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Abstract

Background The first sign of metastatic prostate cancer after radical prostatectomy is rising

PSA levels in the blood, termed biochemical recurrence. The prediction of recurrence relies

mainly on the morphological assessment of prostate cancer using the Gleason grading

system. However, in this system, within-grade morphological patterns and subtle histo-

pathological features are currently omitted, leaving a significant amount of prognostic

potential unexplored.

Methods To discover additional prognostic information using artificial intelligence, we

trained a deep learning system to predict biochemical recurrence from tissue in H&E-stained

microarray cores directly. We developed a morphological biomarker using convolutional

neural networks leveraging a nested case-control study of 685 patients and validated on an

independent cohort of 204 patients. We use concept-based explainability methods to

interpret the learned tissue patterns.

Results The biomarker provides a strong correlation with biochemical recurrence in two sets

(n= 182 and n= 204) from separate institutions. Concept-based explanations provided

tissue patterns interpretable by pathologists.

Conclusions These results show that the model finds predictive power in the tissue beyond

the morphological ISUP grading.
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Plain language summary
To determine the prognosis of

patients with prostate cancer, several

clinical factors are taken into account.

One of these is the cancer grade,

assigned by a pathologist based on

the cancer’s appearance under a

microscope. The grade ranges from 1

to 5, where 5 is the most aggressive

tumour type. This study explored

whether deep learning—a technique

in which computer software learns

patterns from multiple examples—

can learn to predict the risk of

patients’ cancers recurring from

microscopic images of the tumours.

We show, on two clinical datasets

from different institutions, that such a

system can help to better predict

prognosis, beyond the information

provided by grade alone. In the

future, this type of method could help

clinicians to predict the prognosis of

individual prostate cancer patients.
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Prostate cancer is a common malignancy among men,
affecting 1.4 million per year1. A significant proportion of
these men will receive the primary curative treatment of a

prostatectomy. This surgery’s success can partly be judged by the
concentration of prostate-specific antigen (PSA) in the blood.
While it has a dubious role in prostate cancer screening2,3, this
protein is a valuable biomarker in PCa patients’ follow-up post-
prostatectomy. In a successful surgery, the concentration will
mostly be undetectable (<0.1 ng/mL) after 4–6 weeks4.

However, in ~30% of the patients5–7, PSA will rise again after
surgery, called biochemical recurrence, pointing to regrowth of
prostate cancer cells. Biochemical recurrence is a prognostic
indicator for subsequent progression to clinical metastases and
prostate cancer death8. Estimating chances of biochemical
recurrence could help to better stratify patients for specific
adjuvant treatments.

The risk of biochemical recurrence of prostate cancer is currently
assessed in clinical practice through a combination of the ISUP
grade9, the PSA value at diagnosis and the TNM staging criteria. In a
recent European consensus guideline, these factors were proposed to
separate the patients into a low-risk, intermediate-risk and high-risk
group10. A high ISUP grade independently can, independently of
other factors, assign a patient to the intermediate (grade 2/3) or
high-risk group (grade 4/5).

Based on the distribution of the Gleason growth patterns11,
which are prognostically predictive morphological patterns of
prostate cancer, pathologists assign cancerous tissue obtained via
biopsy or prostatectomy into one of five groups. They are com-
monly referred to as International Society of Urological Pathology
(ISUP) grade groups, the ISUP grade, Gleason grade groups, or
just grade groups.9,12–14. Throughout this paper, we will use the
term ISUP grade. The ISUP grade suffers from several well-
known limitations. For example, there is substantial disagreement
in the grading using the Gleason scheme15,14. Furthermore,
although the Gleason growth patterns have seen significant
updates and additions since their inception in the 1960s, they
remain relatively coarse descriptors of tissue morphology. As
such, the prognostic potential of more fine-grained morphologi-
cal features has been underexplored. We hypothesize that artifi-
cial intelligence, and more specifically deep learning, has the
potential to discover such information and unlock the true
prognostic value of morphological assessment of cancer. Specifi-
cally, we developed a deep learning system (DLS), trained on
H&E-stained histopathological tissue sections, yielding a score for
the likelihood of early biochemical recurrence.

Deep learning is a recent new class of machine learning algo-
rithms that encompasses models called neural networks. These
networks are optimized using training data; images with labels, such
as recurrence information. From the training data, relevant features
to predict the labels are automatically inferred. During development,
the generalization of these features is tested on separated training
data, which is not used for learning. Afterwards, a third independent
set of data, the test set, is used to ensure generalization. Since features
are inferred, handcrafted feature engineering is not needed anymore
to develop machine learning models. Neural networks are the cur-
rent state-of-the-art in image classification16.

Deep learning has previously been shown to find visual pat-
terns to predict genetic mutations from morphology, for example,
in lymphoma17 and lung cancer18. Additionally, deep learning
has been used for feature discovery in colorectal cancer19 and
intrahepatic cholangiocarcinoma20 using survival data. Although
deep learning has been used with biochemical recurrence data on
prostate cancer, Leo et al.21. assumed manual feature selection
beforehand, strongly limiting the extent of new features to be
discovered. Yamamoto et al.22. used whole slide images and a
deep-learning-based encoding of the slides to tackle the slides’

high resolution. They leverage classical regression techniques and
support-vector machine models on these encodings. The deep
learning model was not directly trained on the outcome, limiting
the feature discovery in this work as well.

A common critique of deep learning is its black-box nature of
the inferred features23. Especially in the medical field, decisions
based on these algorithms should be extensively validated and be
explainable. Besides making the algorithms’ prediction trust-
worthy and transparent, from a research perspective, it would be
beneficial to visualize the data patterns which the model learned,
allowing insight into the inferred features. We can visualize the
patterns learned by the network leveraging a new technique called
Automatic Concept Explanations (ACE)24. ACE clusters patches
of the input image using their intermediate inferred features
showing common patterns inferred by the network. We were
interested in finding these common concepts over a range of
images to unravel patterns that the model has identified.

This study aimed to use deep learning to develop a new prognostic
biomarker based on tissue morphology for recurrence in patients
with prostate cancer treated by radical prostatectomy. As training
data, we used a nested case-control study25. This study design
ensured we could evaluate whether the network learned differ-
entiating patterns independent of Gleason patterns. The prognostic
biomarker provides a strong correlation with biochemical recurrence
in two sets (n= 182 and n= 204) from separate institutions. Fur-
thermore, the Automatic Concept-based Explanations provided tis-
sue patterns interpretable by our pathologist.

Methods
Cohorts. Two independent cohorts of patients who underwent
prostatectomy for clinically localized prostate cancer were used in this
study. Patients were treated at either the Johns Hopkins Hospital in
Baltimore or New York Langone Medical Centre. Both cohorts were
accessed via the Prostate Cancer Biorepository Network26. The Johns
Hopkins University School of Medicine Institutional Review Board
and The New York University School of Medicine Institutional
Review Board provided ethical regulatory approval for collection and
disbursement of data and materials from the respective institutions.
The need for acquiring informed consent was waived by the insti-
tutional ethical review boards.

For the development of the novel deep-learning-based biomarker
(further referred to as DLS biomarker), we used a nested case-
control study of patients from Johns Hopkins. This study consists of
524 matched pairs (724 unique patients) containing four tissue spots
per patient. They were sampled from 4860 prostate cancer patients
with clinically localized prostate cancer who received radical
retropubic prostatectomy between 1993 and 2001. Men were
routinely checked after prostatectomy at 3months and at least
yearly thereafter. Surveillance for recurrence was conducted using
digital rectal examination and measurement of serum PSA
concentration. Patients were followed for outcome until 2005, with
a median follow-up of 4.0 years. The outcome was defined as
recurrence, based on biochemical recurrence (serum PSA > 0.2 ng/
mL on 2 or more occasions after a previously undetectable level after
prostatectomy), or events indicating biochemical recurrence before
this was measured; local recurrence, systemic metastases, or death
from prostate cancer. Controls were paired to cases with recurrence
using incidence density sampling27. For each case, a control was
selected who had not experienced recurrence by the date of the case’s
recurrence and was additionally matched based on age at surgery,
race, pathologic stage, and Gleason sum in the prostatectomy
specimen based on the pathology reports. Given the incidence
density sampling of controls, some men were used as controls for
multiple cases, and some controls developed recurrence later and
became cases for that time period.
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The TMA spots were cores (0.6mm in diameter) from the
highest-grade tumour nodule. Random subsamples were taken in
quadruplicate for each case. The whole slides were scanned using a
Hamamatsu NanoZoomer-XR slide scanner at 0.23 μm/px. TMA
core images were extracted using QuPath (v0.2.328,). We discarded
analysis of cores with <25% tissue. The cores were manually checked
(HP) for prostate cancer, excluding 535 cores without clear cancer
cells present in the TMA cross-section, resulting in a total of 2343
TMA spots. The nested case-control set was split based on the
matched pairs into a development set (268 unique pairs), and a test
set (91 pairs); the latter was used for evaluation only. We leveraged
cross-validation by subdividing the development into three folds to
tune the models on different parts of the development set. We
divided paired patient, randomly, keeping into account the
distribution of the matched variables. The random assignment was
done using the scikit-multilearn package29, specifically the ‘Iterati-
veStratification’ method in ‘skmultilearn.model_selection’. After
splitting the dataset into training and test, we split the training
dataset into three folds using the same method for the cross-
validation.

To validate the DLS biomarker on a fully independent external
set, we used the cohort from New York Langone Medical Centre.
This external validation cohort consists of 204 patients with
localized prostate cancer treated with radical prostatectomy
between 2001 and 2003. Patients were followed for outcome
until 2019, with a median follow-up of 5 years. Biochemical
recurrence was defined as either a single PSA measurement of
≥0.4 ng/m or PSA level of ≥0.2 ng/ml followed by increasing PSA
values in subsequent follow-up. Cores were sampled from the
largest tumour focus or any higher-grade focus (>3 mm).
Subsamples were taken in quadruplicate for each case. Images
were scanned using a Leica Aperio AT2 slide scanner at 0.25 μ/px.

Model details. For developing the convolutional neural networks
(CNNs) we used PyTorch30. As an architecture, we used ResNet50-D31

pretrained on ImageNet from PyTorch Image Models32. We used the

Lookahead optimizer33 with RAdam34, with a learning rate of 2e-4 and
mini-batch size of 16 images. We used weight decay (7e-3), and a drop-
out layer (p= 0.15) before the final fully-connected layer. We used
EfficientNet-style35 dropping of residual connections (p= 0.3) as
implemented in PyTorch Image Models. We used Bayesian Optimi-
zation to find the optimal values (See Supplementary Notes 1 for details
about the searchspace).

We resized the TMAs to 1.0 mu/pixel spacing and cropped to
768 × 768 pixels. Extensive data augmentations were used to
promote generalization. The transformations were: flipping,
rotations, warping, random crop, HSV colour augmentations,
jpeg compression, elastic transformations, Gaussian blurring,
contrast alterations, gamma alterations, brightness alterations,
embossing, sharpening, Gaussian noise and cutout36. Augmenta-
tions were implemented using albumentations37 and fast.ai38.

TMA spots from cases experiencing recurrence were assigned a
value of 0–4, depending on the year on which the first event, either
biochemical recurrence, metastases, or prostate cancer-related death,
was recorded, with 0 meaning recurrence within a year, four meaning
after 4+ years. TMA spots from cases without an event were also
assigned the label 4.

We validated the model on the development validation fold
each epoch with a moving average of the weights from five
subsequent epochs. We used the concordance index as a metric to
decide which model performed the best.

As the final prediction at the patient level, the TMA spot with the
highest score was used. The final DLS consists of an ensemble of 15
convolutional neural networks. Using cross-validation as described
above, 15 networks were trained for each fold, of which the five best
performing were used for the DLS. See Fig. 1 for a graphical
overview of the methods, further details can be found in the
Supplementary Methods.

Statistics and reproducibility. For primary analysis of the nested
case-control study, odds ratios (OR) and 95% confidence intervals
(CI) were calculated using conditional logistic regression, following

Fig. 1 Overview of the methods summarizing the biomarker development and the Automatic Concept Explanations (ACE) process. Cores were
extracted from TMA slides and used to train a neural network to predict the years to biochemical recurrence. On the nested case-control test set, a
matched analysis was performed. For ACE, patches were generated from the cores, inferenced through the network and clustered based on their
intermediate features.

COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-022-00126-3 ARTICLE

COMMUNICATIONS MEDICINE |            (2022) 2:64 | https://doi.org/10.1038/s43856-022-00126-3 | www.nature.com/commsmed 3

www.nature.com/commsmed
www.nature.com/commsmed


Dluzniewski et al.39. Due to the study design, calculating hazard
ratios using a Cox proportional hazard regression is not appropriate.
For the primary analysis, the continuous DLS marker was given as
the only variable. For a secondary analysis, we added the non-
matched variables PSA, positive surgical margins, and a binned
indicator variable for year of surgery. Since matching was done on
Gleason sum, and our goal was to identify patterns beyond currently
used Gleason patterns, we corrected for the residual differences of the
ISUP grade between cases and control (see Table 1). A correction was
performed by adding a continuous covariate since, due to the small
differences, an indicator covariate did not converge. Analysis was
done using the lifelines Python package (v. 0.25.10)40 with Python (v.
3.7.8). P-values were calculated as a Wald test per single parameter.
Since the DLS predicts the time-to-recurrence, high values indicate a
low probability of recurrence. We multiplied the DLS output by −1
to make the analysis more interpretable. For three patients (1 from
the Johns Hopkins cohort and 2 from the New York Langone
cohort), PSA values were missing and were therefore replaced by the
median.

For primary analysis of the New York Langone cohort, we
calculated hazard ratios (HR) using a Cox proportional hazards
regression. We report a secondary multivariable analysis including
indicator variables for relevant clinical covariates, Gleason sum,
pathological stage, and surgical margin status. We tested the
proportional hazards assumption as satisfactory (every p-value >
0.01) using the Pearson correlation between the residuals and the
rank of follow-up time. Kaplan–Meier plots were generated for the
New York Langone cohort. Due to the nested case-control design for
the Johns Hopkins set, this set could not be visualized in a
Kaplan–Meier plot.

Automatic concept explanations. To generate concepts, we
picked the best performing single CNN from the DLS based on its
validation set fold. We used a combination of the methods of Yeh
et al., 202041 and Ghorbani et al., 201924.

We tiled the TMA images into 256 × 256 patches within the tissue,
discarding patches with >50% whitespace. These patches were
padded to the original input shape of the CNN (768 × 768 pixels).
The latent space of layer 42 of 50 was saved for each tile. Afterwards,
we used PCA (50 components) to lower the dimensionality and then
performed k-means (k= 15) to cluster the latent spaces.

In contrast to Yeh et al. and Ghorbani et al., we did not sort the
concepts on completeness of the explanations or importance for
prediction of individual samples. We sorted the concepts to find
interesting new patterns related to recurrence across images by
ranking the concepts based on the DLS score of the TMA spot
from which they originated.

For each concept, 25 examples were randomly picked and
visually inspected by a pathologist (JvI), with a special interest in
uropathology, blinded to the case characteristics and prediction of
the network.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
The DLS system was developed on the Johns Hopkins cohort with
2343 TMA spots of 685 included unique patients (39 patients
were excluded due to insufficient tumour amount in the cores).
Four hundred ninety-two patients were recurrence cases (72%).
The 685 included patients were split into a development set of
503 unique patients and a test set of 91 matched pairs of cases and
controls (182 unique patients).

In the external validation cohort, 38 out of the 204 patients
(19%) had biochemical recurrence after complete remission, PSA
nadir after 3 months post-prostatectomy. From the 204 patients,
620 TMA spots were included. Clinical characteristics of the
cohorts can be found in Table 1 and Table 2.

Table 1 Baseline characteristics of test set and development set from the John Hopkins Hospital, prostate cancer recurrence
cases and controls, men who underwent radical prostatectomy for clinically localized disease between 1993 and 2001.

Development set Test set

Recurrence cases No events cases P Recurrence cases Controls* P

N 368 135 91 91
Age, mean (SD) 58.9 (6.2) 59.3 (6.3) p= 0.540 58.4 (6.1) 58.3 (6.3) Matched
preop. PSA (ng/mL), mean (SD) 12.3 (10.0) 10.1 (7.5) p= 0.010 12.3 (10.8) 10.5 (7.7) p= 0.195
Race, n (%) p= 0.599 Matched
White 327 (88.9) 120 (88.9) 72 (79.1) 75 (82.4)
Black or African–American 32 (8.7) 14 (10.4) 12 (13.2) 10 (11.0)
Other 9 (2.4) 1 (0.7) 7 (7.7) 6 (6.6)
Pathological stage p= 0.107 Matched
pT2 43 (11.7) 25 (18.5) 20 (22.0) 19 (20.9)
pT3a 199 (54.1) 63 (46.7) 50 (54.9) 51 (56.0)
pT3b or N1 126 (34.2) 47 (34.8) 21 (23.1) 21 (23.1)
Gleason sum prostatectomy (%) p= 0.179 Matched
6 38 (10.3) 25 (18.5) 20 (22.0) 23 (25.3)
7 233 (63.3) 76 (56.3) 51 (56.0) 50 (54.9)
8+ 97 (26.4) 34 (25.2) 20 (22.0) 18 (19.8)
ISUP grade, n (%) p= 0.002 p= 0.851
1 38 (10.3) 25 (18.5) 20 (22.0) 23 (25.3)
2 140 (38.0) 61 (45.2) 35 (38.5) 38 (41.8)
3 93 (25.3) 15 (11.1) 16 (17.6) 12 (13.2)
4 49 (13.3) 21 (15.6) 13 (14.3) 10 (11.0)
5 48 (13.0) 13 (9.6) 7 (7.7) 8 (8.8)
Positive surgical margins 140 (38.1) 24 (17.8) p < 0.001 36 (39.6) 20 (22.0) p= 0.016
Mean year of surgery 1997.0 (2.3) 1995.5 (2.3) p < 0.001 1997 (2.3) 1995 (2.1) p < 0.001

*Due to the nested case-control nature, some controls could have a biochemical recurrence, but always later than their matched case.
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The DLS marker showed a strong association in the primary
analyses on the test set of the Johns Hopkins cohort with an OR
of recurrence of 3.28 (95% CI 1.73–6.23; p < 0.005) per unit
increase, with DLS system continuous output ranging from 0–3,
with two cases below 0 (−0.27 and −0.24) (Table 3).

In addition, for the John Hopkins cohort, we checked for
confounding by ISUP grade, PSA level at diagnosis, positive
surgical margins, and year of prostatectomy. Neither covariate
was found to bias the estimates of effect substantially. The bio-
marker maintained a strong correlation of OR 3.32 (CI 1.63–6.77;
p= 0.001) per unit increase, adjusting for these factors and the
continuous term for the residual difference between cases and
controls in the ISUP grade.

In the univariable analysis, the DLS marker was strongly
associated with recurrence in the New York Langone external
validation cohort with an HR of 5.78 (95% CI 2.44–13.72;
p < 0.005) per unit increase. In the multivariate model, including

ISUP grade and the other prognostic indicators in addition to the
DLS biomarker, the DLS biomarker was still strongly associated
with recurrence with an HR of 3.02 (CI 1.10–8.29; p= 0.03) per
unit increase (Table 4). Kaplan–Meier curves based on a median
cut-off, and four-group categorization, show a clear separation of
the low-risk and high-risk groups (Fig. 2).

Automatic Concept Explanations provided semantically mean-
ingful concepts (Fig. 3). Concepts were identified that correlated
with either a relatively rapid or slow biochemical recurrence. Visual
inspection by JvI reveals that generally, the concepts with adverse
behaviour show mainly Gleason pattern 4 and some Gleason pattern
5, with cribriform configuration in TMAs within the concepts with
most adverse behaviour. The two intermediate concepts show
mainly stroma and less aggressive growth patterns. The two concepts
predicted to be part of late recurrence cases show mainly Gleason 3
patterns, with readily recognizable well-formed glands. See the Sup-
plementary Notes 2 for a detailed analysis.

Discussion
We have developed a deep-learning-based morphological biomarker
for the prediction of prostate cancer biochemical recurrence based
on prostatectomy tissue microarrays. Using a nested case-control
study, we trained convolutional neural networks end-to-end with
biochemical recurrence data. The DLS marker provides a continuous
score based on the speed of biochemical recurrence it perceived. The
DLS marker had an OR of 3.32 (CI 1.63–6.77; p= 0.001) per unit
increase for the test set, and an HR of 3.02 (CI 1.10–8.29; p= 0.03)
per unit increase for the external validation set. These findings
support our hypothesis that there is more morphological informa-
tion in the tissue besides the ISUP grade.

In the Kaplan–Meier plot (Fig. 2), the biomarker especially seems
able to separate men with relatively rapid recurrence from men
without (<5 years). However, we hypothesize that the decreased
long-term separation in those survival curves is less due to the
training cohort containing a median follow-up for 4 years. Fur-
thermore, we choose to group patients together with >4 years of no
biochemical recurrence, this limits the model’s capabilities to dif-
ferentiate patients with very late recurrence. Additionally, due to the
limitations of the morphology of the present tumour to inform
about long-term outcomes (e.g., cells that escaped the primary
tumour may subsequently acquire genomic changes that influence
recurrence). Furthermore, it should be noted that the number of at-
risk patients was small at these long-term time points.

The nested case-control study contained follow-up information in
timespans of years, this limited the use of survival based loss
functions42. When more granular follow-up information is at hand,
future work could investigate usage of Cox regression based loss
functions to better leverage the information of the clinical cohort.

The DLS marker showed strong and similar association in both
cohorts prepared at different pathology laboratories, which

Table 2 Baseline characteristics of the cohort from New
York Langone hospital, prostate cancer recurrence cases
and controls, men who underwent radical prostatectomy
between 2001 and 2003.

Recurrence cases Controls P

N 38 166

preop. PSA (ng/mL),
mean (SD)

11.6 (11.5) 6.7 (3.9) p= 0.014

Age, mean (SD) 61.7 (8.9) 60.3 (6.6) p= 0.359
Race, n (%) p= 0.401
African–American 2 (5.3) 4 (2.4)
Asian 2 (5.3) 3 (1.8)
Caucasian 33 (86.8) 144 (86.7)
Not reported 0 (0) 2 (1.2)
Other 1 (2.6) 13 (7.8)
Pathological stage, n (%) p < 0.001
pT2a 0 (0) 12 (7.2)
pT2b 3 (7.9) 5 (3.0)
pT2c 16 (42.1) 114 (68.7)
pT3a 10 (26.3) 27 (16.3)
pT3b 9 (23.7) 8 (4.8)
ISUP grade, n (%) p < 0.001
1 3 (7.9) 67 (40.4)
2 13 (34.2) 76 (45.8)
3 6 (15.8) 13 (7.8)
4 5 (13.2) 3 (1.8)
5 11 (28.9) 7 (4.2)
Surgical Margins, n (%) p= 0.060
Focal 10 (26.3) 20 (12.0)
Free of tumour 27 (71.1) 144 (86.7)
Widespread 1 (2.6) 2 (1.2)

Table 3 Conditional logistic regression analyses of the Johns Hopkins test set.

Covariate Matched analysis
Johns Hopkins (OR)a

Multivariate analysis
Johns Hopkins (OR)

Biomarker 3.28 (CI 1.73–6.23; p < 0.005) 3.32 (CI 1.63–6.77; p= 0.001)
preop. PSA (ng/mL) 1.04 (CI 0.99–1.10; p= 0.10)
Surgical margins (pos) 1.69 (CI 0.69–4.18; p= 0.25)
ISUP grade (cont.)b 1.34 (CI 0.64–2.82; p= 0.44)
Mean year of surgery
1992–1994 (n= 75) 1.0
1994–1997 (n= 55) 3.35 (CI 1.13–9.91; p= 0.03)
1997–2001 (n= 52) 8.22 (CI 2.38–28.37; p= 0.0009)

aCases and controls were matched on age at surgery, race, pathologic stage, and Gleason sum in the prostatectomy specimen.
b The ISUP grade covariate was added to correct for the residual differences left after matching cases with controls on prostatectomy Gleason sum.
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supports the robustness to differences in tissue preparation,
staining protocols and scanners.

We showed that Automatic Concept Explanation may be
helpful to find concepts correlated with good and poor prognosis.
The most discriminatory concepts followed the morphological
patterns of Gleason grading. Well-defined prostate cancer glands
were predicted to undergo biochemical recurrence later than
disorganized sheets of prostate cancer cells. These concepts sup-
port the DLS system capturing the expected morphological pat-
terns in support of the validity of the DLS approach.

This study focused on the use of deep learning to auto-
matically discover features relevant for biochemical recurrence
prediction. Compared to before-mentioned studies on prostate

cancer prognostics models21,22, as far as we know, we report
the first paper to directly optimize a neural network from
prostatectomy tissue towards biochemical recurrence. Addi-
tionally, we report that training towards the biochemical
recurrence endpoint results in patterns in the networks’ fea-
tures aligning with the ISUP grading.

In the increasing digitalisation of pathology labs, our DLS marker
may be applied on digitally chosen regions of interest. Our marker is
trained on tissue microarray spots that were selected at the highest-
grade cancer focus. Furthermore, it has to be noted that a TMA core
allows for only limited assessment of the overall prostate cancer
growth patterns. Since these tissue cores represent only limited
samples from what is usually a much larger tumour lesion, the

Table 4 Cox proportional hazard analyses of New York Langone external validation cohort.

Covariate Univariate analysis
NYU (HR)

Multivariate analysis
NYU (HR)

Biomarker 4.79 (CI 2.09–10.96; p= 0.0002) 3.02 (CI 1.10–8.29; p= 0.03)
preop. PSA (ng/mL) 1.07 (CI 1.02–1.12; p= 0.004)
ISUP grade
1 1.0
2 2.64 (CI 0.73–9.58; p= 0.14)
3 8.74 (CI 2.16–35.30; p= 0.00)
4 12.78 (CI 2.82–57.91; p= 0.00)
5 9.60 (CI 2.32–39.69; p= 0.00)
Pathological stage
pT2a+ b 1.0
pT2c 1.02 (CI 0.27–3.80; p= 0.98)
pT3a 1.26 (CI 0.28–5.67; p= 0.77)
pT3b 2.77 (CI 0.66–11.62; p= 0.16)
Surgical margins
Free 1.0
Focal 2.13 (CI 0.76–5.96; p= 0.15)
Widespread 0.20 (CI 0.01–3.39; p= 0.27)

a b

Fig. 2 Kaplan–Meier plot for New York Langone external validation cohort. Groups were separated using the median DLS biomarker score in this cohort
(a) and using four thresholds (b).
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potential more aggressive patterns may still be present outside of the
chosen regions, including regions of potential extraprostatic exten-
sion and perineural invasion. Validation will need to be done on
entire prostatectomy sections and across cancer foci.

There have been improvements to prostate cancer grading11,13,
and recently the cribriform pattern is suggested to be important
for prognostics14,43. However, the evaluation of this pattern can
show a range of inter-observer variability44, although a recent
consensus approach could help decrease this variability45.
Although we certainly have to keep in mind all the before-
mentioned limitations, our findings are in line with outcomes
concerning adverse behaviour in earlier work. The DLS system
identified a concept that consisted of fields with cribriform-like
growth patterns. This cribriform-like growth pattern was found to
be part of the concept that was most associated with early
recurrent cases.

The results in this study are limited to newer insights of
prostate cancer growth, information on cribriform-growth
and intraductal carcinoma were not readily available for use in
the multivariate analysis, although the external validation
cohort was graded using the 2005 ISUP consensus46 partly
encoding the presence of cribriform growth inside the
ISUP grade.

Although biochemical recurrence is a common endpoint to
study prostate cancer progression, a clinical utility would be
mostly found in assessing time-to-metastases or death. However,
time-wise, they are typically significantly further separated from
the surgical event, making it harder to identify relationships
between tissue morphology and these endpoints. Nevertheless, we
would like to investigate them in the future.

Conclusions
In summary, we have developed a deep-learning-based visual bio-
marker for prostate cancer recurrence based on tissue microarray
hotspots of prostatectomies. The DLS marker provides a continuous
score predicting the speed of biochemical recurrence. We obtained
an odds ratio of 3.32 (CI 1.63–6.77; p= 0.001) for a nested case-
control study from Johns Hopkins Hospital, matched on Gleason
sum on other factors. Additionally, we obtained an HR of 3.02 (CI
1.10–8.29; p= 0.03) for an external validation cohort from the New
York Langone hospital, adjusted for ISUP grade, pathological stage,
preoperative PSA concentration, and surgical margins status. Thus,
this visual biomarker may provide prognostic information in addi-
tion to the current morphological ISUP grade.

Data availability
The data that support the findings of this study are available from the Prostate Cancer
Biorepository Network26 but restrictions apply to the availability of these data, which
were used under license for the current study, and so are not publicly available. Data are
however available from the authors upon reasonable request and with permission of the
Prostate Cancer Biorepository Network26. Source data for Figs. 2 a, b, and 3 and
Supplementary Fig. 1 can be accessed as Supplementary Data 1, 2, 3 and 4, respectively.

Code availability
The code to replicate the DLS biomarker can be found at https://zenodo.org/record/
648048147.
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Fig. 3 Examples of automatic concepts explanations. Concepts were sorted by their average score for the cores in which the pattern occurs. Showing the
two most benign concepts, two intermediate and two aggressive concepts. The boxes show the quartiles of the concept predictions while the whiskers
extend to show the rest of the distribution except for outlier points that lie below the 25% or above 75% of the data, by 1.5 times the interquartile range.
Green, yellow and red shaded areas indicate 33%, 66% percentiles. See the Supplementary Notes 2 for all concepts.
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