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In recent years, deep learning (DL) has become more widespread in the fields

of cognitive and clinical neuroimaging. Using deep neural network models to

process neuroimaging data is an efficient method to classify brain disorders and

identify individuals who are at increased risk of age-related cognitive decline and

neurodegenerative disease. Here we investigated, for the first time, whether structural

brain imaging and DL can be used for predicting a physical trait that is of significant

clinical relevance—the body mass index (BMI) of the individual. We show that individual

BMI can be accurately predicted using a deep convolutional neural network (CNN)

and a single structural magnetic resonance imaging (MRI) brain scan along with

information about age and sex. Localization maps computed for the CNN highlighted

several brain structures that strongly contributed to BMI prediction, including the

caudate nucleus and the amygdala. Comparison to the results obtained via a standard

automatic brain segmentation method revealed that the CNN-based visualization

approach yielded complementary evidence regarding the relationship between brain

structure and BMI. Taken together, our results imply that predicting BMI from structural

brain scans using DL represents a promising approach to investigate the relationship

between brain morphological variability and individual differences in body weight and

provide a new scope for future investigations regarding the potential clinical utility of

brain-predicted BMI.

Keywords: deep learning, convolutional neural networks, magnetic resonance imaging, body mass index,

caudate nucleus, amygdala

INTRODUCTION

Over the last few years, the use of deep learning (DL) has become increasingly widespread in the
analysis of neuroimaging data in several different application domains (Arbabshirani et al., 2017;
Litjens et al., 2017; Shen et al., 2017; Zaharchuk et al., 2018; Davatzikos, 2019). DL is a branch
of machine learning that allows the construction of computational models that learn to represent
data at increasing levels of abstraction to solve specific tasks (LeCun et al., 2015; Goodfellow et al.,
2016). Among DL methods, deep convolutional neural networks (CNNs) (LeCun et al., 1990;
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Lecun et al., 1998), which are widely adopted in the computer
vision community due to their capability to achieve outstanding
object detection performance (Krizhevsky et al., 2012), represent
a promising approach to analyzing brain imaging data in studies
of psychiatric and neurological disorders (Vieira et al., 2017;
Durstewitz et al., 2019). The majority of studies employing CNNs
used structural and/or functional magnetic resonance imaging
(MRI) data to examine patients with Alzheimer’s disease andmild
cognitive impairment (Gupta et al., 2013; Payan and Montana,
2015; Sarraf and Tofighi, 2016; Farooq et al., 2017; Meszlényi
et al., 2017; Hosseini-Asl et al., 2018; Islam and Zhang, 2018;
Basaia et al., 2019); although there are examples of studies
classifying other mental disorders as well, such as attention-
deficit hyperactivity disorder (Zou et al., 2017) and alcoholism
(Wang et al., 2017).

The potential of these methods lies partly in that—in
contrast to conventional mass univariate analytical methods—
machine learning in general and DL in particular allow statistical
inferences at the individual level (Vieira et al., 2017). Besides the
diagnosis of brain disorders, machine learning can also be used
to identify individual differences in the brain aging process (Cole
and Franke, 2017; Cole et al., 2019). DL methods are increasingly
prevalent in this application area as well, as CNNs can be used
to predict the chronological age of individual subjects based on
structural brain MRI scans with a mean absolute error (MAE)
of 4.16 years (Cole et al., 2017). Comparable results can be
obtained with CNNs using whole-brain functional connectivity
patterns, derived from resting-state fMRI data, as input (Li et al.,
2018; Vakli et al., 2018). These findings bear significance for
two main reasons. First, they provide proof of concept that a
single MRI scan contains information that is strongly related to
chronological age (Cole and Franke, 2017). Second, they provide
a means to quantify the individual risk of age-related cognitive
decline and disease. In fact, several studies have shown that an
increase in brain-predicted age relative to chronological age is
associated with various neurological and psychiatric disorders,
poorer physical fitness, and increased risk of mortality (Franke
and Gaser, 2012; Koutsouleris et al., 2014; Cole et al., 2015, 2018;
Habes et al., 2016; Löwe et al., 2016; Pardoe et al., 2017).

The above findings demonstrate how computational models
aimed at predicting a certain biometric trait have potential
clinical applicability. Here we investigated whether structural
brain imaging and machine learning can be used for predicting
a physical trait that is of significant clinical relevance—the
body mass index (BMI) of the individual. The prevalence
and disease burden of excessive body weight is on the rise
globally (The GBD 2015 Obesity Collaborators, 2017), and
there is extensive evidence showing a relationship between
obesity—defined as a BMI greater than 30 kg/m2—and brain
health. In particular, a number of studies have shown that
obesity and associated cardiovascular disease and metabolic
disorders in midlife are related to cognitive impairment and
dementia in later life (Pedditizi et al., 2016; Dye et al., 2017;
Alford et al., 2018; Singh-Manoux et al., 2018). To date,
a large number of studies using conventional neuroimaging
methods have investigated the differences in brain structure
and function between obese/overweight and lean individuals.

Increased BMI has been associated with reduced gray matter
volume (Pannacciulli et al., 2006; Taki et al., 2008; Raji et al.,
2010; Brooks et al., 2013) and white matter integrity (Stanek et al.,
2011; Kullmann et al., 2015). Altered resting-state functional
connectivity (Avery et al., 2017) and activation to visual food cues
in brain regions involved in reward processing and inhibitory
control (Carnell et al., 2012; Pursey et al., 2014; Val-Laillet
et al., 2015) have also been described in obese individuals.
A recent study has investigated the associations between obesity,
regional gray matter volumes, and white matter microstructure,
as assessed by MRI, in a large sample of 12,087 participants
(Dekkers et al., 2019). The authors have found sex differences in
the relationship between total body fat percentage and the volume
of several subcortical regions of the brain reward system, and
contrary to previous findings, a positive association between total
body fat percentage and white matter microstructural coherence.

Training a machine learning algorithm to predict individual
BMI based on brain imaging data has several potential
applications. On the one hand, once sufficiently accurate
prediction performance is achieved, it is possible to investigate
which features (e.g., structural properties of the brain) contribute
significantly to the predicted value. This has the potential to
provide complementary information regarding the relationship
between brain structure and body weight, besides conventional
neuroimaging approaches. On the other hand, it can pave
the way for potential clinical applications, inasmuch as the
discrepancy between the true and the predicted BMI might be
related to individual differences in food intake regulation and
associated propensity for future weight gain. This would be
analogous to that how the difference between brain-predicted and
chronological age is used to quantify health risks.

Here we apply, for the first time to our knowledge, DL
to predict individual BMI based on brain imaging data. In
particular, we employ a CNN for BMI prediction based on T1-
weighted structural MR images, as well as information about the
participants’ age and sex. This approach has the advantage of
being able to use minimally preprocessed neuroimaging data as
input and automatically learn a hierarchical set of representations
suitable for solving the task at hand (LeCun et al., 2015), as
opposed to conventional neuroimaging and machine learning
methods that rely on a priori manual extraction of features from
raw data (Vieira et al., 2017). Based on the findings discussed
above, we hypothesized that BMI could be accurately predicted
based on a singleMRI bran scan, and hence a CNN can be trained
to effectively perform this task on novel scans as well.

Once a well-performing model has been obtained and tested
on new data, a logical next step is to try to make sense of why
the model predicts what it predicts. While deep neural networks
are usually regarded as “black boxes,” it is possible to give
reasonable explanations for their predictions without elucidating
the underlyingmechanisms (Lipton, 2016). Common approaches
include projecting hidden layer activations back to input space to
find patterns that excite featuremaps themost (Zeiler and Fergus,
2014), examining the effect of occluding different parts of the
input image on model performance (e.g., Vakli et al., 2018), or
identifying those pixels in the input image that have the greatest
impact on the model’s predictions (e.g., Simonyan et al., 2013).
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With regard to the latter approach, a particular method that
has been used extensively in recent years to provide “visual
explanations” for CNNs’ decisions is Gradient-weighted Class
Activation Mapping (Grad-CAM) (Selvaraju et al., 2017). This
technique uses the gradient information flowing into the last
convolutional layer of the CNN to highlight image regions that
played an important role in predicting a certain target concept.
Here we adapted this method to the context of regression based
on 3D images to localize brain regions that made a significant
contribution to BMI prediction.

Since the present study represents one of the first attempts
to apply Grad-CAM for analyzing neuroimaging data, we
also intended to investigate the neural underpinnings of
individual differences in body weight using a more conventional
neuroimaging approach and compare the obtained results.
To this end, we performed automatic anatomical processing
using the FreeSurfer software and general linear modeling to
examine the relationship between brain morphology and BMI.
FreeSurfer implements the automatic reconstruction of the
cortical surface as well as subcortical structure segmentation
using a probabilistic atlas (Dale et al., 1999; Fischl et al.,
1999). The simultaneous application of the DL and automatic
segmentation methods was motivated by the possibility that,
as compared to this more conventional latter approach, using
minimally preprocessed anatomical images and representation
learning paired with gradient-based visualization would yield
complementary evidence regarding the relationship between
brain structure and body weight.

MATERIALS AND METHODS

Dataset
All analyses reported in this article include participants
from the UK Biobank population cohort1. UK Biobank is a
large prospective study comprising around 500,000 individuals
recruited between 2006 and 2010 from across Great Britain
who underwent physical and cognitive assessment, provided
biological samples and completed questionnaires examining
health and lifestyle (Allen et al., 2012). A subset of the participants
(N = 22,392) underwent additional MRI fromMay 2014 until the
data release in October 2018. Participants with a self-reported
history of cancer, stroke, heart attack, deep-vein thrombosis,
or pulmonary embolism diagnosed by a medical doctor (based
on data-fields 2453, 6150, and 6152) were omitted from the
current study. Additionally, only participants whose body mass
indices were reported at the time of the imaging visit (data-
field 21,001 instance 2) were included in the analyses. Finally,
participants with a raw T1-weighted structural image deemed
“unusable” by the UK Biobank team were also excluded. Image
quality control on behalf of UK Biobank consisted of the
rough manual review of T1 images supplemented by a beta-
version automated quality control pipeline (Alfaro-Almagro
et al., 2018). Eventually, 9518 females, aged between 45 and
80 years (mean ± SD = 62.11 ± 7.30 years), and 8420 males, aged

1https://www.ukbiobank.ac.uk/

between 44 and 80 years (mean ± SD = 63.21 ± 7.59 years), were
included in the present study. For females, BMI ranged between
13.39 and 58.70 kg/m2 (mean ± SD = 26.15 ± 4.72 kg/m2),
while for males, it ranged between 16.67 and 58.04 kg/m2

(mean ± SD = 27.03 ± 3.99 kg/m2).
All participants provided informed consent to participate

in the UK Biobank study. The UK Biobank Research Ethics
Committee (REC) approval number is 11/NW/0382. Detailed
information on the consent procedure of UK Biobank are
available at the following URL: http://biobank.ctsu.ox.ac.uk/
crystal/field.cgi?id=200.

Data Acquisition and Preprocessing
Neuroimaging

Data were acquired on Siemens Skyra 3TMRI scanners (Siemens
Healthcare, Erlangen, Germany) at the UK Biobank imaging
centers in Cheadle, Newcastle, and Reading. A standard Siemens
32-channel RF receive head coil was applied. The brain imaging
protocol included a T1-weighted 3D magnetization-prepared
rapid gradient echo (MPRAGE) sequence for structural imaging,
using in-plane acceleration (iPAT = 2) and a field-of-view (FOV)
of 208 × 256 × 256 with isotropic 1 mm spatial resolution.

Raw T1-weighted images were preprocessed by the UK
Biobank team using an automated processing pipeline based on
FSL tools (Jenkinson et al., 2012). The preprocessing pipeline
included gradient distortion correction, cutting down the FOV,
skull stripping, and non-linear transformation to MNI152 space
(Alfaro-Almagro et al., 2018). In-house preprocessing was limited
to reducing the size of the images to ease the computational
burden of processing large 3D volumes. In particular, the “zoom”
function of the multi-dimensional image processing package
(scipy.ndimage) of the SciPy ecosystem2 was used to resample
each image by a factor of 0.5 using spline interpolation, resulting
in images of shape 91 × 109 × 91 with isotropic 2 mm
spatial resolution.

Body Mass Index

Data on weight were collected using a Tanita BC418MA body
composition analyzer (Tanita Corporation of America, Inc.,
Arlington Heights, IL, United States). A Seca 240 cm height
measure (Seca Deutschland, Hamburg, Germany) was used to
obtain standing height measurement from participants. Body
mass index was calculated as follows:

BMI = weight in kilograms/height in meters2

Further details on the anthropometric measurements can be
obtained from the following URL: http://biobank.ndph.ox.ac.uk/
showcase/refer.cgi?id=146620.

Age and Sex

The age of each participant was derived from the date of birth
(data-fields 34, 52) and the date of the imaging visit (data-field
21,003 instance 2) and was given in years with precision to the
month. Sex was self-reported (data-field 31) and coded as 0 for
female and 1 for male.

2https://scipy.org/
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Prediction of Body Mass Index
Neural Network Architecture

We used a CNN to predict BMI. The prediction of the model is
based on three inputs from each subject:

1. T1-weighted brain image in MNI152 space, encoded in a
Numpy3 array of shape 91 × 109 × 91.

2. Chronological age of the participant in years with
precision to the month.

3https://numpy.org/

3. Sex of the participant (0 for female and or 1 for male).

The output of the network is a single scalar corresponding to
the predicted BMI of the subject.

A schematic illustration of the network architecture is given in
Figure 1. The network comprises repeated blocks of 3D spatially
separable convolutional layers followed by batch normalization
(Ioffe and Szegedy, 2015) and rectified linear unit (ReLU)
activation function (Nair and Hinton, 2010). In 3D spatially
separable convolutional layers, instead of convolving the input

FIGURE 1 | Schematic illustration of the architecture of the convolutional neural network used for predicting body mass index. The network comprises repeated

blocks of 3D spatially separable convolutional layers followed by batch normalization and ReLU, with every other block followed by a pooling layer to subsample the

input. Global average pooling is used to map the feature maps of the last block to a vector (with a single scalar for each feature map) that is fed into a fully connected

hidden layer followed by a single output unit for BMI prediction. Dashed lines denote concatenation, S denotes stride.
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with filters of shape N × N × N, a cascade of three asymmetric
filters of shapes N × 1 × 1, 1 × N × 1, and 1 × 1 × N
is used. Such a factorization of convolution operations reduces
the computational cost by reducing the number of parameters
(Szegedy et al., 2016) and has been used effectively in 3D medical
image processing (Silva et al., 2018). Filter size is N = 5 (with a
stride of 1) for the first set of convolution operations and N = 3
afterward. The number of filters is eight in the first convolutional
layer and is doubled at regular intervals to enable the learning of
a rich set of feature representations of the input brain image. All
convolutional layers used SAME padding.

Every other batch normalization layer is followed by max
pooling (filter shape 3 × 3 × 3, stride = 2) to subsample the input
images, and global average pooling is implemented after the last
batch normalization layer to calculate the average intensity value
of each featuremap computed by the last convolutional layer. The
output of this operation, along with the values representing age
and sex, is fed into a fully connected hidden layer with 128 units
and ReLU activation function. This hidden layer is connected to
a single output unit, the activation of which corresponds to the
predicted BMI value.

The CNN has 231,681 parameters overall, out of which
230,961 parameters are trainable. The model was implemented
in Python using TensorFlow 1.13.4 and the source code of the
model along with the learnt parameters is available on GitHub:
https://github.com/vaklip/cnn_3d_regression.

To examine whether information about age and sex was
crucial for BMI prediction we also trained a network that was
identical to the one described above, except that the values
representing age and sex were not concatenated to the output
of the global average pooling operation nor were they fed to the
network in any other way.

Model Training

The weights of the convolutional and fully connected layers were
initialized using Xavier initialization (Glorot and Bengio, 2010).
The shifting and scaling parameters of the batch normalization
layers were initialized to zeros and ones, respectively. The bias
terms of the fully connected layers were initialized to 0.01. To
train the network, we used mean squared error as the loss
function, Adam optimizer (Kingma and Ba, 2014) with a learning
rate of 0.0005 (momentum decay hyperparameter β1 = 0.9,
scaling decay hyperparameter β2 = 0.999) and a batch size of
eight. Dropout regularization (Wager et al., 2013; Srivastava et al.,
2014) with a dropout rate of 0.4 was applied to the fully connected
hidden layer during training.

The brain images of all participants were randomly assigned
to disjoint training (N = 13938), validation (N = 2000), and
test (N = 2000) sets. Only data in the training and validation
sets were used for training and hyperparameter selection. The
model was trained on the training set for a total of 50 epochs,
and its performance was evaluated on the validation set after
each epoch. A snapshot of the model parameters leading to
the best validation set performance was restored and the final
model was evaluated on the test set. Model performance is

4https://www.tensorflow.org

characterized by the MAE, standard deviation of the absolute
error (STDAE), coefficient of determination (R2), root mean
square error (RMSE), and Pearson’s correlation coefficient (r)
between the true and predicted BMI values.

A single NVIDIA Quadro M4000 GPU was used to train the
CNN, with a runtime of about 1 h per epoch.

Transfer Learning

We used transfer learning to investigate the generalizability of
our approach. Transfer learning refers to the method of training
a neural network on one dataset (the source domain) and
then adapting the model to a different dataset and/or task (the
target domain) by transfer and fine-tuning of the previously
learned model weights. In our case, the UK Biobank dataset
constituted the source domain and the Information eXtraction
from Images (IXI) dataset5 including brain MR images from
multiple sites in London constituted the target domain. We
included the T1-weighted MR images of 269 subjects from the
IXI dataset who fell into the age range corresponding to the
UK Biobank sample: 177 females aged between 44 and 78 years
(mean ± SD = 60.50 ± 8.32 years) and 115 males aged between
44 and 79 years (mean ± SD = 59.48 ± 9.05 years). These images
were recorded using Philips Intera 3T (N = 96; Hammersmith
Hospital) and Philips Gyroscan Intera 1.5T (N = 173; Guy’s
Hospital) scanners and a FOV of 150 × 256 × 256 and
spatial resolution of 1.2 mm × 0.938 mm × 0.938 mm.
Images recorded at a third location (Institute of Psychiatry using
a GE 1.5T system) were omitted from the current analysis
due to the very low number of participants that matched
the given age range (N = 23). In-house image preprocessing
was limited to spatial normalization to MNI152 space and
skull-stripping using the SPM12 toolbox6 and custom-made
scripts running on MATLAB 2015a (MathWorks Inc., Natick,
MA, United States).

Images were randomly divided into disjoint training
(N = 197), validation (N = 36), and test sets (N = 36). The
weights of the network were initialized to those learnt on the
UK Biobank dataset and then trained on the IXI dataset for 50
epochs, using data augmentation (random rotations of maximum
5 degrees and translations of 10 voxels). The neural network
architecture and training hyperparameters were the same as
those used for training on UK Biobank data. A snapshot of the
model parameters leading to the best validation set performance
(evaluated at the end of each epoch) was restored and the final
model was evaluated on the test set.

Localizing Brain Regions Relevant for
BMI Prediction
In order to obtain localization maps highlighting brain regions
that are important for BMI prediction, we used a modified
version of the Grad-CAM (Selvaraju et al., 2017). The Grad-CAM
method aims to provide visual explanations for the decisions
made by a wide variety of CNNs. It uses the gradients of a
given target concept flowing into the final convolutional layer

5https://brain-development.org/ixi-dataset/
6http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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to produce a coarse localization map that highlights regions in
the input image that are important for predicting that concept.
We applied two modifications to the original method. First, we
adapted it for processing 3D images, similarly to (Wang et al.,
2019). We computed the gradient of the predicted BMI-score
y with respect to the feature maps An of the last convolutional
layer, and performed global average pooling on these gradients to
obtain an importance weight αn for each feature map:

αn =
1

Z

∑

i

∑

j

∑

k

∂y

∂An
ijk

(1)

where Z is the number of units in a feature map. Then, the
weighted combination of the features maps was calculated to
obtain the localization map L ∈ R

u×v×w:

L =

∑

n

αnA
n (2)

In the original formulation of Grad-CAM, which was developed
to provide class-discriminative visualizations, a ReLUwas applied
to L in order to highlight features that have a positive influence
on the class of interest, as negative values would likely belong
to other classes (Selvaraju et al., 2017). Here, since our CNN
performed a regression task with a single output unit, and hence
we were interested in features that have either positive or negative
influence on predicted BMI, we omitted this step.

Localization maps were computed for each individual in
the UK Biobank test set. They were upsampled to match the
size of the input images using spline interpolation (for details,
see section “Neuroimaging”). Intensity values were standardized
to have zero mean and unit variance. As all brain images
were registered to MNI152 space, a voxelwise grand average
localization map across all test subjects could be computed. The
resulting map was thresholded at two standard deviations from
the mean and superimposed on the ch2bet MRIcron7 template
to visualize regions in the brain that made a strong contribution
to BMI prediction. To investigate the robustness of the results,
a grand average localization map was also computed for the
training set. This localization map was visually indistinguishable
from the one obtained for the test set.

Examining the Relationship Between
BMI and Brain Volumetric and
Morphometric Variability
Based on the visualization provided by the modified Grad-CAM
method, we performed further exploratory analyses to investigate
the association between BMI and morphological variability in
the human brain using the UK Biobank data. To this end, we
randomly selected a subset of 200 participants from the test set,
with the only constraint being that the male–female ratio and
the distribution of chronological age and BMI remain similar
to those in the overall test set. We used FreeSurfer 6.08 to
automatically parcellate the cortical surface and segment the

7https://people.cas.sc.edu/rorden/mricron/index.html
8http://surfer.nmr.mgh.harvard.edu

subcortical structures in the anatomical images of these subjects
(Dale et al., 1999; Fischl et al., 1999). Then we investigated
the relationship between different measures of cortical and
subcortical anatomy—estimated by FreeSurfer—and the true
BMI of participants, as detailed below.

Subcortical Segmentation

The volume-based stream of FreeSurfer (Fischl et al., 2002,
2004) was used to quantify the volumes of left and right
hemisphere subcortical structures. Subcortical structures were
selected for volumetric analysis based on the regions highlighted
in the localization map produced by the modified Grad-CAM
method. We computed partial correlations to examine the
relationship between subcortical structure volume and BMI while
controlling for chronological age, sex, and overall subcortical
gray matter volume. We controlled for the former two variables
since they were added as covariates to the CNN model which
was therefore able to adjust for structural differences between
individuals of different age and sex. Partial correlations were
calculated using Statistica 13.4. (TIBCO Software Inc., Palo Alto,
CA, United States).

Cortical Parcellation

The surface-based stream of FreeSurfer (Dale et al., 1999; Fischl
et al., 1999) was used to construct models of the boundaries
between whitematter and cortical graymatter (the white surface),
and between gray matter and the cerebrospinal fluid (the pial
surface). The triangular tessellation of these surfaces allows
for the calculation of several morphometric measures at each
location (vertex) of the cortex, including cortical thickness,
area, and curvature. We investigated the relationship between
these three measures and BMI using FreeSurfer’s Query, Design,
Estimate, Contrast (QDEC) tool. Specifically, after smoothing
individual subject data to the average surface with a 10-
mm full-width at half maximum Gaussian kernel, a general
linear model (GLM) with one of the morphometric measures
as dependent variable was applied at each vertex, accounting
for the effects of age, sex, and total cortical gray matter
volume. False discovery rate (FDR) correction (threshold at
0.05) was applied to reduce Type I. errors associated with
multiple comparisons.

Based on the grand average localization map, we directly
investigated the association between the morphology of the right
middle temporal gyrus and BMI. In particular, we computed
partial correlations to examine the relationship between BMI and
surface area, mean thickness and curvature while controlling for
age, sex, and total cortical gray matter volume.

RESULTS

BMI Prediction
Overall, results showed that our CNN model can be used
to predict BMI with high accuracy. Prediction error on
the validation set reached a minimum after 32 epochs
(MAE = 2.41 kg/m2, STDAE = 1.93 kg/m2). The model
generalized well to the brain images in the test set
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FIGURE 2 | BMI prediction accuracy on the UK Biobank dataset. The

scatterplot depicts the true (horizontal axis) and the CNN-predicted BMI

(vertical axis) on the test set (N = 2000). A least squares regression line

(continuous blue) is superimposed on the scatterplot.

FIGURE 3 | BMI prediction accuracy on the IXI dataset. The scatterplot

depicts the true (horizontal axis) and the CNN-predicted BMI (vertical axis) on

the test set (N = 36). A least squares regression line (continuous blue) is

superimposed on the scatterplot.

(Figure 2): MAE = 2.48 kg/m2; STDAE = 2.09 kg/m2;
RMSE = 3.24 kg/m2; Pearson r = 0.68; R2 = 0.44.

When training the network without feeding information
about age and sex to it, it took longer to reach a minimum

of prediction error on the validation set (after 41 epochs,
MAE = 2.36 kg/m2, STDAE = 2.09 kg/m2). Nevertheless, the
model generalized well to the test set images: MAE = 2.41 kg/m2;
STDAE = 2.11 kg/m2; RMSE = 3.20 kg/m2; Pearson
r = 0.7; R2 = 0.46.

When fine-tuning learned weights on the IXI dataset,
validation error reached a minimum after 44 epochs
(MAE = 2.53 kg/m2; STDAE = 2.00 kg/m2).We obtained
reasonable BMI prediction on the IXI test set (Figure 3;
MAE = 3.00 kg/m2; STDAE = 2.12 kg/m2; RMSE = 3.67 kg/m2;
Pearson r = 0.49; R2 = 0.21), albeit it was below the performance
obtained in the case of the UK Biobank dataset.

Localization Map
The grand average localization map across all the 2000 subjects’
images in the test set is depicted in Figure 4. The map highlights
several regions that, on average, have a strong influence on
predicted BMI. These regions include the left caudate, the left
medial temporal lobe in the vicinity of the amygdala, and the
lateral surface of the right temporal cortex, encompassing the
middle temporal gyrus.

Brain Volumetric and Morphometric
Analyses
Based on the localization map, two subcortical regions, the left
caudate and amygdala, were selected for volumetric analysis in
a subset of the test subjects (Figure 5). On the one hand, there
was no significant partial correlation between the volume of the
caudate and the true BMI of the subjects when controlling for
chronological age, sex, and overall subcortical graymatter volume
(r = 0.028, p = 0.7). This may be accounted for by sex differences
in the relationship between caudate volume and BMI (Figure 5,
left panel). On the other hand, a significant partial correlation
between the volume of the amygdala and BMI was observed
(r = 0.19, p = 0.008), showing that increased BMI is associated
with increased amygdalar volume.

Regarding the analysis of cortical morphometry, no significant
association between BMI and cortical thickness or curvature
was observed after correcting for multiple comparisons (FDR
threshold at 0.05). However, a positive relationship was observed
between BMI and the area of the isthmus cingulate in the right
hemisphere (Figure 6). The direct tests (partial correlations) of
the association between BMI and morphological measures of the
right middle temporal gyrus yielded no significant results.

DISCUSSION

In this proof-of-concept study, we established that a deep CNN
can be used to predict individual BMI with high accuracy,
based on a single structural MRI brain scan and information
about age and sex. This finding is in line with the results of
several previous studies showing gray and white matter structural
alterations in obese individuals (Brooks et al., 2013; Kullmann
et al., 2015; Dekkers et al., 2019). We also demonstrated that
gradient-based visualization can be used effectively to highlight
brain regions that play an important role in BMI prediction.
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FIGURE 4 | Grand average localization map highlighting brain regions that strongly contribute to predicted BMI. Activation values are z-scored and thresholded at |

Z| > 2. The localization map is superimposed on the ch2bet MRIcron template with MNI coordinates displayed below each slice.

FIGURE 5 | BMI and subcortical volumes. Scatterplots depict the volumes of the caudate (left panel) and amygdala (right panel) in the left hemisphere and the

true BMI values of male (N = 93) and female (N = 107) subjects in the test set.

More specifically, we used the Grad-CAM method, based on
the gradient information flowing into the last convolutional
layer of the CNN (Selvaraju et al., 2017), and adapted it to the
context of regression using 3D images to identify brain regions
that, on average, made a strong contribution to predicted BMI
values. Our results suggest that, in addition to conventional
neuroimaging methods and analytical techniques, the use of

DL along with visual explanations for model predictions is a
suitable approach for identifying the brain structural correlates
of individual variability in body weight.

In particular, the localization map produced by the Grad-
CAM method highlighted a set of brain regions including a
portion of the left medial temporal lobe in the vicinity of
the amygdala. The relationship between amygdalar volume and
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FIGURE 6 | Vertex-wise analysis of surface area using FreeSurfer. BMI is

significantly associated with surface area in a right hemisphere cluster

encompassing the isthmus cingulate cortex (when age, sex, and total cortical

gray matter volume are controlled for). The cluster survived false discovery

rate correction at threshold p < 0.05.

BMI was also confirmed by using FreeSurfer-based subcortical
segmentation and partial correlation correcting for age and
sex, which showed that higher BMI was associated with larger
amygdalar volume. Previous studies using voxel-based (Taki
et al., 2008) and tensor-based morphometry (Raji et al., 2010)
found a relationship between BMI and the volume of gray and
white matter in the medial temporal lobe. With regard to the
amygdala, a positive relationship between BMI and amygdalar
volume was already found in children and adolescents (Perlaki
et al., 2018), young adults (Orsi et al., 2011), and elderly
subjects (Widya et al., 2011); although a negative association
has also been described (Kharabian Masouleh et al., 2016).
Taken together, these results show that the DL approach
paired with gradient-based visualization and more conventional
neuroimaging methods provide converging evidence regarding
the link between body weight and amygdalar structure. This
is in accordance with the results of functional neuroimaging
studies providing evidence for the involvement of the amygdala
in processing visual food cues (van der Laan et al., 2011; Tang
et al., 2012; van Bloemendaal et al., 2014).

Besides the commonalities, several discrepancies have
been observed between the results of the Grad-CAM-based
localization and the vertex-wise analysis using FreeSurfer. On
the one hand, the vertex-wise analysis yielded a significant
association between BMI and the surface area in a region
corresponding to the isthmus cingulate in the right hemisphere.
While at least one previous study reported a relationship between
BMI and the morphology of the posterior cingulate cortex
(Kharabian Masouleh et al., 2016), this region did not light up
in the Grad-CAM-based localization map. On the other hand,
several other brain structures were deemed important based
on the localization map, in the case of which the conventional

automatic brain segmentation approach failed to confirm an
association with BMI, namely the lateral surface of the right
temporal cortex and a region encompassing the left caudate
nucleus. With regard to the latter, a previous study has shown
that the volume of the caudate heads bilaterally show a positive
association with BMI in men, after adjusting for age, lifetime
alcohol intake, history of hypertension, and diabetes mellitus
(Taki et al., 2008). Sex differences have also been shown to be
manifest regarding the relationship between total body fat and
caudate volume (Dekkers et al., 2019). Our results regarding
the association with BMI are also indicative of such differences
(Figure 5, left panel). In addition, the discrepancy between our
observations with DL and conventional approaches is likely to
stem from the differences in the applied methodologies as well.
In our study, we used FreeSurfer for the automated segmentation
of predefined subcortical structures and examined the linear
relationship between BMI and a single scalar estimate of the
volume of the caudate. FreeSurfer segmentation includes a series
of pre-processing steps applied to the MRI volumes, followed
by labeling the volumes based on a probabilistic atlas built
from a set of hand-labeled images, as well as subject-specific
measurements (Fischl et al., 2002, 2004). In contrast, the CNN
is fed with minimally preprocessed images and learns a series of
transformations to map those images to the corresponding BMI
values. Each of these transformations map the representation
of the input at one level into a representation at a slightly more
abstract level (LeCun et al., 2015). Compared to the conventional
automated brain segmentation methods, visualizations based
on these more abstract representations may provide additional
information with regard to the relationship between brain
architecture and body weight. Similarly, several recent studies
applied the Grad-CAM method to highlight brain regions that
made an important contribution to predicting depression and
epilepsy (Pominova et al., 2018), brain age (Bermudez et al.,
2019), and Alzheimer’s disease (Feng et al., 2018) based on
structural MRI data.

Besides being a promising tool for neuroscientific
investigation, brain-predicted BMI may also have practical
utility. We managed to adapt the CNN model to a novel dataset,
suggesting that our method is more generally applicable to
a variety of different MR scanner types. Coming back to the
relationship between the amygdala and body weight, this brain
structure has been shown to be involved in the evaluation of
food cues (Siep et al., 2009) and to constitute a part of a neural
circuitry involved in the regulation of food craving (Dietrich
et al., 2016). In a recent review, it has been argued that structures
of the medial temporal lobe, in particular the amygdala and the
hippocampus, may play an important role in the regulation of
body weight, and that the amygdala is crucial for the regulation
of feeding behavior based on environmental cues (Coppin, 2016).
Based on the localization map produced by the Grad-CAM
method, it is reasonable to hypothesize that brain-predicted
BMI may be related to individual differences in the processing
of food stimuli and cue-induced feeding. On this basis, one
intriguing possibility is that increased brain-predicted BMI
relative to the actual BMI might reflect a greater propensity
to weight gain. This mode of application is similar to how the
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difference between brain-predicted and chronological age might
have clinical utility (Cole and Franke, 2017). However, it is
important to note that brain structural alterations might not be
the cause but the consequence of obesity. In fact, obesity-driven
neuroinflammation has been shown to affect several brain regions
including the hippocampus and the amygdala (Guillemot-
Legris and Muccioli, 2017). Further research is necessary to
examine whether and how brain-predicted BMI is related to
pathophysiological processes and eating behavior.

CONCLUSION

Our findings provide proof of concept that individual BMI can
be predicted with high accuracy from a single MRI scan using DL
methods and suggest a relationship between the morphology of
subcortical structures and body weight.
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