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Genetic association mapping produces statistical links 
between phenotypes and genomic regions, but identifying 
causal variants remains difficult. Whole-genome sequencing 
(WGS) can help by providing complete knowledge of all 
genetic variants, but it is financially prohibitive for well-
powered GWAS studies. We performed mapping of expression 
quantitative trait loci (eQTLs) with WGS and RNA-seq, and 
found that lead eQTL variants called with WGS were more 
likely to be causal. Through simulations, we derived properties 
of causal variants and used them to develop a method for 
identifying likely causal SNPs. We estimated that 25–70% 
of causal variants were located in open-chromatin regions, 
depending on the tissue and experiment. Finally, we identified 
a set of high-confidence causal variants and showed that these 
were more enriched in GWAS associations than other eQTLs. 
Of those, we found 65 associations with GWAS traits and 
provide examples in which genes implicated by expression are 
functionally validated as being relevant for complex traits.

Genome-wide association studies (GWAS) have uncovered thousands 

of genetic associations between regions of the genome and complex 

traits1, but moving from the associations to identifying the underlying 

mechanisms has proven complicated2. Statistical associations between 

traits and genomic regions indicate a variant with a causal effect on 

the trait, because reverse causation or unmeasured confounders mod-

ifying DNA can be ruled out (i.e., causal effects are interpreted in the 

probabilistic sense, in which a direct intervention modifying one fac-

tor has consequences on another). A first step for understanding the 

mechanism would be to identify the exact variant, because knowing 

the exact localization would allow for exploration of the transcrip-

tion-factor-binding sites and regulatory elements affected. However, 

such efforts are complicated because most loci tested in GWAS are 

not directly measured but instead are imperfectly imputed3. Although 

WGS does directly ascertain all genotype calls, in spite of falling costs, 

it remains very expensive to perform for the sample sizes used in 

modern GWAS (Supplementary Table 1). In contrast, eQTL studies 

linking variants and gene expression have discovered thousands of 

associations by using several hundreds of samples, a scale at which 

collecting WGS data is feasible4.

Here, we describe analyses combining two previously published 

data sets derived from individuals in the TwinsUK cohort: RNA-seq 

from four tissues5,6 and WGS from the UK10K project7. (Previously, 

gene expression quantified with microarrays8 has been combined with 

the same WGS data set to corroborate specific GWAS associations9,10.)  

We explored the properties of causal variants by using simulations, 

and we propose the ‘causal-variant evidence mapping using nonpara-

metric resampling’ (CaVEMaN) method to estimate the probability 

that a variant most associated with the expression trait is causal for 

that association. We successfully used this method to produce a robust 

set of likely causal SNPs. Hence, CaVEMaN may provide an important 

resource for developing methods to call personalized regulatory vari-

ants from WGS and sequence annotations.

With WGS, genotypes are directly measured at far more sites than 

are available on current genotyping chip arrays (although sites on a 

genotyping chip are typically measured with more accuracy). The 

1000 Genomes Project has estimated that >99% of SNPs are observed 

with minor allele frequencies >1%. For low-coverage sequencing and 

genotyping arrays, imputation methods are frequently used to impute 

better-quality calls at sites with no coverage on the arrays and low or 

no coverage with sequence data. The degree, if any, to which sequence 

information at more sites can decrease imputation noise and increase 

power to map eQTLs is currently unknown. For a simple comparison, 

we mapped independent eQTLs within 1 Mb of the transcription 

start site for protein-coding genes and long noncoding RNAs in four 

tissues (fat, lymphoblastoid cell lines (LCLs), skin, and whole blood), 

using individuals for whom expression, sequence and genotype array 

data were all available (n from 242 (whole blood) to 506 (LCLs)). 

We identified 27,659 independent autosomal eQTLs affecting 11,865 

genes by using WGS (8,690,715 variants), and 26,351 affecting 11,642 

genes by using genotypes called from arrays and imputed into the 
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1000 Genomes Project Phase 1 reference panel (6,263,243 variants) 

(Fig. 1; analysis of all individuals with expression and WGS data (n 

from 246 to 523) and including the X chromosome identified 28,141 

eQTLs affecting 12,243 genes). This result corresponded to only a 

3.7% increase in discovered eQTLs by using WGS. Given that the 

cost of collecting the data is at least tenfold higher with WGS, this 

procedure does not currently seem worthwhile. This demonstrates 

the ability of imputation approaches to accurately assay common 

variation, particularly because the denser genotyping arrays and 

larger reference panels now available would decrease and possibly 

even remove this difference (more details on imputation accuracy in 

Online Methods).

We frequently observed that the lead eQTL variant (LEV, the vari-

ant most associated with the trait) differs between the two data sets. 

Because genotypic uncertainty should be lower for WGS, we presumed 

that the WGS LEVs should be the causal variant more frequently 

than LEVs from genotype arrays. To test this hypothesis, we searched 

for enrichment of WGS-derived LEVs relative to array-genotype 

-derived LEVs in biochemically active regions of the genome. Indeed, 

for 30 out of 31 experiments carried out by the Roadmap Epigenomics 

Consortium11 in relevant tissues, there was significant enrichment of 

sequence LEVs compared with genotype LEVs in DNase I–hypersen-

sitive sites (DHSs) (odds ratio 1.17–1.40; Fig. 2). From this result, we 

inferred that the LEVs called with WGS are more likely to be causal 

variants.

To better understand the properties of causal variants, we simu-

lated expression data sets in which the causal variant was known and 

whose effect size, distance to the transcription start site, and minor 

allele frequency were matched to those of the LEVs from the original 

eQTL mapping with sequence genotypes. Repeating the eQTL map-

ping on these simulated data sets, we found that the causal variant 

was the LEV in 45% of cases. This number was consistent across tis-

sues, despite the sample size and power to map eQTLs being much 

lower for whole blood (Supplementary Fig. 1). This number was also 

similar to that obtained from the analysis of the Geuvadis data (55%) 

through a different methodology4. We also observed a rapid decline 

for lower-ranked candidate variants: the tenth most associated SNP 

was causal in only 1% of cases.

Our simulations showed that, across all genes, the LEV was a strong 

candidate for the causal variant. However, for specific LEVs, causal-

ity depends on the linkage-disequilibrium structure around the true 

causal variant and phenotypic uncertainty in expression of the par-

ticular gene. For these reasons, we developed the CaVEMaN method, 

which uses bootstrap methods similar to those previously proposed 

by others12,13 to estimate the probability that the LEV is the causal 

variant (details in Online Methods).

We applied the CaVEMaN method to all four tissues and the 

Geuvadis LCL RNA-seq data (n = 445; results in Supplementary Data 

Set 1). The distributions of probabilities of LEVs being causal were 

similar across tissues and studies (Fig. 3). For 7.5% of the eQTLs, the 

LEV had P >0.8 of being the causal variant; we refer to those as high-

confidence causal variants (HCCVs). For comparison, we applied 

the CAVIAR method14 to the largest data set (TwinsUK LCLs) and 

applied dap-g15 to simulated data (details in Online Methods).

To understand more about the relationship between causal reg-

ulatory variation and active genomic regions found by chromatin 

immunoprecipitation coupled with DNA sequencing (ChIP–seq) in 

single individuals, we integrated our causal probabilities with DHSs 

from the Roadmap Epigenomics Consortium. We observed a simple 

linear relationship between the causal probability of the LEV and 

the probability of the LEV being located in a DHS (Fig. 4) (although 

low-probability blood eQTLs (P <0.25) were found less often in DHSs 

than expected by the linear model, possibly because these LEVs were 

less reliable because of the smaller sample size). We exploited the 

linear relationship to estimate the proportion of regulatory variants 
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Figure 1 eQTL discovery with different genotyping technologies. Number 

of autosomal eQTLs discovered in each tissue when genotype information 

is provided by arrays imputed into a reference panel (genotype) and by 

WGS (sequence). There is a modest (3.7%) increase in the total number 

of eQTLs discovered with WGS over all tissues.
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Figure 2 Relative enrichment in eQTLs discovered with different 

genotyping technologies in functional regions. Odds ratios and P values 

for enrichment (two-tailed Fisher’s exact test) of LEVs called from 

sequences located in DHSs11 relative to LEVs called from array-derived 

genotypes. A total of 31 experiments related to the tissue from which 

RNA-seq data were collected were analyzed. The code given relates to the 

Roadmap Epigenomics code; Supplementary Table 2 shows the original 

experiments. All but enrichment of skin eQTLs in DHSs assayed in NHDF-

Ad adult dermal fibroblast primary cells were Bonferroni significant (two-

tailed Fisher’s test, P <0.05).
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with a causal probability of 1 that were located within DHSs identi-

fied by particular experiments. For all tissues except blood, only a 

minority of regulatory variants were within DHSs called by specific 

experiments (Fig. 5). Blood eQTLs, discovered in a smaller sample 

size than those in the other tissues, had larger effect sizes and thus 

were more likely to affect promoter activity, thus providing a possible 

explanation for the observed greater enrichment. If CaVEMaN were 

applied to larger eQTL data sets with the power to discover eQTLs 

with more subtle effects, the proportion of causal regulatory variants 

in DHSs might possibly be even lower, thus implying limited utility 

of regulatory annotations for interpretation of enhancer and weaker 

regulatory variants.

It is widely known that associations with whole-organism traits, as 

discovered by GWAS, are enriched in eQTLs16; by defining a set of 

eQTLs for which the causal variant is known with high probability, 

these eQTLs may show greater enrichment (a shared GWAS–eQTL 

signal would not be diluted by linkage). In addition, by providing 

both a mediating gene and a variant causative for the expression sig-

nal, these results may provide a more mechanistic understanding of 

GWAS signal. We extracted P values for association for all of the 

LEVs from 16 GWAS studies with publicly available summary sta-

tistics (Online Methods) and observed greater enrichment of small 

P values for HCCVs compared with all other eQTLs (proportion of 

alternative hypotheses (π1) = 16.2 compared with π1 = 14.0, esti-

mated with qvalue17). We also observed greater enrichment when 

considering the proportion of shared signals between GWAS asso-

ciations with P < 5 × 10−8 listed in the National Human Genome 

Research Institute (NHGRI)–European Bioinformatics Institute (EBI) 

Catalog and eQTLs located in the same recombination hotspot (16.0% 

of proximal HCCVs and GWAS associations shared, and 2.49% for 

all other eQTLs, as estimated with the regulatory trait concordance 

method18,19 (RTC)). We also found Bonferroni-significant GWAS 

associations between 53 HCCVs and 65 GWAS traits (P < 3 × 10−6; 

Fig. 6 and Supplementary Data Set 2). Applying the coloc method 

to test whether the eQTL and GWAS trait were affected by the same 

causal variant20, we observed 18 cases showing strong evidence of 

common genetic effects (coloc probability >0.95) and 29 cases with 

at least moderate evidence (coloc probability >0.7).

Given these examples of variants with high-confidence causal 

effects on expression and statistical associations with GWAS traits, 

functional evidence connecting the expression of the gene with the 

trait would also implicate a causal link between the variant and trait. 

For example, an HCCV (rs10274367; all rs IDs are as defined in 

dbSNP, build 148, GRCh37) associated with GPER1 was also associ-

ated with levels of high-density-lipoprotein cholesterol (coloc esti-

mate of shared causal variant = 0.999). Female knockout mice for the 

gene have lower high-density-lipoprotein levels than those in wild-

type21. We also found rs1805081 to be a HCCV for NPC1, and it has 

been found to be the lead variant associated with body mass index 

in a large GWAS study22 (coloc probability = 0.722). Heterozygous 

mouse models (Npc1+/−), in which the gene is expressed at half nor-

mal levels, exhibit high weight gain when fed high-fat diets but not 

low-fat diets23,24, and higher levels of NPC1 in human adipose tissue 

have been found to normalize after bariatric surgery and behavioral 

modification25. In this example, the expression of NPC1 is modified 

by rs1805081 and is hypothesized to be a response to changes in body 

mass index. Expression changes in NPC1 appear to be part of a com-

pensatory mechanism to modify weight gain due to dietary excess and 

result from diet–genotype interactions. Finally, we observed rs4702 

as an HCCV for the FURIN gene in our analysis, and it has been 

found to be the lead variant in a GWAS study of schizophrenia26, 

coloc probability = 0.999). Altering expression of FURIN produces 

neuroanatomical deficits in zebrafish and abnormal neural migration 

in human induced pluripotent stem cells27.

This study produced a method for identifying causal variants 

influencing gene expression. Notably, association of an HCCV with 

a GWAS trait does not necessarily mean that both share a common 

causal variant or that the causal mechanism acts in the tissue under 

study. However, combining fine-mapping by using CaVEMaN with 

colocalization methods that formally test whether genetic variants 

affecting multiple traits are shared18,20 and methods that aim to predict  
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LCLs Skin

Blood Fat Geuvadis LCLs

0.
25

0.
50

0.
75

0.
25

0.
50

0.
75

0.
25

0.
50

0.
75

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

Causal probability

P
ro

p
o
rt

io
n
 i
n
 D

H
S

s

Figure 4 Proportion of LEVs in DHS regions, plotted against causal 

probability. LEVs were divided into ten equally sized groups on the basis 

of causal probability, and the proportion in DHS regions was calculated 

for each group and each experiment. The complete line represents 

the median result across experiments; when there was more than one 

experiment for a given tissue, the dotted lines show the maximum 

and minimum across experiments. We observed a linear relationship 

between the two probabilities. A full list of experiments can be found in 

Supplementary Table 2.
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causal tissues19,28 may pinpoint precise variants, genes, and tissues 

underlying GWAS traits. In addition, methods for fine-mapping and 

for testing for colocalization share common features. Similarly to how 

a fine-mapping method (CAVIAR14) has been extended to test for 

colocalization (eCaviar28), CaVEMaN could also be extended to test 

for colocalization.

In summary, we produced a method to estimate the probability 

that a lead eQTL variant is the causal variant. We used this method 

to estimate the effectiveness of ChIP–seq experiments from a single 

individual in predicting regions containing regulatory variation, as 

well as to suggest variants that might be causal for GWAS associations. 

This method could also be applied to GWAS data to identify candidate 

causal variants for whole-organism traits. Pinpointing the causal vari-

ant in such studies should facilitate the integration of these association 

signals with mechanistic regulatory interactions and likely upstream 

regulators, and should also allow for the development of interpretation  

methods from genome sequence alone, after a large number of  

representative causal variants have been discovered.

URLs. Early Growth Genetics (EGG) Consortium, http://www.egg-

consortium.org/; NHGRI–EBI GWAS Catalog, https://www.ebi.ac.uk/

gwas/; 1000 Genomes Project, http://www.internationalgenome.org/

data/; National Center for Biotechnology Information (NCBI) ftp site, 

ftp://ftp.ncbi.nlm.nih.gov/.

METHODS
Methods, including statements of data availability and any associated 

accession codes and references, are available in the online version of 

the paper.

Note: Any Supplementary Information and Source Data files are available in the online 

version of the paper.

ACKNOWLEDGMENTS

We thank N. Lykoskoufis for assistance with the enrichment analysis. T.S. is 
supported as an NIHR Senior Research Fellow. This project was supported by a 
Helse Sør-Øst grant (2011060) to A.B. and an MRC Project Grant (L01999X/1) 
to K.S., and by grants from the NIH-NIMH (NIH-R01MH101814-GTEx), an 
IMI-Joint Undertaking of the European Commission (UE7-DIRECT-115317-1), 
the European Commission (UE7-EUROBATS-259749), the European Research 
Council (UE7-POPRNASEQ-260927), the Louis Jeantet Foundation, the  
Swiss National Science Foundation (31003A-149984 and 31003A-170096), and 
SystemsX (2012/201-SysGenetix) to E.T.D. The TwinsUK study was funded by 
the Wellcome Trust; European Community’s Seventh Framework Programme 
(FP7/2007-2013) and the Medical Research Council. The study also received 
support from the National Institute for Health Research (NIHR)-funded 
BioResource, Clinical Research Facility and Biomedical Research Centre, based at 
Guy’s and St Thomas’ NHS Foundation Trust, in partnership with King’s College 
London. SNP genotyping was performed by The Wellcome Trust Sanger Institute 
and National Eye Institute via NIH-CIDR. This study used data generated by the 
UK10K Consortium. Funding for UK10K was provided by the Wellcome Trust 
under award WT091310. A full list of the investigators who contributed to the 
generation of the UK10K data is available at http://www.UK10K.org/. This research 
was supported by grants from the European Research Council. Computation was 
performed at the Vital-IT Center (http://www.vital-it.ch/) for high-performance 
computing of the SIB Swiss Institute of Bioinformatics.

AUTHOR CONTRIBUTIONS

A.A.B. and E.T.D. designed the study. A.A.B. ran the analyses. A.A.B., A.V., and 
E.T.D. interpreted the results. A.A.B., A.V., and E.T.D. wrote the manuscript. O.D. 
provided methodological suggestions. K.S.S. and T.D.S. contributed data.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/

reprints/index.html. Publisher’s note: Springer Nature remains neutral with regard to 

jurisdictional claims in published maps and institutional affiliations.

1. Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait 

associations. Nucleic Acids Res. 42, D1001–D1006 (2014).

2. Spain, S.L. & Barrett, J.C. Strategies for fine-mapping complex traits. Hum. Mol. 

Genet. 24, R111–R119 (2015).

3. Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. 

Nat. Rev. Genet. 11, 499–511 (2010).

4. Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional 

variation in humans. Nature 501, 506–511 (2013).

5. Brown, A.A. et al. Genetic interactions affecting human gene expression identified 

by variance association mapping. eLife 3, e01381 (2014).

6. Buil, A. et al. Gene-gene and gene-environment interactions detected by 

transcriptome sequence analysis in twins. Nat. Genet. 47, 88–91 (2015).

7. UK10K Consortium. et al. The UK10K project identifies rare variants in health and 

disease. Nature 526, 82–90 (2015).

8. Grundberg, E. et al. Mapping cis- and trans-regulatory effects across multiple tissues 

in twins. Nat. Genet. 44, 1084–1089 (2012).

9. Timpson, N.J. et al. A rare variant in APOC3 is associated with plasma triglyceride 

and VLDL levels in Europeans. Nat. Commun. 5, 4871 (2014).

0.0

0.2

0.4

0.6

E06
2

E03
4

E03
3

E03
7

E04
8

E03
8

E04
7

E02
9

E03
2

E04
6

E03
0

E11
6

E11
6

E05
5

E05
6

E05
9

E06
1

E05
7

E05
8

E12
6

E12
7

E02
5

E02
3

E06
3

Experiment

P
ro

p
o
rt

io
n
 o

f 
c
a
u
s
a
l 
v
a
ri
a
n
ts

 i
n
 D

H
S

s

Blood Fat LCLs Skin Geuvadis LCLs
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Figure 6 HCCVs statistically associated with GWAS traits. Numbers of 

Bonferroni-significant associations between HCCVs (causal probability 

>0.8) and GWAS traits, divided by tissue type. HCCVs showed more 

statistical associations with GWAS traits than other eQTLs, because 

cosegregating signals are not weakened by imperfectly captured markers.
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ONLINE METHODS
TwinsUK data. Expression and genotype data from arrays. RPKM expression 

quantification and array genotype data used in this paper have been previ-

ously analyzed5,6, and the production of these data is described in full in the 

Supplementary Note.

Genotypes called from sequencing. The vcf files produced by the UK10K 

Consortium7 were downloaded from the European Genome-Phenome 

Archive. When one monozygotic twin in the sample had been sequenced, the 

same data were used for the genetically identical sibling. Of 856 individuals 

with expression, 552 had available sequence data (246 individuals had expres-

sion quantified in whole blood, 505 in adipose tissue, 523 in LCLs and 471 in 

skin). For multiallelic variants, dosage was calculated as two times the number 

of copies of the most common allele. Variants were filtered if the major allele 

had a frequency >0.99.

Ethics statement. The St. Thomas’ Research Ethics Committee  

(REC) approved (on 20 September 2007) the protocol for dissemination of 

data, including DNA, with REC reference number RE04/015. On 12 March 

2008, the REC confirmed that this approval extended to expression data. 

Volunteers provided informed consent and signed an approved consent form 

before the biopsy procedure. In addition, before the biopsy date, volunteers 

were mailed an appropriate detailed information sheet regarding the research 

project and biopsy procedure. Consent to link the RNA-seq data with the WGS 

data was approved by the TwinsUK Resource Executive Committee (TREC) 

on 22 April 2015.

Geuvadis data. BAM files for RNA-seq were downloaded from EBI 

ArrayExpress (accession code E-GEUV-3). The data were mapped to the 

GRCh37 reference genome29 with GEM (version 1.7.1)30, and protein-coding  

and long noncoding RNAs were quantified with GENCODE v19 annotations31. 

The population group was regressed out of RPKM values by using a linear 

model; values were centered and scaled to mean 0, variance 1; and 50 princi-

pal components were removed. Genotype vcf files from phase 3 of the 1000 

Genomes Project32 were downloaded from the 1000 Genomes Project website 

(URLs). In non-pseudo-autosomal regions of the X chromosome, male dosage 

was calculated as two times the number of copies of the alternative allele. A 

minor-allele-frequency cutoff of 0.01 was applied.

eQTL mapping. eQTLs were mapped with fastQTL, which tests for asso-

ciation between expression and genotype with a two-tailed Wald test33. To 

discover multiple independent eQTLs, a stepwise regression procedure was 

applied. First, for each tissue, fastQTL was run with 10,000 permutations to 

discover a set of eGenes (FDR <0.01). Then, the maximum beta-adjusted P 

value (with correction for multiple testing across SNPs) over these genes was 

taken as the gene-level threshold. The next stage proceeded iteratively for each 

gene. At each iteration, a cis scan of the window was performed, using 10,000 

permutations and correcting for all previously discovered SNPs. If the beta-

adjusted P value for the LEV was not significant at the gene-level threshold, 

the procedure moved on to the backward step. If this P value was significant, 

the LEV was added to the list of discovered eQTLs as an independent signal, 

and the forward step proceeded to the next iteration.

After the forward stage was completed for a given gene, a list of associ-

ated SNPs was produced, which we refer to as forward signals. The backward 

stage consisted of testing each forward signal separately, controlling for all 

other discovered signals. For each forward signal, we ran a cis scan over all 

variants in the window by using fastQTL, fitting all other discovered signals 

as covariates. If no SNP was significant at the gene-level threshold, the signal 

being tested was dropped; otherwise, the LEV from the scan was chosen as the 

variant that best represented the signal in the full model.

Properties of LEVs estimated with sequence and genotyping arrays. We 

investigated the differences between LEVs identified with sequence data and 

data from genotyping arrays to better understand the slight increase in power 

that we observed when using sequence data. The minor allele frequency of 

eQTLs called with sequence data was slightly lower than those identified with 

genotype data (median minor allele frequency of 26.0% compared with 27.4%; 

two-tailed Mann–Whitney U-test P = 5.52 × 10−21; Supplementary Fig. 2). 

We found that 3,383 out of 22,656 LEVs called on the basis of sequence were 

removed from the array data, owing to INFO scores <0.8; most of these LEVs 

failed imputation criteria based on the HumanHap300 array (3,334 failed on 

this array, 2,290 failed on the HumanHap610Q, and 2,241 failed on both; 

Supplementary Fig. 3). Finally, for the remaining 19,273 sequence LEVs for 

which the genotype imputation passed the quality filters, we observed good 

agreement between calls made with the two technologies, with a median pro-

portion of different calls of only 0.94%. However, a small minority of LEVs 

(0.93%) showed a larger discrepancy between the two call sets, with more than 

10% of individuals showing differences. Together, these results suggested that 

both genotyping arrays with more SNPs and larger reference panels that enu-

merate more haplotypes would further decrease the power differences between 

studies using sequencing and those using genotyping arrays.

Enrichment analysis. Bed files listing DHSs, produced by the Roadmap 

Epigenomics Consortium11, were downloaded from the NCBI ftp site (URLs). 

Experiments were linked to tissues for which RNA-seq was available, as shown 

in Supplementary Table 2. Over each ChIP–seq/RNA-seq combination, the 

odds ratio for enrichment was calculated by using the number of LEVs that 

were called on the basis of sequence or array-based genotypes and located 

within regions called in the experiment and the total numbers of eQTLs. A 

two-tailed Fisher’s exact test was performed to test the hypothesis that equal 

proportions of sequence and genotype LEVs were located in these regions.

Simulations. For all discovered eQTLs, the LEV for association was identified, 

and its minor allele frequency and distance to the transcription start site were 

calculated. Beta and sigma coefficients from a regression of expression on the 

LEV were also estimated. Then, a matched SNP was chosen with a distance to 

the transcription start site of a gene within 1 kb of the original and minor allele 

frequency within 0.025. Simulated expression was produced by multiplying 

the SNP genotype by beta and adding a random normally distributed term 

with a standard error of sigma. Five simulated data sets were produced for 

each TwinsUK tissue; eQTL mapping was applied to each during searching 

for only primary eQTLs; and the rank of the nominal P value for the causal 

variant was collected.

CaVEMaN. A frequentist definition of causal probability. Several methods have 

been proposed that use Bayesian methodologies to estimate the probability 

that a variant is causal for an effect on expression, combining prior distribu-

tions with likelihoods to estimate posterior probabilities15,34,35. We, however, 

used a frequentist definition of the probability of being causal. Causal prob-

abilities were assigned to LEVs with the following property: if an eQTL was 

sampled randomly from the set of all eQTLs having a causal probability equal 

to a number x, the probability that a causal variant was chosen was equal to 

x. In this way, the results match the intuitive understanding of what a causal 

probability is: if a LEV is chosen at random, the probability that a causal variant 

will be chosen is equal to the estimate from CaVEMaN.

Learning parameter estimates from simulations. First, we used simulations 

in which a specific variant was chosen to act as the causal variant to estimate 

the probability that the causal variant would be the ith-ranked SNP in eQTL 

mapping. To do so, we calculated the proportion of times that this phenom-

enon occurred across all tissues and simulations (this quantity is denoted pi; 

Supplementary Fig. 1). Because CaVEMaN focuses on the top ten ranked 

variants from an eQTL analysis, pi values, with i from 1 to 10, were normal-

ized to sum up to 1.

Multiple variants affecting expression of one gene. Previous fine-mapping 

approaches can be categorized into two classes: those that assume that only 

one genetic signal affects the phenotype34 and those that map multiple genetic 

signals simultaneously15,35. CaVEMaN takes a different approach, in that the 

procedure is separated into two steps: first, a stepwise regression approach is 

used to estimate the number of eQTLs affecting the expression of the gene, 

and then each independent eQTL is mapped separately. The advantage of this 

method is that it provides a well-grounded statistical methodology for answer-

ing questions regarding multiple independent variables affecting expression 

and for addressing issues of multiple testing and significance.

After a set of eGenes and the independent eQTLs affecting them were  

identified, we created new ‘single signal’ expression phenotypes. For  

each eQTL, these were made by regressing out all other eQTLs discovered 
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for the gene, thus producing an expression phenotype reflecting the signal  

from only one eQTL.

Calculating the CaVEMaN score. This new matrix of expression data was 

sampled with replacement 10,000 times to create 10,000 new data sets of the 

same size. A cis eQTL mapping testing association using a two-tailed test for 

significant correlation was run on each of these data sets, and the proportion 

of times that a given SNP was ranked i, with i from 1 to 10, was calculated 

(denoted Fi, an estimate of the probability that the SNP would be the rank 

ith most associated SNP). The CaVEMaN score was defined as Σi i ip F=1
10 ; i.e., 

the sum of the product of the probability that the SNP was ranked i in an 

eQTL analysis with the probability that the ith-ranked SNP was causal for 

the association.

Calibrating CaVEMaN score for LEVs by using simulation. Finally, we fur-

ther exploited the simulations to calibrate the CaVEMaN score of the LEV. 

CaVEMaN was run on all simulated data. Then, across all simulated data sets 

(with blood removed because it was an outlier resulting in less conservative 

estimates of causal probabilities), we divided the CaVEMaN scores of the LEVs 

into 20 quantiles. Within each quantile, we calculated the proportion of times 

that the lead SNP was the causal SNP and then drew a monotonically increas-

ing smooth spline from the origin, through the 20 quantiles, to the point (1, 1),  

by using the gsl interpolate functions with the Steffen method (gsl-2.1; 

Supplementary Fig. 4). This function allowed us to map the CaVEMaN score 

of the lead SNP onto causal probabilities, and we applied this function to the 

CaVEMaN scores of the LEV to estimate their causal probabilities.

Validating the method with simulations in Geuvadis data. The CaVEMaN 

method uses parameters estimated from simulations based on UK10K expres-

sion data (primarily the distribution of ranks of causal eQTLs and the rela-

tionship between the CaVEMaN score and causal probability); hence, these 

simulations cannot later be used to validate the CaVEMaN estimates. We ran 

further simulations using the Geuvadis data to demonstrate that the estimates 

of the causal probability for the LEVs were well calibrated when parameters 

were estimated separately from the analyzed data set. We ran a total of five 

simulations, again using effect size and residual variance estimated from 

the original data. We plotted binned estimates of the estimated causal prob-

abilities against the proportion of times that the LEV was the causal variant 

(Supplementary Fig. 5) and observed good agreement between our estimates 

and the true causal probabilities for these bins: the minimum, median, and 

maximum difference between the estimates and the true values were 0.0056, 

0.036, and 0.071, respectively.

In addition, we ran a simulation to test the behavior of the model when 

there were weaker eQTL effects that were not detected by the original multiple-

eQTL-mapping strategy. As before, we simulated a primary eQTL with minor 

allele frequency, effect size, and distance to the transcription start site matched 

to those of an eQTL discovered in the original analysis. Then, we randomly 

chose a second variant in the cis window, with minor allele frequency >0.05, 

and used this variant to simulate an extra eQTL effect on the phenotype, with 

an effect size one-half that of the primary eQTL. Then, a residual noise term 

was generated such that the primary eQTL explained the same proportion of 

variance as the original matched eQTL. We found that in estimating the causal 

probabilities, there was still good agreement between the primary eQTL and 

the known ground truth (Supplementary Fig. 5).

Comparing results from CaVEMaN with results from CAVIAR for TwinsUK 

LCL data. CAVIAR and equivalent Bayesian methods36–39 have previously been 

suggested as fine-mapping methods for estimating credible sets of SNPs with 

a given probability of containing the causal variant. For genes with an eQTL 

in LCLs, we used CAVIAR14 to produce another estimate of causal-variant  

probability for comparison. Because CAVIAR is limited in the number of SNPs 

that it can analyze, we first extracted all variants with P <0.01, up to the first 

50. The Z scores for these variants were produced with the correlation matrix 

of these SNPs, and CAVIAR was run with the default settings. There was 

good agreement in the causal probabilities of the LEV (Spearman ρ = 0.856,  

P < 10−216; Supplementary Fig. 6), but the CAVIAR method produced esti-

mates of the causal probabilities that were more conservative (median prob-

ability 0.12 versus 0.29). Because the CaVEMaN estimates were calibrated by 

using simulations, the CAVIAR estimates appeared to be, on average, under-

estimates of the true probabilities, possibly because of a combination of the 

priors not reflecting the true regulatory landscape and the sample size being 

insufficient to overcome this effect. CAVIAR does not suggest adjusting the 

priors when studying expression rather than GWAS trait associations, despite 

the fundamentally different genetic architectures and sample sizes between 

these types of studies. The approach of calibrating estimates of probabilities by 

using simulations could also be easily extended to other fine-mapping methods 

such as CAVIAR.

Comparison of simulation results from CaVEMaN with those from dap-g. 

We compared the results from CaVEMaN applied to one of the simulation 

data sets with the results from dap-g15, a method recently proposed for fine-

mapping. For each simulated gene expression, all SNPs in the cis window 

were extracted, and dap-g was run, specifying the option -ld_control 0.25. 

Then, for a comparable estimate of the posterior probability of the LEV, we 

extracted the highest posterior probability of any single-variant model and 

conditioned this probability on only one genetic signal by dividing it by the 

sum of the posterior probabilities of all single-SNP models. The two meth-

ods identified exactly the same sets of LEVs, and there was good agreement 

between the estimates of causal probabilities (Spearman ρ = 0.95, P < 10−216). 

However, plotting the causal probabilities against the proportion of LEVs that 

were the causal variants indicated that dap-g underestimates this quantity 

(Supplementary Fig. 5).

Application of simulations to other data sets. The Geuvadis data set differs 

in many aspects from the TwinsUK data on which the CaVEMaN method was 

trained. Geuvadis samples were sequenced in multiple laboratories rather than 

just one; Geuvadis uses a multiethnic cohort, thus implying a different link-

age structure in the genome; a different mapper (a splice-aware mapper) was 

used to quantify the data; and the tissue type, sample size, and ability to map 

eQTLs were all different from those of three out of four TwinsUK tissues. Our 

results thus indicated that the parameters estimated in TwinsUK were robust 

to a range of factors. However, in the future, similar data sets with thousands 

of samples are expected, and it is possible that our proposed method may not 

generalize to that case. For this reason, we provide methods to repeat these 

simulations in new data sets, as described on our accompanying website (‘Code 

availability’ section).

Statistical associations between eQTLs and GWAS traits from summary sta-

tistics. We downloaded the GWAS summary statistics for 16 different GWAS 

traits: autism40, birth weight41, body mass index (analyzing all ancestries)42, 

coronary artery disease43, Crohn’s disease44, diabetes45, fasting glucose46, fast-

ing insulin46, height47, high-density lipoprotein48, irritable bowel disease44,, 

low-density lipoprotein48, schizophrenia26, total cholesterol48, triglycerides48, 

and ulcerative colitis44. Data on the birth weights were contributed by the 

EGG Consortium using the UK Biobank Resource (URLs). For all LEVs, the 

P value for each trait was extracted (if available), and the qvalue package17 

was used to estimate π1, the proportion of alternative hypotheses (i.e., associa-

tion between variant and GWAS trait). Finally, Bonferroni-significant GWAS 

associations for HCCVs were reported, with controlling for multiple testing 

across all phenotypes and variants.

Testing HCCVs associated with GWAS traits for cosegregation with 

coloc. For HCCVs significantly associated with GWAS traits, we used the 

coloc method20 to test the hypothesis of a shared causal mechanism. P values 

for association, available for both expression and GWAS associations, were 

extracted in a 200,000-bp region around the eQTL. Minor allele frequencies 

for the variants were extracted from the 1000 Genomes Phase 3 release32. 

After running coloc, we reported the probability of a shared causal variant for 

both associations, conditional on genuine associations existing for both traits 

(P(H3)/(P(H3) + P(H4)) reported by coloc).

Regulatory trait concordance (RTC) method for testing for cosegrega-

tion with NHGRI–EBI Catalog GWAS associations. We downloaded the 

NHGRI–EBI Catalog of reported genome-wide-significant associations 

(URLs) in September 2016 and removed all SNPs with P >5 × 10−8 and those 

for which the variant was not listed in dbSNP (build 148)49, thus leaving 11,636 

reported associations. RTC, implemented in QTLtools50, was applied with the 

default settings to assess sharing of these GWAS variants with eQTLs. Because 

the RTC statistic is uniformly distributed under the null hypothesis of two 

separate causal loci independently located within the hotspot, 1 – RTC can 
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be interpreted as a P value for a shared causal variant. The qvalue package17 

estimated π1, the proportion of GWAS/eQTLs signals in the same recombina-

tion interval with the same causal variant.

Code availability. Code for correcting the expression data sets for multiple 

eQTLs, running the CaVEMaN method, converting the CaVEMaN score to 

a causal probability, and repeating simulations on new data sets can be found 

at https://github.com/funpopgen/CaVEMaN/.

Accession codes. BAM files for the RNA-seq are available from EBI 

ArrayExpress (accession code E-GEUV-3; Geuvadis cohort) and the 

European Genome-Phenome Archive (study ID EGAS00001000805; 

TwinsUK cohort). WGS data are available from the European Genome-

Phenome Archive (study ID EGAS00001000108; TwinsUK) and the 1000 

Genomes Project (URLs).

Data availability. Data are available from the corresponding authors upon 

reasonable request.

A Life Sciences Reporting Summary is available.
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For all studies, we encourage code deposition in a community repository (e.g. GitHub). Authors must make computer code available to editors and reviewers upon 

request.  The Nature Methods guidance for providing algorithms and software for publication may be useful for any submission.

   Materials and reagents

Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of unique 

materials or if these materials are only available for distribution by a 

for-profit company.

No unique materials were used.

9.   Antibodies

Describe the antibodies used and how they were validated for use in 

the system under study (i.e. assay and species).

No antibodies were used.

10. Eukaryotic cell lines

a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used.

c.  Report whether the cell lines were tested for mycoplasma 

contamination.
No eukaryotic cell lines were used.

d.  If any of the cell lines used in the paper are listed in the database 

of commonly misidentified cell lines maintained by ICLAC, 

provide a scientific rationale for their use.

No commonly misidentified cell lines were used.

    Animals and human research participants

Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals

Provide details on animals and/or animal-derived materials used in 

the study.

No animals were used.

Policy information about studies involving human research participants

12. Description of human research participants

Describe the covariate-relevant population characteristics of the 

human research participants.

Relevant information on the cohort is listed in Online methods.
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