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Abstract

Recently, spatio-temporal filtering to enhance decoding for Brain-Computer-Interfacing (BCI) has become increasingly
popular. In this work, we discuss a novel, fully Bayesian–and thereby probabilistic–framework, called Bayesian Spatio-
Spectral Filter Optimization (BSSFO) and apply it to a large data set of 80 non-invasive EEG-based BCI experiments. Across
the full frequency range, the BSSFO framework allows to analyze which spatio-spectral parameters are common and which
ones differ across the subject population. As expected, large variability of brain rhythms is observed between subjects. We
have clustered subjects according to similarities in their corresponding spectral characteristics from the BSSFO model, which
is found to reflect their BCI performances well. In BCI, a considerable percentage of subjects is unable to use a BCI for
communication, due to their missing ability to modulate their brain rhythms–a phenomenon sometimes denoted as BCI-
illiteracy or inability. Predicting individual subjects’ performance preceding the actual, time-consuming BCI-experiment
enhances the usage of BCIs, e.g., by detecting users with BCI inability. This work additionally contributes by using the novel
BSSFO method to predict the BCI-performance using only 2 minutes and 3 channels of resting-state EEG data recorded
before the actual BCI-experiment. Specifically, by grouping the individual frequency characteristics we have nicely classified
them into the subject ‘prototypes’ (like m - or b -rhythm type subjects) or users without ability to communicate with a BCI,
and then by further building a linear regression model based on the grouping we could predict subjects’ performance with
the maximum correlation coefficient of 0.581 with the performance later seen in the actual BCI session.
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Introduction

Classical Brain Computer Interfaces (BCIs) were based on

operant conditioning [1,2,3,4,5], i.e., the subject had to adapt the

modulation of his/her brain rhythms. In recent years with the

advent of machine learning methods in BCI, both - the subject and

the computer - adapt; this has resulted in a reduction of calibration

times and increased information transfer rates [6,7,8,9,10,11,12].

Machine-learning can help accurately model the spatio-temporal

characteristics of a subject’s brain rhythms to ensure optimal

decoding of the user’s intentions during feedback. For Sensory

Motor Rhythms (SMR), Common Spatial Pattern (CSP) [13] and

its variants are most commonly used [14,15,16,17,18,19].

Within the last decade the performance in non-invasive EEG-

based BCI has reached high levels of accuracy (up to 90%) in

classifying EEGs into one of the predefined labels, e.g., left-hand vs.

right-hand motor imagery, nevertheless around 20% of the

subjects show an inability to communicate with a BCI – sometimes

also called BCI-illiteracy/inability [20,21,22,23]. The reasons for

BCI-inability are still under debate, however, for SMR-controlled

BCIs, strong rhythms during resting state are found highly

predictive for a later good online BCI performance [20].

Nevertheless, which frequencies will be most discriminative,

depends on the individual subject physiology. The most common

modulated frequency band used by a SMR-controlled BCI is the

m-rhythm around 10 Hz; a second target frequency band is the b-

band around 20 Hz. Although most subjects modulate one or both

of these frequency bands, they always show specific peak-

frequencies while subjects with BCI-inability typically do not

show any task-related modulation in these bands [20]. It is

important to note that so far, SMR-controlled BCIs have been

trained on one or two frequency bands only, the detailed spectrum

was not considered until recently, where the first fully Bayesian

approach has been introduced to the field: Bayesian Spatio-

Spectral Filter Optimization (BSSFO) [24]. BSSFO allows to

introduce prior knowledge into spatio-temporal filter optimization.

It extracts a subject-specific filter distribution that can be analysed

to gain a better understanding of individual differences of BCI

users.

In this contribution, we will show that BSSFO not only yields a

significant increase in classification accuracy over 80 subjects when

compared to other spatio-temporal filter algorithms. But BSSFO

filters may further be clustered across subjects according to the

patterns corresponding to the extracted filter characteristics. We

then analyze the resulting grouping in order to gain a better

physiological understanding why some subjects perform better

than others and what the characteristics of subjects with BCI-

inability could be.

Our analysis extends [20], since we find an increased predictivity

when using the full spectral characteristics of resting-state EEG
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measurements prior to the BCI. We further study the dependency of

the prediction quality on the number of channels included. It should

be noted that our analysis aims to get additional physiological

insight to the phenomenon of BCI-inability; other protocols that

involve e.g., co-adaptive BCI [25,26,12,27] can indeed help enable

illiterates to communicate with BCI.

Methods

In this section, we first describe the experimental data sets used

to test the proposed fully Bayesian approach 1) for BCI

classification and 2) for the prediction of subjects’ individual

performance. We leave the mathematical background of the

Bayesian framework to Appendix, in particular and how it

constructs individual spatial and temporal filters used for the BCI

classification. The proposed framework is compared to four

competing methods. Furthermore, clustering of the derived

patterns allows a physiological interpretation of the results. For

the second aim of the study, i.e., the prediction of the subjects’

performance, we formulate an application of the Bayesian

framework for resting-state EEG data. In combination with a

clustering of the derived spatio-temporal patterns, it enables us to

analyze the predictability of these patterns for the subjects’

performance during the actual BCI and a physiological interpre-

tation. In Fig. 1, we present flowcharts that outline the steps in

data processing for each study, respectively. The detailed

explanation for the steps is described below.

2.1 EEG Acquisition and Preprocessing
The EEG data used to evaluate the BSSFO algorithm has been

acquired during a SMR-controlled BCI in a previous study [23],

where 83 subjects performed motor imagery of three classes: Left-

hand motor imagery (L), Right-hand motor imagery (R), and Foot

motor imagery (F) to control a BCI. (The study was approved by

the Ethical Review Board of the Medical Faculty, University of

Tübingen. Each subject gave a written informed consent after

having been informed about the purpose of the study.) Due to

technical problems during the acquisition, 3 participants were

excluded from the analysis. Subjects were seated in a comfortable

chair and instructed to relax their arms, while these were lying on

armrests. The recording was carried out with multichannel EEG

amplifiers (BrainAmp DC by Brain Products, Munich, Germany)

with 119 Ag/Ag/Cl electrodes and a nasion reference, and

sampled at 1000 Hz with a band-pass of 0.05 Hz to 200 Hz.

Vertical as well as horizontal ElectroOculoGram (EOG) and

ElectroMyoGram (EMG) at both forearms and right leg were

recorded, to ensure absence of artifacts within the EEG.

To test BFSSO for BCI in an off-line analysis (as described in

Section 2.2), we only used data from motor imagery of the left and

right hand recorded during three calibration sessions acquired

during the described experiment, each consisting of 25 trials per

class per subject, resulting in a total of 75 trials per class per

subject. A single trial lasted for 8 seconds. At the beginning of each

trial a crosshair appeared at the center of the screen for two

seconds. After this initial 2 seconds, one of three possible visual

cues in the form of an arrow pointing to the left, right, or

downwards showed up for 4 seconds in a randomized order. The

visual cues indicated the type of movement imagination to be

performed by the participant. After the arrow disappeared, the

screen was left blank for 2 seconds and then a new trial began.

After every 20 trials a short 15-second break was given. The EEG

data was downsampled to 100 Hz with a digital Chebyshev low-

pass filter. Two sets of channels were defined and used for further

analysis: a set of 39 LAPlacian (LAP)-filtered channels (Fig. 2(a))

and a second set of 16 LAP-filtered motor-related channels

(Fig. 2(b)).

The study of Blankertz et al. further contained resting-state

periods at the beginning of each of the 3 calibration sessions. In

Figure 1. Flowcharts of the proposed method for BCI classification and BCI performance prediction, respectively.
doi:10.1371/journal.pone.0087056.g001
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total, 10 periods of 15 seconds were recorded with the alternating

tasks ‘relax with eyes open’ and ‘relax with eyes closed’. We pooled

this resting-state data and used it to train BSSFO to predict the

subjects’ BCI performance (see Section 2.3). We consider two

channel arrangement schemes, namely, small channel arrange-

ment (3-LAP: ‘C3’, ‘Cz’, ‘C4’.), large channel arrangement (16-

LAP: the same channels used for the motor imagery experiment).

For further details on the experimental and recording setup, please

refer to [20].

2.2 Bayesian Spatio-spectral Filter Optimization for
Decoding in Brain Computer Interfaces
A schematic overview of the BSSFO method (see Appendix and

[24]) is given in Fig. 3. Given a set of the preprocessed motor

imagery EEG signals and a set of particles - each representing a

specific frequency band sampled from a prior distribution - the

BSSFO algorithm first filters the EEG signals for each frequency

band. All the ensuing processes are based on information from this

individual particle. The spectral filtering is followed by a spatial

Figure 2. Electrode montages.
doi:10.1371/journal.pone.0087056.g002

Figure 3. An illustration of estimating p(BDX,V) that represents how likely the EEGs X is correctly classified into the corresponding
label V for each of the frequency bands in B.
doi:10.1371/journal.pone.0087056.g003
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filtering, where a CSP is trained with the spectrally-filtered signals.

The likelihood and the posterior pdf are then estimated on feature

vectors extracted from the resulting filtered signals. This whole

process is iterated until convergence or a predefined stopping

criterion. We estimated class-discriminative pdfs for several

frequency bands between 4 Hz and 40 Hz with an interval of

0.5 Hz. The result is then a 2 dimensional pdf, in which each

dimension corresponds to a start and an end frequency,

respectively (see e.g., Fig. 4).

We applied the described process on experimental SMR-

controlled BCI data and compared two channel configurations,

already described in Section 2.1 to extract spatio-temporal filters

for the BCI classification. The classification followed the same

strategy as proposed by [24] except for the classifier. In the present

study, we employed a Linear Discriminant Analysis (LDA) for

classification. The resulting accuracies are compared with the the

conventional CSP [16] on different band-pass filtering strategies.

For the competing method, we also used a LDA as a classifier.

2.2.1 Towards physiological interpretation of results

from BSSFO. To enable a physiological understanding of the

patterns resulting from BSSFO, we converted the estimated 2-

dimensional pdfs into 1-dimensional pdfs as follows:

gM (s)~
X

es:t:ews

M(s,e){
X

es:t:ews

U(s,e) ð1Þ

where M(s,e) and U(s,e) denote, respectively, the estimated 2-

dimensional pdf and a uniform 2-dimensional pdf, and s and e are,

respectively, the start and the end frequency for a band (see Fig. 4).

The estimated 1-dimensional pdf is then weighted with a

neurophysiological knowledge, represented by a mixture of

Gaussians as v(f )~
1

2
N f ; m,s2m

� �

z
1

2
N f ; b,s2b

� �

, where f de-

notes a frequency. This final 1-dimensional pdf is used as input for

a hierarchical clustering over all subjects. For each cluster, we

derived a topographical map representing the average spatial

patterns of the subjects belonging to the cluster. In addition to the

clustering, we also computed the Pearson correlation between the

Area Under the Curve (AUC) of the 1-dimensional pdf and the

classification accuracy for each subject.

2.3 Prediction of BCI Performance from Resting-state
Data
The second aim of our study is to find spatio-temporal patterns

in resting-state EEG data, which are predictive for the individuals

BCI performance and, furthermore, allows to sort subjects along

their frequency-type, i.e., m - and/or b-rhythm types, and ‘BCI-

illiterates’. The basic principle follows the one described above:

We first estimate a frequency pdf from a Power Spectral Density

(PSD) of channels for each subject in an unsupervised manner

(Section 2.3.1). A data clustering over the estimated pdf follows and

finally we build a linear regression model using the cluster

information (Section 2.3.2). A schematic diagram of building our

BCI predictor is presented in Fig. 5.

2.3.1 Unsupervised pdf estimation. In order to estimate a

pdf of a frequency band, we first calculated the PSD in each

channel individually with the preprocessed resting-state EEGs as

follows:

PE~
1
ffiffiffiffi

T
p

ðT

0

XE(t)exp({ivt)dt ð2Þ

where t denotes a time index, E denotes an electrode, and XE is a

temporal EEG at the electrode E. For each PSD, the correspond-

ing noise model is fitted as done in [20]:

NE~k1z
k2

f l
ð3Þ

where f denotes a frequency, and k1, k2, and l are model

parameters.

Figure 4. Estimation of a 1-dimensional pdf from a 2-dimensional pdf estimated by BSSFO. (Left) A 2-dimensional pdf estimated by
BSSFO. (Middle) The red line represents the 1-dimensional pdf of the estimated 2-dimensional pdf and the blue straight line is the 1-dimensional pdf
of a uniform 2-dimensional pdf. (Right) The red line is the uniform pdf subtracted version of the 1-dimensional pdf.
doi:10.1371/journal.pone.0087056.g004

Figure 5. A schematic diagram of the BCI illiteracy prediction in a probabilistic framework.
doi:10.1371/journal.pone.0087056.g005
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Based on those two ingredients, we extract the Frequency-

Related Information (FRI) SE for each channel by taking the

difference between a PSD and a noise model.
SE~PE{NE : ð4Þ

From an information theory point of view, Eq. (4) means that

the smaller the value of SE, the less informative the frequency in

the channel E is. This fact is utilized directly in our probability

model described below.

Since the selection of a frequency band related to motor

imagery tasks is one of the key issues in determining the

classification performance, we build a pdf in terms of a frequency

band. Following Suk et al.’s work [24], we represent a frequency

band with a continuous random vector B. The problem is to

estimate the pdf of this random variable B~½bsbe�{, where bs and be
denote, respectively, the start and the end point of a frequency

band, and { is a transpose operator.

We should note that given a set of preprocessed resting-state

EEGs X, the posterior probability of a frequency band B, p(BDX),

can be estimated indirectly from the set of FRIs S~ SEf gNE~1,

where N denotes the number of channels under consideration, as

follows:

Figure 6. Estimation of the frequency-related resting-state EEG pdf with 3-LAP channels. In (c) and (d), the ‘Transformed’ pdfs are the
uniform pdf subtracted version of the respective 1D-PDFs.
doi:10.1371/journal.pone.0087056.g006

Figure 7. An example of constructing a cluster-distance vector
for a subject i , which is the input to the linear regression
function in BCI-performance prediction. The colored ovals
represent a rough distribution of feature vectors labeled to the clusters
and the dots represent the mean of each cluster.
doi:10.1371/journal.pone.0087056.g007

Table 1. Comparison of the classification performance error
among the competing methods for motor imagery.

Band [Hz] 16 Channels [%] 39 Channels [%]

Broad-band (5–3) 27.65615.53 27.14615.92

m-band (8–12) 28.31615.65 29.82614.27

b-band (16–22) 39.09612.51 38.45612.56

Heuristic [12] 26.12615.89 26.33614.61

BSSFO [32] 24.88±15.62 26.07615.27

doi:10.1371/journal.pone.0087056.t001
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p(BDX)~p(BDS): ð5Þ

Taking into account channels, we can rewrite p(BDS) by a sum

rule in a probability theory and a Bayes rule as follows:

p(BDS)~
X

E

p(B,EDS)

~

X

E

p(SDB,E)p(BDE)p(E)

p(S)

!
X

E

p(SDB,E): ð6Þ

With the application of a chain rule and the assumption of the

uniform distributions for p(BDE) and p(E), the last proportional

relation can be derived.

From Eq. (6), all we need to do is to estimate the likelihood

p(SDB,E). We define a likelihood for a frequency band B of the

range bs and be as follows:

p(SDB,E)~
exp SE(B)½ �

W (B)
ð7Þ

where SE(B)~
Ð be

bs
SE and W(B) denotes a bandwidth.

At this moment, we should note that due to a computational

issue, in this work, the PSDs and the corresponding noise models

are computed and fitted every 0.5 Hz between 2 and 34 Hz,

which covers both m (8–12 Hz) and b (16–22 Hz) rhythms.

Therefore, the domain for a start frequency is

bs[f2,2:5,3, � � � ,33:5g and that for an end frequency is

be[f2:5,3,3:5, � � � ,34g.
Let L(s,e) be the likelihood for the frequency band of bs and be

estimated from the resting-state EEGs, where s and e are,

respectively, an index of the frequency value. The likelihood is

computed by Eq. (7). Fig. 6(a) and Fig. 6(b) illustrate the examples

of likelihood of three different electrodes for two different subjects.

From the figures, we can see that a high power spectrum results in

a high likelihood. From the likelihood we can naturally compute a

pdf R(s,e) by normalization as follows:

Figure 8. Results of the hierarchical clustering on 1D pdfs of the subjects on motor imagery tasks. The topographies present an average
of the trained spatial patterns of the subjects belonging to the same cluster.
doi:10.1371/journal.pone.0087056.g008
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Figure 9. Illustration of the common spatial patterns of the subjects belonging to each cluster from Fig. 8. The results were obtained
from the 16-LAP channel arrangement (see online color version of the figure).
doi:10.1371/journal.pone.0087056.g009
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R(s,e)~
L(s,e)

P

i

P

j L(i,j)
: ð8Þ

It is noteworthy that the probability represents the relative

importance of a frequency band in a subject.

Although we can compute the probability of a frequency band

from resting-state EEGs following the steps mentioned above, we

cannot directly quantify the significance of the specific frequency

band in terms of SMR-controlled BCI prediction, since the

learning problem is now an unsupervised one. We, therefore,

compute the likelihood for a noise model and contrast it to the

likelihood from resting-state EEGs. In Eq. (7), SE(B) is defined as

the difference between a PSD and the corresponding noise model.

That is, the likelihood for a noise model becomes uniform U(s,e)

over all frequency bands. Then we can convert the 2D pdf into a

1D pdf gR(s) as done in motor imagery tasks:

gR(s)~
X

es:t:ews

R(s,e){
X

es:t:ews

U(s,e) ð9Þ

where the indices s and e denote, respectively, a start and an end

point of a frequency band.

However, once we convert a likelihood into a probability

distribution, the original spectral power information disappears.

Consequently, the probability distribution of different likelihoods

can become similar between subjects even though their likelihoods

are very different as exemplified in the leftmost matrix of Fig. 6(c)

and Fig. 6(d). That is, while the likelihood of three electrodes for

the two subjects are different from each other as shown in Fig. 6(a)

and Fig. 6(b), after normalization of the probability density, the

difference disappears. The probability represents the relative

differences among values within a subject. Therefore, it is not

meaningful to directly compare them between subjects for SMR-

controlled BCI performance prediction. Therefore, to reflect the

individual information of the PSD into the pdf, we multiply with a

weight g, which we call a ‘subject-weight’, defined as the sum of

the maximum power of each channel as follows:

g~
X

E

maxSE : ð10Þ

With the introduction of the subject-weight into the pdf, we can

get a spectral power reflected density as shown at the rightmost

matrix in Fig. 6(c) and Fig. 6(d). Note that after multiplication of

the subject-weight, the resulting pdf does not meet the probability

property anymore, i.e., the sum of the values is not one. From the

figures, we can clearly see the density differences between subjects

while still keeping the relative significance of frequency within a

subject. In addition, we also reflect the prior neurophysiological

knowledge that m - and b -rhythms are helpful for SMR-controlled

BCI illiteracy prediction as proved in Blankertz et al.’s work [20].

Figure 10. Pearson correlation of the frequency weighted area
under curve (AUC) of 1D pdf with BCI performance. Each dot
corresponds to a subject. The color of dots represents a cluster label in
Fig. 8. The two lines represent a linear regression function for the
values; the red solid line (correlation 1) is fitted to all the values
considered and the black dotted line (correlation 2) is fitted for the
values with outliers excluded.
doi:10.1371/journal.pone.0087056.g010

Figure 11. Global mean and a standard error of the resting-state EEG pdfs over all subjects for two channel configurations: 3 and 16
Laplacian EEG-channels. See Section 2.1 for a description of the difference between both.
doi:10.1371/journal.pone.0087056.g011
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Therefore, the pdf J, which will be used for prediction, can be

obtained as follows:

J~g|
X

f

gR(f )v(f ) ð11Þ

where g denotes a subject-weight in Eq. (10) and

v(f )~
1

2
N f ; m,s2m

� �

z
1

2
N f ; b,s2b

� �

is a frequency-weight bor-

rowed from the neurophysiological knowledge on motor imagery.

2.3.2 Cluster-based linear regression. It is well-known

that the spectral features with regard to the motor imagery are

highly variable across subjects and a similar phenomenon can be

observed in resting-state EEGs. We assume that if the spectral

features of the resting-state among subjects are similar to each

other, then their SMR-controlled BCI performance would be also

similar. Therefore, we combine a clustering method with a linear

regression method, but another possibility would be the use of a

mixed effects model similar to [28]. For constructing the predictor,

we first cluster the subjects based on their spectral feature vectors,

and then learn a linear regression model based on the distance

from the center of each cluster and the feature vectors. In this

paper, we apply a hierarchical clustering method [29].

We utilize an augmented feature vector v(i)~ gi,AJ i
,gi½ �{, gi is a

spectral pdf of the subject i, AJi
and gi are, respectively, an AUC of

Ji and a weight of the subject i. Due to the high dimension of the

augmented vector and a small number of samples compared to the

dimension, a principal component analysis technique is applied to

reduce the dimension. We use the dimension-reduced feature

vectors v(i) that include the information available from resting-

state EEGs for clustering and the SMR-controlled BCI perfor-

mance prediction.

In a hierarchical clustering, we use a ward criterion, which

chooses the pair of clusters to merge at each step based on the

optimal value of an objective function, i.e., squared Euclidean

distance:

D(i,j)~DDv̂v(i){v̂v(j)DD2 ð12Þ

where v̂v(i) and v̂v(j) denote the dimension-reduced augmented

feature vectors of the subject i and j, respectively. Since the

hierarchical clustering method builds a hierarchy of clusters, it

allows us to investigate the results from a physiological perspective.

In order for linear regression model fitting, we construct a new

vector di for each subject i, which consists of the distances from the

center of clusters.

di~½di(1) � � � di(k) � � � di(K)�{ ð13Þ

where di(k)~DDv̂v(i){c(k)DD2, c(k) denotes the center of the cluster k,

and K is the number of clusters. Fig. 7 illustrates the construction

of a cluster distance vector. In the figure, each oval represents a

rough distribution of the feature vectors v̂v labeled to the respective

cluster, and colors denote cluster labels. The dots in the center of

Figure 12. An example of a clustering result obtained by BSSFO from the resting-state EEG. (a,b) show hierarchical clustering results for a
small (3) and large (16) channel configuration. For the same channel configurations, we show the corresponding cluster-wise linear regression models
(c,d) between the BSSFO’s pdfs and the classification accuracy in the actual BCI. The BSSFO combines the cluster-wise linear regression models in
performance prediction.
doi:10.1371/journal.pone.0087056.g012
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Figure 13. 3-LAP-channel resting-state EEG pdfs assigned to each cluster and the corresponding two-largest Principal Components
(PCs). The colors denote cluster labels from Fig. 12(a).
doi:10.1371/journal.pone.0087056.g013
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each oval are the mean of the feature vectors assigned to the

cluster.

With the cluster distance vectors D~ d1, � � � ,di, � � � ,dn½ �[RK|n,

where n is the total number of subjects for training, we fit a linear

regression model.

Y~D
{
wze ð14Þ

where Y~ y1 � � � yi � � � yn½ �{ is a concatenated vector of the motor

imagery accuracies over subjects, and w and e are, respectively, a

regression parameter and a bias.

Given a new subject’s EEG signal x̂x, the SMR-controlled BCI

performance for the subject can be predicted by.

ŷy~dxwze ð15Þ

where dx̂x and ŷy denote, respectively, a vector of distances between

the dimension-reduced feature vector of the new subject and the

center of clusters, and the predicted SMR-controlled BCI

performance.

We used the same clustering method on the pdfs of the resting-

state EEG data derived from Section 2.3 for a small and a large

Figure 14. 16-LAP-channel resting-state EEG pdfs assigned to each cluster and the corresponding two-largest Principal
Components (PCs). The colors denote cluster labels from Fig. 12(b).
doi:10.1371/journal.pone.0087056.g014
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channel arrangement (see Section 2.1) to test whether also a small

number of channels can lead to meaningful results. We then

calculated a cluster-wise regression of the pdfs AUC and the

subject’s performance in the later actual BCI session from Section

2.2, which gives insight whether belonging to a cluster can predict

the BCI performance.

To gain further insight into the physiological features derived

from the clustering, we calculated the first two principal

components within the subjects belonging to each cluster. These

principal components show the frequency pattern most common

within a cluster. This was also done for small and large number of

EEG channels to check whether a small number of channels still

reveals meaningful results.

To find an appropriate number of clusters, we calculated the

correlation between the resting-state predictor given by the

clustering method and the actual BCI performance of the subject.

We tested this for up to 20 clusters and for different channel

arrangements.

Finally, we compared the clusters derived from the analysis of

the actual BCI paradigm with the pdfs gained from the resting-

state EEG data, in other words the discriminative and generative

settings. As the clustering within the motor imagery sorted the

subjects according to their performance, we are hereby able to

show whether the resting-state pdfs show physiological meaningful

predictor for the BCI performance.

Results

3.1 Motor Imagery Classification and Physiological
Interpretation of BSSFO Results
First, BSSFO is evaluated off-line for a large BCI data corpus of

80 subjects from [20]. (We performed 8-fold chronological cross-

validation. In chronological cross-validation, since the time

structure of the data is largely preserved, it can thus be considered

as a relatively conservative measure. All parameters for temporal

and spatial filters were estimated from training data in each of the

cross-validation splits and applied to the test data. Regarding a loss

function, 0–1 loss was applied.) BSSFO compares favorably to

CSP with various strategies of band-power estimation (see Table 1).

The band-pass filter strategies considered in this work were

namely a broad-band filter (5–30 Hz), an m-band filter (8–12 Hz),

a b-band filter (16–22 Hz), and they were combined with CSP

[16]. We also considered an established heuristic method for

optimizing subject-dependent temporal filters [16]. Specifically,

the log band-power of LAP-filtered EEG channels were computed

from 5 to 35 Hz. Then the correlation coefficient of the band-

power and the labels were calculated across all trials. We

determine the frequency (fmax) with the highest correlation

coefficient. Based on this frequency, the band-pass frequency

interval ½f0,f1� was increased, starting at fmax until f0 and f1 were

smaller or equal to 5% of fmax.

In order to gain a physiological interpretation of these

encouraging results, a hierarchical clustering based on the 1

dimensional pdf s that are derived from the BSSFO’s 2 dimensional

pdf of all subjects is computed. The resulting clustering into 3

groups is shown in Fig. 8 including an average of the 1D pdfs of the

subjects belonging to one cluster shown as a topographical map.

The first cluster (red) (Fig. 8, left hand side) has a very clear pattern

with a strong lateralization between left- and right-hand motor

imagery, which is also stable in the subgroups of this cluster. The

pattern of the second cluster (green) (Fig. 8, middle) is less strongly

lateralized and more occipital channels appear modulated only

during right-hand imagery. They are contaminated by strong a-

rhythms in the occipital cortex, which shares the frequency range

of the m-rhythm that we are actually interested in. Also subjects

that belong to the second cluster show an overall smaller

modulation than the one of the first cluster. The third cluster

(blue) (Fig. 8, right hand side) exhibits considerable within-cluster-

variance. This is already a first hint that a lower classification

accuracy could be expected for the third group when compared to

the others.

To further investigate inter- and intra-cluster differences, we

computed the mean spatial patterns of the 3 clusters. The results

for each subject are shown in Fig. 9. Here, we gain a similar result

as already mentioned above: Within the first cluster, we see a

strong lateralization among nearly all subjects. This lateralization

Figure 15. The changes of the correlation between the
proposed predictor and the classification performance accord-
ing to the number of clusters and the number of channels
considered in prediction.
doi:10.1371/journal.pone.0087056.g015

Figure 16. Mean and standard error of resting state EEG pdfs over the subjects assigned to each cluster of motor imagery pdfs. The
cluster labels denoted with different colors are from Fig. 10.
doi:10.1371/journal.pone.0087056.g016
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weakens in the second cluster and only exists among a few subjects

of the third cluster.

We further computed Pearson’s correlation between the AUC

of the 1 dimensional pdf and the classification accuracy. As shown

in Fig. 10, the results are promising with a clear correlation

between them: 0.769 with 16-LAP channels. If we remove outliers,

the correlation increases to 0.860. From the figure, we can see that

the clusters are also highly correlated with the accuracy. The

subjects belonging to the red cluster mostly represent a high

classification accuracy. Whereas, the subjects belonging to the blue

cluster are distributed on the left-low corner of the graph

indicating a low accuracy. The subjects in the green cluster are

in the middle.

3.2 Prediction of BCI Performance with Resting-state EEG
A second aim of our study is to evaluate whether BSSFO is

capable of predicting subjects’ BCI performance using resting-state

EEG data preceding an actual BCI paradigm. Using the 1D pdfs of

the same preprocessed resting-state EEG data (see Section 2.3), we

study the dependence on the number of channels necessary for a

meaningful clustering and whether the derived groups have

physiologically reliable spatial and temporal features allowing for a

typecasting of the subjects. Fig. 11 shows a grand mean and its

standard error of the resting state pdfs for two different channel

arrangements (3-LAP and 16-LAP).

Although the scale is different between Fig. 10 and Fig. 10, the

global shapes are similar between the small and large channel

arrangement. Both present a global peak around the m-band and

the second largest global peak around the b-band (in line with

[20]).

In Fig. 12, we illustrate the clustering results and the linear

regression functions fitted to the data of each cluster. Fig. 12(a) and

Fig. 12(b) show the results of the hierarchical clustering method

with 3-LAP and 16-LAP channel arrangements, respectively. We

selected 5 clusters for both small and large channel arrangements.

The linear regression models for each cluster are given in Fig. 12(c)

and Fig. 12(d).

For both channel arrangements, we can identify 2–3 high

performing groups, one containing only small number of subjects.

At least one cluster contains subjects with mixed performances

although the predictor obtained from the resting-state EEG data

has similar AUCs. Neither in the large nor the small channel

arrangement a clear group of users unable of BCI communication

appears. Also a small channel arrangement does not lead to

significantly worse results, which is encouraging from the practical

point of view.

A close look into the cluster-wise spectral properties is given in

Fig. 13 for the small channel arrangement. Here, we display each

subject’s pdf assigned to each cluster as well as their principal

components of the two largest eigenvalues. Considering the

spectral features within each cluster for the 3-LAP channel

arrangement, it can be stated that cluster 3 and 4 show clear peaks

around the m-band within each of the subject. While cluster 1

consists of subjects having either a high m-, a high b-band or both,

cluster 2 and 5 contain subjects with either no or only slight m-

bands. Nevertheless, the first principal component show that the m-

band is most prominent in all clusters, but has a specific maximum

in each cluster. The second principal component shows the b-

band again with a specific peak frequency in every cluster. For the

same analysis with the large channel arrangement see Fig. 14,

clearly the results are less pronounced.

In Fig. 15, we contrast the predictors from the resting-state EEG

data and the classification performance in the BCI for different

numbers of channels and numbers of clusters. The maximum

correlation of 0.581 for sixteen clusters was obtained. Clearly, the

small number of channels positioned on the sensorimotor cortex

gives rise to better correlation results when compared to the larger

and more unspecific channel number that covers the whole brain.

Finally, we come back to the clustering of the pdfs acquired for

the BCI experiment. Ideally the clusters may tell whether the

resting-state pdfs have physiologically meaningful information

especially when comparing to the pdfs from motor imagery. We

computed the mean of the resting-state pdfs for each cluster trained

from the motor imagery pdfs over the subjects. The clusters

presented in Fig. 10 revealed three groups of different perfor-

mance levels. While the red cluster shows the high performance

group, the blue one is the worst, and the green one exhibits

mediocre performance. From Fig. 16, we can clearly see that the

higher the classification performance, the larger values are found

in the pdf around the m- and b-bands. Therefore, based on our

prediction and grouping analysis, it is expected that a subject who

falls into the blue group can be a potential BCI-illiteracy.

Conclusion

In this work, we show that BSSFO evaluates favorably

compared to prototypical spatio(-temporal) filtering methods like

CSP [16] in terms of classification performance across a large

corpus of 80 subjects from [20], and BSSFO can also infer subject-

specific spatio-temporal patterns, which are shown physiologically

meaningful. Individual BSSFO patterns can be clustered to form

groups of subjects with similar physiological characteristics. It,

therefore, may allow to gain further insight into the characteristics

responsible for the performance of subjects beyond the mere

amplitudes of m- and b-bands. We could show that a clustering

into three groups of subjects exhibit different spatial topographies

and is highly predictive for the subjects BCI performance.

Moreover, we study the prediction of a subject’s future BCI

performance based on resting-state EEG data acquired prior to a

BCI session. Using only 3-Laplacian channels, we could obtain the

maximum correlation coefficient of 0.581 with the performance

later seen in the actual BCI feedback session; this result compares

favorably with previous results [20]. A clustering of the resulting

BSSFO patterns shows interesting task-independent physiological

characteristics discriminative for ‘‘good’’ and ‘‘bad’’ BCI perform-

ers. It is noteworthy that unlike the earlier study [20] that assumed

a statistical model of resting-state EEG, BSSFO extracts a full

spectral characteristics along with the spatial properties for a

subject in a data-driven manner without a-priori assuming a

specific role of particular frequency bands. Therefore, it is

expected that the BSSFO can be a potential tool for BCIs to

care the patients who might have unusual spatio-temporal

characteristics due to neurological disorder or brain injury.

Although we have performed the validation of the BSSFO

framework here within an offline study, our methods may be

readily applied in feedback BCI experiments, both for pre-

screening subjects and for improving the spatio-temporal signal

processing. The subject groupings extracted by our approach

could in the future also contribute to create improved subject-

independent classifiers [30,31,28] or better co-adaptive BCI

training protocols [12].

While we focused on the SMR-controlled BCI, we would like to

emphasize that the BSSFO is also applicable to other kinds of

single-trial EEG signal recognition problems that are based on the

modulations of brain rhythms. Therefore, it is by no means limited

to SMR-controlled BCIs. Furthermore, regarding ECoG-based

BCIs, which are also of great interests in the field, it has been

studied that the spectral amplitudes of the ECoG signals in the
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various frequency bands are task-related, e.g., motor movement

[32,33] or auditory processing [34]. Hence, it is natural to extend

the current study to the ECoG-based BCI studies using the same

framework, in which the task-related frequency bands can be

effectively represented in a probabilistic manner.

Appendix

To implement our prior knowledge of common characteristic

frequency bands, we first denote B~½bs,be�{ as a continuous

random vector for a frequency band, where bs and be are,

respectively, the start and the end frequency of this band with the

constraint of bsvbe. We define the probability of a frequency

band b, p(b), as the probability that the b bandpass-filtered signals

can be correctly classified between two classes.

Since we are presumably uncertain about the discriminative

frequency band, we encode this uncertainty as a prior distribution

p(B) over a random variable B. Given a set of single-trial EEGs

X~fxigDi~1 and the corresponding class labels V~fvigDi~1,

where D is the number of trials, we can compute the posterior pdf,

p(BDX,V), by a Bayes rule as follows:

p(BDX,V)~
p(X,VDB)p(B)

p(X,V)
: ð16Þ

The prior, p(B), describes the relative probabilities of different

states, i.e., frequency bands, in which single-trial EEG responses to

motor imagery are correctly discriminated. The term p(X,VDB) is

called the likelihood function. If the hypothesis B, i.e., the chosen

frequency band, were true, this term indicates the probability that

the single-trial EEG responses X are in conjunction with the class

labels V. In other words, given a particular frequency band, this

likelihood function describes the probability that the single-trial

EEGs X can be correctly classified into V. The posterior

distribution p(BDX,V) defines the probability that the frequency

band B is discriminative when the observations of X and V are

given. Thus, it indicates the relative likelihood of the single-trial

EEG responses X being correctly classified into V by B bandpass

filtering along with the ensuing computational processes. Note

that, in this paper, we do not make any functional assumption

about the densities p(B) and p(BDX,V), which could be linearity,

Gaussianity, unimodality, etc.

Given a frequency band B and raw EEG signals X, the

bandpass-filtered signals Z are deterministically obtained. Fur-

thermore, a spatial filter W is found from Z via a standard CSP

algorithm [12] or its variants [8,36,25], in which W is analytically

obtained by optimization. In the prevalent processing chain of

SMR-controlled BCIs, a feature vector is extracted by computing

simple matrix multiplication between Z and W and the second-

order statistics followed by a monotonically increasing logarithmic

function. This means, that the posterior p(BDZ,V) can be

indirectly estimated from p(BDF,V), where F~log var W
{
Z

� �� �

,

without losing information.

Hence, we can rewrite Eq. (16) as follows.

p(BDX,V) ¼D p(BDF,V)

~
p(F,VDB)p(B)

p(F,V)
ð17Þ

where p(F,V)~
Ð

B
p(F,VDB)p(B)dB. Thus, the goal of finding the

optimal spatio-spectral filter to extract discriminative features and,

thereby, to ultimately improve classification accuracy, can be

defined as an estimation of the posterior pdf p(BDF,V) in Eq. (17)

(see [24] for details and implementation).
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