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Abstract. Brain-Computer Interfaces (BCIs) allow a user to control a computer application just by brain 

activity as acquired, e.g., by electroencephalography (EEG). After 30 years of BCI research, the success 

of BCI control that may be provided still greatly varies between subjects. For a percentage of about 

20% the obtained accuracy does not reach the level criterion, meaning that BCI control is not accurate 

enough to control an application. The development of predictors of BCI performance serves two 

purposes: a better under-standing of the 'illiterates phenomenon', and avoidance of a costly and 

frustrating training procedure for subjects who might not obtain BCI control. Furthermore, such 

predictors may lead to approaches to antagonize BCI-illiteracy. 

 Here, we propose a neurophysiological predictor of BCI performance which can be determined from a 

two minutes recording of a relax with eyes open condition using two Laplacian EEG channels. A 

correlation of r = 0.53 between the proposed predictor and BCI feedback performance was obtained on 

a large data base with N = 80 BCI-naive subjects in their first session with the Berlin Brain-Computer 

Interface (BBCI) system which operates on modulations of sensory motor rhythms (SMRs). 
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1. Introduction 

Amplitude modulations of sensorimotor rhythms (SMRs) can be voluntarily controlled by most 

subjects, e.g., by imagining movements. This ability can be taken as a basis for Brain-Computer 

Interfaces (BCIs) which are devices that translate the intent of a subject measured from brain signals 

directly into control commands, e.g., for a computer application or a neuroprosthesis ([Dornhege et al., 

2007; Wolpaw et al., 2002; Kübler et al., 2001]).  

Most SMR-based BCI systems require several training sessions in which subjects learn the ability 

to modulate their SMR appropriately to control a BCI application ([Vidaurre et al., 2006; Kübler et al., 

2001]). Other approaches allow to provide BCI control already in the very first session, but still need a 

calibration period of about 30 minutes ([Blankertz et al., 2008a; Blankertz et al., 2007; Guger et al., 

2000]). Additionally those systems typically use at least 60 electroencephalography (EEG) channels 

which require another 30 minutes of preparation with current sensor technology. 

One of the biggest challenges in BCI research is to solve the problem of BCI illiteracy, which is 

that BCI control does not work for a non-negligible portion of subjects (estimated 15% to 30 %). In 

order to understand this phenomenon better, predictors of BCI performance are helpful to develop. 

Until the problem of illiteracy is solved, such predictors may also serve to avoid the frustrating and 

costly procedure of trying to establish BCI control. On the other hand, the study of predictors of BCI 

performance may lead to novel approaches, e.g., training procedures or alternative experimental 

designs, which antagonize some causes of illiteracy and thereby help to provide more people the 

possibility to use a BCI. 

There exists some literature on predictors of performance with a BCI system based on the control 

of slow cortical potentials (SCPs) [Kübler et al., 2004]. Regarding SMR-based BCIs, to our knowledge 

[Burde and Blankertz, 2006] is the only approach to predict feedback performance. In that work a 



correlation of r = 0.59 was found between the psychological variable ‘locus of control by dealing with 

technology’ ([Beier 2004]) and BCI feedback performance in a group of N = 17 subjects. 

2. Material and Methods 

2.1. Neurophysiology 

Macroscopic brain activity during resting wakefulness contains distinct ‘idle’ rhythms located over 

various brain areas, e.g., the parietal α-rhythm (8–12 Hz) can be measured over the occipital cortex. 

The perirolandic sensorimotor cortices show rhythmic macroscopic EEG oscillations (µ-rhythm), with 

spectral peak energies of about 9–14 Hz localized predominantly over the postcentral somatosensory 

cortex and typically phase synchronized components can be found in the beta band over the precentral 

motor cortex. Modulations of the µ-rhythm have been reported, e.g., for both actual and imagined 

movements ([Pfurtscheller and da Silva, 1999]). Standard trial averages of µ-rhythm power can reveal 

attenuation, termed event-related desynchronization (ERD, [Pfurtscheller and da Silva, 1999]), or 

increase (event-related synchronization, ERS). Typically, ERD is an indication of cortical activity, 

while ERS can be observed during cortical idling. Several EEG-based BCI systems rely on the fact that 

amplitude modulations of SMRs can be voluntarily controlled by most of the subjects, e.g., by 

imagining movements as explained above (see [Nikulin et al., 2008] for an interesting variation of the 

paradigm).  

 2.2. Experimental Setup 

Eighty healthy BCI-novices (39m, 41f; age 29.9±11.5y; 4 left-handed) took part in this one-session 

study. The subjects were sitting in a comfortable chair with arms lying relaxed on armrests. Brain 

activity was recorded from the scalp with multi-channel EEG amplifiers using 119 Ag/AgCl electrodes 

in an extended 10-20 system sampled at 1000 Hz with a band-pass from 0.05 to 200 Hz. Additionally, 

we recorded electromyograms (EMG) from both forearms and the right leg as well as horizontal and 

vertical electrooculograms (EOG). The EMG channels were exclusively used to control for physical 

limb movements that could correlate with the task and could be reflected directly (artifacts) or 

indirectly (afferent signals from muscles and joint receptors) in the EEG channels. 

In the beginning, EEG was recorded while the subject performed ten periods of 15s with the 

alternating tasks to ‘relax with eyes open’ and to ‘relax with eyes closed’.  

During the ‘calibration measurement’ every 8s one of three different visual cues (arrows pointing 

left, right, down) indicated to the subject which type of motor imagery to perform: left hand, right hand, 

or right foot.  Three runs with 25 trials of each motor condition were recorded.  

Then subjects performed in a ‘feedback measurement’ three runs of 100 trials each (for some 

subjects only one or two runs have been recorded due to fatigue or exhaustion). 

2.3. BBCI Feedback 

The EEG signals of the calibration measurement were bandpass-filtered in a subject-specific 

frequency band, temporally filtered in a subject-specific time interval (typically 750 to 3500 ms relative 

to the presentation of the visual cue), and spatially filtered with subject-optimized filters determined by 

common spatial pattern (CSP) analysis ([Blankertz et al., 2008b]). From these signals the log-variance 

was calculated in each trial of the calibration data. This procedure results in a feature vector with 

dimensionality equal to the number of selected CSP filters. To our experience, those features can be 

well classified by linear methods and we used linear discriminant analysis (LDA). 

For online operation, features were calculated every 40 ms from sliding windows of 750 ms width 

(applying CSP filters, band-pass filtering, calculating log-variance and applying the LDA classifier, see 

[Blankertz et al., 2008b]). The output of the classifier was translated into cursor movement in a rate 

control fashion: At the beginning of each trial, the cursor started in the center of the screen and a 

fraction of the classifier output was added to the actual cursor position at each update step. The bias of 

the classifier was adapted on the first 20 trials of each feedback run ([Krauledat et al., 2008]). These 

trials have not been counted to calculate the feedback performance. 

2.4. Performance Predictor 

To determine the value of the proposed SMR predictor, only a short recording under the condition 

‘relax with eyes open’ using two Laplacian channels (C3, C4) is required. For the present investigation, 

we used the concatenated segments of this condition from the artifact measurement, see Section 2.2. 



From these data we calculate the power spectral density (PSD) in the Laplace-filtered channels C3, 

C4 and determine for each of those channels the maximum difference between the PSD curve and a fit 

of the 1/ f noise spectrum as explained below (cf. Figure 1). These two values are estimates of the 

strength of the SMR over the hand areas. The SMR-predictor is the average of those two values. It 

quantifies the potential for desynchronization of the SMR.  

For the fit, we model each PSD curve as a function g (say) of the frequency f with two additive 

components of the form  

 

g( f; λ, µ, σ, k) = g1( f; λ, k) + g2( f; µ, σ, k) with                                                                              (1) 

g1( f; λ, k) = k1+ k2 / f
λ
 and g2( f; µ, σ, k) = k3 φ( f; µ1,σ1) + k4 φ( f; µ2, σ2),     (2) 

 

where k=(k1,k2,k3,k4)  and λ are real numbers and φ (·; m, s) denotes the probability density function of 

a normal distribution with mean m and standard deviation s. Function g1 is a model for the noise 

spectrum and function g2 models the additional peaks in the PSD around α and β frequency ranges. 
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Figure 1. Illustration of the calculation of the performance predictor. The plots show the spectra of a relax 

measurement (eyes open) of one subject for two Laplace-filtered channels over sensorimotor cortex (blue), 

the estimated noise floor g1( f; λ, k) (purple) and the fitted values g( f; λ, µ, σ, k) (red). In each channel the 

maximum elevation of the peaks above the noise floor is determined. The value of the SMR predictor is the 

average of these two values. 

 

As objective function for the optimization of the nine parameters (λ, µ = (µ1,µ2), σ = (σ1, σ2), and k) we 

choose the L2-norm of the difference vector PSD(f)− g(f; λ, µ, σ, k), where f is the vector of all 

available frequency values for the PSD; in our case we have f = (2Hz,3Hz, . . . ,35Hz), see Figure 1. 

Since we decomposed the PSD into the noise component and the two peak components, the 

contribution of one channel to our proposed predictor is simply maxf g2( f; µ, σ, k) ≈ maxf{PSD(f) − 

noise( f )}.  

 

3. Results 

Feedback accuracy varied largely between subjects, covering the full range from chance-level 

performance (50%) to perfect control (100%). Performance also varied strongly between runs for most 

subjects. In Figure 2, the SMR-predictor is plotted against the performance in the feedback session. 

Despite of its simplicity, the SMR predictor obtains a Pearson correlation coefficient of r = 0.53, i.e., it 

explains as much as r
2
 = 28% of the variance in feedback accuracy in our sample of N = 80 subjects. 
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Figure 2.  Correlation of the SMR predictor with BCI feedback performance: Each dot corresponds to one 

subject (to be identified by a two or three letters subject code). Our proposed SMR predictor is plotted in 

horizontal direction against the BCI feedback performance in vertical direction. The solid line is the result 

of a linear regression analysis of the BCI feedback performance onto the SMR predictor. On top of the 

graph, the correlation coefficient according to Pearson between both entities is given. 

4. Discussion 

Our performance predictor essentially estimates the amplitude of the SMR in order to estimate the 

potential for BCI performance assuming that motor imagery leads to an attenuation of the SMR 

([Pfurtscheller and da Silva, 1999]). As shown, this approach leads to quite good prediction results, but 

there are several basic cases in which the SMR predictor fails. (1) Some subjects have a detectable 

SMR, but no class-specific attenuation of that rhythm. One possible reason for this phenomenon could 

be that these subjects used a wrong strategy, e.g., only visually imagining the movements instead of 

kinesthetically ([Neuper et al., 2005]). Subject ji, e.g., reported to have used abstract thoughts (“I rather 

thought left and down”) in the feedback instead of motor imagery as in the calibration measurement. 

For this subject the actual feedback performance was at chance level, while the SMR predictor 

indicated fair performance.  But the phenomenon of missing ERD was also observed in subjects who 

followed the instructions well.  See [Nikulin et al., 2008] for an interesting approach to lead subjects to 

an effective strategy. (2) In some subjects motor imagery lead to an enhancement of the SMR (event-

related synchronization, ERS) compared to the measurement under the relax condition. In these cases 

the SMR predictor underestimates the performance. (3) Some subjects had a pronounced SMR which 

they managed to attenuate by motor imagery, but they were not able to sustain this attenuation long 

enough (i.e., until the end of the feedback trial), e.g., subjects lc and ky. Those subjects would perform 

well if the feedback were adapted to shorter trial durations. (4) Since additional measurements not 

related to this investigation have also been performed, feedback runs started about 2.5 hours after the 

beginning of the experiment. This fact might have led to problems in vigilance and might have 

degraded the feedback performance. 

5. Conclusion 

The finding of our study suggests that the strength of the SMR idling rhythm in the EEG is an 

essential property for successful performance with an SMR-based BCI. This might be seen as a 

drawback of this type of BCI system. On the other hand, this insight may pave a way to approach the 

BCI illiteracy problem: further studies will evaluate a specifically tailored neurofeedback training in 

order to enhance the SMR idle rhythm and, as may be speculated, feedback performance in subsequent 

BCI applications. Nevertheless, a predictor for BCI performance explaining 28% of the variance is 

unique in the field of BCI.  
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