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Abstract

Background: Systematic approaches for identifying proteins involved in different types of cancer

are needed. Experimental techniques such as microarrays are being used to characterize cancer,

but validating their results can be a laborious task. Computational approaches are used to prioritize

between genes putatively involved in cancer, usually based on further analyzing experimental data.

Results: We implemented a systematic method using the PIANA software that predicts cancer

involvement of genes by integrating heterogeneous datasets. Specifically, we produced lists of genes

likely to be involved in cancer by relying on: (i) protein-protein interactions; (ii) differential

expression data; and (iii) structural and functional properties of cancer genes. The integrative

approach that combines multiple sources of data obtained positive predictive values ranging from

23% (on a list of 811 genes) to 73% (on a list of 22 genes), outperforming the use of any of the data

sources alone. We analyze a list of 20 cancer gene predictions, finding that most of them have been

recently linked to cancer in literature.

Conclusion: Our approach to identifying and prioritizing candidate cancer genes can be used to

produce lists of genes likely to be involved in cancer. Our results suggest that differential

expression studies yielding high numbers of candidate cancer genes can be filtered using protein

interaction networks. 

Background
Tumor development results from a progressive sequence
of genetic and epigenetic alterations that promote the
malignant transformation of the cell by disrupting key
processes involved in normal growth control and tissue
homeostasis [1]. Since complex biological networks con-
trol these processes, there are many genes that, mutated,
can provide the cell with a specific aberrant capability.
Alterations in three types of genes are responsible for tum-
origenesis: oncogenes, tumor-suppressor genes, and sta-
bility genes [2]. Most oncogenes are involved in

controlling the rate of cell growth, while tumor suppressor
genes are usually negative regulators of growth or other
functions that may affect invasive and metastatic poten-
tial, such as cell adhesion and regulation of protease activ-
ity. On the other hand, stability genes control the rate of
DNA mutation, and their alteration can result in muta-
tions in oncogenes or tumor suppressor genes, thus con-
tributing to the development of cancer [3].

The completion of the human genome project and the
development of high-throughput experimental tech-
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niques have enabled new approaches for studying cancer.
For example, gene-expression profiling using microarrays
has improved the classification of some tumor types [4,5].
Moreover, data from large-scale screenings of protein-pro-
tein interactions has been used to identify interaction sub-
networks activated in cancer [6]. Finally, genome
scanning for gene copy-number alterations has detected
many loci harboring candidate cancer genes [7]. Because
of these advances, efforts to catalog all of the mutational
events that contribute to human cancer can now be envi-
sioned. For example, the Cancer Genome Atlas initiative
[8] is resequencing a substantial fraction of human genes
in order to elucidate the contribution of somatic muta-
tions to cancer development and progression. Due to the
complexity of these initiatives, methods to characterize
and prioritize gene candidates likely to be involved in can-
cer are being developed [9-12].

Protein interaction networks are a useful tool for better
understanding the biology of the cell [13-15]. Moreover,
the topology of the networks and the neighborhood of a
given protein within the network have been used to func-
tionally characterize proteins [16,17]. It has also been
observed that proteins related to a disease tend to have a
high connectivity between them [18], specifically in
inherited diseases [19,20] and ataxia [21]. Moreover, in a
recent work by Barabasi and coworkers, somatic cancer
genes (i.e., those that are not transmitted to descendants)
were found to be more likely than other genes to encode
proteins with many interaction partners (i.e., hubs) [18].

Gene expression profiling with DNA microarrays is a pow-
erful approach for identifying cancer genes. Numerous
studies have presented analyses of human cancer samples
in which they identify gene expression signatures for dif-
ferent cancer types and subtypes [22-24]. In these experi-
ments, genes are ranked according to their differential
expression in the majority of cancer samples with respect
to normal tissues, and genes above a predefined threshold
are considered as candidate genes for the type of cancer
being studied. Often, more in-depth analyses are per-
formed to evaluate the involvement of candidate genes in
the cancer, either by means of proteomics techniques
[25], real-time polymerase chain reaction (qRT-PCR)
[26], or literature search [27]. However, validating the
results of microarray experiments can be a long and costly
effort, due to the large number of candidate genes typi-
cally involved. Often, only a handful of genes of interest
are selected for experimental validation, and hundreds of
others are ignored. Moreover, due to limitations in DNA
microarray technology, higher differential expressions of
a gene do not necessarily reflect a greater likelihood of the
gene being related to cancer [28] and therefore, focusing
only on the candidate genes with the highest differential
expressions might not be the optimal procedure. Thus,

there is a need for better techniques for selecting which
genes will be analyzed in detail. Several procedures
address the issue of selecting genes related to cancer [29]
by further processing microarray data, either using more
powerful statistics [30] or integrating multiple expression
studies [31].

In order to improve the candidate gene selection process,
several works have combined gene expression with other
types of genomic data [32,33]. One popular approach is
gene set enrichment analysis, in which statistical tests are
used to identify sets of dysregulated genes with a common
biological function [34,35]. Recently, Chinnaiyan and
coworkers have combined the Molecular Concept Map
and expression signatures to profile prostate cancer pro-
gression from benign epithelium to metastatic disease
[36]. In the work of Rhodes et al. [6], instead of relying on
predefined gene annotations, they applied a human inter-
actome to genome-wide gene expression data in cancer for
identifying a potential tumor suppressor gene in the
integrin signaling pathway, and then demonstrated the
utility of protein-protein interaction data for identifying
interaction subnetworks activated in cancer. Finally, other
approaches avoid the use of high throughput data by pre-
dicting cancer genes candidates based on their sequence,
structure and functional properties [9,37].

Here, we have implemented a systematic approach for
identifying genes (and gene products) involved in cancer.
Our method produces lists of reliable candidate cancer
genes by combining (i) a list of known cancer genes [11];
(ii) protein-protein interaction data [38]; (iii) expression
information from multiple cancer studies [39]; and (iv)
probabilities derived from structural, functional and evo-
lutionary properties [37]. We begin by evaluating each
method separately and comparing their results. Next, we
present the integrative approach and evaluate its potential
for predicting cancer genes. We provide candidate cancer
genes obtained as a result of this work and assess them
using public repositories of biological information and
literature search. We conclude by discussing potential
applications of our method.

Results
We were interested in assessing different methodologies
for identifying cancer genes. Specifically, we tested the use
of (i) protein interaction networks; (ii) microarray differ-
ential expression data; (iii) structural, functional and evo-
lutionary properties of genes; and (iv) an integration of
the three previous type of data. For the evaluation, we
relied on a cancer gene list compiled from a variety of
curated lists, cancer and sarcoma reviews, and Entrez
Gene queries, followed by additional curation [11] (Mate-
rial and Methods). We refer to genes annotated as "tumor
suppressors", "oncogenes" or "stability genes" in this list
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as the known cancer genes. Moreover, we use the term
"cancer genes" to refer to genes and proteins involved in
cancer.

Predicting cancer genes based on protein interaction 

partners

We assessed the use of protein interaction networks for
predicting cancer genes. We hypothesized that proteins
whose partners have been annotated as cancer genes are
likely to be cancer genes as well: if a mutated gene is per-
turbing a pathway related to cancer (e.g. growth control),
mutations to interaction partners are also likely to perturb
the same pathway. As corollary, proteins with many inter-
actions with cancer genes should be more likely to be
involved in cancer than proteins with just one cancer gene
partner. We used the PIANA (Protein Interactions And
Network Analysis) tool [38] to build a cancer protein
interaction network, using as seeds the gene products of
the known cancer genes (Material and Methods). Thus,
the cancer protein interaction network is composed of the
known genes and their direct interaction partners. In this
network, we define the cancer linker degree (CLD) of a
protein as the number of cancer genes to which it is con-

nected, excluding the protein itself (Figure 1). We exam-
ined the relationship between the CLD of a protein and its
likelihood of being a known cancer gene, finding that that
the cancer linker degree of a protein is a good indicator of
the probability of being a cancer gene (Table 1). The sig-
nificance of this observation (Table 1) was confirmed by
both a Fisher's exact test and a permutation analysis
(Methods). The latter was performed by using a Wilcoxon
signed rank test to compare the ratio of cancer genes
among proteins with CLD ≥ threshold to the percentage of
cancer genes in 1000 random samples of N proteins with
at least one interaction in PIANA (N being the number of
proteins with CLD ≥ threshold).

Furthermore, we used the cancer linker degree of proteins
to predict cancer genes (Methods), obtaining a positive
predictive value of ~54% at sensitivity of ~10% (Figure 2).
We studied the robustness of this method to variations in
the input cancer gene list by i) randomly removing 10%,
25%, 50% and 75% of proteins from the set of known
cancer genes; and ii) using a different input cancer gene
list [40]. In the first case (Additional file 1), the removal
of 10% or 25% of the proteins did not affect the high pos-

Calculating the Cancer Linker Degree (CLD) of a proteinFigure 1
Calculating the Cancer Linker Degree (CLD) of a protein. The Cancer Linker Degree (CLD) of a protein is defined as 
the absolute number of partners of the protein that are known to be involved in cancer. The procedure followed to calculate 
the CLD of a protein consists of 3 steps: 1) setting the known cancer genes as seeds; 2) retrieving the direct interaction part-
ners for the known cancer genes; and 3) calculating the CLD of each protein (i.e. the number of known cancer genes to which 
it is connected). In the example provided, we observe that proteins with high CLD are more likely to be cancer gene products 
that proteins with low CLD.
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itive predictive value obtained when using the complete
input list. Removing 50% or 75% of input cancer genes
decreased the positive predictive value, but this remained
higher for proteins with CLD ≥ 1 than that of the average
protein from the dataset. In the second case (Additional
file 2), using a different input list of known cancer genes
obtained a positive predictive value of 10% for proteins
with CLD ≥ 1, which is significantly higher than the 6%
obtained for proteins with CLD ≥ 0 (p-value < 2.2 × 10-16).

The CLD of a protein depends on the number of interac-
tions that have been reported for the protein and thus, it
might be influenced by how much interest has been

placed on a protein by the research community. To
exclude this potential bias we calculated the cancer linker
degree of proteins i) using only interactions from high-
throughput studies (i.e yeast two hybrid and affinity puri-
fication systems); and ii) using all interactions in PIANA
except for those in the Human Protein Reference Database
[41], which is a manually curated database of interactions
extracted from the literature, with a preference towards
disease related proteins. In the first case, we observed a
decrease in positive predictive value (Additional file 3),
while in the second scenario there was a slight increase in
the positive predictive value (Additional file 4). In both
cases, there is a significant enrichment of proteins with

Table 1: Cancer gene enrichment of proteins according to their Cancer Linker Degree. The enrichment of cancer genes is shown for 

proteins with CLD ≥ 0, CLD ≥ 1 and CLD ≥ 10. The p-value of the difference between the whole data set (proteins with CLD ≥ 0) and 

proteins with CLD ≥ 1 and CLD ≥ 10 was calculated using the Fisher's exact test for count data (F) and the Wilcoxon signed rank test 

(W) on 1000 random samples.

proteins CLD ≥ 0 proteins CLD ≥ 1 p-value CLD ≥ 0 vs. 
CLD ≥ 1

proteins CLD ≥ 10 p-value CLD ≥ 0 vs. 
CLD ≥ 10

p-value CLD ≥ 1 vs. 
CLD ≥ 10

% of cancer genes 10% 15% < 2.2 × 10-16 (F)
< 2.2 × 10-16 (W)

48% < 2.2 × 10-16 (F)
< 2.2 × 10-16 (W)

< 2.2 × 10-16 (F)

Positive predictive value and Sensitivity when predicting cancer genes based on the cancer linker degree of proteinsFigure 2
Positive predictive value and Sensitivity when predicting cancer genes based on the cancer linker degree of 
proteins. The positive predictive value and sensitivity shown are for accumulative cancer linker degrees (CLD) (i.e. cancer 
linker degree 5 represents proteins with CLD ≥ 5). The average protein in the data set is represented by CLD 0.
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CLD ≥ 1 with respect to the average protein in the dataset
(p-value of 4.8 × 10-14 and p-value < 2.2 × 10-16, respec-
tively), concluding that the literature bias does not invali-
date our initial hypothesis. Besides, similarly to previous
studies [18,42], we observed that proteins with a large
number of interaction partners (i.e., hubs) are more likely
to be cancer genes than proteins with few interaction part-
ners (Additional file 5). However, using the total number
of interacting partners of a protein to predict cancer genes
performed worse than using the cancer linker degree: for
sensitivity of ~10%, the positive predictive value was
~34%.

Predicting cancer genes based on microarray data

We evaluated the use of differential expression data to pre-
dict cancer genes. We based our study on Oncomine [39]
lists of over- and under-expressed genes in 24 differential
expression studies, which we manually grouped in 12 dif-
ferent cancer types (see Material and Methods and Addi-
tional file 6). The positive predictive value was between
9–16% for all cancer types, with sensitivity ranging from
84% (for genes over- or under-expressed in at least one
cancer type) to 8% (for breast cancer) (Figure 3). In con-

trast, only 4% of human genes from our dataset were
found to be known cancer genes. We confirmed the signif-
icance of this observation by performing the Fisher's exact
test for count data and the Wilcoxon signed rank test on
the enrichment of cancer genes on 1000 random samples
of N human genes (N being the number of genes appear-
ing differentially expressed in at least X cancer types). We
also observed that genes appearing differentially
expressed in multiple cancer types are significantly more
likely to be known cancer genes than those appearing dif-
ferentially expressed in just one cancer type (Table 2). For
example, 22% of genes found differentially expressed in at
least 5 cancer types are cancer genes, compared to 8% of
genes found differentially expressed in at least one cancer
type. These results confirm the need for post-processing in
differential expression studies: microarrays detect many
cancer genes, but they are usually mixed with many non-
cancer genes.

Moreover, we studied the effect of looking at over- and
under-expressed genes by their differential expression
rank in a given experiment (Methods). For each differen-
tial expression study, we calculated the enrichment of can-

Positive predictive value and sensitivity when predicting cancer genes based on differential expression dataFigure 3
Positive predictive value and sensitivity when predicting cancer genes based on differential expression data. 
The positive predictive value and sensitivity are shown for 12 cancer types and genes over- or under-expressed in at least 1, 2 
and 5 cancer types.
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cer genes among i) the 100 most differentially expressed
genes; and ii) all differentially expressed genes. None of
the 24 experiments tested showed a significant increase in
positive predictive value when restricting the predictions
to the 100 most differentially expressed genes. These
results suggest that the number of cancer types in which a
gene is observed differentially expressed is a better strategy
for predicting cancer genes than using its differential
expression rank.

Predicting cancer genes by structural, functional and 

evolutionary properties

Cancer genes have been shown to have common struc-
tural, functional and evolutionary properties [9,37] and
therefore, the properties of a gene can be used to estimate
its probability of being a cancer gene [37]. We used the
results from the work of López-Bigas and coworkers [37]
to calculate the positive predictive value and sensitivity
when predicting cancer genes based on the structural,
functional and evolutionary properties of genes (hereaf-
ter, we refer as SF-Probabilities to the probabilities
assigned to genes in [37]). As shown on Figure 4, SF-Prob-
abilities higher or equal to 0.90 yielded a positive predic-
tive value of 21% at sensitivity of 13%, while for the
average protein in the dataset (i.e. proteins with SF-Prob-
ability ≥ 0) the positive predictive value was 8% at sensi-
tivity of 67%. Moreover, the observed greater enrichment
of cancer genes among proteins with SF-Probability ≥ 0.1
with respect to the average protein in the data set is signif-
icant (11% versus 8%, p-value of 1.1 × 10-10).

Relating the Cancer Linker Degree to differential 

expression and SF-Probability

Proteins with a high cancer linker degree tend to be differentially 

expressed in multiple cancer types

We were interested in examining the relationship between
the cancer linker degree (CLD) of a protein and the
number of cancer types in which its corresponding gene
was differentially expressed. If proteins with high CLD
tended to be differentially expressed in more cancer types
than other proteins, that would suggest an involvement of
high-CLD proteins in cancer. We observed that proteins

with high CLD are significantly more likely to be found
differentially expressed in multiple cancer types than the
average protein in the dataset (Figure 5A). For example,
proteins with CLD ≥ 1 appear differentially expressed in
an average of 2.4 cancer types, which is significantly
higher than for proteins with CLD ≥ 0 (1.96 cancer types,
p-value < 2.2 × 10-16), but significantly lower than for pro-
teins with CLD ≥ 20 (4.4 cancer types, p-value < 2.2 × 10-

16). Furthermore, known cancer genes are found over- or
under-expressed in an average of 2.8 cancer types.

Proteins with a high cancer linker degree tend to have common 

functional, structural and evolutionary properties with cancer genes

We tested the correlation between the cancer linker degree
(CLD) of proteins and their probabilities of being cancer
genes according to their structural, functional and evolu-
tionary properties (SF-Probabilities). We observed a sig-
nificant difference between the SF-Probabilities of
random proteins from the database (i.e. proteins with
CLD ≥ 0) and the SF-Probabilities of proteins with inter-
actions to cancer genes (Figure 5B). For example, we
found that proteins with CLD ≥ 1 had an average SF-Prob-
ability of 0.32, which is significantly higher than for pro-
teins with CLD ≥ 0 (SF-Probability of 0.27, p-value = 1.3
× 10-9) but significantly lower than for proteins with CLD
≥ 20 (SF-Probability of 0.51, p-value = 0.001). The lower
SF-Probability of proteins with very high CLDs is
explained by the few cases found with multiple interac-
tions to known cancer genes. These results suggest that
proteins with interactions to cancer genes show structural,
functional and evolutionary properties similar to cancer
genes.

Predicting cancer genes by integrating multiple types of 

data

We evaluated the approach that predicts cancer genes by
taking into account three different methodologies: 1) the
cancer linker degree (CLD) of proteins; 2) the number of
cancer types in which a gene appears differentially
expressed with respect to normal tissue; and 3) the prob-
ability of being a cancer gene according to structural, func-
tional and evolutionary properties (SF-Probability) [37].

Table 2: Cancer gene enrichment of proteins according to the number of cancer types in which they appear differentially expressed. 

The enrichment of cancer genes is shown for proteins differentially expressed in 1, 2 and 5 cancer types. The p-value of the difference 

between the different groups of proteins was calculated using the Fisher's exact test for count data (F) and the Wilcoxon signed rank 

test (W) on 1000 random samples.

All in dataset 1 cancer type 2 cancer types 5 cancer types

% of cancer genes 4% 8% 11% 22%

p-values p-values p-values

all vs. 1 < 2.2 × 10-16 (W) all vs. 2 < 2.2 × 10-16 (W) all vs. 5 < 2.2 × 10-16 (W)

1 vs. 2 = 2.6 × 10-11 (F) 1 vs. 2 = 2.6 × 10-11 (F)

2 vs. 5 = 2.0 × 10-13 (F)
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First, each methodology was applied independently,
obtaining three different scores for each human gene.
Next, for each possible combination of score thresholds, a
list of cancer gene candidates was produced by selecting
genes that respected the three thresholds. The positive pre-
dictive values of this integrative approach range from 23%
at sensitivity of 15% (for CLD ≥ 1, differentially expressed
in at least one cancer type and SF-Probability ≥ 0.1) to
73% at sensitivity of 1% (for CLD ≥ 15, at least 5 cancer
types and SF-Probability ≥ 0.0). Figure 6 shows the posi-
tive predictive value and sensitivity obtained when using
multiple combinations of thresholds. The two criteria that
most contribute towards obtaining high positive predic-
tive values are the CLD threshold and the number of can-
cer types in which a gene must be differentially expressed.
We also studied the difference between using the integra-
tive approach and applying the CLD method alone (Table
3), observing that the integrative approach should be used
when high CLD thresholds cannot be applied (e.g., not
enough interaction information is available). For example
(Figure 7), the positive predictive value for each type of
data used independently is (i) 34% for proteins with CLD
≥ 5; (ii) 17% for genes differentially expressed in at least 4

cancer types; and (iii) 14% for SF-Probability ≥ 0.6, while
the combined use of these three thresholds obtains a sig-
nificantly greater positive predictive value of 51% (p-val-
ues of 0.003, 1.53 × 10-11 and 5.97 × 10-13, respectively).

Cancer gene candidates

The procedure followed to predict cancer gene candidates
consists of four steps (Figure 8 and Methods): (i) using
PIANA [38] to build the protein interaction network by
using the known cancer genes as seeds; (ii) mapping dif-
ferentially expressed genes onto the network for each can-
cer type; (iii) mapping SF-Probabilities from [37] onto the
network; (iv) producing an ordered list of candidates.

We provide the complete list of human cancer gene candi-
dates for which at least one type of data indicated a rela-
tionship to cancer (Additional file 7). This list comprises
11,576 candidates, 1,040 of which scored in the three
approaches (i.e., CLD > 0, differentially expressed in at
least one type of cancer and SF-Probability > 0). We have
also produced a short list of 20 candidate cancer genes
(Table 4). Proteins in Table 4 have a cancer linker degree
(CLD) equal or greater than 10, are differentially

Positive predictive value and sensitivity when predicting cancer genes based on their probability of being a cancer gene accord-ing to structural, functional and evolutionary properties (SF-Probability)Figure 4
Positive predictive value and sensitivity when predicting cancer genes based on their probability of being a can-
cer gene according to structural, functional and evolutionary properties (SF-Probability). The positive predictive 
value and sensitivity shown are for accumulative SF-Probabilities (i.e. SF-Probability 0.7 represents genes with SF-Probability ≥ 
0.7). The average gene in the data set is represented by SF-Probability ≥ 0. SF-Probabilities were obtained from [37].
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The average number of cancer types in which genes appear differentially expressed (A) and the probability of being a cancer gene according to structural, functional and evolutionary properties (B) are plotted as a function the cancer linker degree (CLD) of the gene productsFigure 5
The average number of cancer types in which genes appear differentially expressed (A) and the probability of 
being a cancer gene according to structural, functional and evolutionary properties (B) are plotted as a func-
tion the cancer linker degree (CLD) of the gene products. A) The average number of cancer types shown are for an 
accumulative CLD (i.e. CLD 5 represents proteins with CLD ≥ 5). The average protein in the dataset is represented by CLD 0. 
Known cancer genes appear differentially expressed in an average of 2.8 cancer types. B) The average SF-Probabilities shown 
are for an accumulative CLD (i.e. CLD 5 represents proteins with CLD ≥ 5). The average protein in the dataset is represented 
by CLD 0. Known cancer genes had an average SF-Probability of 0.41.
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expressed in at least three cancer types and their SF-Prob-
ability is equal or greater than 0.7. We analyzed (Table 5)
cancer gene candidates from Table 4 based on literature
search [43] and descriptions from UniProt [44], Reactome
[45] and the Gene Ontology (GO) [46]. This analysis sug-
gests that our approach to identifying cancer genes is reli-
able: 60% of the proposed candidates have been directly
related to cancer in experimental studies described in the
literature, and an extra 25% participates in pathways
known to be implicated in cancer. For example, the spleen
tyrosine kinase (syk), predicted by the method to be a can-
cer gene, has been recently added (in a date subsequent to
the creation of our list of known cancer genes) to the
Sanger Cancer Gene Census [9]. Syk, with a cancer linker
degree of 17, found differentially expressed in 4 types of
cancer and with a SF-Probability of 0.99, is a positive
effector of BCR-stimulated responses [47] and has been
found to be involved in urinary bladder carcinoma [48]
and primary liver cancer [49]. Besides, other candidate
cancer genes have been very recently related to cancer in
the literature (e.g., mst1r, involved in breast cancer [50])
or are known to be involved in pathways implicated in
cancer (e.g. srf is a nuclear repressor of Smad3-mediated
TGF-beta signaling [51], which induces apoptosis in
numerous cell types). Finally, genes such as surb7 and
kin27 were not found to be involved in cancer according
to the literature and thus we suggest future experimental
studies to focus on evaluating their potential involvement
in cancer. Literature references for each cancer gene candi-
date found to be involved in cancer are provided as Addi-
tional file 8.

Discussion
We analyzed the use of three different criteria for predict-
ing cancer gene candidates and concluded that: (i) the
number of interaction partners of a protein that have been
previously annotated as cancer gene (i.e. the cancer linker
degree) is a good indicator of the likelihood of the protein
to be involved in cancer; (ii) using differences in gene
expression between normal tissue and cancer identifies
many known cancer genes, but many non cancer genes as
well; and (iii) probabilities based on structural, functional
and evolutionary properties of known cancer genes (i.e.
SF-Probabilities) are useful for filtering false positives
from other cancer gene prediction methods. Moreover, we
implemented and evaluated a method that integrates
these criteria to produce reliable lists of cancer gene candi-
dates, obtaining a positive predictive value of 73% when
using very restrictive thresholds. Finally, we provided lists
of cancer gene candidates and analyzed them using litera-
ture sources and information from public repositories,
showing that our predictions are reliable.

Most methods used for predicting or prioritizing cancer
gene candidates are biased towards genes that are well
annotated and/or familiar to the researcher. This leaves
unexplored many potential cancer gene candidates. How-
ever, high throughput genomic and proteomic work has
now yielded relatively unbiased, although noisy, genome-
and proteome-wide data sets. For example, expression
studies produce large lists of over- and under-expressed
genes, which are then prioritized by their differential
expression rank, usually with help of a limited number of
literature searches. Our integrative approach to finding
cancer gene candidates can be used to obtain unbiased
lists of cancer gene candidates by using the cancer linker

Table 3: Comparing the performances of the integrative approach and the Cancer Linker Degree method. Positive predictive values 

(PPV) and sensitivities are shown under nine different fixed cancer linker degrees (CLD) for a method solely based on CLD scores and 

an integrative approach which combines the CLD score with SF-Probability and the number of cancer types in which the gene appears 

differentially expressed. For all CLD thresholds above 3, the difference between the integrative approach and the CLD method alone 

is not significant. The p-value of the difference between the two different groups of cancer gene candidates was calculated using the 

Fisher's exact test.

CLD alone Integrative approach
• SF-Probability ≥ 0.3

• No. Cancer types ≥ 1

P-value

PPV Sensitivity PPV Sensitivity

CLD ≥ 1 15% 67% 26% 11% 4.2 × 10-9

CLD ≥ 2 21% 53% 28% 9% 0.005

CLD ≥ 3 26% 44% 32% 8% 0.035

CLD ≥ 4 30% 36% 34% 6% 0.194

CLD ≥ 5 34% 30% 39% 6% 0.245

CLD ≥ 10 48% 15% 43% 3% 0.451

CLD ≥ 15 56% 8% 46% 1% 0.272

CLD ≥ 20 63% 5% 58% 1% 0.799

CLD ≥ 25 68% 4% 75% 1% 0.744
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Contour maps for positive predictive value and sensitivity obtained when varying the thresholds applied by the integrative approachFigure 6
Contour maps for positive predictive value and sensitivity obtained when varying the thresholds applied by the 
integrative approach. In each of the following images, the x-axis is the SF-Probability threshold and the y-axis is the cancer 
linker degree (CLD) threshold. For a given restriction on the number of cancer types in which a gene must be differentially 
expressed in order to be considered a candidate (no restriction, at least two cancer types and at least 5 cancer types), the pos-
itive predictive value and sensitivity are provided for each combination of CLD and SF-Probability. Positive predictive values 
and sensitivities are shown using colored contour maps, from red (i.e. 0) to turquoise (i.e., 0.7 for positive predictive value and 
0.3 for sensitivity). For example, imposing a gene to be differentially expressed in at least two cancer types, with a CLD of 6 
and with an SF-Probability of 0.4, the positive predictive value is 0.4 for sensitivity of 0.05.
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degree of proteins to filter expression studies. We
observed that the low positive predictive value obtained
when using differential expression data alone (around
15% for most cancer types in our study) shows a four-fold
increase when combined with protein-protein interaction
data. We expect that further experimental study of our
proposed cancer gene candidates will find useful the
methodology presented in this work.

Separately, each of the criterion presented here for cancer
gene candidate prediction has its limitations. First, meth-
ods based on protein interaction networks are limited by
the fact that many cancers are the result of perturbations
in the regulation of genes, which is not captured by pro-
tein-protein interaction data. Second, differential expres-
sion based methods have the drawback that many
differentially expressed genes are not a cause for the cancer

but rather a consequence of it. Besides, we are mapping
expression levels of mRNA onto a network of protein
interactions. However, it is known that the mRNA expres-
sion levels do not always match the protein expression
levels [52]. Finally, methods based on structural, func-
tional and evolutionary properties are very dependent on
existing functional annotations (e.g. available GO infor-
mation for a given protein) and their predictions are more
stochastic than based on biological observations. These
limitations could be avoided by the use of types of infor-
mation such as gene regulatory networks [53] and gene
copy-number alterations [7]. Moreover, recently devel-
oped experimental techniques promise an increase in the
amount and types of data available [33], including pro-
tein post-translational modifications [54], tissue localiza-
tion [55] and protein expression in specific cancers [56].
Finally, the integrative approach is constrained by the lim-

Positive predictive value calculated for diverse overlaps of cancer gene candidatesFigure 7
Positive predictive value calculated for diverse overlaps of cancer gene candidates. The criteria applied was the fol-
lowing: (i) cancer linker degree ≥ 5; (ii) differentially expressed in at least four cancer types; and (iii) SF-Probability ≥ 0.6. The 
Venn diagram shows the total number of candidates, the number of hits (i.e. known cancer genes among the candidates) and 
the positive predictive value for overlap case. For example, the positive predictive value when solely applying an SF-Probability 
threshold of 0.6 was 14%. In contrast, when combining the SF-Probability with a cancer linker degree threshold of 5, the posi-
tive predictive value was 37% (59 hits for a total of 158 candidates).



BMC Bioinformatics 2008, 9:172 http://www.biomedcentral.com/1471-2105/9/172

Page 12 of 18

(page number not for citation purposes)

itations of each independent method. However, depend-
ing on the context of application, these limitations can be
avoided by ignoring irrelevant data: for example, SF-Prob-
abilities should not be used when searching for cancer
genes of unknown function.

Our reported performance results on the use of SF-Proba-
bilities differ markedly from the evaluation presented by
Lopez-Bigas and coworkers [37]. We attribute this differ-
ence to two factors: (i) we used a more extensive set of
known cancer genes; (ii) we used different evaluation
metrics and methods: for example, Lopez-Bigas and cow-

Table 4: Cancer gene candidates. The cancer gene candidates of this table where obtained by fixing the following thresholds: (i) cancer 

linker degree equal of higher than 10; (ii) found differentially expressed in at least three cancer types; and (iii) probability based on 

structural, functional and evolutionary properties (SF-Probability) equal of higher than 0.7.

Gene name Cancer Linker degree Number of cancer types differentially expressed SF-Probability

CDK9 11 6 0.97

GATA2 10 5 0.99

ATF2 17 6 0.94

CCNB1 13 3 0.73

CSNK2A2 22 4 0.89

PPARBP 14 5 0.99

CSK 19 5 0.90

KIN27 35 6 0.82

CUL1 12 3 0.85

DKFZP686I18166 11 6 0.99

STAT5B 20 6 0.99

MCM7 14 4 0.99

SURB7 14 4 0.74

MST1R 10 4 0.74

KHDRBS1 17 6 0.92

SYK 17 4 0.99

KDR 15 4 0.85

NME2 11 5 0.99

POLR2B 12 3 0.82

SRF 14 7 0.97

Procedure followed to predict cancer gene candidatesFigure 8
Procedure followed to predict cancer gene candidates. First, a cancer protein interaction network is built from the list 
of known cancer genes. Second, expression data from different cancer types is mapped onto the network. Third, probabilities 
of being a cancer gene based on structural, functional and evolutionary properties are retrieved for proteins in the network. 
Fourth, cancer genes are predicted based on the thresholds provided by the user for each type of data.
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orkers used a balanced dataset to evaluate their method,
whereas we considered as non-cancer gene any gene that
was not a known cancer gene. We believe that the per-
formance metrics and evaluation method used in this
work are more representative of predictions done on the
full human genome.

The methods presented here were evaluated by comparing
their cancer gene predictions with a curated list of onco-
genes, tumor suppressors and stability genes [11]. This list
of known cancer genes attempts to be as comprehensive
as possible, but two possible biases arise from it: (i) not all
methods cover the space of cancer genes to the same

extent (e.g. the model used to calculate SF-Probabilities
was trained on genes for which mutations have been caus-
ally implicated in cancer); and (ii) the method based on
protein interaction networks heavily relies on the initial
set of seed cancer genes and thus, genes isolated in the
cancer network will never be pinpointed. An alternative
approach to seeding our method with a list of known can-
cer genes is one where the seeds for building the protein
interaction network are cancer-related proteins obtained
with low-throughput experimental methods [57,58]. This
would remove the bias introduced by the input list of
known cancer genes.

Table 5: Analysis of predicted cancer genes in Table 4. Column "related to cancer" indicates whether literature [43] and information 

coming from UniProt [44], Reactome [45] and GO [46] indicate a strong involvement in cancer (++), somehow related to cancer (+) 

or not related to cancer (-). Literature references for each gene found to be involved in cancer are provided as additional file 8.

Gene name Description and Function/Pathway Related to cancer

CDK9 Cell division protein kinase 9
Regulation of progression through cell cycle

++

GATA2 Endothelial transcription factor GATA-2
Transcriptional activator which regulates endothelin-1 gene expression

+

ATF2 Cyclic AMP-dependent transcription factor ATF-2
Transcriptional activator which binds to the CRE, present in many viral and cellular promoters.

+

CCNB1 G2/mitotic-specific cyclin-B1
Essential for the control of the cell cycle at the G2/M (mitosis) transition.

++

CSNK2A2 Casein kinase II subunit alpha
Participates in Wnt signaling.

+

PPARBP Peroxisome proliferator-activated receptor-binding protein
Essential for embryogenesis. Plays a role in transcriptional coactivation

++

CSK Tyrosine-protein kinase CSK
Negative regulation of cell proliferation

++

KIN27 Protein kinase A-alpha
ATP binding and protein serine/threonine kinase activity

-

CUL1 Cullin-1
Mediates the ubiquitination of proteins involved in cell cycle progression, signal transduction and 
transcription

++

DKFZP686I18166 Hypothetical protein
ATP binding and protein kinase activity

-

STAT5B Signal transducer and activator of transcription 5B
Signal transduction and activation of transcription

++

MCM7 DNA replication licensing factor MCM7
Required for DNA replication and cell proliferation. Required for S-phase checkpoint activation upon 
UV-induced damage.

++

SURB7 Mediator of RNA polymerase II transcription subunit 21
Regulation of transcription.

-

MST1R Macrophage-stimulating protein receptor [Precursor]
Receptor for macrophage stimulating protein (MSP). Tyrosine-protein kinase activity.

++

KHDRBS1 KH domain-containing, RNA-binding, signal transduction-associated protein 1
Role in G2-M progression in the cell cycle.

++

SYK Tyrosine-protein kinase SYK
Positive effector of BCR-stimulated responses.

++

KDR Kinase insert domain receptor
Kinase activity and receptor activity.

++

NME2 Nucleoside diphosphate kinase B
Major role in the synthesis of nucleoside triphosphates other than ATP.

++

POLR2B DNA-directed RNA polymerase II 140 kDa polypeptide
DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA.

+

SRF Serum response factor
SRF is a transcription factor that binds to the serum response element (SRE)

+
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Conclusion
We showed that the integration of multiple sources of
data is more reliable for predicting cancer genes than the
use of one single criterion. For example, differential
expression studies could benefit from the use of protein-
protein interaction data to further validate their results: in
the best case scenario, combining the cancer linker degree
of a protein with differential expression data increased
from 17% to 73% the fraction of known cancer genes
within the cancer gene candidates. In conclusion, systems
capable of integrating all available sources of data are fun-
damental to the discovery of proteins involved in cancer.

Methods
Known cancer genes

We downloaded cancer genes from the Memorial Sloan
Kettering computational biology website CancerGenes
[59] as of January 2007. We collected a set of known can-
cer genes by querying the website for "oncogene", "tumor
suppressor" and "stability". This list comprised 1,256 can-
cer genes, in particular 385 oncogenes, 471 tumor sup-
pressors and 494 stability genes (several genes belonged
to more than one category).

Protein Interaction Data

We used PIANA [38] to integrate human protein interac-
tion data from DIP 2007.02.19 [60], MIPS 2007.04.03
[61], HPRD v6.01 [41], BIND 2007.04.03 [62], IntAct
2007.04.23 [63], BioGrid v2.026 [64] and MINT
2007.04.05 [65]. The integration of different sources of
interactions into a single database allowed us to work
with an extensive set of 110,457 human interactions
between 36,900 different protein sequences. This set of
human interaction data includes 24,812 interactions from
yeast two-hybrid assays, 13,256 interactions from immu-
noprecipitation methods and 11,174 interactions from
affinity chromatography methods. HPRD, a database
manually curated from literature sources contained
38,762 interactions.

PIANA represents the protein interaction data as a net-
work where the nodes are proteins and the edges interac-
tions between the proteins. In such a network, a set of
proteins linked to protein pj (ie, physically interacting
with pj) is named "partners of pj". PIANA builds the net-
work by retrieving direct interaction partners for an initial
set of seed proteins (i.e. the proteins of interest).

Expression data

We manually searched for gene expression studies
between normal tissue and cancer in Oncomine [39], a
cancer profiling database. We downloaded lists of over-
and under-expressed genes from a total of 24 Oncomine
studies, corresponding to 12 different cancer types (see
additional file 6 for the list of experiments, the cancer type

category assigned to them, and the total number of over-
and under-expressed genes in each experiment). A gene
was considered to have a significant differential expres-
sion if its Q value was lower than 0.05. Q values are
assigned in Oncomine by correcting for multiple hypoth-
esis testing the p-values calculated using Student's t-test for
two-class differential expression analyses. A detailed
description of the normalization process and statistical
tests used in Oncomine can be found in [36,39].

Probabilities of being cancer-gene based on structural and 

functional properties

We used the probabilities of being a cancer gene calcu-
lated in [37] for human genes. These probabilities were
obtained using a Bayesian classification model that scored
human genes for their likelihood of involvement in can-
cer according to structural, functional and evolutionary
properties. Specifically, Lopez-Bigas and coworkers [37]
relied on GO annotations [46] and sequence properties
such as the extent of conservation, paralogy, and the
lengths of proteins and genes. We refer to these estimated
probabilities as SF-Probabilities. 12,194 human genes
had an associated SF-Probability, 240 of which had been
used to train the Bayesian model. 706 human genes had
an SF-Probability higher than 0.95, and the SF-Probability
was lower than 0.1 for 6288 human genes. Finally, 758
genes did not have an associated protein sequence in
PIANA and thus, were not used in this work.

Genes, proteins and identifiers

We used PIANA [38] to map expression data and SF-Prob-
abilities onto the interaction network, in particular gene
symbols coming from Oncomine expression studies and
Ensembl identifiers coming from [37]. Throughout the
text, we use the term 'cancer gene' to refer to any gene or
protein involved in cancer.

Evaluating the use of protein interaction networks to 

predict cancer genes

The cancer protein interaction network was built using
PIANA [38] by setting the list of known cancer genes as
seeds (see "protein interaction data", Material and Meth-
ods). In this network, we define the cancer linker degree
(CLD) of a protein as the number of cancer genes to which
it is directly connected (Figure 1). The CLD was calculated
for each protein and proteins were binned by their CLDs.
In this context, and given a CLD threshold of N, positives
are proteins with CLD ≥ N. True positives are known can-
cer genes among positives. False negatives are known can-
cer genes whose CLD is lower than N. The positive
predictive value is defined as the ratio between true posi-
tives and positives. Sensitivity is the ratio between true
positives and the sum of false negatives and true positives.
Positive predictive values and sensitivities are shown in
Figure 2 for CLD thresholds with at least 5 positives.
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Evaluating the use of differential expression data to 

predict cancer genes

We calculated how many over- or under-expressed genes
were known cancer genes for each cancer type described
on Additional file 6. Moreover, we tested how many genes
differentially expressed in at least 1–5 cancer types were
known cancer genes. In this context, any differentially
expressed gene is considered a positive. Among positives,
we define as true positives those that are known cancer
genes. False negatives are known cancer genes not found
differentially expressed. Besides, we evaluated the predic-
tion of cancer genes based on the differential expression
rank of the cancer gene candidates in the lists of over- and
under-expressed genes from Oncomine [39]. In particular,
we analyzed the enrichment of cancer genes among the 50
most differentially expressed genes in the lists of over- and
under-expressed genes, and compared it to the enrich-
ment of cancer genes among all differentially expressed
genes.

Evaluating the use of structural, functional and 

evolutionary properties to predict cancer genes

At any given SF-Probability threshold, positives are pro-
teins with a SF-Probability above or equal to that thresh-
old. Among positives, true positives are those that are
known cancer genes. False negatives are known cancer
genes not found above the SF-Probability threshold.
Genes used for training the model in [37] were discarded
for the evaluation.

Protein functions, pathways and literature

We manually analyzed cancer gene predictions from Table
4 by examining (i) the protein function and description as
defined in UniProt [44]; (ii) the pathways in which the
protein participated according to Reactome [45]; (iii) the
molecular function and biological process as classified in
the Gene Ontology (GO) [46]; and (iv) published articles
retrieved using iHop [43].

Statistical tests

The assessment on whether two binomial samples of
observations are significantly different was calculated
using Fisher's exact test on a 2 × 2 contingency table com-
paring the number of cancer genes and non-cancer genes
between two groups (e.g. CLD ≥ 10 versus CLD ≥ 1). The
assessment on whether a distribution of averages on the
number of cancer genes calculated on random samples is
significantly different from a given ratio of cancer genes
was calculated using the Wilcoxon signed rank test (e.g.
ratio of cancer genes found on the 5537 proteins with
CLD ≥ 1 versus 1000 averages extracted from random
samples of size 5537). The assessment on whether two
non-Gaussian samples of observations (SF-Probabilities
or number of cancer types grouped by proteins with the
same CLD) come from the same distribution was calcu-

lated using the Mann-Whitney U two-sided test. Differ-
ences in the observations were considered significant for
p-values lower than 0.05. All tests were performed using
the implementation provided by R [66].

Availability and Requirements
We provide the complete list of human genes with the cor-
responding cancer gene prediction scores according to
each type of data at http://sbi.imim.es/piana/
scored_genes.tab.txt.
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