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SUMMARY

A Bayesian Belief Network (BBN) for assessing the potential risk of dengue virus emergence and
distribution in Western Australia (WA) is presented and used to identify possible hotspots of
dengue outbreaks in summer and winter. The model assesses the probabilities of two kinds of
events which must take place before an outbreak can occur: (1) introduction of the virus and
mosquito vectors to places where human population densities are high; and (2) vector population
growth rates as influenced by climatic factors. The results showed that if either Aedes aegypti or
Ae. albopictus were to become established in WA, three centres in the northern part of the State
(Kununurra, Fitzroy Crossing, Broome) would be at particular risk of experiencing an outbreak.
The model can also be readily extended to predict the risk of introduction of other viruses
carried by Aedes mosquitoes, such as yellow fever, chikungunya and Zika viruses.

Key words: Aedes aegypti, Aedes albopictus, Bayesian Belief Network, dengue virus, risk mapping,

risk modelling.

INTRODUCTION

The emergence of arboviral disease epidemics in new
locations is often preceded by the spread of their vec-
tors and vertebrate hosts. These processes are increas-
ingly brought about by anthropogenic activities such
as travel and trade [1, 2]. For example, an assessment
of the possible routes of introduction of West Nile
virus to the Galapagos Islands revealed that airplanes
carrying infected mosquitoes pose the greatest risk [3].
Attempts to predict the emergence of arboviral dis-
eases in novel sites should therefore take into account
the underlying human activities, in addition to the

* Author for correspondence: Mr S. H. Ho, School of Population
Health (M431), The University of Western Australia, 35 Stirling
Highway, Crawley, Perth, WA 6009, Australia.

(Email: hosoonhoe@gmail.com)

https://doi.org/10.1017/50950268816002090 Published online by Cambridge University Press

environmental suitability of those locations for sup-
porting arthropod vector and host populations.

This paper seeks to present such a model for pre-
dicting the emergence of arboviruses carried by
Aedes aegypti and Ae. albopictus in Western
Australia (WA), with a particular focus on dengue
virus (DENYV). It therefore provides an advance on
previous attempts that predicted dengue risks solely
by the habitat niches of the Aedes vectors [e.g. 4, 5].
While both vector species are currently absent
from WA, Ae. aegypti is already established in
Queensland, and large parts of Australia are climatic-
ally suitable for both vector species to survive [4-6].
Since these mosquitoes are frequently intercepted at
entry points around the country [7, 8], there is a poten-
tial risk of both vectors and the viruses they carry be-
coming established in WA.
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Bayesian Belief Networks (BBNs) are acyclic
graphical networks representing conditional probabil-
ity relationships between the variables/nodes of the
network, and have been used in the modelling of dis-
ease risk (e.g. [9-11]). The probability distribution of
each node is either assigned based on a prior distribu-
tion model (for input nodes), or calculated using
Bayes’” Theorem from prior probabilities (‘child’
nodes) [12, 13]. BBNs are capable of modelling large
complex systems with multiple interacting variables
[14]; amenable to incorporating expert opinions; and
robust to imperfect knowledge — approximate prob-
abilities often give good results [15, 16]. These factors
make BBNs ideal for modelling the uncertain risk of
Aedes mosquito establishment and dengue emergence
in WA.

From a health perspective, de. aegypti and Ae.
albopictus are two of the most significant mosquitoes
in the world, being transmitters of several important
viruses such as DENYV, yellow fever virus, chikun-
gunya virus, and the recently headlined Zika virus
[17, 18]. Dengue is among the most important arbo-
viral diseases in terms of infection rate and risk to
humans [19, 20], with about 2-5 billion people cur-
rently living in DENV-endemic areas [20] and around
50-200 million infections occurring worldwide annu-
ally [19].

Given that neither mosquito vector is established in
WA, the model was specifically designed to distinguish
between: (1) the potential risk of vector(s) and virus
becoming established, and (2) the risk of an actual
outbreak occurring, in the event that they are estab-
lished. Maps showing the predicted risks across WA
are then presented, which we hope will add to the
range of measures already available to counter the
introduction of dengue in WA.

METHODS

The procedure for risk modelling and mapping as out-
lined below is similar to that discussed in detail in [9].

Framework and process of BBN risk modelling and
mapping

The BBN was developed using Netica' (Norsys
Software Corp., Canada), and mapping was per-
formed on ArcGIS v. 10.1 (ESRI, USA). A compre-
hensive review of the literature was conducted to
determine the main factors affecting the distribution
of Ae. aegypti and Ae. albopictus in Australia and

https://doi.org/10.1017/50950268816002090 Published online by Cambridge University Press

Dengue virus risk model and maps 55

internationally. An initial BBN was created and
GIS-compatible data were sourced from various agen-
cies (Supplementary Table Al). Risk distributions
were modelled in 3-month blocks in both summer
(December—February) and winter (June-August). All
climatic data were averaged throughout these
3-month periods. Subsequent revisions were made to
the initial model when necessary; especially the links
between nodes and the conditional probability tables
(CPTs), which specify the probability relationships
of all possible combinations of states between the par-
ent and child nodes [21]. The entire process was itera-
tive and continued until we obtained a satisfactory
risk model and risk maps that reflected the literature
and expert opinion.

The model is therefore a ‘knowledge-driven system’,
with CPTs populated according to a method recently
described in Ho et al. [9]. Briefly, a numerical score/
weight was assigned to every possible combination
of parent node states. The probability distribution
for any combination of states was then derived from
a pre-defined probability distribution table containing
the distributions for all possible scores, which had
been carefully constructed to be symmetrically
balanced around the middle score. This method pro-
vided a consistent way of populating opinion-based
CPTs.

Input data processing and classification

All nodes in the BBN were used for modelling and
mapping. This section describes how the input data
were processed and classified.

Climatic parameters

Monthly and seasonal temperature, rainfall, and
15:00-hours relative humidity spatial data files were
obtained from the Australian Bureau of Meteorology
[22].

Road and railroad density

Every operational ‘road’ and ‘railroad’ line feature
from ‘Global Map Australia 1M 2001’ was included
[23]. Kernel densities of the lines were calculated
with the search radius set to twice the output cell
size. Raw density values for every pixel were collated
and summary statistics (excluding the value O0)
obtained. These density values were re-classified as
follows: zero, 0; low, 0-33rd percentile; medium,
33rd-67th percentile; high, 67th—100th percentile.
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Seaports and airports

Spatial data for WA seaports were obtained from [24].
Kernel densities of the points were calculated, with the
search radius set to twice the output cell size. Density
values were re-classified dichotomously as follows: no
(for values =0, i.e. no seaport within a 20 km radius),
and yes (for values >0, i.e. a seaport present within a
20 km radius).

Airports servicing flights to and from Queensland
(where Ae. aegypti is endemic), and/or international
flights, were included, i.e. four airports in Perth,
Karratha, Broome and Port Hedland. Their geo-
graphical coordinates were obtained and mapped, ker-
nel densities of the points were calculated, with the
search radius set to twice the output cell size, and
density values were re-classified as per the seaports
data.

Human population density (urban areas and rural
settlements)

Data on human population density was obtained from
[25], which classifies locations on an urban—rural scale
according to population size. ‘Major urban’ (popula-
tion >100 000) and ‘other urban’ (population 1000—
99 999) polygons were combined and overlaid with a
rectangular fishnet grid comprising 160 X 160 cells
(longitude 112° to 156°; latitude —9° to —40°). The
dimensions of each cell were 0-275°x0-19375°
(~600 km?). The percentage of each cell occupied by
‘major urban’ and ‘other urban’ polygons was calcu-
lated and summary statistics (excluding the value 0)
obtained. Cells were then re-classified according to
the zero/low/medium/high categories as for ‘road
and railroad density’ above.

‘Miscellaneous population’ point features were
obtained from [23], representing locations with aggre-
gations of small dwellings. The kernel densities of such
features were calculated with a search radius of twice
the output cell size, and summary statistics (excluding
the value 0) obtained. The densities were re-classified
according to the zero/low/medium/high categories
above.

Frequency of DENYV introduction

The frequency of reported DENV infection cases in
each of the nine health regions of WA [26] was used
as a proxy measure of the frequency of DENV ‘intro-
duction events’ into WA. At present, all these dengue
cases are ‘imported’ from outside the state and no
infections were acquired locally. Average reported
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DENYV infection rate during the years 2007-2012
was calculated for each health region and summary
statistics obtained. The frequency of DENYV introduc-
tion in each health region was subsequently re-
classified as follows: below average, 0-33rd percentile;
average, 33rd-67th percentile; above average, 67th—
100th percentile.

Ae. aegypti predicted climatic niche

The species distribution modelling software, MaxEnt
[27], was used to model the potential distribution of
Ae. aegypti in Australia. Past and present locations
within Australia where the species was recorded
were obtained from [4]. The parameters used in mod-
elling were: altitude (data obtained from [28]), mean
annual rainfall, mean annual temperature, mean
January maximum temperature, mean January min-
imum temperature, mean July maximum temperature,
mean July minimum temperature, mean January rela-
tive humidity at 09:00 hours, mean January relative
humidity at 15:00 hours, mean July relative humidity
at 09:00 hours, and mean July relative humidity at
15:00 hours (climatic data obtained from [22]). The
two most important variables affecting the distribu-
tion of Ae. aegypti (annual rainfall and mean
January maximum temperature) were not correlated
with each other.

Average presence probabilities of Ae. aegypti
throughout Australia were obtained after ten repli-
cates. As the climatic niche was classified as a binary
variable (i.e. either an area is a suitable niche or
not), the mean probabilities were re-classified accord-
ing to the minimum training presence threshold value
(the presence probability of Ae. aegypti at the sample
point location which was least suitable). Probability
values below this value were taken to indicate ‘not cli-
matically suitable’ for Ae. aegypti survival and vice
versa.

Ae. albopictus predicted climatic niche

Spatial data for Ae. albopictus’s potential climatic
niche in Australia was obtained from [5]. (MaxEnt
could not accurately predict the full extent of its
niche throughout Australia because this species is
only found at a few locations in the Torres Strait
Islands currently [5].) Any part of the map [5] where
the Eco-climatic Index is positive was taken to re-
present areas that are potential climatic niches for
the species.
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Fig. 1. The infectious disease risk model. It is divided into two parts: (¢) models ‘endemicity risk’, and (b) models

‘infection’ risk.

Inclusion of ‘endemicity’ risk node

A separate ‘endemicity’ risk node was included, even
though it is the ‘infection’ risk node that actually
quantifies the risk of a dengue outbreak. In theory,
all locations with equal ‘endemicity’ risks should
have equal probabilities of supporting viable Aedes
populations and becoming dengue transmission
zones, and as long as a place is located within poten-
tial Aedes climatic niches, vector establishment is a
possibility. However, evidence indicates that the likeli-
hood of experiencing a dengue outbreak varies at dif-
ferent times of the year according to external climatic
factors [4, 29]. Therefore, the initial introduction of
Aedes mosquitoes (captured by the ‘endemicity’ risk
node) occurs by anthropogenic factors unaffected by
seasonal climatic conditions, but the risk of an actual
outbreak — in the event that these vectors are success-
fully introduced — will be affected by seasonal condi-
tions affecting vector population size and the virus’s
extrinsic incubation period. This latter process is cap-
tured by the ‘infection’ risk node.
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RESULTS
Risk model

The BBN risk model is shown in Figure 1. Individual
nodes and their prior probability distributions are
listed in Table 1, and the CPTs are provided in the
Supplementary material. The prior probabilities of
parentless nodes are uniformly distributed while
those of every other node are calculated from their
CPTs.

The rationale behind the BBN’s construction, in-
cluding grounds for node/variable inclusion, is pro-
vided in the Supplementary material. Briefly, the
model distinguishes between ‘endemicity’ risk (part
A), which quantifies the risk of Aedes vectors and
DENYV becoming endemic to an area, and the risk
of a dengue outbreak occurring in the event that the
vector(s) and virus had become established (part B).
‘Endemicity’ risk factors include the climatic niches
of Aedes mosquitoes; density of the transport network
(all types of transport were taken into consideration);
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Table 1. Types of variables and description of nodes in the network

Type of variable Description of node; node title in bold; node states; prior probability distribution (%)

Binary (2 states) 1.

Nominal/Ordinal 1.

scale (3 states)

Nominal/Ordinal 1.

scale (4 states)

Proximity to an airport (Airport_Nearby)
Yes (50-00)
No (50-00)

. Proximity to a seaport (Seaport_Nearby)

Yes (50-00)
No (50-00)

. Is the location within Ae. aegypti’s modelled climatic niche (Ae_aegypti_climatic_niche)

Yes (50-00)
No (50-00)

. Is the location within Ae. albopictus’s modelled climatic niche (Ae_albopictus_climatic_niche)

Yes (50-00)

No (50-00)

What is the frequency of dengue virus introduction (Freq_ DENV_Intro)
Above_Average (33:30)

Average (33-30)

Below_Average (33:30)

. Average seasonal (3-monthly) relative humidity at 15:00 hours (Relative_ Humidity_15:00 hours)

From_0_to_30 (33-30)
From_30_to_60 (33-30)
From_60_to_100 (33-30)

. Total seasonal (3-monthly) rainfall (Seasonal_Rainfall)

Below_50 mm (33-30)
From_50 mm_to_10 0 mm (33-30)
Above_100 mm (33-30)

. Average extrinsic incubation period of dengue virus in both vectors (EIP)

From_0_to_10_days (50-00)

From_10_to_20_days (30-00)
Above_20_days (20-00)

. Risk of Aedes mosquitoes and dengue virus (DENV) becoming endemic (DENV_Endemic_Risk)

High (25-60)
Moderate (24-40)
Low (50-00)

. Risk of an actual dengue outbreak (DENV_Infection_Risk)

High (4-19)

Moderate (18:10)

Low (77-70)

Density of primary roads (Road_Density)
High (25-:00)

Medium (25-00)

Low (25-00)

Zero (25-00)

. Density of railway lines (Railway_Density)

High (25:00)
Medium (25-00)
Low (25-00)
Zero (25-:00)

. Density of rural human settlements (Settlements_Density)

High (25-00)
Medium (25-00)
Low (25-00)
Zero (25-00)

. Size of urban settlements (Urban_Areas_per_Grid)

High (25-00)
Medium (25-00)
Low (25-:00)
Zero (25-00)
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Type of variable Description of node; node title in bold; node states; prior probability distribution (%)
Nominal/Ordinal 1. Total connectivity of combined transport network (Transport_Connectivity)
scale (=5 states) Very_High (68-80)

High (24-90)

Medium (2-60)

Low (2-08)

Very_Low (1:69)
2. Likelihood of Aedes mosquitoes introduction (Likelihood_of_vector_intro)
Very_High (18:50)
High (25-50)
Medium (18-40)
Low (5:17)
Very_Low (32:40)
3. Likelihood of dengue virus introduction (Likelihood_of_virus_intro)
Very_High (12:80)
High (20-50)
Medium (19-80)
Low (10-70)
Very_Low (36:10)
4. Total human population density (urban and rural settlements) (Human_Popn_Density)
Very_High (40-50)
High (25-00)
Medium (15-30)
Low (11-30)
Very_Low (7-99)
5. Lifespan of female adult Aedes mosquitoes (F_Adult_Lifespan)
Very_Long (14-20)
Long (20-40)
Medium (22-50)
Short (15-40)
Very_Short (7-50)
Unsuitable_Temp (20-00)
6. Potential size of mosquito population (Potential_Vector_Popn_Size)
Very_High (7-22)
High (16:60)
Medium (22-40)
Low (16-60)
Very_Low (37-:20)
7. Potential size of transmitting mosquito population (Potential_Transmitting_Vectors)
Very_High (4-11)
High (11-80)
Medium (19-20)
Low (20-30)
Very_Low (44-50)
8. Average seasonal (3-monthly) air temperature (Seasonal_Air_Temperature)
Below_15C (10-00)
From_15_to_18C (10-00)
From_18_to_21C (10-00)
From_21_to_24C (10-00)
From_24_to_27C (10-00)
From_27_to_30C (10-00)
From_30_to_33C (10-00)
From_33_to_36C (10-00)
From_36_to_39C (10-00)
Above_39C (10-00)
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Fig. 2. Map showing current ‘endemicity’ risk throughout Western Australia (dark blue, high; light blue, moderate; light
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Fig. 3. Truncated map showing current ‘infection’ risk in
summer [named locations have moderate risk; low risk for
the rest of Western Australia (WA)]. ‘Infection’ risk is low
throughout WA in winter (light blue, moderate; light
yellow, low risk).
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and density of the human population, which is import-
ant because Aedes is highly adapted to human envir-
onments [19].

The ‘infection’ risk node accounts for climatic fac-
tors that could affect the risk of an outbreak in the
event that both virus and vectors were established. It
is thus secondary to ‘endemicity’ risk but comes into
play when analyzing seasonal variations in the risk
of dengue outbreak [4, 29]. The effect of temperature
on the extrinsic incubation period of DENYV in Aedes
mosquitoes was also accounted for [30].

Risk maps
Current ‘endemicity’ risk

The distribution of dengue ‘endemicity’ risk is dis-
played in Figure 2. Risks are moderate to high around
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KUNUNURRA

FITZROY CROSSING

Fig. 4. Map showing ‘infection’ risk in summer when the seasonal rainfall is above 100 mm at all locations, keeping other
nodes unchanged from their current average conditions. Named locations have moderate risk, including the circled area
near Jurien Bay. In winter, ‘infection’ risk is low throughout Western Australia (light blue, moderate; light yellow, low

risk).

places with significant human populations that fall
within the climatic niches of either Aedes species, in-
cluding all major populated areas in the southwest
as well as centres further north such as Geraldton,
Carnarvon, Port Hedland, Broome, and Kununurra.
Every other location of WA is predicted to have a
low risk of Aedes vector(s) and DENV ‘endemicity’.

‘Infection’ risk under current summer and winter
climates

Figure 3 is a truncated map of WA that illustrates the
‘infection’ risk distribution in summer under current
average climatic conditions, on the condition that
DENYV and at least one vector are present. The map
was truncated because ‘infection’ risk is moderate

https://doi.org/10.1017/50950268816002090 Published online by Cambridge University Press

only in Broome, Fitzroy Crossing and Kununurra,
while the rest of the state has low risk. This means
that, taking the ‘endemicity’ risk level and summer cli-
matic conditions into account, those three centres are
the most likely places to experience a DENV
outbreak.

In winter, the risk of an outbreak is low throughout
WA, agreeing with historical observations which
showed that DENV epidemics in (eastern) Australia
ceased during winters [4, 29].

Scenario modelling: conditions with maximum rainfall
throughout WA

We evaluated a scenario whereby the seasonal rain-
fall node was at its highest state (>100 mm). The
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Fig. 5. Map showing ‘endemicity’ risk when the human population density is high at all locations (dark blue, high; light

blue, moderate; light yellow, low risk).

literature concerning rainfall effects on Aedes popula-
tion growth rates in Queensland is conflicting, ran-
ging from no relationship [31] to some positive
correlation depending on the temporal scale [32].
This may be due to differences and limitations in
the experimental methodologies [32]. Because a
3-monthly precipitation of 100 mm was previously
associated with large natural populations of Culex
mosquitoes in central Australia [33], we selected
that value to represent ‘high’ seasonal precipitation
on a statewide scale.

Under this scenario, the risk of a dengue outbreak
occurring during summer is shown in Figure 4.
Moderate ‘infection’ risk areas now include more

https://doi.org/10.1017/50950268816002090 Published online by Cambridge University Press

southerly locations with relatively large populations,
as far south as Perth. The northern centres of
Kununurra, Fitzroy Crossing and Broome remain at
moderate risk. From another perspective, this scenario
may also illustrate outbreak risks assuming that
water is readily available to the mosquitoes from
other sources such as man-made containers.
Coincidentally, the southernmost location with mod-
erate risk in Figure 4 coincides with where a historical
observation of Ae. aegypti was confirmed, namely
Harvey (33° S) [6].

During winter, however, the ‘infection’ risk is un-
changed despite the higher rainfall (low throughout
WA).
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FITZROY
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Fig. 6. Truncated map showing ‘infection’ risk in summer when the human population density is high at all locations. In
winter, ‘infection’ risk is low throughout Western Australia (light blue, moderate; light yellow, low risk).

Scenario modelling: conditions with minimum rainfall
across WA

When the seasonal rainfall node was set to its lowest
state (<50 mm), the only location where an outbreak
risk was moderate is Broome during summer. The
risk is unchanged (low throughout WA) during winter.

Scenario modelling: conditions with maximum human
population density

This scenario assesses the ‘endemicity’ and ‘infection’
risk distributions when human population densities
across WA are at a maximum, achieved by setting
the total urban area and rural settlement density at
their highest levels. Both risks are now greatly
increased: the ‘endemicity’ risk is moderate to high
throughout much of coastal WA and closely tracks
the climatic niches of Ae. aegypti and Ae. albopictus
(Fig. 5), leading to an enlarged area at moderate
DENYV finfection’ risk in summer (Fig. 6), but this
increased ‘infection’ risk does not extend into winter.

Sensitivity analyses of the risk nodes

The results of sensitivity analyses [21] showing the
influence of every other node on the risk nodes are dis-
played in Tables 2 and 3.
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DISCUSSION

We have presented a trial BBN model for predicting
the establishment of Ae. aegypti and Ae. albopictus
in Western Australia and the consequent risk of
DENYV epidemics. Dengue was historically present
in WA and cases were notified from 1910 to the
1940s [34]. After the Second World War, dengue
was successfully eradicated due to the introduction
of reticulated water systems and the reduction of
open rainwater tanks, among several other public
health initiatives [34]. Currently, diagnoses of dengue
infection in WA are only in travellers who had been
infected elsewhere [35]. Nonetheless, DENV and its
vectors have the potential of returning to WA should
conditions allow.

The model assumes that Aedes mosquitoes are
introduced solely by human transport, which is valid
given that range expansions of many exotic species
into non-native areas are mainly brought about by
human activities such as trade and travel [36]. This
was also true of the historical introduction of Ae.
aegypti into Australia [34].

The probability of species invasion is correlated
with ‘propagule pressure’, a measure of the frequency
of introductory events and the number of invading
organisms per event [37]. Determining their actual
values for Ae. aegypti and Ae. albopictus will require
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Table 2. Sensitivity analysis of DENV_Endemic_Risk

Node Mutual info. Percent Variance of beliefs
DENV_Endemic_Risk 1-49 986 100 0-40619
Likelihood_of_virus_intro 0-60219 40-1 0-122993
Likelihood_of _vector_intro 0-53026 354 0-108 648
DENV_Infection_Risk 0-3132 209 0-046 547
Human_Popn_Density 0-15798 10-5 0-034 197
Ae_albopictus_climatic_niche 0-09 897 66 0-020922
Ae_aegypti_climatic_niche 0-09 897 66 0-020922
Urban_Areas_per_Grid 0-06 025 4-02 0-013 006
Settlements_Density 0-0231 1-54 0-004 994
Transport_Connectivity 0-01 848 1-23 0-004 513
Freq_DENV_Intro 0-00 269 0-179 0-000 515
Railway_Density 0-00 059 0-0396 0-00013
Road_Density 0-00 059 0-0396 0-00013
Seaport_Nearby 0-00 043 0-0287 918 x 107
Airport_Nearby 0-00 043 0-0287 9-18x 107
Potential_Transmitting_Vectors 0 0 0
Potential_Vector_Popn_Size 0 0 0
Seasonal_Rainfall 0 0 0

EIP 0 0 0
F_Adult_Lifespan 0 0 0
Seasonal_Air_Temperature 0 0 0

Relaive_ Humidity_15:00 hours 0 0 0

Table 3. Sensitivity analysis of DENV_Infection_Risk

Node Mutual info. Percent Variance of beliefs
DENV_Infection_Risk 092157 100 0-198 714
DENV_Endemic_Risk 0-3132 34 0-045 687
Likelihood_of_virus_intro 0-18 326 19-9 0-028 744
Likelihood_of_vector_intro 0-16473 17-9 0-025939
Potential_Transmitting_Vectors 0-0691 7:5 0-008 541
Potential_Vector_Popn_Size 0-05 862 6:36 0-007 197
Human_Popn_Density 0-05028 5-46 0-007 957
Seasonal_Air_Temperature 0-03 537 3-84 0-004 244
Ae_aegypti_climatic_niche 0-0289 3-14 0-006 085
Ae_albopictus_climatic_niche 0-0289 3-14 0-006 085
F_Adult_Lifespan 0-02 689 292 0-003 275
Urban_Areas_per_Grid 0-01835 1-99 0-003 624
Settlements_Density 0-00 696 0-755 0-001 439
EIP 0-00 663 0-719 0-000 935
Transport_Connectivity 0-00 659 0715 0-000 925
Relaive_ Humidity_15:00 hours 0-00 539 0-585 0-000 646
Seasonal_Rainfall 0-00421 0-457 0-000 504
Freq_DENV_Intro 0-00077 0-0833 0-000 151
Railway_Density 0-00018 0-0191 375 %107
Road_Density 0-00018 0-0191 375 %107
Seaport_Nearby 0-00013 0-0139 2:72% 107
Airport_Nearby 0-00013 0-0139 2:72x 107

extensive data collection at seaports, airports, railway
stations, and along all major roads of WA. Since this
is an exploratory BBN for assessing dengue risk, these
quantities were assumed to be correlated with the
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density of the transport network. The model also
assumes that all four transportation modes have
equal probabilities of introducing the vectors into

WA.
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Our modelling indicates that the risks of dengue
outbreak (‘infection’ risk) are higher in northern WA
but can extend as far south as Perth during summer
when the seasonal rainfall is high, provided that at
least one vector species is present. When seasonal rain-
fall is low, the only place predicted to be at risk of ex-
periencing an outbreak is Broome. Altogether,
Broome and its surroundings appear to be most at
risk of a major outbreak since it is in a tropical loca-
tion, has the largest resident population in northern
WA, and is one of the fastest growing centres in the
Kimberley region, being a travel gateway for visitors
[38].

In its current form, the dengue risk model is
knowledge-driven based on an analysis of the poten-
tial risk factors that could affect the emergence of
both virus and vectors. As with the Murray Valley en-
cephalitis virus risk model developed by the authors
[9], the aim was to demonstrate the feasibility of
using BBNs for predicting and mapping mosquito-
borne arbovirus risks in a particular context. In add-
ition, such models can be used to guide prevention
strategies against the introduction of other exotic
Aedes-borne arboviruses into WA, such as chikun-
gunya, yellow fever, and Zika viruses.

SUPPLEMENTARY MATERIAL

For supplementary material accompanying this paper
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