
PDK-727

HE.5.3.1O AITL-HEP-CP-99-56

Nucleon Decay in Soudan 2
WwRq

M. C. Goodmanl, for the Soudan 2 Collaboration

Argonne National Laboratory, Argonne Ill. 60439, USA

Abstract

The Soudan 2 detector is used to search for evidence of nucleon decay. Particular emphasis is put

on searches for modes with multiple-charged particles in the final st ate, and for modes suggested by

super-symmetric theories.

Mode CXB BKG Data kT-yr 1030 yr PDG9

VK+ 3.56 43
K+ ~ ~+# 5.5% 1.1 0

K+ + p+vp 9.0% 0.4 1
~ + ~+B+u- 31% 0.5 0 3.56 142 190

I uK! II I 14.411591861s 1 1 1 I

K: + T+T- 17% 6.1 7

K!j j 7r0m0(3S) 3% 3.4 7

K: -+ Z0m0(4S) 5% 1.2 2

n b VTO 11% 2.6 4 3.56 21 100

n + Vq” 7% 0.7 0 3.56 32 54

p+m+ 4.6% 6.0 5 3.56 6.9 25

n ~ ue+e– 20% 1.6 1 3.56 68 74

n ~ e+xo 9% 0.9 0 3.56 38 550

p 4 e+K~ 4.41 117 76

K; ~ Z+T- 15% 0.61 1

K: ~ TO# 8% 0.42 0

:.~ggz p + p+K; 4.41 151 64
~~gg~g @ ~ X+r–
~~m2~E 16% <0.24 0

~g~ges “> K~ 4 ToTo 6% 0.61 0

Table 1: Nucleon Decay limits set by Soudan 2

The Soudan 2 collaboration has analyzed its cent ained event sample for the evidence of nucleon

decay. Limits in a number of decay modes are shown in Table 1. Details about the analysis can be

found in Allison et al., and Wallet al.

References

Allison, W.W.A. et al., Phys. Lett. B427, 217 (1998).

Wall, D. et al., submitted to Physical Review, (1999).

Submitted to the proceedings of the XXVI International Cosmic Ray conference,

Salt Lake City, Utah, August 17-25, 1999.

DISCLAIMER

This repofi was prepared as an account of work sponsored

by an agency of the United States Government. Neither the

United States Government nor any agency thereof, nor any

of their employees, make any warranty, express or implied,

or assumes any legal liability or responsibility for the

accuracy, completeness, or usefulness of any information,

apparatus, product, or process disclosed, or represents that

its use would not infringe privately owned rights. Reference

herein to any specific commercial product, process, or

service by trade name, trademark, manufacturer, or

otherwise does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United

States Government or any agency thereof. The views and

opinions of authors expressed herein do not necessarily

state or reflect those of the United States Government or

any agency thereof.

DISCLAIMER

Portions of this document may be illegible

in electronic image products. Images are

produced from the best available original

document.

2 Prediction Techniques

Both intuition and previous work [6, 4, 8] indicate that

“similar” applications are more likely to have similar run

times than applications that have nothing in common.

This observation is the basis for our approach to the pre-

diction problem, which is to derive run-time predictions

from historical information of previous similar runs.

In order to translate this general approach into a specific

prediction method, we need to answer two questions:

1,

2.

How do we dejine %imilar”? Jobs may be judged

similar because they are submitted by the same user,

at the same time, on the same computer, with the

same arguments, on the same number of nodes, and so

on. We require techniques for answering the question:

Are these two jobs similar?

How do we genemte predictions? A definition of sim-

ilarity allows us to partition a set of previously exe-

cuted jobs into buckets or categories within which all

are similar. We can then generate predictions by, for

example, computing a simple mean of the run times

in a category.

We structure the description of our approach in terms of

these two issues.

2.1 Defining Similarity

In previous work, Downey [4] and Gibbons [8] demon-

strated the value of using historical run-time information

for “similar” jobs to predict run times for the purpose

of improving scheduling performance and predicting wait

times in queues. However, both Downey and Gibbons re-

stricted themselves to relatively simple definitions of simi-

larity. A major contribution of the present work is to show

that more sophisticated definitions of similarity can Iesd

to significant improvements in prediction accuracy.

A difficulty in developing prediction techniques based

on similarity is that two jobs can be compared in many

ways. For example, we can compare the application name,

submitting user name, executable arguments, submtilon

time, and number of nodes requested. We can conceivably

also consider more esoteric parameters such as home direc-

tory, files staged, executable size, and account to which the

run is charged. We are restricted to those values recorded

in workload traces obtained from various supercomputer

centers, However, because the techniques that we propose

are based on the automatic discovery of efficient similar-

ity criteria, we believe that they will apply even if quite

different information is available.

The workload traces that we consider are described in

Table 1; they originate from Argonne National Labora-

tory (ANL), the Cornell Theory Center (CTC), and the

San Diego Supercomputer Center (SDSC). Table 2 sum-

marizes the information provided in these traces: text in

a field indicates that a particular trace contains the infor-

mation in question; in the case of “Type,” “Queue,” or

“Class” the text specifies the categories in question. The

characteristics described in rows 1-9 are physical charac-

teristics of the job itself. Characteristic 10, “maximum

run time,” is information provided by the user and is used

by the ANL and CTC schedulers to improve scheduling

performance. Rows 11 and 12 are temporal information,

which we have not used in our work to date; we hope

to evaluate the utility of this information in future work.

Characteristic 13 is the run time that we seek to predict.

The general approach to defining similarity taken by

ourselves, Downey, and Gibbons is to use characteristics

such as those presented in Table 2 to define templates that

identify a set of categom”es to which jobs can be sssigned.

For example, the template (q, u) specifies that jobs are

to be partitioned by queue and use~ on the ANL SP, this

template generates categories such as (night, wsmith),

(day, wsmith), and (night ,f ester).

We find that using discrete characteristics 1-8 in the

manner just described works reasonably well. On the other

hand, the number of nodes is an essentially continuous

parameter, and so we prefer to introduce an additional

parameter into our templates, namely a “node range size”

that defines what ranges of requested number of nodes

are used to decide whether applications are similar. For

example, the template (u, n=4) specifies a node range

size of 4 and generates categories (wsrnith, 1-4 nodes)

and (wsmith, 5-8 nodes).

Once a set of templates has been defined (see Sec-

tion 2.4) we can categorize a set of jobs (e.g., the workloads

of Table 1) by assigning each job to those categories that

match its characteristics. Categories need not be disjoint,

and hence the same job can occur in several categories. If

two jobs fall into the same category, they are judged simi-

lar; those that do not coincide in any category are judged

dissimilar.

2.2 Generating Predictions

We now consider the question of how we generate run-time

predictions. The input to this process is a set of templates

T and a workload W for which run-time predictions are

required. In addition to the characteristics described in

the preceding section, a maximum history, type of data,

and prediction type are also defined for each template.

The maximum history indicates the maximum number of

data points to store in each category generated from a

template. The type of data is either an actual run time,

denoted by act, or a relative run time, denoted by rel.

A relative run-time incorporates information about user-

supplied run time estimates by storing the ratio of the

Table 1: Characteristics of the workloads used in our studies. Because of an error when the trace was recorded, the

ANL trace does not include one-third of the requests actually made to the system.

Mean

Workload Number of Number of Run Time

Name System Nodes Location When Requests (minutes)

ANL IBM SP2 80 ANL 3 months of 1996 7994 97.40

CTC IBM SP2 512 CTC 11 months of 1996 79302 182.18

SDSC95 Intel Paragon 400 SDSC 12 months of 1995 22885 107.76

SDSC96 Intel Paragon 400 SDSC 12 months of 1996 22337 166.48

Table 2: Characteristics recorded in workloads. The column “Abbr” indicates abbreviations used in subsequent

discussion.
—

T
2

3

4

5

6

7

8

9

m

ii

12

m—

Abbr

t

q
c

u

s

e

a

na

n

Characteristic

Type

Queue

class

User

Loadleveler script

Executable

Arguments

Network adaptor

Number of nodes

Maximum run time

Argonne SP

batch/interactive

day/night

Y

Y

Y

Y

I Y I

Cornell SP

serial/parallel/pvm3

DSI/PIOFS

Y

Y

Y

Y
v

A

Submission time Y Y

Start time Y Y

Run time Y Y

actual run time to the user-supplied estimate [ss described

in Section 2.3). The prediction type determines how a run-

time prediction is made from the data in each category

generated from a template. We use a mean, denoted by

mean, or a linear regression, denoted by lr, to compute

estimates.

The output from this process is a set of run-time pre-

dictions and associated confidence intervals. (As discussed

in the appendix, a confidence interval is an interval cen-

tered on the run-time prediction within which the actual

run time is expected to appear some specified percentage

of the time.) The bzsic algorithm comprises three phases:

initialization, prediction, and incorporation of historical

information:

1. Define T, the set of templates to be used, and initial-

ize C, the (initially empty) set of categories.

2. At the time each application a begins to execute:

(a) Apply the templates in T to the characteristics

of a to identify the categories C= into which the

(b)

(c)

(d)

application may fall.

SDSC Paragon

29 to 35 queuea

Y

Y

Y

Y

Eliminate from C= all categories that are not in

C or that cannot provide a valid prediction, as

described in the appendix.

For each category remaining in C’=, compute a

run-time estimate and a confidence interval for

the estimate.

If C= is not empty, select the estimate with the

smallest confidence interval as the run-time pr.s

diction for the application.

3. At the time each application a completes execution:

(a) Identify the set C= of categories into which the

application falls. These categories may or may

not exist in C.

(b) For each category ci c C=

i. If Ci $ C, then create ci in C.

ii. If lc~l = maximum history, remove the

oldest point in ci.

—— ----- ,— ------ .——..

iii. Insert a into Ci.

Note that steps 2 and 3 operate asynchronously, since

historical information for a job cannot be incorporated un-

til the job finishes. Hence, our algorithm suffers from an

initial ramp-up phase during which there is insufficient in-

formation in C to make predictions. This deficiency could

be corrected by using a training set to initialize C’.

We now discuss how a prediction is generated from the

contents of a category in step 2(c) of our algorithm. We

consider two techniques in this paper. The first simply

computes the mean of the run times contained in the cat-

egory. The second attempts to exploit the additional in-

formation provided by the node counts associated with

previous run times by performing a linear regression to

compute coefficients a and b for the equation R = aN + b,

where N is node count and R is run time. This equation is

then used to make the prediction. The techniques used to

compute confidence intervals in these two cases, which we

term mean and linear regression predictors, respectively,

are described in the appendix.

The use of maximum histories in step 3(b) of our al-

gorithm allows us to control the amount of historical in-

formation used when making predictions and the amount

of storage space needed to store historical information. A

small maximum histor”y means that less historical infor-

mation is stored, and hence only more recent events are

used to make predictions.

2.3 User Guidance

Another approach to obtaining accurate run-time predic-

tions is to ssk users for this information at the time of

job submission. This approach may be viewed as com-

plementary to the prediction techniques discussed previ-

ously, since historical information presumably can be used

to evaluate the accuracy of user predictions.

Unfortunately, none of the systems for which we have

workload traces ask users to explicitly provide informa-

tion about expected run times. However, all of the work-

loads provide implicit user estimates. The ANL and CTC

workloads include user-supplied maximum run times. This

information is interesting because users have some incen-

tive to provide accurate estimates. The ANL and CTC

systems both kill a job after its maximum run time has

elapsed, so users have incentive not to underestimate this

value. Both systems also use the maximum run time to

determine when a job can be fit into a free slot, so users

also have incentive not to overestimate this value.

Users also provide implicit estimates of run times in the

SDSC workloads. The scheduler for the SDSC Paragon

has many different queues with different priorities and dif-

ferent limits on application resource use. When users pick

a queue to submit a request to, they are providing a pre-

diction of the resource use of their application. Queues

Table 3: Templates used by Gibbons for run-time predic-

tion.

Number I Template I Predictor I

5 I (n, age) I mean

6 () I linear remession

that have lower resource limits tend to have higher pri-

ority, and applications in these queues tend to begin exe

cuting quickly, so users are motivated to submit to queues

with low resource limits. Also, the scheduler will kill ap

placations that go over their resource limits, so users are

motivated not to submit to queues with resource limits

that are too low.

A simple approach to exploiting user guidance is to base

predictions not on the run times of previous applications,

but on the relationship between application run times and

user predictions. For example, a prediction for the ratio

of actual run time to user-predicted run time can be used

along with the user-predicted run time of a particular ap-

plication to predict the run time of the application. We

use this technique for the ANL and CTC workloads by

storing relative run times, the run times divided by the

user-specified maximum run times, as data points in cat-

egories instead of the actual run times.

2.4 Template Definition and Search

We have not yet addressed the question of how we define

an appropriate set of templates. This is a nontrivial prob-

lem. If too few categories are defined, we group too many

unrelated jobs together, and obtain poor predictions. On

the other hand, if too many categories are defined, we have

too few jobs in a category to make accurate predictions.

Downey and Gibbons both selected a fixed set of tem-

plates to use for all of their predictions. Downey uses only

a single template containing only the queue name; predic-

tion is based on a conditional probability function. Gib-

bons uses the six templates/predictor combinations listed

in Table 3. The age characteristic indicates how long an

application has been executing when a prediction is made.

Section 4 discusses further details of their approaches and

a comparison with our work.

We use search techniques to identify good templates for

a particular workload. While the number of application

characteristics included in our traces is relatively small,

the fact that effective template sets may contain many

templates means that an exhaustive search is impractical.

----(. $... —.- --- ., , . ..*.
. . .-— _____ .. —__.

Hence, we consider alternative search techniques. Results

for greedy and genetic algorithm search are presented in

this paper.

The greedy and genetic algorithms both take as input a

workload W’ from Table 1 and produce as output a tem-

plate set; they differ in the techniques used to explore

different template sets. Both algorithms evaluate the ef-

fectivenem of a template set T by applying the algorithm

of Section 2.2 to workload W. Predicted and actual values

are compared to determine for W and T both the mean

error and the percentage of predictions that fall within the

90 percent confidence interval.

2.4.1 Greedy Algorithm

The greedy algorithm proceeds iteratively to construct a

template set T = {-t~} with each t~ of the form

{ () (hl,l) (hz,l, ‘2,2),..., (~i,l, k,2,. . . ,h,i) },

where every hj,k is one of the n characteristics

hl, h2..., h. from which templates can be constructed for

the workload in question. The search over workload W is

performed with the following algorithm:

1. Set the template set T = {()}

2. Fori=l ton

(a) Set Tc to contain the (~) different templates

that contain i characteristics.

(b) For each template t= in T.

i. Create a candidate template set XC = T U

{t.}

ii.Apply the algorithm of Section 2.2 to W and

Xc, and determine mean error

(c) Select the T. with the lowest mean error, and

add the associated template t. to T

Our greedy algorithm can search over any set of charac-

teristics. Here, however, because of time constraints we

do not present searches over maximum h~tory sizes. This

restriction reduces the size of the search space, but poten-

tially also results in less effective templates.

2.4.2 Genetic AIgorithm Search

The second search algorithm that we consider uses g~

netic algorithm techniques to achieve a more detailed ex-

ploration of the search space. Genetic algorithms are a

probabilistic technique for exploring large search spaces,

in which the concept of cross-over from biology is used to

improve efficiency relative to purely random search [10].

A genetic algorithm evolves individuals over a series of

generations. The processing for each generation consists

of evaluating the fitness of each individual in the popula-

tion, selecting which individuals will be mated to produce

the next generation, mating the individuals, and mutating

the resulting individuals to produce the next generation.

The process then repeats until a stopping condition is met.

The stopping condition we use is that a fixed number of

generations have been processed. There are many differ-

ent variations to this process, and we will next describe

the variations we used.

Our individuals represent template sets. Each template

set consists of between 1 and 10 templates, and we encode

the following information in binary form for each template:

1.

2.

3.

4.

5.

A

Whether a mean or linear regression prediction is per-

formed

Whether absolute or relative run times are used

Whether each of the binary characteristics associated

with the workload in question is enabled

Whether node information should be used and, if so,

the range size from 1 to 512 in powers of 2

Whethdr a maximum history should be used and, if

so, the size between 1 and 32,768 in powers of 2

fitness function is used to compute the fitness of each

individual and therefore iits chance to reproduce. The

fitness function should be selected so that the most d+

sirable individuals have higher fitness and therefore have

more offspring, but the diversity of the population must be

maintained by not giving the best individuals overwhelm-

ing representation in succeeding generations. In our g~

netic algorithm, we wish to minimize the prediction error

and maintain a range of individual fitnesses regardless of

whether the range in errors is large or small. The fitness

function we use to accomplish this goal is

Fnain + ~~~im . (Fnaaz – Fnain),

where E is the error of the individual E ~in and Ems= are

the minimum and maximum errors of individuals in the

generation and F~~n and Fma= are the desired minimum

and maximum fitnesses desired. We chose Fmaz = 4 .F~in.

We use a common technique called stochastic sampling

without replacement to select which individuals will mate

to produce the next generation. In this technique, each

individual ia selected 1A] times to be a parent. The

rest of the parents are selected by Bernoulli trials where

each individual is selected, in order, with a probability of

F – Fang[*] until all parents are selected.

The mating or crossover process is accomplished by ran-

domly selecting pairs of individuals to mate and replacing

each pair by their children in the new population. The

crossover of two individuals proceeds in a slightly nonstan-

dard way because our chromosomes are not fixed length

—-. . ,- 7—---2, , ,..- —---. .— –.

but a multiple of the number of bits used to represent each

template. Two children are produced from each crossover

by randomly selecting a template i and a position in the

template p from the first individual T1 = tl,l,..., tl,n and

randomly selecting a template j in the second individ-

ual T2 = tz,l, ..., t2,m so that the resulting individuals

will not have more than 10 templates. The new individ-

uals are then T1 = tl,l, . . .,tl,j_l, 7z1,t2,j+1, . . .,t2,m and

T2 =tz,l... ‘2,j-l, ~2, ~1,i+l, . . .,ti, n. If there are b bits

used to represent each template, nl is the first p bits of

tI,iconcatenated with the last 6 – p bits of t2, j. and n2

is the first p bits of t2,j concatenated with the last b – p

bits of tl, i.

In addition to using crossover to produce the individuals

of the next generation, we also use a process called elitism

whereby the best individuals in each generation survive

unmutated to the next generation. We use crossover to

produce all but 2 individuals for each new generation and

use elitism to select the lsst 2 individuals for each new gen-

eration. The individuals resulting from the crossover pro-

cess are mutated to help maintain a diversity in the pop

ulation. Each bit representing the individuals is flipped

with a probability of 0.001.

3 Experimental Results

In the preceding section we described our basic approach

to run-time prediction. We introduced the concept of tem-

plate search as a means of identifying efficient criteria for

selecting “similar” jobs in historical workloads. We also

noted potential refinements to this basic technique, in-

cluding the use of alternative search methods (greedy vs.

genetic), the introduction of node count information via

linear regression, support for user guidance, and the poten-

tial for varying the amount of historical information used.

In the rest of this paper, we discuss experimental stud-

ies that we have performed to evaluate the effectiveness of

our techniques and the significant of the refinements just

noted.

Our experiments used the workload traces summarized

in Table 1 and are intended to answer the following ques-

tions:

●

●

●

●

How effectively do our greedy and genetic search al-

gorithms perform?

What is the relative effectiveness of mean and linear

regression predictors?

What is the impact of ~er guidance as represented

by the maximum run times provided on the ANL and

CTC SPS?

What is the impact of varying the number of nodes

in each category on prediction performance?

●

●

What are the trends for the best templates in the

workloads?

How do our techniques compare with those of Downey

and Gibbons? -

3.1 Greedy Search

Figure 1 shows the results of performing a greedy search

for the best category templates for all four workloads. Sev-

eral trends can be observed from this data. First, adding a

second template with a single characteristic results in the

most dramatic improvement in performance. The addition

of this template has the least effect for the CTC workload

where performance is improved between 5 and 48 percent

and has the greatest effect for the SDSC workloads which

improve between 34 and 48 percent. The addition of tem-

plates using up to all possible characteristics results in

less improvement than the addition of the template con-

taining a single characteristic. The improvements range

from an additional 1 to 18 percent improvement with the

ANL workload seeing the most benefit and the SDSC96

workload seeing the least.

Second, the graphs show that the mean is a better pre-

dictor than linear regression except when a single template

is used with the SDSC workloads. The final predictors ob-

tained by using means are between 2 and 33 percent more

accurate than those based on linear regressions. The im-

pact of the choice of predictor on accuracy is greatest in

the ANL and least in the SDSC96 workload.

A third trend, evident in the ANL and CTC results, is

that using the relative run times gives a significant im-

provement in performance. When this information is in-

corporated, prediction accuracy increases between 23 and

43 percent with the ANL workload benefiting most.

Table 4 lists for each workload the accuracy of the best

category templates found by the greedy search. In the

last column, the mean error is expressed ss a fraction of

mean run time. Mean errors of between 42 and 70 percent

of mean run times may appear high; however, ss we will

see later, these figures are comparable to those achieved by

other techniques, and genetic search performs significantly

better.

Looking at the templates listed in Table 4, we observe

that for the ANL and CTC workloads, the executable and

user name are both important characteristics to use when

deciding whether applications are similar. Examination

of other data gathered during the experiments shows that

these two characteristics are highly correlated: substitut-

ing u for e or s or vice versa in templates results in similar

performance in many experiments. This observation may

imply that users tend to run a single application on these

parallel computers.

The templates selected for the SDSC workloads indi-

cate that the user who submits an application is more

;- ~..——--., .,, ,?4-. ->. ,. .-, , r.. ,.
-.

workloadANL

130

‘“-h

LhwtwRegression,Runllrne _
Mean,Runllrne —

120 “nearRegression,Runllm~ax Runllme -K-
Mean,RunTimeJMaxRunlime _

110 1
l(x) -

60 - -0.----..-....-....4

50 -

40
1 2

—p
3 4 5 6

NumberofTemplates

150

140

130

120

110

100

90

80

WorkloadSDSC95

LinearRegression—, Mean--

701 I

1 2 3
NumberofTemplates

workloadCrc
240

LinearRegression,RunTtme—o—
220 Mean,Runllme — -

“nearRegression,RunTlmd?vfaxRunllme -.G--

200 -
Mean,RunTimdhfaxRunTime+—

180 -

160 -

3-=---I-u...s..-....-.....

100I I

1 2 3“ 4 5 6
NumberofTemplate-s

WorkloadSDSC96

160

150

140

130

120

110

100

90

80
1 2 3

NumberofTemplates

Figure 1: Mean errors of greedy searches

- ,,,, -.,.,J,,..,..,,,,c... ,-,,,.,,.,,,, . ..— -—--—.—- —
---- 7-- ,., . .,,

.,. , J-. ., . . . -

important in determining application similarity than the

queue to which an application is submitted. Furthermore,

Figure 1 shows that adding the third template results

in performance improvements of only 2 to 12 percent on

the SDSC95 and SDSC96 workloads. Comparing this re-

sult with the greater improvements obtained when relative

run times are used in the ANL and CTC workloads sug-

gests that SDSC queue classes are not good user-specified

run-time estimates. It would be interesting to use the

resource limits associated with queues as maximum run

times. However, this information was not available to us

when this paper was being written.

Figure 2 shows for the ANL workload the percentage of

actual run times that fall within the 90 percent confidence

interval. We see that the confidence intervals generated

when using a linear regression predictor are not accurate.

Similar results are obtained for the other workloads.

We next perform a second series of greedy searches to

identify the impact of using node information when defin-

ing categories. We use node ranges when defining cate-

gories as described in Section 2.1. The results of these

searches are shown in Table 5. Because of time constraints,

no results are available for the CTC workload.

The table shows that using node information improves

prediction performance by 2 and 10 percent with the

largest improvement for the San Diego workloads. This

information and the fact that characteristics such as ex-

ecutable, user name, and arguments are selected before

nodes when searching for templates indicates that the im-

portance of node information to prediction accuracy is

only moderate.

Further, the greedy search selects relatively small node

range sizes coupled with user name or executable. This

fact indicates, es expected, that an application executes

for similar times on similar numbers of nodes.

3.2 Genetic Algorithm Search

Figure 3 shows the progress of the genetic algorithm search

of the ANL workload. While the average and maximum

errors tend to decrease significantly as evolution proceeds,

the minimum error decreases only slightly. This behavior

suggests that the genetic algorithm is working correctly

but that it is not difficult to find individual templates with

low prediction errors.

As shown in Table 6, the best templates found during

the genetic algorithm search provide mean errors that are

2 to 12 percent less than the best templates found during

the greedy search. The largest improvements are obtained

on the CTC and SDSC95 workloads. These results indi-

cate that the genetic search performs slightly better than

the greedy search. This difference in performance may

incresse if the search space becomes larger by, for exam-

ple, including the maximum history characteristic while

searching.

The template sets identified by the genetic search pro-

cedure are listed in Table 7. Studying these and other

template sets produced by genetic search, we see that the

mean is not uniformly used as a predictor. From the r~

suits of the greedy searches, the mean is clearly a better

predictor in general but these results indicate that com-

bining mean and linear regression predictors does provide

a performance benefit. Similarly to the greedy searches of

the ANL and CTC workloads, using relative run times as

data points provides the best performance.

A third observation is that node information is used in

the templates of Table 7 and throughout the best tem-

plates found during the genetic search. This confirms the

observation made during the greedy search that using node

information when defining templates results in improved

prediction performance.

4 Related Work

Gibbons [8, 9] also uses historical information to predict

the run times of parallel applications. His technique differs

from ours principally in that he uses a fixed set of tem-

plates and different characteristics to define templates.

Gibbons produces predictions by examining categories

derived from the templates listed in Table 3, in the order

listed, until a category that can provide a valid prediction

is found. This prediction is then used as the run time

prediction.

The set of templates listed in Table 3 results because

Gibbons uses templates of (u, e), (e), and () with sub-

templates in each template. The subtemplates use the

characteristics n and age (how long an application has ex-

ecuted). In our work we have used the user, executable,

and nodes characteristics. We do not use the age of appli-

cations in this discussion, although this characteristic has

value [4, 3]. Gibbons also uses the requested number of

nodes slightly differently from the way we do: rather than

having equal-sized ranges specified by a parameter, as we

do, he defines the fixed set of exponential ranges 1, 2-3,

4-7, 8-15, and so on.

Another difference between Gibbons’s technique and

ours is how he performs a linear regression on the data

in the categories (u, e), (e), and (). These categories

are used only if one of their subcategories cannot provide

a valid prediction. A weighted linear regression is per-

formed on the mean number of nodes and the mean run

time of each subcategory that contains data, with each

pair weighted by the inverse of the variance of the run

times in their subcategory.

Table 8 compares the performance of Gibbons’s tech-

nique with our technique. Using code supplied by Gib-

bons, we applied his technique to our workloads. We see

that our greedy search results in templates that perform

.. ---- .

Table 4: Best predictions found during greedy first search.

Data Template Mean Error Percentage of

Workload Predictor Point Set (minutes) Mean Run Time

relative / (), (e), (u,a), (t,q,u),

ANL mean run time (t,q,u, e), (t,q,u, e,a) 40.46 41.54

relative / (), (u), (U, s), (t, c,s),
CTC mean run time (t,u,s,ni), (t,c,u,s,ni) 118.89 65.25

SDSC95 mean run time (),(u), (q,u) ‘75.56 70.12

SDSC96 mean run time (), (u), (q,u)) 82.40 49.50

100

Mean,RunTime/MaxRunTime +
Mean,RunTime —

LinearRegression, Run Time --G--- .
RunTime/MaxRunTime —

90 -
.......+

-...

85 - ““””””.....
........~-. “.””..-.......=-....-.

-“--------..

80 -

1:

75
1 2 3 4 5 6

NumberofTemplates

Figure2: Percentage ofmtual runtim* that fallwithin the90percent confidence interval, forworkloti ANL,

Table5: Bestprediction sfounddurin gsecondgreed ysearch.

Data Template Mean Error Percentageof

Workload Predictor Point Set (minutes) Mean Run Time

relative (), (e), (u,a), (t,u,n=2),

ANL mean run time (q,u,e,n=32), (t,u,e,a,n=16), 39.66 40.72

(t,q,u,e,a,n=4)

SDSC95 mean run time (),(u),(u,n=l),(q,u,n=l) 67.63 62.76

SDSC96 mean run time (),(u),(u,n=4),(q,u,n=8) 76.20 45.77

--- ---------- -?.—-- .,.....- . -. _.._ ,—— ------—. —

130

120

110

100

90

80

70

60

50

30 I I

o 5 10 15 20 25 30
Generation

Figure3: Errors during genetic algorithm search ofworkIoad ANL

Table 6: Performance of the best templates found during genetic algorithm search. Results for greedy search are also

presented, for comparison.

Genetic Algorithm Greedy

Workload Mean Error Percentage of Mean Error Percentage of
.

(minutes) Mean Run Time (minutes) Mean Run Time

ANL 38.33 39.35 39.66 40.72

CTC 106.73 58.58 118.89 65.25

SDSC95 59.65 55.35 67.63 62.76

SDSC96 74.56 44.79 76.20 45.77

Workload

ANL

CTC

SDSC95

SDSC96

Table 7: The best templates found during genetic algorithm search

Best Template Set

(q, e,a,n=4,rnean,rel), (q,u,n=4,1r,reU, (q,u, e,n=sz,lr,rel)

(q,u, e,a,n=32,mean,rel), (t,u, a,n=4,1r,rel), (t,u, a,n=4,mean,rel)

(t,u,e,a,n=64,1r,rel) (t,q,u,e,a,n=128,mean,rel)

(u,n=512,mean,rel), (c,e,a,ni,n=4,mean,rel)

(q,u,n=l,mean,act), (q,n=16,1r,act)
(q,u,n=16,1r,act), (c!,u,n=4,1r,act)

(u,n=l,me~,act),” (qjn=4,1r,~ct), (q,ujn=4,1r,act),

(q,U,n=128,mea,act), (q,u,n=16,mean,act), (q,u,n=2,mean,act),
(q,u,n=4,meen,act)

----77 7T -. ,,. ,,.,., , -TT+--., . , ,>..-. ..-,,. ,,..,, <’ ., ”...,, . - .,-=. -~.. .>- ., . <m.. . -=-— ,: .! . .-— - -
-.—.

between 2 percent worse for the SDSC95 workload to 46

percent better than Gibbons’s technique. This table also

shows that our genetic algorithm search finds template

sets that have between 14 and 49 percent lower mean er-

ror than the template sets Gibbons selected.

In his original work, Gibbons did not have access to

workloads that contained the maximum run time of appli-

cations, so he could not use this information to refine his

technique. In order to study the potential benefit of this

data on his approach, we reran his predictor while using

application run time divided by the user-specified maxi-

mum run time. Table 9 shows our results. Using max-

imum run times improves the performance of Gibbons’s

prediction technique on both workloads, although not to

the level of the predictions found during our genetic algo-

rithm search.

Downey [4] uses a different technique to predict the ex-

ecution time of parallel applications. His technique is to

model the applications in a workload and then use these

models to predict application run times. HE procedure is

to categorize all applications in the workload, then model

the cumulative distribution functions of the run times in

each category, and finally use these functions to predict

application run times. Downey categorizes applications

using the queues that applications are submitted to, al-

though he does state that other characteristics can be used

in this categorization.

Downey observed that the cumulative distributions can

be modeled by using a logarithmic function: PO+ /?l in t,

although this function is not completely accurate for all

distributions he observed. Once the distribution functions

are calculated, he uses two different techniques to produce

a run-time prediction. The first technique uses the median

lifetime given that an application has executed for a time

units. Assuming the logarithmic model for the cumulative

distribution, this equation is

The second technique uses the conditional average lifetime

tmaz –1

Iogtm.= – log a

with tma= = #.o-Po)/Pl .

The performance of both of these techniques are shown

in Table 10. We have reimplemented Downey’s technique

as described in [4] and used his technique on our work-

loads, The predictions are made assuming that the appli-

cation being predicted has executed for one second. The

data shows that of Downey’s two techniques, using the

median has better performance in general and the tem-

plate sets found by our genetic algorithm perform 23 to 60

percent better than the Downey’s best predictors. There

are two ressons for this performance difference. First, our

techniques use more characteristics than just the queue

name to determine which applications are similar. sec-

ond, calculating a regression to the cumulative distribution

functions minimizes the error for jobs of all ages while we

concentrate on accurately predicting jobs of age O.

5 conclusions

We have described a novel technique for using historical in-

formation to predict the run times of parallel applications.

Our technique is to derive a prediction for a job from the

run times of previous jobs judged similar by a template of

key job characteristics. The novelty of our approach lies

in the use of search techniques to find the best templates.

We experimented with the use of both a greedy search and

a genetic algorithm search for this purpose, and we found

that the genetic search performs better for every workload

and finds templates that result in prediction errors of 40 to

60 percent of mean run times in four supercomputer center

workloads. The greedy search finds templates that result

in prediction errors of 41 to 65 percent of mean run times.

Furthermore, these templates provide more accurate run-

time estimates than the techniques of other researchers:

we achieve mean errors that are 14 to 49 percent lower er-

ror than those obtained by Gibbons and 23 to 60 percent

lower error than Downey.

We find that using user guidance in the form of user-

specified maximum run times when performing predictions

results in a significant 23 percent to 43 percent improve-

ment in performance for the Argonne and Cornell work-

loads. We used both means and linear regressions to pro-

duce run-time estimates from similar past applications and

found that means provide more accurate predictions in

general. For the best templates found in the greedy search,

using the mean for predictions resulted in between 2 per-

cent and 33 percent smaller errors. The genetic search

shows that combining templates that use both mean and

linear regression improves performance.

Our work also provides insights into the job character-

istics that are most useful for identifying similar jobs. We

find that the names of the submitting user and the appli-

cation are the most useful and that the number of nodes

is also valuable.

In future work, we hope to use search techniques to ex-

plore yet more sophisticated prediction techniques. For

example, we are interested in understanding whether it is

useful to constrain the amount of history information used

to make predictions. We are also interested in understand-

ing the potential benefit of using submission time, start

time, and application age when making predictions. We

may also consider more sophisticated search techniques

and more flexible definitions of similarity. For example,

instead of applications being either similar or disimilar,

there could be a range of similarities. A second direction

...... - ..= -., -. ., .=.. .../--7.
_.. — -, . — ..— .— . —

Table & Comparison of our prediction technique with that of Gibbons

Our Mean Error

Gibbons’s Mean Error Greedy Search I Genetic Algorithm

Workload (minutes) (minutes) (minut=)

ANL 75.26 40.46 38.33

CTC 124.06 118.89 106.73

SDSC95 74.05 75.56 59.65

SDSC96 122.55 82.40 74.56

Table 9: Comparison of our prediction technique to that of Gibbons, when Gibbons’s technique is modified to use run

times divided by maximum run times as data points

Our Mean Error

Gibbons’s Mean Error Greedy Search Genetic Algorithm

Workload (minutes) (minutes) (minutes)

ANL 49.47 40.46 38.33

CTC 107.41 118.89 106.73

Table 10: Comparison of our prediction technique with that of Downey

Downey’s Mean Error Our Mean Error

Conditional Median Conditional Average Greedy Search Genetic Algorithm

Workload Lifetime (minutes) Lifetime (minutes) (minutes) (minutes)

ANL 96.90 204.24 40.46 38.33

CTC 180.13 222.14 118.89 106.73

SDSC95 104.80 171.78 75.56 59.65

SDSC96 96.90 102.73 82.40 74.56

-,. ,,—,.-, ,,. ., ---- - ..r——. . .

for future work is to apply our techniques to the problem

of selecting and co-allocating resources in metacomputing

systems [1, 7, 2]

Acknowledgments

We thank the Mathematics and Computer Science Divi-

sion of Argonne National Laboratory, the Cornell Theory

Center, and the San Diego Supercomputer Center for pro-

viding us with’ the trace data used in this work. We also

thank Gene Rackow for helping to record the ANL trace,

Allen Downey for providing the SDSC workloads, Jerry

Gerner for providing the CTC workload, and Richard Gib-

bons for providing us with the code used for the compar-

ative analysis.

This work was supported by the Mathematicalj Infor-

mation, and Computational Sciences Division subprogram

of the Office of Computational and Technology Research,

U.S. Department of Energy, under Contract W-31-109-

Eng-38 and a NSF Young Investigator award under Grant

CCR-9215482.

Appendix: Statistical Methods

We use statistical methods [11, 5] to calculate run-time

estimates and confidence intervals from categories. A cat-

egory contains a set of data points called a sample, which

are a subset of all data points that will be placed in the

category, the population. We use a sample to produce an

estimate using either a mean or a linear regression. This

estimate includes a confidence interval that is useful as a

measure of the expected accuracy of this prediction. If the

X% confidence interval is of size c, a new data point will be

within c units of the prediction XYO of the time. A smaller

confidence interval indicates a more accurate prediction.

A mean is simply the sum of the data points divided by

the number of data points. A confidence interval is com-

puted for a mean by assuming that the data points in our

sample S are an accurate representation of all data points

in the population P of data points that will ever be placed

in a category. The sample is an accurate representation

if they are taken randomly from the population and the

sample is large enough. We assume that the sample is ran-

dom, even though it consists of the run times of a series of

applications that have completed in the recent past. If the

sample is not large enough, the sample mean z will not be

nearly equal to the population mean p, and the sample

standard deviation s will not be near to the population

standard deviation r. The prediction and confidence in-

terval we compute will not be accurate in this case. In

fact, the central limit theorem states that a sample size

of at lesst 30 is needed for z to approximate p, although

the exact sample size needed is dependent on u and the

standard deviation desired for E [11].

We used a minimum sample size of 2 when making our

predictions in practice. This is because while a small sam-

ple size may result in z not being nearly equal to p, we find

that an estimate from a category that uses many charac-

teristics but has a small sample is more accurate than an

estimate from a category that uses few characteristics but

has a larger sample size.

The X% confidence interval can be computed when us-

ing the sample mean as a predictor by applying Cheby-

chev’s theorem. This theorem states that the portion of

data that lies within k standard deviations to either side

of the mean is at least 1- & for any data set. We need

only compute the sample standard deviation and k such

thatl– $=$.

Our second technique for producing a prediction is to

perform a linear regression to a sample using the equation

t = bo + blrz,

where n is the number of nodes requested and t is the run

time. This type of prediction attempts to use information

about the number of nodes requested. A confidence in-

terval can be constructed by observing how close the data

points are to this line. The confidence interval is computed

by the equation

dt@imE 1 + ;+
(no – ii)2

=n2 _ IE_#

, where IV is the sample size, MSE is the mean squared

error of the sample, no is the number of nodes requested

for the application being predicted, and ii is the mean

number of nodes in the sample. Alpha is computed with

the equation

x%
cz=l ——

100

if the XYO confidence interval is desired and t ~ is the Stu-

dent’s t-distribution with n – 2 degrees of freedom [11, 5].

References

[1]

[2]

[3]

C. Catlett and L. Smarr. Metacomputing. Commu-

nications of the ACM, 35(6):44–52, 1992.

K. Czajkowski, I. Foster, C. Kesselman, S. Martin,

W. Smith, and S. Thecke. A Resource Management

Architecture for Metasystems. In The IPPS’98 Work-

shop on Job Scheduling Strategies for Parallel Pro-

cessing, 1998.

Murthy Devarakonda and Ravishankar

Iyer. Predictability of Process Resource Usage: A

— — .—— - ----——-.. —

Measurement-Bssed Study on UNIX. IEEE Tmns-

actions on Software Engineering, 15(12):1579-1586,

December 1989.

[4] Allen Downey. Predicting Queue Times on Space-

Sharing Parallel Computers. In International PamUel

Processing Symposium, 1997.

[5] N. R. Draper and H. Smith. Applied Regression Anal-

ysis, 2nd Edition. John Wiley and Sons, 1981.

[6] Dror Feitelson and Bill Nitzberg. Job Characteristics

of a Production Parallel Scientific Workload on the

NASA Ames iPSC/860. Lecture Nodes on Computer

Science, 949, 1995.

[7] Ian Foster and Carl Kesselman. GlobUs: A Metacom-

puting Infrastructure Toolkit. International Journal

of Supercomputing Applications, 11(2):115-128, 1997.

[8] Richard Gibbons. A Historical Application Profiler

for Use by Parallel Schedulers. Lecture Notes on Com-

puter Science, pagea 58-75, 1997.

[9] Richard Gibbons. A H~torical Profiler for Use by

Parallel Schedulers. Master’s thesis, University of

Toronto, 1997.

[10] David E. Goldberg. Genetic Algorithms in Search,

Optimization, and Machine Learning. Addison-

Wesley, 1989.

[11] Neil Weiss and Matthew Hassett. Introductory Statis-

tics. Addison-Wesley, 1982.

. -—.-;-..,- ,:,-,,,.’,,..... -?2.,
,. -/. =. V-. *..,., ,..7, <, , .,..’ ..., ~,, ..-= r-r-w .,, . — ..,<<, ,- -- -— --- 1

