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Abstract: Breast cancer needs to be detected early to reduce mortality rate. Ultrasound imaging (US)
could significantly enhance diagnosing cases with dense breasts. Most of the existing computer-aided
diagnosis (CAD) systems employ a single ultrasound image for the breast tumor to extract features
to classify it as benign or malignant. However, the accuracy of such CAD system is limited due
to the large tumor size and shape variation, irregular and ambiguous tumor boundaries, and low
signal-to-noise ratio in ultrasound images due to their noisy nature and the significant similarity
between normal and abnormal tissues. To handle these issues, we propose a deep-learning-based
radiomics method based on breast US sequences in this paper. The proposed approach involves
three main components: radiomic features extraction based on a deep learning network, so-called
ConvNeXt, a malignancy score pooling mechanism, and visual interpretations. Specifically, we
employ the ConvNeXt network, a deep convolutional neural network (CNN) trained using the
vision transformer style. We also propose an efficient pooling mechanism to fuse the malignancy
scores of each breast US sequence frame based on image-quality statistics. The ablation study and
experimental results demonstrate that our method achieves competitive results compared to other
CNN-based methods.

Keywords: breast cancer; CAD system; ultrasound sequence; deep learning; transformers

1. Introduction

According to WHO (World Health Organization) reports, breast cancer is one of the
most common cancers in women worldwide (https://www.who.int/news-room/fact-
sheets/detail/breast-cancer accessed on 1 April 2022). The malignant growth of BC begins
within the duct or lobule, where it usually does not cause symptoms and has a low risk of
extending to other body parts (i.e., metastasis). In situ breast tumors can grow and intrude
into surrounding breast tissue, then spread to nearby lymph nodes or other organs (i.e.,
distant metastasis). It is worth noting that widespread metastasis is the leading cause of
death in breast cancer patients [1]. Hence, breast cancer must be detected early to reduce
mortality. Many countries across the world have developed some prevention programs
that perform routine screening for women.

The presently used clinical breast imaging modalities are mammography, magnetic
resonance imaging (MRI), and ultrasound imaging (US). Currently, MRI and US are only
auxiliaries to mammography. Mammography imaging sensitivity is approximately 75%,
which can be dropped to 50% in young women whose breast tissues frequently have a
higher breast density [2]. Hence, the use of mammography and US imaging could signifi-
cantly enhance the sensitivity of the test for the diagnosis of such cases [3]. Unlike other

Diagnostics 2022, 12, 1053. https://doi.org/10.3390/diagnostics12051053 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12051053
https://doi.org/10.3390/diagnostics12051053
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0003-3230-3279
https://orcid.org/0000-0002-8259-7087
https://orcid.org/0000-0002-0562-4205
https://orcid.org/0000-0002-1074-2441
https://www.who.int/news-room/fact-sheets/detail/breast-cancer
https://www.who.int/news-room/fact-sheets/detail/breast-cancer
https://doi.org/10.3390/diagnostics12051053
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12051053?type=check_update&version=2


Diagnostics 2022, 12, 1053 2 of 17

imaging modalities, such as MRI, breast ultrasound (BUS) technology is much cheaper, fast,
and easily accessible to people in the community. BUS imaging offers scanning feasibility to
women who are at high risk of breast cancer disease. BUS imaging supports women during
their pregnancy without them being exposed to radiation. However, during BUS scan-
ning, some artifacts are produced due to the motion of the sonographer, patient breathing,
and poor probe contact that cause a poor image formation on-screen [4].

Indeed, an experienced sonographer is required to extract and interpret tumor infor-
mation from BUS images. Given the number of ultrasound images a sonographer must
analyze, this is time-consuming and costly. In this situation, a computer-aided diagnosis
(CAD) system can relieve professional sonographers’ burden by providing helpful diag-
nostic clues such as the likely location of tumors, their plausible borders, and a prediction
of tumor type [5]. Because the manual diagnosis of breast cancer takes a long time and
limited detection technologies are available, an automatic diagnosis system is needed for
early cancer detection.

Figure 1 presents some BUS images of benign and malignant tumors. As shown, it
is challenging to analyze breast tumors in BUS images due to their low contrast, poor
signal-to-noise ratio (SNR), the great shape variety of breast tumors, and the hazy nature of
BUS images. Tumor segmentation and classification are two crucial tasks in CAD systems.
Benign and malignant tumors usually display different visual characteristics in BUS images.
The margins of most benign tumors are smooth, round, or oval, but the borders of most
malignant tumors are irregular and spiculated [6]. Nevertheless, designing CAD systems
for BUS is still challenging due to the large variation in tumor size and shape, ambiguous
tumor boundaries, and low SNR.

Benign Malignant

(a) (b) (c) (d)

Benign Malignant

Figure 1. Examples of BUS images for (a,b) benign and (c,d) malignant cases. They show the
presence of artifacts such as speckle noise and the hypoechoic region with shadows caused by the
reflection of a high quantity of energy by an enormous impedance discontinuity and a variety of
breast tumor shapes and sizes.

Deep learning has improved the automated analysis of BUS images in the last decade,
thanks to its ability to extract powerful representations from them. Hence, several deep-
learning-based CAD systems have been proposed to detect breast cancer or discriminate
between benign and malignant tumors [7]. For instance, Masud et al. [8] used ultrasound
images to develop and assess three pretrained convolutional neural network (CNN)-based
models for recognizing breast cancer. The authors tweaked AlexNet [9], DenseNet121 [10],
MobileNetV2 [11], ResNet-18 [12], ResNet-50 [12], VGG16 [13], and Xception’s [14] pre-
trained models to extract powerful representative features from BUS and to add a classifier
to the top layer. Most existing studies employ a single ultrasound image (SUI) for each
breast tumor to extract features to discriminate between benign and malignant tumors.
However, artifacts in BUS images such as speckle noise and shadows (as shown in Figure 1)
may degrade the performance of feature extraction methods. Unlike most existing SUI-
based studies, we propose to use deep-learning-based radiomic features extracted from
BUS sequences in this paper. Specifically, we employ the ConvNeXt [15] network, which is
a CNN trained using the vision transformer style. The proposed approach contains three
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main components: radiomic features extraction based on ConvNeXt, malignancy score
pooling mechanism, and visual interpretations.

The key contributions of this paper can be listed as follows:

• Propose an efficient deep-learning-based radiomics method to predict a malignancy
score for breast tumors from BUS sequences.

• Propose an efficient malignancy score pooling mechanism for BUS sequences, in which
the quality of each frame in the input BUS sequence is assessed to compute its weight
when calculating the overall malignancy score.

• Provide comparisons between CNN-based radiomics and transformer-based radiomics
approaches.

• Present visual interpretations for the decisions of the proposed ConvNeXt-based
radiomics approach.

The rest of this paper presents and discusses the state-of-the-art methods in Section 2
and the proposed approach for predicting breast cancer malignancy in BUS images in
Section 3. The evaluation of the proposed method and discussion of the results are provided
in Section 4. The conclusion of the study and lines for future studies are presented in
Section 5.

2. Related Work

Most CAD systems in the literature employ a single ultrasound image (SUI) for each
breast tumor to classify it as benign or malignant. Table 1 presents and summarizes
different related studies. In [16], an automatic thyroid and breast lesions classification
method from ultrasound images using deep CNNs was proposed. A generic deep learning
architecture with transfer learning and the same architectural parameter settings to train
models for thyroid (TNet) and breast cancers (TNet and BNet) was presented. The authors
achieved accuracy rates lower than 90% with both tasks in ultrasound images collected
from clinical practices. Pourasad et al. [17] compared the performance of six traditional
and deep-learning-based systems for detecting and segmenting tumors in BUS images.
In the case of conventional systems, they used the fractal method to select features, and the
K-nearest neighbor (KNN), support vector machine (SVM), decision tree (DT), and Naïve
Bayes (NB) classification techniques were used to classify images into normal, benign, and
malignant. In turns, a deep-learning-based system was used with a CNN architecture to
classify BUS images. This method obtained a limited sensitivity of 88.5% and depended on
many preprocessing techniques that should be tuned to reach a good accuracy with each
new dataset.

Jabeen et al. [18] proposed a deep-learning-based CAD system for breast cancer
classification in BUS images. The authors modified a pretrained DarkNet53 model and
trained it on augmented BUS images using transfer learning. They experimented with the
CAD system using a dataset of 780 samples (133 normal, 210 malignant, and 487 benign).
Cao et al. [19] proposed a CAD system that included a tumor detection stage followed by
a tumor classification stage to classify breast tumors as benign and malignant from BUS
images. In the tumor detection stage, they evaluated five deep-learning-based object detec-
tion methods, namely, fast region-based convolutional neural networks (R-CNN), faster
R-CNN, you only look once (YOLO), YOLO version 3 (YOLOv3), and single shot multibox
detector (SSD). In the tumor classification stage, they evaluated six CNN architectures,
namely AlexNet, ZFNet, VGG, ResNet, GoogLeNet, and DenseNet, with different model
training parameters values in classifying breast tumors as benign or malignant. The authors
collected a BUS images dataset containing 579 benign and 464 malignant cases. With this
dataset, DenseNet achieved the best classification results with an accuracy of 87.5%. It is
worth noting that the main limitation of this method is that some tumors may be missed
because of the detection step, which had a low F1-score of 79.38%.

Luo et al. [20] proposed a segmentation-to-classification method by adding the segmen
tation-based attention information to the breast tumor classification network. Their method
comprised four stages. First, the segmentation network was trained to segment breast tu-
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mors from BUS images. Second, the authors used two parallel networks to extract features
from the original BUS images and segmented ones. Third, they used a channel-attention-
based feature aggregation network to fuse the features extracted from two feature networks.
Finally, the fused features were fed into a classification network to discriminate between ma-
lignant and benign tumors. With a private breast ultrasound dataset, the authors obtained
an AUC of 95.49%. Zhou et al. [21] proposed a multitask deep-learning-based method
to jointly train breast tumor segmentation and classification network for a 3D automated
breast ultrasound (ABUS). The proposed network included an encoder–decoder network
for segmentation and a lightweight multiscale network for classification. The authors
employed VNet as the backbone network for tumor classification and segmentation. With a
private dataset of 170 volumes from 107 patients, they achieved an accuracy of 74.10%
when classifying benign and malignant cases. The main limitations of this study are that
(1) the failures in the segmentation part affect the final classification results and (2) the
performance of the deep learning network may be degraded because of data imbalance.

Table 1. Summary of research for the diagnosis of breast cancer based on ultrasound images.

Study Methods Results Dataset Year

[16] generic deep CNN and
transfer learning accuracy <90% private SI BUS and

thyroid dataset 2021

[17] six traditional and CNNs
SVM, KNN, DT, NB 76.10% accuracy public SI

breast dataset 2021

[18] DarkNet53 model and
fusion technique 99.1% accuracy public SI

BUS dataset 2022

[19]

R-CNN, faster R-CNN, YOLO
SSD, AlexNet, ZFNet, VGG

ResNet, GoogleNet,
and DenseNet

87.5% accuracy private SI
BUS dataset 2019

[20] segmentation-based
attention and feature fusion 95.0% AUC private SI

BUS dataset 2022

[21] multitask deep method 74.1% accuracy private dataset of
3D ABUS 2021

[22] handcrafted features, GBC
RF, SVM, AdaBoost, and LR 97% accuracy public SI

BUS dataset 2021

[23] semisupervised GAN,
Inception-V3 90.4% accuracy private SI

BUS dataset 2021

Furthermore, Mishra et al. [22] proposed a machine-learning-based radiomics ap-
proach to classify breast ultrasound images into benign and malignant. The authors utilized
the ground truth of the database to segment the tumor region and then extracted a set of
handcrafted features (i.e., histogram of oriented gradients, gray lever co-occurrence matrix
features, shape features, and Hu moments). A recursive feature-elimination-based feature
selection step was used to select the best features and a synthetic minority oversampling
technique (SMOTE) to deal with the data imbalance problem. Finally, different classifiers
were evaluated in the classification step. Hassan et al. [23] investigated a semisupervised
generative adversarial network (GAN)-based approach to augment imaging datasets for
breast tumor classification on ultrasound images. The authors used a semisupervised GAN
network called TripleGAN to synthesize the textural patterns of breast tumors. The pro-
posed approach performed preprocessing steps, in which feature-wise processing (FWP)
was applied to reduce the deep learning model processing time on raw ultrasound images.
The images were cropped to 128× 128 pixels as the regions of interest (ROI). The real and
synthesized image were fed into an Inception-V3 model to classify BUS images into benign
and malignant. On a private dataset that included ultrasound images of 767 benign and
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680 malignant tumors the authors obtained a 90.4% accuracy, an 87.94% sensitivity, and an
85.86% specificity.

As discussed above, most studies did not consider the quality of BUS images when
building the classification models. Furthermore, they employed a single BUS image to
develop their methods. However, the noisy nature of BUS images and the significant
similarity between normal and abnormal tissues make them difficult to recognize, causing
incorrect diagnosis. In addition, dense breast fat and glandular tissue produce attenuation
that affects ultrasonic waves and consequently degrades image quality. These issues repre-
sent a challenge to build a robust BUS image classification model. To handle these issues,
this paper proposes an effective deep-learning-based radiomics method for breast cancer
malignancy prediction from BUS sequences. To extract robust breast-tumor-relevant repre-
sentations, we employ a deep learning architecture called ConvNeXt network. Unlike most
existing work that employed a single BUS image for each tumor to build the classification
model (i.e., SUI CAD system), we utilize BUS sequences. We also propose a malignancy
score pooling mechanism that considers the BUS image quality when computing the final
malignancy score of the whole sequence.

3. Methods and Materials

Figure 2 presents an overview of the proposed approach for predicting breast cancer
malignancy from BUS images. As shown, the proposed method comprises three main
components: (1) an emerging deep learning network called ConvNeXt [15] to extract robust
radiomic features, (2) a pooling mechanism to generate the malignancy score of each input
BUS sequence, and (3) a visual explanation algorithm to help interpret deep learning
decisions. Three components of the proposed method are illustrated below in detail.

Figure 2. Overview of deep ConvNeXt-based radiomics for breast tumor malignancy prediction from
BUS sequences.

3.1. Deep ConvNeXt-Based Radiomics

We employed ConvNeXt [15] to extract robust radiomic features to classify breast
cancer tumors as benign or malignant. In ConvNeXt, the architecture of the standard CNNs
is modernized to the construction of a hierarchical vision transformer. As discussed in [15],
the starting point of ConvNeXt is a ResNet-50 [12] model, which has four stages, each
containing several blocks. In ConvNeXt, the ResNet-50 model has been trained with similar
training techniques used to train vision transformers. As shown in Figure 3, ConvNeXt
is a multistage design with varying feature map resolutions for each stage, in which the
stage-compute-ratio—SCR (number of blocks per stage)—and stem cell structure are the
two design concerns. ConvNeXt has four stages, where the SCR is set to (3, 4, 6, 3).
ConvNeXt employs a patchify layer implemented using a 4× 4, stride 4 convolutional layer.
The patchify layer is a distinct difference between ConvNeXt and ResNet (and CNNs in
general), which uses a stem cell comprising a 7× 7 convolution layer with stride 2, followed
by a max-pool.
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Patchify 
 Layer

Stage 1 
x3

Stage 2 
x4 

Stage 3 
x6 

Stage 4 
x3 

Fully 
 Connected 
(2 Classes) 

Benign

Malignant

US SequencesBUS Sequences

Figure 3. Schematic diagram of ConvNeXt. It should be noted that ×3, ×4, ×6, and ×3 mean that
there are 3, 4, 6, and 3 blocks in stage 1, 2, 3, and 4, respectively.

Figure 4 depicts the schematic diagram of ConvNeXt block. As shown, the block
contains a 7× 7 depthwise convolution, two 1× 1 layers, and a nonlinear GELU activation
(gaussian error linear unit, a smoother variant of ReLU). Layer normalization (LayerNorm)
is used before the Conv 1× 1 layer. For an input z, GELU can be expressed as follows [24]:

GELU(z) = zP(Z ≤ z) = zΦ(z) = z · 1
2
[1 + erf(z/

√
2)] (1)

d7, 96 x 96

1 x 1, 384

1 x 1, 96

LN

GELU

96-d

ConvNeXt Block

Figure 4. Schematic diagram of ConvNeXt block.

It should be noted that the GELU expression mentioned in (1) can be approximated as
follows [24]:

0.5x
(

1 + tanh
[√

2/π
(

x + 0.044715x3
)])

(2)

In the ConvNeXt model, the LayerNorm method is used to avoid the disadvantages
of the batch normalization technique widely adopted in existing deep CNN architectures
(e.g., computational cost and discrepancy between training and inference). Considering
that changes in one layer’s output will tend to produce strongly correlated changes in
the total inputs to the next layer, by setting the mean (µ) and variance (σ) of the summed
inputs inside each layer, LayerNorm eliminates the covariate shift problem. The LayerNorm
statistics are calculated as follows for all hidden units in the same layer [25]:

µl =
1
H

H

∑
i=1

al
i σl =

√√√√ 1
H

H

∑
i=1

(
al

i − µl
)2 (3)

where H stands for the number of hidden units in a layer in this formula. It is worth noting
that LayerNorm has no restrictions on the size of a minibatch and can be utilized in the
pure online mode with batch sizes as small as one.
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Furthermore, the ConvNeXt architecture utilizes depthwise convolution, a type of
grouped convolution in which the number of groups and channels is equal. Indeed,
depthwise convolution is analogous to the per-channel weighted sum operation in the
self-attention mechanism (mixing information in the spatial dimension). ConvNeXt adds a
separate downsampling layer between stages. It uses 2× 2 Conv layers for downsampling
with a stride of 2. In this work, we used the cross-entropy (CE) loss function to train the
model. CE can be expressed as follows [26]:

LCE(gt, pi) = −
n

∑
i=1

gt.log(pi) (4)

where n corresponds to the number of classes, gt is the ground truth label, and pi refers to
the softmax probability of the ith class.

In the training phase of the ConvNeXt model, we rescaled the original BUS input
resolution to a size of 224× 224. An ADAM optimizer with β1 = 0.5, β2 = 0.99, and a starting
learning rate of 0.0001 were utilized to optimize the model nicely. We employed a batch
size of two images and trained the model for 40 epochs. All the models were developed
using Python on PyTorch with an NVIDIA GeForce GTX 1070Ti GPU with 8 GB RAM.

3.2. Malignancy Score Pooling Mechanism

Most of the existing methods extract radiomic features from a single BUS image.
BUS image artifacts such as speckle noise and shadow may degrade the performance of
the extracted radiomic features and yield wrong classification results. In Figure 5, we
show the malignancy score of each frame in a BUS sequence of a benign case. Ideally,
the malignancy score of each frame should be lower than 0.5 as we have a benign tumor.
However, as shown, some BUS frames such as frame 2 and frame 13 obtain a malignancy
score higher than 0.5. Hence, for such two frames, if fed into a CAD system that relies on a
single image, a wrong classification will be obtained.

0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17

Ultrasound Sequences

Figure 5. Malignancy score of each frame in a BUS sequence of a benign case. Arrows indicate
malignancy scores higher than 0.5.
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In this paper, we propose to classify benign and malignant breast tumors based on
BUS sequences instead of single BUS images. In particular, we extracted radiomic features
based on ConvNeXt from each frame in the BUS sequence and estimated the malignancy
score of each frame. Figure 6 presents the step of the proposed malignancy score pooling
mechanism. We calculated the malignancy score of the whole input BUS sequence as
follows:

SM =
1

Nq
∑ wisi (5)

where si is the malignancy score of frame i, W = [w1, w2, . . . , wN ] is a weighting vector
with a length N, where any element wi may hold 0 or 1. An element in W has a value of 1 if
the quality of the BUS frame exceeds the thresholds of the brightness and blurriness scores,
and Nq is the number of the frames in the BUS sequence exceeding the thresholds of the
brightness and blurriness scores.

Figure 6. Schematic diagram of malignancy score pooling mechanism.

Blurriness score: To estimate the blurriness score, a variance of the BUS image
IBUS(p, q) intensity smoothed by a Gaussian filter G f (p, q) [27,28] was employed. The Gaus-
sian filter can be expressed as follows:

G f (p, q) =
1

(2πσ2)
e−

(p2+q2)
2σ2 , (6)

where p and q stands for the coordinates of an image IBUS(p, q), and σ stands for the stan-
dard deviation of the Gaussian distribution. A Laplacian operator showing the variation
of the gradient (∇IBUS) was estimated for two dimensions as a sum of the second partial
derivatives in the Cartesian coordinates as follows:

∇2 IBUS(p, q) =
∂2 IBUS

∂p2 +
∂2 IBUS

∂q2 , (7)

A low score referred to a blurry image, and a high value confirmed the BUS was sharp
based on the measured variation.

Brightness–Darkness score: Estimating brightness or darkness (due to the presence
of shadows) can help identify distinct image properties. Here, we used the brightness
estimation algorithm proposed in [29].

Figure 7 shows the brightness and blurriness scores analysis on the BUS sequence
dataset. Specifically, we removed the BUS frames from two tails that obtained lower quality
metrics scores. We selected the range from 10 to 30 for both benign and malignant classes
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in terms of brightness score. However, we ignored samples with blurriness scores less
than 200 and greater or equal to 300. The main reason for selecting a brightness score in
the range of 10 to 30 was to avoid the artifacts in BUS images. Shadows come to a darker
contrast that may confuse the deep learning model for predicting benign and malignant
tumors. To handle this issue, we set the lower brightness limit to 10. Moreover, the higher
gain or amplification can degrade the BUS image details and could be the cause of imaging
artifacts. To overcome this challenge, we chose to exclude the BUS image with a brightness
score of more than 30. In turn, blurriness is generally caused by the motion during image
acquisition by the sonographer, or other factors may be involved in it. However, blurriness
could hinder the image properties in BUS imaging. The selected range was taken by
computing the minimum, maximum, and average values across all the samples. Based on
the curve presented in Figure 7, the highlighted peak where the majority of the BUS images
fitted in the range of 200 to 300 provides evidence for determining the optimum value. It
shows that images in this range are sharp.

Figure 7. Brightness and blurriness scores analysis on the BUS sequence dataset. Top and below
rows represent the benign and malignant classes, respectively. These plots were generated using
the Python seaborn https://seaborn.pydata.org/ (accessed on 1 April 2022) and matplotlib https:
//matplotlib.org/ (accessed on 1 April 2022) libraries.

3.3. Visual Explanation and Interpretation

This paper employed different techniques to produce visual explanations for the
proposed ConvNeXt-based radiomics system’s decisions to make them explainable. Specifi-
cally, we utilized the Grad-CAM method (i.e., gradient-weighted class activation mapping)
and presented the overall malignancy score overlaid on the BUS images. The Grad-CAM
technique employs the gradients of any target class, e.g., malignant tumor in our ConvNeXt-
based radiomics network, streaming into the last Conv layer to create a localization map
emphasizing the vital regions in the input image that participate in the prediction of the
class [30].

Assuming that we have a class c, yc, the score for this class before the softmax with
regard to the feature map activations Ak of a Conv layer, i.e., ∂yc

∂Ak , was calculated to
produce the Grad-CAM localization map Mc

Grad-CAM ∈ Ru×v, where u and v are the width
and height of the Grad-CAM localization map. The neuron importance weights βc

k were

https://seaborn.pydata.org/
https://matplotlib.org/
https://matplotlib.org/
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calculated by applying a global-average-pooling on the gradients flowing back over the
width i and height j as follows [30]:

βc
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
ij

(8)

Then, the neuron importance weights βc
k were used to produce a weighted combination

of forward activation maps as follows [30]:

Mc
Grad-CAM = ReLU

linear combination︷ ︸︸ ︷(
∑
k

βc
k Ak

)
(9)

ReLU was used to highlight the features that positively impacted the target class c.
In other words, ReLU was employed here to highlight the pixels whose intensity must be
raised to boost a differentiable activation yc.

Furthermore, we also computed the malignancy score of each BUS sequence and
overlaid it on the BUS images as shown in Figure 8.

Malignancy Score: 0.0230 Malignancy Score: 0.0651

Malignancy Score: 0.9871 Malignancy Score: 0.9902

Benign

Malignant

Figure 8. Examples of classification results using our method: (top) benign and (bottom) malignant
breast masses.

3.4. Evaluation Metrics

In this study, the performance of the proposed approach was assessed using different
evaluation metrics, namely, accuracy, precision, recall, and F1-score. These metrics can be
defined as follows [31]:

Accuracy =
TP + TN

P + N
(10)

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)
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F1-score =
TP

TP + 1
2 (FP + FN)

(13)

In these expressions, TP stands for the number of malignant BUS sequences correctly
classified as malignant; TN stands for the number of benign BUS sequences correctly
classified as benign; FP stands for the number of benign BUS sequences wrongly classified
as malignant; FN stands for the number of malignant BUS sequences wrongly classified
as benign.

3.5. Dataset

A database of 31 malignant and 28 benign BUS sequences was used to build and
evaluate the proposed CAD system, where each BUS sequence corresponded to a patient.
This dataset is part of a clinical database of ultrasonic radiofrequency strain imaging data
created by the Engineering Department of Cambridge University. The number of ultra-
sound images in the benign and malignant BUS sequences was 3911 and 5245, respectively.
It should be noted that we employed data augmentation techniques including horizontal
flipping with probability 0.5, rotating of 90 degrees, scaling with 0.2, median blurring,
and contrast-limited adaptive histogram equalization (including a clip limit equal to 4.0,
and a tile grid of size 8× 8) to increase the number of training samples. After the data
augmentation step, we generated more than thirty thousand BUS images consisting of
benign and malignant tumors.

4. Results and Discussion

In this subsection, we present and discuss the results of the experiments listed below:

• Performance analysis of the SUI CAD system based on different CNN networks and
vision transformers.

• Performance analysis of the proposed method based on BUS sequences, ConvNeXt
radiomics, and the malignancy score pooling mechanism.

The results of the proposed radiomics approach, including alternative CNN-based and
transformer-based radiomics approaches, are shown in this subsection. Table 2 presents
the performance of different deep CNN-based radiomic features extracted from a a single
BUS image to differentiate between benign and malignant tumors (i.e., SUI CAD systems).
Specifically, we employed EfficientNetV2 [32], EfficientNet-B7 [33], MobileNetV3 [34],
and ResNet-101 [12] to classify breast tumors as benign or malignant. We employed pre-
trained models and fine-tuned them with BUS data. As one can see in Table 2, MobileNetV3-
based radiomics outperforms EfficientNetV2, EfficientNet-B7, and ResNet-101. It achieves
an accuracy of 88.17%, precision of 88.60%, recall of 86.60%, and F1-score of 87.28%.
EfficientNetV2- and EfficientNet-B7-based radiomics obtain similar results with an ac-
curacy lower than 85%. ResNet-101 achieves the second-best classification results, where
it obtains an accuracy rate 2–3% higher than EfficientNetV2- and EfficientNet-B7-based
radiomics. The F1-score of MobileNetV3 is 3% higher than ResNet-101. As a result, Mo-
bileNetV3 CNN may be a proper model to predict breast tumor malignancy scores from a
single BUS image.

Table 2. Results of SUI BUS CAD systems based on different CNN networks. The best results are
highlighted in bold.

Model
Metrics

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

EfficientNetV2 [32] 83.09 85.31 79.70 81.04
EfficientNet-B7 [33] 82.30 85.94 78.24 79.71
MobileNetV3 [34] 88.17 88.60 86.48 87.28
ResNet-101 [32] 85.20 84.81 83.98 84.31
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Table 3 presents the breast tumor classification results of different vision-transformer-
based radiomic features extracted from a single BUS image. Here, vision transformer (ViT) [35],
ResMLP [36], Swin Transformer [37], and ConvNeXt [15] were employed. ConvNeXt out-
performs all other transformers in classifying breast tumors with accuracy, precision, recall,
and F1-score higher than 88%. ResMLP obtains an accuracy of 86.16%, which is 2% lower
than ConvNeXt. ViT provides an accuracy much lower than other transformers. ConvNeXt
also outperforms the results of all CNNs (EfficientNetV2, EfficientNet-B7, MobileNetV3,
and ResNet-101) mentioned in Table 2. We selected ConvNeXt to extract radiomic features
from BUS sequences to compute the malignancy score based on this analysis.

Table 3. Results of SUI BUS CAD systems based on different transformers and ConvNeXt. The best
results are highlighted in bold.

Model
Metrics

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

ViT [35] 72.95 71.76 70.44 70.86
ResMLP [36] 86.16 85.82 84.81 85.24

Swin transformer [37] 80.24 81.62 76.68 77.89
ConvNeXt [15] 88.90 88.21 88.77 88.46

Table 4 shows the results of the proposed approach, in which ConvNeXt was used to
extract radiomic features from BUS frames and predict the malignancy score from each
frame. The proposed method achieves an accuracy, precision, recall and F1-score higher
than 91%. As one can see, the proposed method outperforms all SUI BUS CAD system
discussed in Tables 2 and 3. The F1-score of the proposed approach is 4% higher than
the SUI CAD system based on ConvNeXt. We also replaced the ConvNeXt network with
MobileNetV3 (best CNN in Table 2) in the proposed method, finding that it obtains an
accuracy of 87.42%, which is much lower than that of ConvNeXt. Figure 9 shows the ROC
curve of the proposed method. As one can see, we achieve an AUC value of 0.92, which is
much higher than the MobileNetV3 (0.88).
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Figure 9. ROC curve of the proposed method.

Figure 10 visualizes the malignancy scores of the proposed method with BUS se-
quences of some patients. Given a BUS sequence fed to our method, if the malignancy
score is higher than or equal to a threshold, the tumor is classified as malignant. If the
malignancy score is lower than a threshold, the cancer is classified as benign. In our study,
a threshold of 0.5 was used. As shown in Figure 10, five benign cases (marked by red
dots) have low malignancy scores (<0.1), while four malignant cases (marked by green
dots) have malignancy scores higher than 0.85. There are some outliers: one misclassified
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BUS sequence (marked by a square). An interesting observation is the malignancy scores
of the misclassified BUS sequence are close to the threshold of 0.5. It should be noted
that the threshold used to map probabilities to class labels can also be tuned to find the
optimal value using a grid search algorithm, thus reducing the number of misclassified
BUS sequences.

Table 4. Results of the proposed approach based on BUS sequences. The best results are highlighted
in bold.

Model
Metrics

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Proposed method 91.66 93.05 92.69 92.33

MobileNetV3 87.42 88.54 88.80 88.67

Outlier

Figure 10. Illustration of patient-wise malignancy analysis.

Figure 8 shows the malignancy scores of two BUS sequences having benign tumors
(first row) and two BUS sequences having malignant tumors (second row). It should be
noted that the malignancy score ranges from 0 to 1, where a malignancy score of 0 stands
for no malignancy (i.e., benign tumors). As the malignancy score value approaches 1,
the malignancy of the tumor increases. The proposed method obtains very low malignancy
scores of 0.023 and 0.0651 for the two benign tumors. In turn, the proposed method
produces high malignancy scores for the two malignant tumors.

Figure 11 presents a visual interpretation of the proposed method using the Grad-CAM
technique as explained in Section 3.3. As one can see, the pixels that highly contribute to
the decisions of ConvNeXt (i.e., classifying tumors as benign or malignant) are highlighted
in red, while the pixels that have a very low contribution to the decisions of ConvNeXt are
highlighted in blue color. In the case of BUS images shown in Figure 11a–c, the red color in
the two heatmaps is concentrated around the region of the tumors. In turn, in Figure 11d
the red color appears in a shadow region as well as in the tumor region.

Indeed, the existence of dense breast fat and glandular tissue induces extended attenu-
ation of the sent ultrasound energy; this attenuation is additionally combined through the
inherent depth and frequency-dependent attenuation that affect waves in the ultrasonic
settings. Because of this, the ultrasound image quality is reduced by high attenuation.
This process results in a poor contrast-to-noise ratio (CNR) and SNR. This poor image
quality creates issues for a clinician to precisely diagnose and curate them. Figure 10
shows the malignancy score analysis at the patient level. Each class includes six patients.
A higher malignancy score confirms the patient’s tumor is malignant, otherwise it is benign.
Figure 12 presents a malignant sample wrongly misclassified as benign, which produced
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a low malignancy score (0.46). As we can see, this BUS image has a limited quality as
the brightness score (9.49) and the blurriness score (186) are lower than the predefined
minimum thresholds, 10 for brightness and 200 for blurriness.

(a)

(c) (d)

(b)

Figure 11. Visualization of activation maps using Grad-CAM for (a,b) benign, and (c,d) malignant
cases.

Figure 12. Malignant sample misclassified by our method.

Based on a visual inspection of BUS sequences, a few intermediate frames attained
higher scores due to better image quality. However, lower score frames have shadows,
speckle noise, brightness, darkness, and blurriness caused by the motion of the sonogra-
pher or patient during image acquisition. Hence, the BUS image quality was considered
when calculating the overall malignancy score of the input BUS sequence as explained in
Section 3.2. As a result, the proposed method achieved an accuracy and F1-score higher
than 91%.

In turn, breast tumor classification results could be improved if an efficient ultrasound
image enhancement mechanism as in [38,39] was integrated with the proposed CAD system.
Image enhancement can handle the problem mentioned above, improve the quality of BUS
images, and improve the classification rate. This point will be considered in our future work.
It should be noted that the proposed method completely works in an end-to-end manner
as it does not need any preprocessing (e.g., ROI selection). In future work, we will consider
using ROIs instead of the entire BUS image to further enhance the classification results.

5. Conclusions

This paper proposed an efficient deep-learning-based radiomics method for predicting
breast cancer malignancy from BUS sequences. The proposed method consisted of three
main components: (1) a deep ConvNeXt network to extract robust radiomic features to
predict the malignancy score of breast tumors, (2) a pooling mechanism to generate the
malignancy score of each input BUS sequence, and (3) a visual explanation step to generate
heat maps superimposed on ultrasound images that help interpret the deep learning model
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decisions. A BUS sequence dataset containing 31 malignant and 28 benign cases was used
to assess the efficacy of the proposed method. Our experiments also compared single
ultrasound image CAD systems with our method considering different CNN networks
(EfficientNetV2, EfficientNet-B7, MobileNetV3 and ResNet-101) and vision transformers
(ViT, ResMLP and Swin transformer). The proposed method outperformed all single
ultrasound image CAD systems. The proposed method achieved an accuracy and F1-score
higher than 91%. Moreover, the F1-score of the proposed approach was 4% higher than
the single ultrasound image CAD system based on ConvNeXt. We also demonstrated
that the quality of the BUS images can affect the accuracy of the malignancy prediction
models. We revealed that the proposed malignancy score pooling mechanism improved
the classification accuracy as it ignored the low quality BUS images when calculating the
final malignancy score.

Future work will be focused on validating the proposed method in another breast
cancer dataset and with ultrasound sequences of other diseases such as thyroid cancer.
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