrics for iAMPpred in predicting organism-speci�c AMPs.

http://cabgrid.res.in:8080/amppred/about.html
http://cabgrid.res.in:8080/amppred/about.html
http://cabgrid.res.in:8080/amppred
http://cabgrid.res.in:8080/amppred
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be the most important feature followed by iso-electric point in predicting the antibacterial and antifungal peptides. 
On the other hand, the composition of amino acid C was observed to play the most important role in predicting 
the antiviral peptides. Further, the PHYC features were found to play a more important role than STRL features in 
predicting the antibacterial, antiviral and antifungal peptides. As far as the compositional features are concerned, 
amino acids K, P, C and I were found more important as compared to others in predicting the AMPs. On the other 

Figure 4. Snapshots of (a) server page of iAMPpred and (b) result page a�er execution of the program with 
an example dataset. �e results are displayed in a tabular format showing the sequence identi�er and the 
probabilities with which the sequences are predicted as antibacterial, antiviral and antifungal peptides.
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hand, the amino acid compositions {N, W, V, L, M, F, H, Y}, {N, E, L, F} and {A, Y, N} were found less important 
in predicting the antibacterial, antiviral and antifungal peptides respectively.

�e prediction of antibacterial, antiviral and antifungal peptides was made by using three di�erent sample 
sizes. Prediction accuracies were found to be more precise for the large sample sizes as compared to that of small 
sample sizes. Further, accuracies for predicting the antibacterial and antifungal peptides were found higher than 
that of antiviral peptides. �is might be due to the longer sequence length (10–100 amino acids) of antibacterial 
and antifungal peptides and shorter sequence length (10–50 amino acids) of antiviral peptides (Fig. 5). Besides, 
PHYC and STRL determinants were found to play a more important role in the prediction of antibacterial pep-
tides as compared to antiviral and antifungal peptides. Since the prediction accuracies (Sn, Sp, ACC) were also 
found to be higher (> 90%) for prediction of AMPs in general (Table 7), the iAMPpred is believed to supplement 
the existing tools for predicting the antibacterial, antiviral and antifungal peptides independently as well as pre-
dicting the AMPs in general.

�e performance of iAMPpred was also compared with that of several state-of-art AMPs prediction methods 
by using Xiao benchmark dataset. �e iAMPpred was found to achieve higher accuracies than all the four models 
of CAMP, which might be due to the use of AAC and PHYC features in CAMP without STRL features. Moreover, 
the feature extraction in CAMP is based on the reduced alphabet due to which the information might be lost. �e 
features employed in iAMP-2L is the correlated PAAC that constitutes a subset of iAMPpred feature set and this 
could be one of the reasons for the equivalent performance of iAMP-2L with iAMPpred. In EFC-FCBF, the evo-
lutionary feature set was constructed and 40 informative features were selected by fast correlation based feature 
selection (FCBF)51 technique, which were then used as input in logistic classi�er. �e AUC-ROC and AUC-PR of 
EFC-FCBF were found closer to that of iAMPpred, which implies that the evolutionary features are also impor-
tant in predicting AMPs. �e EFC +  307-FCBF is an extension of EFC-FCBF, where 307 more PHYC features 
were used to train and test the model. �ough the accuracy of this model was found at par with the iAMPpred, 
the number of features used in EFC +  307-FCBF (i.e., 347) is much larger than the number of features considered 
in iAMPpred (i.e., 46).

�e performance of iAMPpred was also compared with the speci�c tools such as AntiBP2 and AVPpred 
meant for predicting antibacterial and antiviral peptides respectively. �e accuracies of iAMPpred was found 
little higher than that of AntiBP2 but much higher than that of AVPpred. One of the possible reasons for this 
may be the non-consideration of NAAC, PAAC, STRL features in both AntiBP2 and AVPpred. �e accuracy of 
iAMPpred was also found higher as compared to that of ClassAMP with Xiao testing dataset. Besides, iAMPpred 
achieved higher accuracies for organism-speci�c prediction of AMPs. �e developed web server iAMPpred is 
believed to supplement the existing tools/techniques in predicting the AMPs.
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