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SUPERCOMPUTERS
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48 GB/s, 1-2 µs 40 GB/s, 1-3 µs 150 GB/s, 0.8 µs

420 GB/s, 1-2 µs

Higher Bandwidth!

Lower Latency!

Fewer hops
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WHY STUDY NETWORK 
PERFORMANCE?

Peak bandwidth and latency are never obtained in 
presence of congestion!

High raw bandwidth does not guarantee 
proportionate observed performance!

Topology, job interference, I/O!

Find the next generation topology !

Savings are proportionate to core-count
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QUANTIFYING IMPACT

!

!

!

!

!

!

Mapping via logical 
operations in Rubik!

What about others 
mappings?!

How far are we from the 
best performance?!

Which is the best 
performing mapping?
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A. Bhatele, et al Mapping applications with collectives over sub-communicators on torus 
networks. In Proceedings of the ACM/IEEE International Conference for High Performance 
Computing, Networking, Storage and Analysis, SC ’12. IEEE Computer Society, Nov. 2012 
(to appear). LLNL-CONF-556491.
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PERFORMANCE 
PREDICTION METHODS

Theoretically: NP hard!

Simulations: too slow!

Few days to simulate one use case*!

Real runs: very expensive!

Application/allocation                                       
specific information
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*Abhinav Bhatele, Nikhil Jain, William D. Gropp, and Laxmikant V. Kale. 2011b. Avoiding hot-spots on two- level direct networks. In Proceedings of 2011 International 

Conference for High Performance Computing, Networking, Storage and Analysis (SC ’11). ACM, New York, NY, USA, 76:1–76:11.

2012 2013

Intrepid 4.16M 0.73M

Mira 0.17M 7.67M

Total 4.33M 8.40M

13 million core hours!
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HEURISTICS!
PRIOR FEATURES
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2D-Halo: predicting performance using a 

linear regression model for prior features
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SUPERVISED LEARNING: 
OVERVIEW

Collect/generate data and summarize!

Build models: train performance prediction based on 
independent features!

Predict and correlate
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MESSAGE LIFE CYCLE!
ON BLUE GENE/Q
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Injection FIFO !

Contention

Link Contention

Receive Buffer !

Contention

Reception FIFO!

Contention

Memory!

Contention

Memory!

Contention
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A PMPI based BG/Q-Counter collection module!

Packets sent on links in specific                          
directions: A, B, C, D, E!

deterministic, dynamic!

Packets received on a link!

Packets in buffers

INPUT FROM !
NETWORK COUNTERS
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A
B

C
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INPUT FROM 
SIMULATION

Simulate the injection mechanism!

Selection of memory injection FIFO!

Mapping of memory FIFO to network injection 
FIFO!

Simulate routing to obtain hops/dilation
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INPUT DATA
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Indicator! Source!! Derived from

Bytes on links Counters! Sent chunks

Buffer length Counters! #Packets in buffers

Delay per link Counters
#Packets in buffers/ 

#received packets

Dilation! Analytical Shortest path routing 

FIFO length Analytical Based on PAMI
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BUILDING MODEL

Derive features from the raw data on entities, e.g. average bytes on links!

Create a database of derived features and performance; we have used 100 

mappings!

33% mappings generated randomly!

33% using Rubik!

Rest are based on better performing mappings!

Select two-third entries as training set:!

Derived features are independent variables!

Performance is a dependent variable
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BUILDING MODEL

The training set is used to create a model for prediction!

Remaining entries from the database are used as the test set 
- derived features as input!

Prediction is compared with observed values!

Experimented with a large number of algorithms - linear, 
bayesian, SVM, near-neighbors, etc.!

!
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http://scikit-learn.org

http://scikit-learn.org
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 LEARNING ALGORITHM
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X[1] <= 0.4295

X[0] <= 0.0082 X[0] <= 0.2857

X[1] <= 0.0077 X[0] <= 0.0176 X[0] <= 0.1905 leaf

leaf

X[1] <= 0.0212

leaf

Rest of the tree

                                                         

                                                         

feature 1

fe
a

tu
re

 2

Decision trees Randomized forest of trees

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.	
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HOW TO JUDGE A 
PREDICTION

Rank Correlation Coefficient (RCC): fraction of the 
number of pairs of task mappings whose ranks are in 
the same partial order in predicted and observed 
performance list!

!

Absolute Correlation!

!

Higher is better!
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Nikhil Jain @ SC ’13

RESULTS: SETUP

Three communication kernels!

Five-point 2D stencil!

14-point 3D stencil!

All-to-all over sub-communicators!

Four message sizes to span MPI and routing 
protocols
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PRIOR FEATURES

Entities!

Bytes on a link!

Dilation!

Derivation Methods !

Maximum!

Average !

Sum
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RESULTS 
PRIOR FEATURES
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max bytes is 

good, but 

incorrect in 

10% cases
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NEW FEATURES

Entities!

Buffer length (on intermediate nodes)!

FIFO length (packets in injection FIFO)!

Delay per link (packets in buffer/packets received)!

Derivation methods!

Average Outliers (AO)!

Top Outliers (TO)
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RESULTS 
NEW FEATURES
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HYBRID FEATURES

Combine multiple metrics to complement each other!

Some combinations!

H1: avg bytes + max bytes + max FIFO!

H3: avg bytes + max bytes + avg buffer + max 
FIFO!

H4: avg bytes + max bytes + avg buffer TO!

H5: avg bytes TO + avg buffer TO + avg delay AO 
+ sum hops AO + max FIFO
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RESULTS 
HYBRID FEATURES
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SUMMARY ON 64K 
CORES
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RESULTS: TREND
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RESULTS!
ABSOLUTE PERFORMANCE
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COMBINING 
BENCHMARKS
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PREDICTING FOR 64K 
CORES USING 16K CORES
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RESULTS: PF3D
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RESULTS: PF3D
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SUMMARY

Communication is not just about peak latency/
bandwidth!

Simultaneous analysis of various aspects of network 
is important!

Complex models are required for accurate prediction!

There are patterns waiting to be identified!
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FUTURE WORK

More applications!!

More metrics!

Weighted analysis!

Offline prediction of entities!

!

!
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Questions?


