#### PREDICTING APPLICATION PERFORMANCE USING SUPERVISED LEARNING ON COMMUNICATION FEATURES

Nikhil Jain\*, Abhinav Bhatele<sup>†</sup>, Michael P. Robson\*, Todd Gamblin<sup>†</sup>, Laxmikant V. Kale\*

> \*University of Illinois at Urbana-Champaign <sup>†</sup>Lawrence Livermore National Laboratory



This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 13-ERD-055. LLNL IM Release:

#### **SUPERCOMPUTERS**



 $48 \, \text{GB}/\text{s}, 1-2 \, \mu\text{s}$ 



40 GB/s, 1-3  $\mu$ s



150 GB/s, 0.8  $\mu s$ 

Higher Bandwidth Lower Latency Fewer hops



420 GB/s, 1-2 μs

## WHY STUDY NETWORK PERFORMANCE?

- Peak bandwidth and latency are never obtained in presence of congestion
- High raw bandwidth does not guarantee proportionate observed performance
  - Topology, job interference, I/O
- Find the next generation topology
- Savings are proportionate to core-count

## QUANTIFYING IMPACT



- Mapping via logical operations in Rubik
- What about others mappings?
- How far are we from the best performance?

# Which is the best performing mapping?

A. Bhatele, et al Mapping applications with collectives over sub-communicators on torus networks. In Proceedings of the ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC '12. IEEE Computer Society, Nov. 2012 (to appear). LLNL-CONF-556491.

## PERFORMANCE PREDICTION METHODS

- Theoretically: NP hard
- Simulations: too slow
  - Few days to simulate one use case\*
- Real runs: very expensive
  - Application / allocation specific information

|          | 2012  | 2013  |
|----------|-------|-------|
| Intrepid | 4.16M | 0.73M |
| Mira     | 0.17M | 7.67M |
| Total    | 4.33M | 8.40M |

#### 13 million core hours!

\*Abhinav Bhatele, Nikhil Jain, William D. Gropp, and Laxmikant V. Kale. 2011b. Avoiding hot-spots on two-level direct networks. In *Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '11)*. ACM, New York, NY, USA, 76:1–76:11.

## HEURISTICS PRIOR FEATURES



2D-Halo: predicting performance using a linear regression model for prior features

## SUPERVISED LEARNING: OVERVIEW

- Collect/generate data and summarize
- Build models: train performance prediction based on independent features
- Predict and correlate



## MESSAGE LIFE CYCLE ON BLUE GENE/Q



## INPUT FROM NETWORK COUNTERS

- A PMPI based BG/Q-Counter collection module
- Packets sent on links in specific directions: A, B, C, D, E
  - deterministic, dynamic
- Packets received on a link
- Packets in buffers

## INPUT FROM SIMULATION

#### Simulate the injection mechanism

- Selection of memory injection FIFO
- Mapping of memory FIFO to network injection FIFO
- Simulate routing to obtain hops/dilation

### **INPUT DATA**

| Indicator      | Source     | Derived from                                      |
|----------------|------------|---------------------------------------------------|
| Bytes on links | Counters   | Sent chunks                                       |
| Buffer length  | Counters   | #Packets in buffers                               |
| Delay per link | Counters   | <pre>#Packets in buffers/ #received packets</pre> |
| Dilation       | Analytical | Shortest path routing                             |
| FIFO length    | Analytical | Based on PAMI                                     |

## BUILDING MODEL

- Derive features from the raw data on entities, e.g. average bytes on links
- Create a database of derived features and performance; we have used 100 mappings
  - 33% mappings generated randomly
  - 33% using Rubik
  - Rest are based on better performing mappings
- Select two-third entries as training set:
  - Derived features are independent variables
  - Performance is a dependent variable

## BUILDING MODEL

- The training set is used to create a model for prediction
- Remaining entries from the database are used as the test set
   derived features as input
- Prediction is compared with observed values
- Experimented with a large number of algorithms linear, bayesian, SVM, near-neighbors, etc.



#### *learn* <u>http://scikit-learn.org</u>

### LEARNING ALGORITHM

Decision trees

#### Randomized forest of trees



Decision surfaces of a random forest



L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

## HOW TO JUDGE A PREDICTION

Rank Correlation Coefficient (RCC): fraction of the number of pairs of task mappings whose ranks are in the same partial order in predicted and observed performance list  $concord_{ij} = \begin{cases} 1, & \text{if } x_i >= x_j \& y_i >= y_j \\ 1, & \text{if } x_i < x_j \& y_i < y_j \\ 0, & \text{otherwise} \end{cases}$ 

$$RCC = \left(\sum_{0 < i < n} \sum_{0 < i < n < i} concord_{ij}\right) / \left(\frac{n(n-1)}{2}\right)$$

Absolute Correlation

$$R^{2}(y,\hat{y}) = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

Higher is better!

### **RESULTS: SETUP**

- Three communication kernels
  - Five-point 2D stencil
  - 14-point 3D stencil
  - All-to-all over sub-communicators
- Four message sizes to span MPI and routing protocols

### **PRIOR FEATURES**

- Entities
  - Bytes on a link
  - Dilation
- Derivation Methods
  - Maximum
  - Average
  - Sum



## RESULTS PRIOR FEATURES

Rank correlation coefficient



max bytes is good, but incorrect in 10% cases

### **NEW FEATURES**

#### Entities

- Buffer length (on intermediate nodes)
- FIFO length (packets in injection FIFO)
- Delay per link (packets in buffer/packets received)
- Derivation methods
  - Average Outliers (AO)
  - Top Outliers (TO)

## RESULTS NEW FEATURES



## HYBRID FEATURES

- Combine multiple metrics to complement each other
- Some combinations
  - H1: avg bytes + max bytes + max FIFO
  - H3: avg bytes + max bytes + avg buffer + max
     FIFO
  - H4: avg bytes + max bytes + avg buffer TO
  - H5: avg bytes TO + avg buffer TO + avg delay AO
     + sum hops AO + max FIFO

## RESULTS HYBRID FEATURES



## SUMMARY ON 64K CORES



#### **RESULTS: TREND**



3D Halo

## RESULTS ABSOLUTE PERFORMANCE



## COMBINING BENCHMARKS

Rank correlation coefficient

1.0 0.9 RCC 0.8 0.7 0.6 Pairwise ordering misprediction Number of mispredictions le4 le3 le2 lel 4, ۲<u>/</u>3 15 140 MA

Nikhil Jain @ SC '13

## PREDICTING FOR 64K CORES USING 16K CORES



Nikhil Jain @ SC '13

#### **RESULTS: PF3D**



#### **RESULTS: PF3D**

Blue Gene/Q (16,384 cores)



Mappings sorted by actual execution times

#### SUMMARY

- Communication is not just about peak latency / bandwidth
- Simultaneous analysis of various aspects of network is important
- Complex models are required for accurate prediction
- There are patterns waiting to be identified!

### FUTURE WORK

- More applications!
- More metrics
- Weighted analysis
- Offline prediction of entities

#### Questions?