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Abstract –
Object recognition (or classification) systems largely em-

phasize improving system performance and focus on their
“positive” recognition (or classification). Few papers have ad-
dressed the prediction of recognition algorithm failures, even
though it directly addresses a very relevant issue and can be
very important in overall system design. This is the first paper
to focus on predicting the failure of a recognizer (or classifier)
and verifying the correctness of the recognition (or classifica-
tion) system. This research provides a unique component to the
overall understanding of biometric systems.

The approach presented in the paper is the post-recognition
analysis techniques (PRAT), where the similarity scores used
in recognition are analyzed to predict the system failure or to
verify the system correctness after a recognizer has been ap-
plied. Applying a AdaBoost learning the approach combines
the features computed from the similarity measures to produce
a patent pending system that predicts the failure of a biometric
system. Because the approach is learning-based the PRAT is a
general paradigm predicting failure of any “similarity-based”
recognition (or classification) algorithm. Failure prediction,
using a leading leading commercial face recognition system,
is presented as an example to show how to use the approach.
On outdoor weathered face data, the system demonstrated the
ability to predict 90% of the underlying facial recognition sys-
tem failures with a 15% false alarm rate.

I. INTRODUCTION

Recognition systems seek to correctly recognize object(s)
of interest from within a large class of potentials. Most cur-
rent research emphasizes improving the “accuracy” of systems,
dwelling largely on the positive recognition rate[1]. However,
even for a modern system, the detection or recognition rate is
still less-than-perfect, [2], [3]. As papers tend to focus on the
“positive” aspects of their problem, the natural focus has been
on recognition. The evil twin of recognition — failure — has
been generally neglected.

At an algorithm level, recognition rate and failure rate are
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inseparable — knowing one implies the other. Predicting fail-
ure of an algorithm does not, in general, help that algorithm
perform better. However, at the system level, there are many
ways to predict failure of the primary recognition algorithm
and to use that information to improve the overall system per-
formance. The simplest application is in an interactive or on-
line system where, if we can predict failure, then we might sim-
ply re-acquire a new image and try again. This “binary” failure
prediction is the primary focus of this paper as it allows us to
separate the “failure prediction” from the underlying recogni-
tion algorithms.

A more advanced application would be in a system that al-
ways uses multiple sensors/images for (face) recognition, in
which case it is necessary to coordinate the operations of all
the sensors. The output of the fusion could be the result from
the “best” sensor, or some mixture of the results. It is possible
that one or more sensors may fail in recognition. But without
knowledge of those sensors’ reliability, such “fusion” is diffi-
cult[4]. A hybrid classifier, combining a set of classifiers, is not
a new concept[1] and a special case of fusion. If PRAT is not
just a binary classification, but more of an overall confidence
measure (that may be thresholded for classification), then it
can be very effectively used to support various approaches to
fusion and hybrid classifiers. If one can predict system failure,
then it simplifies the design of the combination of classifiers
and should improve their reliability.

A related use of PRAT would be for a measure of system
confidence, which might effect the system output. A number
of the commercial face recognitions systems, when being used
for verification use a process generically known as “normal-
ization”[5] which takes the similarly scores and renormalizes
them before deciding if the individual is “recognized” or veri-
fied. The important difference in normalization is that the sys-
tem gets to consider the structure of the similarity scores of
the entire set of people (rather than just a collection of inde-
pendent measurements). While the companies that do this do
not describe their ideas, the PRAT-based approach presented
herein could easily be used for this normalization.

The goal of this paper is to discuss how to generalize ap-
proaches to determine or predict when a recognition system
will probably fail. Although there are two categories of tech-
niques which may be employed to estimate system failures, we



are focused on post-processing techniques which analyze the
information used within the recognition process itself.1 Clearly
PRAT depends on the internals of the recognition approach,
and we discuss a technique useful for recognition engines that
measure similarity or dissimilarity.

The discussion of this topic gets a bit tricky. There are two
levels of classification, the first is the primary recognition sys-
tem, e.g. the face recognition system. The second is the PRAT-
based prediction/classification of the accuracy of the first sys-
tem (e.g. face recognition). Throughout the paper we will
use “face recognition” as the running example and the terms
“recognition rate” and “correct recognition” will always apply
to the primary recognition system. The term “classification”
will always apply to the PRAT-based classification of the pri-
mary system recognition results. Let us now define a few key
terms. To simplify the presentation we presume a simple model
of PRAT-based technique, where one computes a confidence
measure in the correctness of the recognition result and then
threshold on our confidence to produce a binary decision.

Fig. 1. Threshold discrimination on two distributions of confidence measures.

The recognition system failures originate from the limita-
tion of the recognition system or its inputs: for a recognition
algorithm, it may classify the input image example (probe)
incorrectly. We are assuming, the recognition algorithm pro-
duces a “similarity measure” for each image pair (probe vs im-
age in the candidate image set) and reports the top

�
scores

as its recognition result. Given PRAT produces a confidence
measure in that each result one can plot, as shown in Figure 1,
the distribution of the number of cases, ������� with a particu-
lar confidence measure � . Using the ground truth label for
each image, we can draw two separate distributions one for
the recognition successes and one for recognition failures. In
general the two distributions will overlap. Using a more dis-
criminating confidence measurement can reduce the overlap.
For every possible threshold � (represented by vertical dashed
line) we choose to discriminate between the two populations,
resulting in four case2

	 Case 1 — Traditionally called “True Accept” wherein
the underlining recognition algorithm was successful and
PRAT predicts that it will succeed. (Note this does not



The other technique is the input filtering technique which may estimate or

predict system failures before the invocation of an classification algorithm.�
Note that a detailed analysis might discriminate between the false positives

and false negatives from the original recognition system, resulting in 8 cases
to consider, but for this paper we consider only these 4 cases:

mean the person was recognized, the correct operation of
the recognition system could be either a recognition or a
rejection.)	 Case 2 — Conventionally called a “False Accept” is when
PRAT predicts that the recognition system will succeed,
but ground truth shows it does not.	 Case 3 — Conventionally called as “False Reject”, it is
when the PRAT predicts that the recognition process will
fail, but ground truth shows it was successful.	 Case 4 — This region is conventionally defined as “True
Reject”. PRAT correctly says that the recognition system
will fail.

To define false accept and miss detection rates it is also im-
portant that we normalize errors by the right items, since for
different settings or algorithms the underlying recognition rate
will be changing and hence changing the size of failure set.

In this paper our predictions are false alarms for items in
Case 3 (PRAT predicts they recognizer will fail but it is cor-
rect), with the Failure Prediction False Alarm Rate (FPFAR)
defined as

��
�������� � �����������
� ����������� ��� ���!���#"#�%$

Our miss detections would be those items in Case 2, we pre-
dict they will be recognized but they are not, with the Failure
Prediction Miss-Detection Rate (FPMDR) defines as:

��
'&)(*�+� � �������-,.�
� �����/�-,�� �0� �������/12� $

Because PRAT is predicting failure of a recognition system,
we have two levels of “classification”. To avoid confusion we
eschew the terminology such as “true positive” or “true reject”
throughout the paper, and will use the terms Case 1 through
Case 4, or FPFAR and FPMDR, instead.

While this discussion presumed a simple “confidence mea-
sure” where the classifer applied a simple threshold, this is not
the best way to implement a PRAT-techniques. As we shall
see, AdaBoost technique can be applied as well.

The post-recognition analysis technique is used to predict
when the recognition system will likely fail. The described ap-
proach is applicable to any system that uses “similarity” (or
dissimilarity) measures [6], [7], [8], [9] and does recognition
based on largest (smallest) similarity values. Since, depend-
ing on the system goals, the desired tradeoff between FPFAR
and FPMDR may be of varying importance, we represent our
results as ROC curves showing the tradeoff between them.

II. SIMILARITY & SIMILARITY SCORE
This section provides theoretical background on features

sets and why the similarity scores over many items may have
interesting properties. For those more focused on what and
how, rather than why, it can be skipped on first reading with-
out loosing an understanding of the approach. Similarity mea-
sure 34��57698:� between arbitrary two patterns, or images, 5



and 8 is an effective approach for classification and recogni-
tion [7]. In pattern recognition, two major models of similar-
ity analysis are geometric model and feature model [8], [9].3

Geometric models have been among the most influential ap-
proaches for analyzing similarity and are exemplified by multi-
dimensional scaling (MDS) models. The similarity of 5 and 8
is taken to be inversely related to their distance

( ��576 8 � , i.e.
3 � 576 8 � � ����� ( ��576 8:� , where � 6 ���	� . Geometric models
typically assume three metric properties:

	 positivity,
( ��576 8 ��
 ( ��576 5 � � � ,	 symmetry,
( � 576 8:� � ( ��8 6 5 � , and	 triangle inequality,

( � 576 8:� � ( ��8 6
� ��
 ( ��576��#� .
In a typical recognition system, however, if we assume that
there are no identical images due to sequential data collection
or noise effect, the positivity property becomes unacceptable
except that the distance is positive. In this case, if we still want
to use a distance measure to represent the dissimilarity of two
images, there is only partial matching of any two images, that
is, a part of an image matches a part of another image. Under
partial matching, triangle inequality may often be violated. For
example, see Figure 2 which is adapted from an example in [9].

A B C

Fig. 2. Under partial matching the triangle inequality may not hold. While A
and B partially match, and B and C partially match, A and C do not match at

all.

As reported in the literature [8], [9], it is empirically ob-
served that all three properties of a geometric model are of-
ten violated. In [10], Tversky suggested an alternative ap-
proach, the feature contrast model (FCM), wherein similar-
ity is determined by matching features of compared patterns.
In the following, � , � , and � is used to denote the sets of
binary features of compared patterns or images 5 , 8 , and � .
We also assume that

�����+� ����� , � ����� � � � , and
� ��� � � � � . FCM is usually integrated by three proper-
ties: Matching, Monotonicity, and Independence.

	 Matching is defined as 3 ��576 8:� ��� ��� ����� � �� ����� ��� � ��� ��� � ��� � , where � is a non-negative
function and

� 6 � 6 � 
 � . When
� � � and � 6 � � � ,

3 � 576 8:� compares the common features of 576 8 : the
more features in common, the more similar 576 8 are.
When

� 6 �!�"� and � � � , we may compare the features
common to 576 8 with those unique to 5 . The reverse is

#
The other models include alignment-based model and transformational

model.

true when
� 6 ���!� and � � � . When

� � � , and � 6 �$�%� ,
we may compare 576 8 only on their distinctive features.	 Monotonicity is defined as 3 ��576%8 �&
03 � 576'� � whenever� ���)( � ��*

, � ���,+ � ��* , � ���)+ � ��* . From this
property, it can easily be inferred that when 5 and 8 share
more common and less distinctive features than 5 and � ,
then 5 is more similar to 8 than 5 to � .	 When ��� � ��� � � ��� � ��* � , and � ��� � � ��* , � ��� �
� ��* , then we may approximately have

�-���/. �0��*
.

Similarly, when ����� ��� � � ����� ��* � , and
����� � �0��*

,
� ��� � � ��* , then � ��� . � ��* ; when ��� � ��� � �
��� � ��* � , and

� ��� � � ��*
, � ��� � � ��* , then � ��� .

� ��* . The pairs of patterns � 576 8:� and ��5761� � are said to
agree on one, two, or three components whenever one,
two, or three of approximate relations hold. A simpli-
fied expression of independence is 34��576 8 �2
 3 ��543 6 853 �56
3 � 5767� ��
 3 � 583 67�93 � if pairs ��576 8:� and ��5767� � , as well as
� 583 6 843 � and � 583 67�:3 � agree on the same two components,
whereas ��576 8:� and � 583 6 853�� , as well as � 576
�#� and ��553 6
�93 �
agree on the remaining components. For detailed inde-
pendence expression, see [8].

In pattern recognition, the similarity score represents the
quality of match. The similarity score � ��576 8:� is a value cal-
culated from a set of (fuzzy) metrics of interest by a classifier
implementing a set of one or more learning algorithms. This
value is within a given range. Without loss of generality, we
assume 3 ��576 8:� � � ��576%8:� and the largest similarity score is
the most likely match to the subject. In the following part of
the paper, we treat the term 3 � 576 8:� and � ��576 8:� same.

Performance of any classifier is determined with respect to
the expected data or ground truth data [2]. It is measured as
the ability to correctly identify the probe image. The perfor-
mance of such a measure provides a basis for comparison of the
processed image and the ground truth. Nevertheless, it is im-
possible to directly compare the similarity measures between
different algorithms since each algorithm may adopt a differ-
ent measure of similarity. Usually the similarity measure is not
a metric. However, we still can use their relative ordering. In
order to compare a set of similarity scores from different al-
gorithms, it is necessary to normalize it to a common range.
In our experiment, we scale the range of the similarity scores
to ; � 6 " �:�=< where " �9� means the most similar and � the least
similar.

III. POST-RECOGNITION ANALYSIS TECHNIQUE

A. Notations

Let 58>@? �BA �DC � " 6 , 6 $ $ $ 6FE � and 8HGI? �-A �KJ � " 6 , 6 $ $ $ 6FL �represent image or image feature vectors. Given a training set
(gallery) � �,M 84N-6 88O 6 $ $ $ 6 88PRQ , a collection of images known to
the classification algorithm, and a similarity measure 3 �7S 6'S � of
a classifier, similarity scores of an image instance (probe) 5T> of
a set of unknowns, � �UM 5 N 6 5 O 6 $ $ $ 6 58VWQ , can be represented
by � N � 34��5 > 6 84N � , � O � 3 � 5 > 6 88O�� , ... , � P � 3 � 5 > 6 88P.� . In
the meantime, since the similarity score is a real value and any



image gallery � is countable, the maximum similarity score
exists. After sorting similarity scores, we obtain a set of mono-
tonic similarity score 3�� � M ����� 6 ����� 6 $ $ $ 6 ����	 ��������
 ������

$ $ $ 
 ����	 Q . Figure 3 illustrates a typical curve of sorted, mono-
tonic similarity scores. When there exists a small 
 to make� ������
 
 , we may have 3�� �,M�� Q . The output of the classifier
on a given probe 5 > is usually a set of candidates correspond-
ing to the top � similarity scores 3���� �,M ����	�� ��� � 6 $ $ $ 6 ����	 Q .
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Fig. 3. Geometrical illustration of top part of sorted similarity score ��� of a
sample: the stable and relative flat part is linearly interpolated and represented

by Base Line. Line 1 is the interpolated line of sorted largest and second
largest similarity scores. Line 2 denotes the interpolated line of top �

similarity scores.

The prediction failures are composed of two types: Case
2 and Case 3 discussed in the Section I. These two types of
errors (Case 2 and Case 3) can only be determined with respect
to the ground truth data. In this paper, we use a ranked number� P to express the difference between the expected output and
the actual output of a classifier. If

� P � " , the actual output is
considered to be the expected output. If

� P � � " 6�� � , there are� P � " gallery images that have higher similarity scores than
the probe. If

� P � � , there is no correspondence between the
gallery images and the probe.

B. Feature Measures on Similarity Scores

When feature contrast model (FCM) is used on a collection
of sorted, monotonic similarity scores, there are at least three
forms of feature measures:	 When 5 > is strictly more similar to 8 G � ? � than 5 >

to 8HG � ? � , that is,
��� � �! �#" �0� � �! � , � � � �! �$"� � � �! � , � � � �% �&" � � � �! � , according to monotonicity

property, we have our first feature measure
� N ��� � 5 > � �M 3 ��5 > 6 8 G � � � 3 ��5 > 6 8 G � � �!� Q for

� 8 G ? � and 5 > . Since
this feature measure corresponds to � in Figure 3, we
name it as F-slope.	 When

� � � �  � . � � � �  � , � � � �  � . � � � �  � , and
� � � �  � . � � � �  � , then 3 � 5 > 6 8 G � � . 3 ��5 > 6 8 G � � . The re-
verse may not be true. Thus, it is necessary, but not suf-
ficient, to agree on approximately equal components for
the approximately equal similarities. Moreover, the sim-
ilarity is represented by a non-negative function. When

we pool a group of approximately equal similarities, we
include all of the individuals who agree on

� � � �  � .� � � �  � , � � � �  � . � � � �  � , and � � � �  � . � � � �  � . We
call this feature measure F-internal. Another considera-
tion is that when 55> is very similar to 8 G � 6 8HG � ? � (which
corresponds to the absolutely large similarity scores),
then

� � � �  � .0� � � �  � is a predominant component. In
this case, when 3 ��5 > 6 8 G � � . 3 ��5 > 6 8 G � � , we may have��� � �! � . �0� � �% � and � � � �! � . � � � �! � .	 As an inference from the independence property, when
pairs ��5 > 6 8 G � � and ��5 > 6 8 G � � share more common features,
as well as pairs ��5 > 6 8 G(' � and ��5 > 6 8 G�) � , we are likely to
have 3 ��55> 6 8HG � � � 3 ��58> 6 8HG ' �T6 3 � 58> 6 8HG � � � 3 ��58> 6 8HG ) � .
Also, it is very possible that 3 � 55> 6 8HG � � and 3 ��55> 6 8HG � � are
in one pool, while 3 ��5 > 6%8 G � � and 34��5 > 6%8 G*) � are in an-
other. The interval between two consecutive pools is our
third feature measure. We call it F-external.

In our approach, we adopt the AdaBoost method to use the
above feature measures to predict recognition failure with large
collections of sorted, monotonic similarity scores.

C. Algorithm Description
The recognition prediction algorithm uses the boosting

framework. Boosting algorithms have been reported to be suc-
cessful in improving the performance of classifiers [11], [12],
[13], [14], [15], [16]. Equation 1 is the representation for the
final strong classifier after + rounds boosting:

, ����� � � C*- L .0/1 243
N
�
26572

� ��� �98 /1 243
N
�
2;:

(1)

where stronger classifier
, ���2� is an additive combination of a

sequence of weak classifier

5<2
��� > � with its weight parameter �

2
through majority voting ( = is boosting trial variable). 8 ?�; � 6 " <
is a parameter to adjust the performance of the classifier and
control the FPFAR versus FPMDR.

The ranked number
� P (section A) is an expressive param-

eter to differentiate the expected output and the actual output.
During the experiment, as a benchmark, the ranked number

� P
is used to partition the training examples into two classes, i.e.,
the output of similarity scores from a recognition system is la-
beled by a given

� P range through “greater” or “not greater”
operations.

All of the three features discussed in section B have been
used for boosting. F-slope is an intuitive measure. We find
that sorted similarity scores keep linear in a specific range
which have relative lower values denoted by the Base Line, but
change abruptly for a few top similarity values such as Line
1 or Line 2 (an example shown in Figure 3). In the follow-
ing section, we explain how to use measures F-internal and
F-external in detail.

C.1 Clustering Similarity Score
Clustering similarity scores (CSS) is an operation to quickly

determine whether a probe has been correctly classified or



needs further analysis. When the difference between the
sorted consecutive similarity scores is less than a threshold
� , they are clustered into the same pool. During the boost-
ing, different values of � have been tested. In our exper-
iments, we find that the optimal � should be between � $

�
and " $

�
. Given a non-empty set of ranked similarity scores

3 � � M 35N�693RO 6 $ $ $ 693RPHQ , we take the top � (� � " ) similarity
scores 3���� �UM 3RP������TN�6 $ $ $ 6 38P Q for analysis since the user of
the recognition system only cares about the top � candidates.
Our experiments show the prediction of recognition failures
also strongly depends on these values. During the boosting
procedure, we keep increasing � from , to , �

.
In the following analysis, we assume that PRAT is pro-

vided a collection of top � similarity scores 3 � � . An F-
internal distance measure �9C is used to denote internal max-
imum distance of a cluster interval which is the largest dif-
ference among a set of clustered similarity scores. If there
is only one similarity score in a cluster, �:C is equal to � . An
F-external distance measure � � is used to denote the differ-
ence between the end points of clustered consecutive inter-
val. After the clustering operation, we obtained a sequence( � M �:C
	�� � Q � M �9C N 6��9C O 6 $ $ $ 6��9C1V
	�� � N 6�� � O 6 $ $ $ 6�� � V �RN Q ,
where E is the cluster number we obtained during the clus-
tering procedure. For example, suppose we have a set of top� � " � similarity scores which can be clustered into four sets of
clustered similarity scores

M�� �
$
� 1 Q , M����

$
� , Q , M�� 1 $

��� 6 � 1 $
��� Q ,

and
M�� � $
� � 6 � , $

��� 6 � , $ �
� 6 � , $ ,

� 6 � " $
� � 6 � " $

� � Q with � � " $
� .

After clustering operation, we have
( � M � 6 � 6 � $

� " 6 " $
� � 	

, $
� , 6 � $ �

� 6 " $
� � Q .

The geometrical explanation of CSS is shown in Figure 3.
In most case, � � N is the largest difference between the largest
similarity score and the second largest score when �:C N � � ,
i.e., there is only one similarity score in the first cluster. This is
illustrated by the slope of Line 1 in Figure 3. Please note that,
in this case, � � N also corresponds to F-slope measure, but they
are different in concept. When we limit

� P in a given range,
most correct classification results fall in this case. However,
when � � N is very close to � � O 6�� ��� 6 $ $ $ , or even smaller than
these values, we find that we need to calculate the cumulative
distance and its distribution for further analysis.

C.2 Cumulative Distance

Cumulative distance is a measure to conglomerate previ-
ously defined internal distance �9C and external distance � �
into a whole entity. The purpose is to determine the ratio of
F-internal and F-external measures. It is composed of two
parts: total internal distance

( C ��� VG
3
N �9C�G and total external

distance
( � � � V �RNG

3
N � � G . We further define

� � ����� � � � �
( C � ( � . As illustrated in Figure 3 and discussed in the pre-
vious section, when the angle intersection between Line 1 and
Line 2 is over a threshold value, we might predict the output as
top � . However, when Line 1 and 2 are very close, it is difficult
to predict the output.

Cumulative distance can be adopted to effectively overcome

this difficulty. Through our experiment, we find that, in the first
few distributions of

� � ��� � � � � , a large amount of the sam-
ples’

� � ����� � � � fall into the range of ; � 6 � � � which means
the first cluster of the samples have only one or several very
close similarity scores. With the increase of � , the distributions
of

� � ����� � � � will shift toward the positive direction and be-
come stable. Two exemplary distributions of

� � ��� � � � � and( � are shown in Figure 4. The experimental dataset is com-
posed of face images of 256 subjects. Each subject has four
similar images. The algorithm for recognition, in all experi-
ments, is the FaceIt product from the Identix (originally Vi-
sionics) SDK, version 4. (This is not the current release ver-
sion.) All of images are subject to the variations of JPEG im-
ages with JPEG quality varying from 0 to 100 (100 means the
best quality). Each image is used as either a probe or an ele-
ment of gallery. From the statistical point of view, it is possible
to discriminate the two populations using the distribution mod-
els of

� � ����� � � � or
( � and

( C with different
� P settings as

shown in Figure 4, especially the right graph. In left graph of
Figure 4, most of samples’

� � ��� � � � � are fall into recognized
population when

� P
! " � , while some of samples’
� � ��� � � � �

in unrecognized range when
� P � " � . The right graph of Fig-

ure 4 shows the distributions of both of internal distance
( C

and external distance
( � with two

� P settings:
� P ! " � and� P � " � . We expect the second distribution should have a bet-

ter performance in discriminating the two populations since it
seems more separable. In fact, as shown in Figure 5, external
distance

( � is a predominant measure in a strong classifier.

D. Algorithm Diagram	 Input : Sorted top � similarity scores 3���� �
M 3 P��"���4N 6 $ $ $ 6 3 P Q , and

� � CFL = ��# L ��� thresholded interval
; � N 6 � O < and step length $ � .	 LOOP:

1. � � � N .
2. Let similarity score index C � " and clustering index% � " . Put 3 P to cluster � N .
3. C � C � " . Save 38P � 3 > in M �'&(�*),+.-/��0 Q > .

if 3RP � 3 > 
 � Put 3 > to cluster � � ;
else

% � % � " ; Put 3 > to cluster � � .
4. if all 3R>R? 3 � � are considered break;

else goto 3.
5. for J � " to

%

Save max
M � G Q - min

M � G Q to
M ��&�� > P

2
021 P�34+1Q G .

if J � " Save max
M � G Q - min

M � G �8N Q toM � &��*025

2
0/1 P�36+ Q G .

6. Update � � � � $ � .
if � 
 � O stop;
else goto 2.	 Boost on

M � &��*),+7-,��0 Q , M � &(� > P
2
0/1 P�36+ Q and

M � &��80/5

2
021 P�34+ Q

to generate the strong classifier using Equation 1.
Currently, the setting for the parameters � N , � O , $ � , and� is done based on our experience. The research on how the

parameters will affect the boosting system and the prediction
accuracy just starts.
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Fig. 4. Top: Distribution of �����������
	�� with 8243 samples using FaceIt.
The experimental data is from FERET databases. Experiment I is for
��������

and the range of �������������
	�� is � ��� � ��� � ��� !"��# in red color (lighter
in BW version). Experiment II is for


 ��$ ���
and the range of �������������
	%�

is � � � & ���'� ��� ("!�# in blue color (darker in BW version). Bottom: Distribution of)+*
and

) 	 using the same data set and classifier of top graph.

IV. EXPERIMENTS

In the experiments after boosting, ROC plot is adopted to
denote the tradeoff between the fraction of false alarmed and
miss detected examples over the total population for every pos-
sible value of 8 in Equation 1. In all the experiments, 8 is var-
ied from � to " . This shows the overall performance choices
and for a particular installation can determine how one might
set the parameters to achieve a particular FPFAR vs FPMDR
tradeoff. The variation of 8 along/within the curve cannot be
seen in the ROC curve and is discussed in the next section.

In one of our experiments using different JPEG qualities on
training examples (top of Figure 5), the same training data has
been partitioned three times with different ranges of

� P . In the
first partition, the examples of

� P � " and
� P � " are labeled

into two classes, respectively. Similarly, the other two parti-
tions are delimited by

� P � �
and " � . The upper graph of Fig-

ure 5 shows the mean error rate where "�,�" 6 � � ��, 1 examples
are used for the boosting. It is observed that the performance of
the strong classifier will be improved with the increase of the

� P range. This is what we expected since it is well-accepted
that in an ordinary computer vision information retrieval sys-
tem, the query result might not be in the first, but the first few
output images. In principle, this is due to the fuzzy property of
pattern matching and similarity measurements. As explained
in section C.2, we find that the distributions of the feature mea-
sures of similarity scores become stable with the increase of �
values. Therefore, it is more reliable to take a relatively large� value to predict failure or verify the output result. However,
for a security application, which requires near zero FPMDR
and small FPFAR, increasing � will not improve the prediction
performance.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.05

0.1

0.15

0.2

0.25
PRAT Experiment on Similarity Scores using JPEG Qality Data

Failure Prediction False Alarm Rate (FPFAR)

F
ai

lu
re

 P
re

di
ct

io
n 

M
is

se
d 

D
et

ec
tio

n 
R

at
e 

(F
P

M
D

R
) Classified by R

n
 = 1 and R

n
 > 1

Classified by R
n
 ≤ 5 and R

n
 > 5

Classified by R
n
 ≤ 10 and R

n
 > 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
PRAT Experiment on Similarity Scores using Weather Data

Failure Prediction False Alarm Rate (FPFAR)

F
ai

lu
re

 P
re

di
ct

io
n 

M
is

se
d 

D
et

ec
tio

n 
R

at
e 

(F
P

M
D

R
) Training Set

Test Set

Fig. 5. ROC curve using three feature measures for boosting. Left graph
shows experiment results using varying JPEG qualities on training data which

has been partitioned by three ranges of

-�

. Right: image data are obtained
under different weather conditions. FPFAR and FPMDR coordinates are all

in their percentage to the total population.

The second and more important experiment was to test the
training sets obtained under different weather conditions, as
shown in the bottom of Figure 5. The “weather” data, also
known as the photohead dataset, was collected as part of the
DARPA HID program for inclusion in their HBASE collection.
The data re-images FERET images, displayed on a LCD mon-
itor. The cameras were at a distance of approximately 100ft



and 200ft, and zoomed such that the facial images had approx-
imately 200-240 pixels between the eyes.

Since the training data are real images collected in an out-
door environment, it is much closer to the real world outdoor
environment. However the use of a known dataset (FERET)
and the photoheads controls for enrollment variations by us-
ing fixed images and consistent display. During the boosting,
21,535 training examples are used. In the experiment, we use
a cross-validation approach for error estimation. Possibly be-
cause all the data is from the same environment and there was
no severe weather change, the test error is comparable to the
training error. The bottom graph of Figure 5 shows the train-
ing errors from two different training sets. In comparison with
other experiment results, such as the top graph of Figure 5
and Figure 6, it is obvious that in an outdoor environment, the
weather is an important factor which may greatly affect the ac-
curacy of recognition, verification, and prediction.
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Fig. 6. Upper graph shows the experiment results using different Gaussian
blurred kernel functions. Lower graph is from varying � values.

Two more experiments are shown in Figure 6. The upper
graph shows the blur effect to the prediction of the system fail-
ure and the lower graph shows the effect of Gamma correction
to the prediction. In the experiment on the blur effect, only the
probe is blurred. From the left graph, it is clear that when we

decrease the size of blur kernel, using PRAT can get a better
prediction result. This is not surpriseing since a much clearer
image (kernel size is

� , " � ) keeps most of the details, and
there is no overprocessing. From the right graph, we can see
that in a normal condition, the Gamma effect doesn’t change
the prediction accuracy. The main reason is that histogram
equalization and other normalization algorithm is a standard
procedure [17], [18]. After we do the Gamma transform to the
data, the normalization done inside the recognizer largely re-
stores the images’ contrast. As long as our Gamma correction
is “reasonable” ( � changes from � $

�
to " $

�
), we can’t change

anything significantly to the image to effect the system perfor-
mance.

V. DISCUSSION ON PARAMETER SETTING
As mentioned in Section I, Case 2 / Case 3 tradeoff has

impact on the overall system design, especially when we con-
sider the reliability of a system. Different tradeoffs between
Case 2 and Case 3, which depends on design requirement, may
have different effects on future system(s). We can use the ROC
curves to select the parameters 8 (from strong classifier), � (the
cardinality of 3���� ), and

� P for the failure prediction system,
to achieve a particular choice of FPFAR or FPMDR.

The following is a brief summary of our suggestions on pa-
rameter settings:

1. 8 — Theoretically, the expected optimal setting 8 is � $
�
.

Across the experiments, that the best performance has
been achieved with 8 value in ; � 6 � $

� < (see Fig. 7 and Fig.
8.

2. � — � will greatly influence the efficiency of the learning
procedure. To improve the learning procedure, we sug-
gest using use � ! , �

.
3.

� P — This is a function of end-user application. If doing
pure identification, then

� P � " is the appropriate choice.
If being used for a “watch-list”, then

� P � " � is a reliable
setting.

In the above sections, the experimental results on varying� and
� P have already been shown and discussed. Now, we

briefly discuss the impact of 8 on the experimental results of
the strong classifier

, ���2� . In binary classification, a typical
output of a strong classifier is either " or � to denote the class
belonging to the input example � . When the examples of two
classes have equal probability, the 8 value in Equation 1 is usu-
ally set to � $

�
. However, when the examples are from unbal-

anced distributions, such as the examples in Figure 4, we need
to adjust 8 value to determine an optimal setting for achieving
the best performance of the strong classifier. The experimen-
tal results of varying 8 are illustrated in Figure 7 and Figure
8. It is obvious that the varying 8 domain will greatly affect
the performance of

, ���2� . This is in correspondence with the
discussion in section IV. In practice, the optimal 8 value can
be empirically chosen in this way.

Themost important aspect of these graphs is that, except for
the extreme blur examples, the graphs have very large and flat
sections around the minimal error.
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Fig. 7. Varying � values for Jpeg and Weather data.
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Fig. 8. Varying � values for Blur and Gamma experiments.

VI. CONCLUSION
This paper introduces the approach of recognition failure

prediction, briefly introduces its potential as a systems-level
tool and explores an algorithm for such prediction. The Post-
Recognition Analysis Technique is based on analysis of simi-
larity scores resulting from a detection or recognition system.
This technique provides a reliable and feasible way for predict-
ing recognition failure. It is based on the observation that if
the similarity scores considered “recognized” are distant from
the “unrecognized” class, it is probably correctly recognized.
However when there is little separation between the classes,
failure is more likely. The paper explored an effective ap-
proach to formalize this intuitive clustering of similarities. The
experimental results, on both simulated degradations and real
data, show clearly that at an individual image prediction level,
this technique is effective, with its prediction ability contin-
ues across varying pose and illumination. The paper presented
ROC curves showing the wide range of False Alarm / Miss
Detection tradeoffs that can be achieved with this approach as
well as studying the impact of AdaBoost parameters.

Future work will explore using the PRAT for multi-sensor
fusion, predicting which of the inputs have more value and then
using that for decision-level fusion.

Since recognition using “similarity measures” is a very
widely adopted technique, even though our test results are from
face recognition, PRAT should be applicable in a broad con-
text.
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