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ABSTRACT 

Because a nearly constant distance between two neighbouring Cα atoms, local backbone structure of proteins 
can be represented accurately by the angle between Cαi-1−Cαi−Cαi+1 (θ) and a dihedral angle rotated about the 
Cαi−Cαi+1 bond (τ). θ and τ angles, as the representative of structural properties of 3 to 4 amino-acid residues, 
offer a description of backbone conformations that is complementary to φ and ψ angles (single residue) and 
secondary structures (>3 residues). Here, we report the first machine-learning technique for sequence-based 
prediction of θ and τ angles. Predicted angles based on an independent test have a mean absolute error of 9° for 
θ and 34° for τ with a distribution on the θ-τ plane close to that of native values. The average root-mean-square 
distance of 10-residue fragment structures constructed from predicted θ and τ angles is only 1.9Å from their 
corresponding native structures. Predicted θ and τ angles are expected to be complementary to predicted φ and 
ψ angles and secondary structures for using in model validation and template-based as well as template-free 
structure prediction. The deep neural network learning technique is available as an on-line server called 
SPIDER (Structural Property prediction with Integrated DEep neuRal network) at http://sparks-lab.org. 

INTRODUCTION 

Template-based and template-free protein-structure prediction relies strongly on prediction of local backbone 
structures [1,2]. Protein local structure prediction is dominated by secondary structure prediction with its 
accuracy stagnant around 80% for more than a decade [3,4]. However, secondary structures are only a coarse-
grained description of protein local structures in three states (helices, sheets and coils) that are somewhat 
arbitrarily defined because helices and sheets are often not in their ideal shapes in protein structures. This 
arbitrariness has limited the theoretically achievable accuracy of three-state prediction to 88-90% [4,5]. 
Moreover, predicted coil residues do not have a well-defined structure. 

An alternative approach to characterize the local backbone structure of a protein is to employ three dihedral or 
rotational angles about the N-Cα bond (φ), the Cα−C bond (ψ), and the C-N bond (ω). A schematic illustration 
is shown in Figure 1. Because ω angles are restricted to 180° (the majority) or 0° due to rigid planar peptide 
bonds, two dihedral angles (φ and ψ) essentially determine the overall backbone structure. Unlike secondary 
structures, these dihedral angles (φ and ψ) can be predicted as continuous variables and their predicted accuracy 
has been improved over the years [6-8] so that it is closer to dihedral angles estimated according to NMR 
chemical shifts [9]. Predicted backbone dihedral angles were found to be more useful than predicted secondary 
structure as restrains for ab initio structure prediction [9,10]. It has also been utilized for improving sequence 
alignment [11], secondary structure prediction [3,12,13] and template-based structure prediction and fold 



recognition [14-16]. However, unlike the secondary structure of proteins, φ and ψ are limited to the 
conformation of a single residue.  

Two different angles can also be employed for representing protein backbones. As shown in Figure 1, they are 
the angle between Cαi-1−Cαi−Cαi+1 (θi) and a dihedral angle rotated about the Cαi−Cαi+1 bond (τi). This two-
angle representation is possible because neighbouring Cα atoms mostly have a fixed distance (3.8Å) due to the 
fixed plane in Cαi-1−C−N−Cαi. These two inter-residue angles (θ and τ) reflect the conformation of four 
connected, neighbouring residues that is longer than a single-residue conformation represented by φ and ψ 
angles. By comparison, a conformation represented by helical or sheet residues involves in an undefined 
number of residues (4 for 310 helix, 5 for α-helix, and an undefined number of residues for sheet residues). 
Thus, secondary structure, φ/ψ, and θ/τ provide complimentary local structural information along the backbone. 
Indeed, both predicted φ/ψ and secondary structure are useful for template-based structure prediction [14].  

In this paper, we will develop the first machine-learning technique to predict θ and τ from protein sequences. 
This tool is needed not only because these two angles yield local structural information complementary to 
secondary structure and φ/ψ angles, but also because they have been widely employed in coarse-grained models 
for protein dynamics [17], folding [18], structure prediction [19,20], conformational analysis [21], and model 
validation [22]. That is, accurate prediction of θ and τ will be useful for template or template-free structure 
prediction as well as validation of predicted models. Using 4590 proteins for training and cross validation and 
1199 proteins for an independent test, we have developed a deep-learning neural-network-based method that 
achieved θ and τ angles within 9 and 34 degrees, in average, of their native values.  

METHOD 

Data sets: In this study, we obtained a dataset of 5840 proteins with less than 25% sequence identity and X-
ray resolution better than 2Å from the protein sequence culling server PISCES [23]. After removing 51 proteins 
with obsolete IDs or missing data, the final data set consists of 5789 proteins with 1,246,420 residues.  We 
randomly selected 4590 proteins from this data set for training and cross-validation (TR4590) and employed the 
remaining 1199 proteins for an independent test (TS1199). 

Deep neural-network learning. An Artificial Neural Network (ANN) consists of highly interconnected, multi-
layer processing units called neurons. Each neuron combines its inputs with a non-linear sigmoid activation 
function to produce an output. Deep neural networks refer to feed-forward ANNs with three or more hidden 
layers. Multi-layer networks were not widely used because of the difficulty to train neural-network weights. 
This has changed due to recent advances through unsupervised weight initialization, followed by fine-tuned 
supervised training [24,25]. In this study, unsupervised weight initialization was done by stacked sparse auto-
encoder. A stacked auto-encoder treats each layer as an auto-encoder that maps the layer’s inputs back to 
themselves. During training auto-encoders a sparsity penalty was utilized to prevent learning of the identity 
function [26]. Initialised weights were then refined by standard back-propagation. The stacked sparse auto-
encoder used in this study consists of three hidden layers with 150 hidden nodes in each layer (Figure 2). The 
input data was normalised so that each feature is in the range of 0 to 1. For residues near the ends of a protein, 
the features of the amino acid residue at the other end of the protein were duplicated so that a full window could 
be used. The learning rate was initialised to start at 0.5, and was then decreased as training progressed. In this 
study, we used the deep neural network Matlab toolbox implemented by Palm [27]. 

Input features. Each amino acid was described by a vector of input features that include 20 values from the 
Position Specific Scoring Matrix (PSSM) generated by PSI-BLAST [28] with three iterations of searching 
against non-redundant (NR) sequence database with an E-value cut off of 0.001. We also used seven 
representative amino-acid properties: a steric parameter (graph shape index), hydrophobicity, volume, 
polarizability, isoelectric point, helix probability, and sheet probability [29]. In addition, we employed predicted 
secondary structures (three probability values for helix, sheet and coils) and predicted solvent accessible surface 
area (one value) from SPINE-X [3]. That is, this is a vector of 31 dimensions per amino acid residue. As before, 
we also employed a window size of 21 amino acids (10 amino acids at each side of the target amino acid). This 
led to a total of 651 input features (21 × 31) for a given amino acid residue.  



Output. Here we attempt to predict two angles. One is θ, the angle between three consecutive Cα atoms of a 
protein backbone. The other one is τ, the dihedral angle between four consecutive Cα atoms of protein 
backbone. Two angles are predicted at the same time. To remove the effect of periodicity, we employed four 
output nodes that correspond to Sin(θ), Cos(θ), Sin(τ), and Cos(τ), respectively. Predicted sine and cosine 
values were converted back to angles by using 𝜃 = tan!![sin 𝜃 cos 𝜃 ] and 𝜏 = tan!![sin 𝜏 cos 𝜏 ]. 
Such transformation is widely used in signal processing and speech recognition [30].  

Evaluation Methods: We investigated the effectiveness of our proposed method using 10-fold cross validation 
(TR4590) and independent test sets (TS1199). In 10-fold cross validation, TR4590 was divided into 10 groups. 
Nine groups were used as a training data set while the remaining group was used for test. This process was 
repeated 10 times until all the 10 groups were used once as the test data set. In addition to 10-fold cross 
validation, TR4590 was used as the training set and TS1199 was employed as an independent test set. 
Comparison between 10 fold cross validation and the test gives an indicator for the generality of the prediction 
tool. We evaluated the accuracy of our prediction by mean absolute error (MAE), the average absolute 
difference between predicted and experimentally determined angles. The periodicity of 𝜏 angles was taken care 
of by utilizing the smaller value of the absolute difference 𝑑!   (= |𝜏!!"#$ − 𝜏!

!"#$|) and 360− 𝑑! for average.  

RESULT  

Table 1 compares the results of ten-fold cross validation based on TR4590 and the independent test (TS1199). 
θ angles with a range of 0 to 180° were predicted significantly more accurate than τ angles with a range of -
180° to 180°. The MAE  is <9° for θ  but 33-34° for τ. This level of accuracy can be compared to the baseline 
MAE values of 18.8° for θ  and 86.2° for τ if θ and τ are assigned randomly according to their respective 
distributions. Accuracy for angles differs significantly in secondary structure types. The angles for helical 
residues have the highest accuracy (MAE<5° for θ and 17° for τ). The MAE for sheet residues is about twice 
larger than that for helical residues. Angles for coil residues have the largest error (τ in particular). Different 
levels of accuracy in different secondary structural types reflect the fact that helical structures are more locally 
stabilized than sheet structures while coil residues do not have a well-defined conformation. Similar trends were 
observed for prediction of backbone φ and ψ angles [6-9]. We also noted that MAEs from ten-fold cross 
validation and from the independent test are essentially the same. This indicates the robustness of the method 
trained. Thus, here and hereafter, we will present the result based on the independent test only.  

Actual and predicted distributions of θ and τ angles for TS1199 are shown in Figure 3. Predicted and actual 
distributions agree with each other very well. Both predicted and actual peaks for θ angles are located at 92° 
and 119°, respectively. Actual peaks for τ angles are also in good agreement with those predicted ones at 50° 
and -164°, respectively. Predicted peaks, however, are slightly narrowly than native peaks for all cases. 
Predicted and actual angle distributions also agree in a two-dimensional plane of θ and τ.  As shown in Figure 
4, the locations of three major populations were well captured by predicted distributions. 

Table 2 lists the MAEs for 20 individual residue types along with their frequencies of occurrence in the TS1199 
dataset. Glycine (G) has the largest MAE, corresponding to the fact that it is the most flexible residue due to 
lack of a side chain. Leucine (L), on the other hand, has the smallest MAE and interestingly also the most 
frequently occurred residue (9.2%). The angles for several other small hydrophobic residues [isoleucine (I), 
valine (V), and alanine (A)] are also in the pack of residues with smallest errors. There is no strong correlation 
between the MAE of an amino acid residue type and its frequency of occurrence.  

In Figure 5, MAEs for predicted angles are shown as a function of relative solvent accessible surface area. 
MAEs for θ and τ have similar trend: two peaks separated by a valley (although in a smaller magnitude for 
θ). Both angles have the highest accuracy (the smallest error) at an intermediate range of solvent accessibility 
and the lowest accuracy (the largest error) at 90-100% solvent accessibility. The lowest accuracy at 90-100% 
solvent accessibility is likely due to the smallest number of residues at 90-100% solvent-accessible and 20% 
more coil residues in fully exposed residues [3]. 



Figure 6 displays the fraction of proteins with more than a given fraction of correctly predicted angles (θ and τ). 
Here, a correct prediction is defined as 36° or less from the actual angle. We use 36° as a cut off value because 
it is relatively easy for a conformational sampling technique to sample conformational changes within 36°. 
θ angles are always predicted within 36° for all residues in all proteins. 70% or more τ angles are predicted 
correctly for nearly 90% proteins. However, less than 10% proteins have 100% correctly predicted θ and τ. 

θ and τ can also be calculated from backbone torsion angles φ and ψ by assuming ω = 180°. Thus, it is of 
interest to compare the accuracy of θ and τ predicted in this work with those calculated from predicted 
φ and ψ.  For the TS1199 dataset, we found that the MAE values for θ and τ derived from φ and ψ  predicted by 
SPINE X [3] are 9.6° and 37.7°, respectively. Thus, the angles predicted in this work (MAE = 8.6° and 33.6°, 
respectively) are about 10% more accurate in θ or τ than those calculated from φ and ψ  predicted by SPINE X. 
The largest improvement by direct prediction of θ or τ as shown in Table 1 is in coil residues. The MAE for a 
coil residue is reduced from 13.8° to 11.4° for θ  and from 56.4° to 50.2° for τ.  

One application of predicted θ and τ angles is to utilize them for direct construction of local structures whose 
accuracies can be measured by the root-mean-square distance (RMSD) from their corresponding native 
conformations. Fragment structures of a length L are derived from predicted angles using the TS1199 dataset 
with a sliding window (1 to L, 2 to L+1, 3 to L+2, and etc.). For L=15, a total of 229681 fragments are 
constructed. Each fragment structure was built by using the standard Cα-Cα distance of 3.8Å, and predicted 
θ and τ angles. We compared the accuracy of local structures from predicted θ and τ angles to those from 
φ and ψ angles predicted by SPINE X in Figure 7A. The RMSD between a native local structure (15 residue 
fragment) and its corresponding local structure constructed from predicted θ and τ angles (X-axis) is plotted 
against the RMSD between a native local structure and its corresponding structure constructed from predicted 
φ and ψ angles (Y-axis) in a density plot. The majority of RMSD values are less than 6Å. The average RMSD 
values of local structures from predicted θ and τ angles are 1.9Å for 10mer, 3.1Å for 15mer, 4.3Å for 20mer 
and 7.0Å for 30mer. By comparison, the average RMSD values from predicted φ and ψ angles are 2.2Å for 
10mer, 3.4Å for 15mer, 4.8Å for 20mer and 7.7Å for 30mer. The improvement of θ/τ derived structures 
over φ/ψ derived structures is more than 10%. More local structures from predicted θ and τ angles  are more 
accurately predicted than those from predicted φ and ψ angles as demonstrated by the size of the triangle at the 
bottom-right corner. The spread from the diagonal line confirms the complementary role of these four predicted 
angles. 

The difference (RMSD) between local structures generated by predicted θ and τ angles and those by predicted 
φ and ψ angles can serve as an effective measure of how accurate a predicted local structure is. Figure 7B 
shows the density plot of the RMSD from the native (Y-axis) versus the RMSD from the φ and ψ-derived 
structure (X-axis) for 15-residue fragments. There is a trend that the larger the structural difference from 
different types of angles is, the less accurate the predicted local structure (larger RMSD) will be. For example, 
if the RMSD between θ/τ−derived and φ/ψ−derived local structures is less than 2Å, the RMSD of a θ/τ−derived 
structure from its native structure is most likely less than 4Å based on the most populated region in red. 

DISCUSSION 

This study developed the first machine-learning technique for prediction of the angle between Cαi-1−Cαi−Cαi+1 
(θ) and a dihedral angle rotated about the Cαi−Cαi+1 bond (τ). These angles reflect a local structure of 3 to 4 
amino acid residues. By comparison, φ and ψ angles are the property of a single residue while secondary helical 
and sheet structures involve more than 3 residues. Thus, direct prediction of θ and τ angles is complementary to 
sequence-based prediction of φ and ψ angles and secondary structures. Predicting θ and τ angles also has one 
advantage over φ and ψ angles because θ has a narrow range of 0 to 180° while φ and ψ, similar to τ are both 
dihedral angles ranging from -180° to +180°. Indeed, by using the stacked sparse auto-encoder deep neural 
network, we achieved MSE values of 9° for θ and 34° for τ. By comparison, MAE is 22° for φ  and 33° for ψ by 
SPINE-X. As a result, θ and τ calculated from predicted φ and ψ angles are less accurate with an MAE of 10° 
for θ and 38° for τ, 10% higher than direct prediction of θ and τ. 



Complementarity between predicted θ/τ angles and predicted φ/ψ angles is demonstrated from the accuracy of 
local structures constructed based on these predicted angles. As shown in Figure 7A, some local structures are 
more accurately constructed by θ and τ angles while others are more accurately constructed by φ and ψ angles. 
Moreover, RMSD values between θ/τ–derived and φ/ψ–derived structures can be utilized as a measure for the 
accuracy of a predicted local structure (Figure 7B). Usefulness of predicted angles for fragment structure 
prediction is illustrated by the fact that the average RMSD of 15-residue fragments is only 3Å from the 
corresponding native fragment structures. Currently, the most successful techniques in structure prediction (e.g. 
ROSETTA [31] and TASSER [32]) are based on mixing and matching of known native structures either in 
whole (template-based modelling) or in part (fragment assembly) [33,34]. Fragment structures based on 
predicted θ and τ angles provide an alternative but complementary approach to the homolog-based approach for 
generating fragment structures. In addition to fragment-based structure prediction, predicted θ and τ angles can 
also be employed directly as a constraint for fragment-free or ab initio structure prediction [1,2] as predicted φ 
and ψ angles did [9].  

How to handle the periodicity of torsion angles is an issue facing angle prediction (-180° is same as 180°). In 
our previous work for predicting φ and ψ angles, we employed a simple angle shift [7], and prediction of peaks 
(two-state classification), followed by prediction of deviation from the peaks [9]. Here we introduced a sine and 
cosine transformation of θ and τ angles, a technique commonly employed in signal processing and speech 
recognition [30]. We have compared the sine and cosine transformation with angle shifting and its combination 
of two-state classification because the distributions of θ and τ angles also have two peaks (Figure 3). We found 
that the MAE of τ is 54° by direct prediction, 41° by angle shifting and 36° by combining two-peak prediction 
with angle shifting. Thus a MAE of 34° by sine and cosine transformation has the highest accuracy. We also 
examined the use of arcsine or arccosine, rather than arctangent. We found that using arccosine (with sine for 
phase determination) yields similar prediction accuracy as using arctangent but using arcsine leads to 
significantly worse prediction.  We expect that such sine and cosine transformation of φ and ψ angles will also 
likely improve over existing SPINE-X prediction. For SPINE-X, MAE values are 33° for ψ angles and 22° for 
φ angles, respectively. 

We also examined how much improvement in angle prediction is due to the use of deep learning neural 
networks. We found that when only one hidden layer (150 nodes) is utilised, MAE values are 8.8° for θ angles 
and 34.1° for τ angles, respectively. Thus, using deep 3-layer neural networks yields minor but statistically 
significant improvement over simple neural networks. 

The most difficult angles to predict are the angles of coil residues (Table 1). This is true for θ and τ angles as 
well as for φ and ψ angles. Angles in coil regions have a mean absolute error of 11° for θ and 50° for τ, 
compared to 32° for φ and  56° for ψ. This is likely because coil regions are structurally least defined. Despite 
of large errors, predicted φ and ψ angles in coil regions have been proved to significantly improve the accuracy 
of predicted structures [9]. Thus, we expect that predicted θ and τ angles in coil regions will also be useful as 
restraints for ab initio structure prediction [9] or template-based structure prediction [14]. 
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Table 1. Performance of θ and τ angle prediction based on the mean absolute 
error (MAE) as compared to θ and τ angles calculated from φ and ψ angles 
predicted by SPINE-X for two datasets (ten-fold cross validation for TR4590 
and independent test for TS1199).  

MAE TR4590(°) 

 

TS1199(°) TS1199(°) 

from predicted φ  and ψ . 

θ−All  8.57±0.01 8.6 9.6 

θ−Helix 4.50±0.02 4.5 4.5 

θ−Sheet 10.45±0.02 10.6 11.3 

θ−Coil 11.437 ±0.01 11.4 13.8 

τ 33.4±0.3 33.6 37.7 

τ−Helix 17.1±0.9 16.9 17.8 

τ−Sheet 32.4±0.1 33.1 39.1 

τ−Coil 50.1±0.3 

 

50.2 56.4 

 



Table 2: The mean absolute errors (MAEs) of  θ and τ prediction for 20 amino acid residue types along with their frequency of 
occurrence in the TS1199 dataset. 
 
Amino	
  acids	
   Frequency	
   Theta	
   Tau	
  

A	
   8.3	
   7.5	
   28.5	
  

C	
   1.4	
   10.1	
   38.1	
  

D	
   5.9	
   8.4	
   38.9	
  

E	
   6.7	
   7.1	
   29.7	
  

F	
   4.0	
   9.3	
   34.2	
  

G	
   7.2	
   12.3	
   51.5	
  

H	
   2.3	
   9.6	
   37.9	
  

I	
   5.6	
   7.2	
   26.2	
  

K	
   5.8	
   7.8	
   30.9	
  

L	
   9.2	
   6.9	
   25.9	
  

M	
   2.1	
   7.9	
   29.2	
  

N	
   4.4	
   9.0	
   41.0	
  

P	
   4.6	
   8.5	
   33.5	
  

Q	
   3.8	
   7.6	
   30.6	
  

R	
   5.1	
   8.0	
   31.2	
  

S	
   5.9	
   10.7	
   40.4	
  

T	
   5.6	
   9.9	
   35.6	
  

V	
   7.1	
   7.7	
   27.7	
  

W	
   1.5	
   9.2	
   35.3	
  

Y	
   3.6	
   9.3	
   34.5	
  

Average	
   	
   8.6	
   33.6	
  

 
 
 
 
  



 
 

 

Figure 1. The schematic illustration of the protein backbone and associated angles. 

 

 

Figure 2: The general architecture of the stacked sparse auto-encoder deep neural network. Four output nodes are Sin(θ), Cos(θ), 
Sin(τ), and Cos(τ), respectively. 
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Figure 3 Predicted and actual distributions of θ (A) and τ (B) angles for the TS1199 dataset. 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

Figure 4 Actual (A) and predicted (B) distributions in the θ-τ plane for the TS1199 dataset. 

 

 



 

Figure 5 Mean absolute errors as a function of relative solvent accessibility for the TS1199 dataset. 

 

 
 
 
 Figure 6 Percentage of proteins with more than a fraction of correctly predicted angles (θ and τ angles are less 

than 36° from native values, respectively) for the TS1199 dataset.  

 



 

Figure 7 (A) Consistency between 15-residue local fragment structures derived from predicted 
φ/ψ (X-axis) and those from predicted θ/τ angles (Y-axis) in term of their root-mean-square distance 
(RMSD in Å) from the native structure for the TS1199 dataset. (B) RMSD values between two angle-
derived local structures (X-axis) are compared to RMSD of  a θ/τ-dervied structure from its native 
structure. 

 


