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Predicting cell-to-cell communication networks
using NATMI
Rui Hou 1, Elena Denisenko1, Huan Ting Ong 2, Jordan A. Ramilowski 3,4 & Alistair R. R. Forrest 1,4✉

Development of high throughput single-cell sequencing technologies has made it cost-

effective to profile thousands of cells from diverse samples containing multiple cell types. To

study how these different cell types work together, here we develop NATMI (Network

Analysis Toolkit for Multicellular Interactions). NATMI uses connectomeDB2020 (a data-

base of 2293 manually curated ligand-receptor pairs with literature support) to predict and

visualise cell-to-cell communication networks from single-cell (or bulk) expression data.

Using multiple published single-cell datasets we demonstrate how NATMI can be used to

identify (i) the cell-type pairs that are communicating the most (or most specifically) within a

network, (ii) the most active (or specific) ligand-receptor pairs active within a network, (iii)

putative highly-communicating cellular communities and (iv) differences in intercellular

communication when profiling given cell types under different conditions. Furthermore,

analysis of the Tabula Muris (organism-wide) atlas confirms our previous prediction that

autocrine signalling is a major feature of cell-to-cell communication networks, while also

revealing that hundreds of ligands and their cognate receptors are co-expressed in individual

cells suggesting a substantial potential for self-signalling.
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In 2015, we published the first draft map of predicted cell-to-
cell communication between major human cell types based on
the expression levels of 708 ligands and 691 receptors mea-

sured in 144 purified human primary cell types, and a manually
curated set of 2422 human ligand–receptor pairs (1894 pairs
had literature support)1. Our major findings were that any given
cell type expresses tens to hundreds of different ligands and
receptors, that extensive autocrine signalling is a common feature
of all cell types studied thus far and that cell-to-cell commu-
nication networks are highly connected via hundreds of predicted
ligand–receptor paths.

Recently, with the availability of high throughput single-cell
platforms2–10, expression profiling across an ever-growing variety
of cell types from dissociated tissues without prior purification
has become common. To understand how individual cells and cell
types within these complex samples communicate, multiple
groups have since used our ligand–receptor pairs from 20151 to
infer cell-to-cell communication in developing heart11, kidney12,
liver13, lung14, cancer15,16, and cortex17.

Here, we present NATMI (Network Analysis Toolkit for
Multicellular Interactions), a user-friendly tool primarily designed
to process single-cell gene expression datasets, which can also be
applied to bulk transcriptomics and proteomics data. In brief,
NATMI uses connectomeDB2020 (a newly updated curated
ligand–receptor pair list) or user-specified ligand–receptor pairs
to predict and visualise the network of cell-to-cell communication
between cell types (or clusters) in these datasets (Supplementary
Fig. 1).

We demonstrate several ways NATMI can be used to sum-
marise and extract biological insights from cell-to-cell commu-
nication networks (Supplementary Fig. 1). Specifically, NATMI
can: (1) show all cell types predicted to communicate via a user-
specified ligand–receptor pair (Supplementary Fig. 1d); (2) show
all ligand–receptor pairs used for communication between a user-
specified pair of cell types (Supplementary Fig. 1e); (3) summarise
the entire communication network to show how strongly or
specifically each cell type in a complex sample communicates to
every other cell type, thus identifying highly communicating cell
pairs or communities (Supplementary Fig. 1f); and (4) compare
communication networks from two different conditions and
identify edges (ligand–receptor pairs) that differ (delta network)
between them (Supplementary Fig. 1g). NATMI (Python script)
and the updated ligand–receptor lists are freely available at
https://github.com/forrest-lab/NATMI/.

Results
Updated ligand–receptor pair lists. To facilitate the exploration
of intercellular interactions, in 2015 we published a set of 1894
ligand–receptor pairs with primary literature support and an
additional 528 putative pairs (secreted and plasma-membrane
proteins with high throughput protein–protein interaction (PPI)
evidence)1. Here, we present connectomeDB2020, an updated set
of 2293 ligand–receptor pairs with primary literature support
(Supplementary Data 1). These consist of 1751 pairs from our
2015 resource, 121 pairs from CellphoneDB v2.018, 50 pairs from
RNA-Magnet19, 22 pairs from SingleCellSignalR20, 9 pairs from
ICELLNET21, and 340 new manually curated pairs pre-
dominantly reported since the original publication. Supplemen-
tary Data 1 also lists pairs from each resource excluded due to
lack of primary evidence (these include 143 of our original pairs
removed after user feedback and further checks revealed that the
PubMed ID supplied from HPRD22 was incorrect and did
not support the interaction). To allow users to discriminate
contact-dependent signalling from soluble ligand-mediated sig-
nalling, we have now annotated all ligands as either secreted,

plasma membrane or both (Methods). Additionally, to facilitate
the use of NATMI for other organisms, we provide inferred
ligand–receptor pairs for multiple vertebrate species based on
human ortholog mappings provided in the NCBI HomoloGene
Database23.

Predicting cell-to-cell communication using NATMI. The
workflow for cell-to-cell communication analysis in NATMI
starts by the user providing input data files of gene expression
and cell labels for single-cell data analysis. Using the con-
nectomeDB2020 ligand–receptor pair list described above,
NATMI extracts the expression levels of every ligand and
receptor expressed in each cell type (Supplementary Fig. 1a–c).
Edges between any pair of cell types are then predicted based on
the expression of the ligand in one cell type and the expression of
its cognate receptor in the other cell type (Supplementary Fig. 2a).
As cells can express multiple ligands and cognate receptors, cell
pairs are connected by multiple edges that are accordingly
weighted by the expression of ligands and receptors in these
cell types (Supplementary Fig. 2b). Moreover, the same ligand-
s and receptors can be expressed by multiple cell types. This
makes any given ligand–receptor pair a hyperedge that can
connect multiple cell types and the underlying structure of a real
cell-to-cell communication network—a weighted-directed-multi-
hyperedge network (Supplementary Fig. 2c). In NATMI, how-
ever, we reduce these to weighted-directed-multi-edge networks
(Supplementary Fig. 2d) and for simplicity refer to these as ‘cell-
to-cell communication networks’. Lastly, NATMI introduces the
concept of cell-connectivity-summary networks that merge the
many ligand–receptor edges drawn from one cell type to another
into a combined weighted cell-connectivity-summary edge to
summarise how strongly (or specifically) each cell type is com-
municating to another cell type (Supplementary Fig. 1f).

Edge weights in cell-to-cell communication networks. For each
analysed dataset NATMI creates an edge file that summarises the
levels and fractions of cells in each cell type expressing each
ligand and receptor. From this it calculates two different edge
weights. The mean-expression edge weights are calculated by
multiplying the mean-expression level of the ligand in the send-
ing cell type by the mean expression of the receptor in the target
cell type. This weighting is useful to emphasise highly expressed
ligands and receptors but provides no discrimination between
cell-type-specific and housekeeping edges. The specificity-based
edge weights, on the other hand, help identify the most specific
edges in the network regardless of expression levels and are cal-
culated as the product of the ligand and receptor specificities,
where each specificity is defined as the mean expression of the
ligand/receptor in a given cell type divided by the sum of
the mean expression of that ligand/receptor across all cell types.
The specificity-based edge weights range from 0 to 1 where a
weight of 1 means both the ligand and receptor are only
expressed in one (not necessarily the same) cell type.

To better demonstrate the utility of different edge weighting
metrics in NATMI, we reanalysed communication between 12
defined cell types in a previously published cardiac dataset11 and
predicted 126,738 cell-ligand–receptor-cell edges (Supplementary
Data 2). Ranking edges based on expression weighting (Fig. 1a,
shows the edges for the top 20 most highly expressed
ligand–receptor pairs) differed substantially from those based
on specificity weighting (Fig. 1b, shows the edges for the top 20
most specific ligand–receptor pairs). Notably, the ligand–receptor
pairs ranked by expression weighting were also detected in a
broader range of communicating cell type pairs (noticeable when
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comparing the larger width of Fig. 1a to that of Fig. 1b) and thus
kept potentially less informative housekeeping edges.

Cell-connectivity-summary networks. One of the primary aims
of cell-to-cell communication network analysis is to identify
which cell types are mutually coordinating their activities by
ligand–receptor-mediated communication. Our analyses indicate,
however, that all cell types have substantial potential to com-
municate with each other. Consequently, this leads to the ques-
tion of which cell types are communicating the most? Or the most
specifically? The simplest strategy to measure the degree of
communication from one cell type to another is to count the
number of ligand–receptor pairs connecting them. Figure 2
summarises the cell-connectivity-summary network for the above
cardiac dataset based on simple edge count using three different
visualisations—heatmap, network graph, and circos plot. High
connectivity of these networks makes the network graph and
circos views not easily interpretable due to over-plotting issues.

The heatmap view, however, avoids the problem and reconfirms
one of the major predictions of the cardiac study11 that fibroblasts
are the most trophic, with edges from fibroblasts to 10 of the 12
cell types dominating the network. In Fig. 3, we show how
NATMI can be used to filter the network based on expression
levels or specificities of the ligands and receptors involved.

Filtering by expression weights (Fig. 3a) can provide users a
higher confidence that the ligands and receptors are expressed at
sufficient levels. For the cardiac dataset, we explored both the
filtered by expression and unfiltered network (Fig. 2) yielded,
however, a similar conclusion that the fibroblasts are the most
trophic. In contrast, filtering on specificity weights (Fig. 3b)
highlights a different set of top cell-to-cell pairs. In particular,
autocrine signalling of Schwann cells, endothelial cells and
granulocytes, fibroblast and Schwann cell signalling to endothelial
cells, and fibroblast, granulocyte and pericyte signalling to
granulocytes is highlighted while the broad signalling from
fibroblasts seen in the unfiltered and expression filtered networks

a Top 20 most expressed ligand–receptor pairs b Top 20 most specific ligand–receptor pairs
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Fig. 1 Top 20 ligand–receptor pairs ranked by expression or specificity weighting in the Skelly et al.11 dataset. Ligand-receptor pairs ranked by
a expression (product of mean ligand expression level × mean receptor expression level). Rows are scaled by max. b Specificity (product of ligand
specificity × receptor specificity). Ligand–receptor pairs with high expression weights (a) may be broadly used by many cell-type pairs, while those with
high specificity weights (b) tend to be limited to one or only a few cell-type pairs.

a Heatmap view of unfiltered edges b Network view of unfiltered edges c Circos view of unfiltered edges
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Fig. 2 Cell-connectivity-summary-network visualisations in NATMI. To identify cell types that are communicating ‘more’ than others in Skelly et al.11, the
number of ligand–receptor pairs (detected in more than 20% of cells) connecting each pair of cell types were counted. Resulting simple edge-count-based
cell-connectivity-summary network is shown using three distinct visualisation methods available in NATMI. a Heatmap view. Rows indicate cells
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is diminished. We next compared our results with those obtained
by filtering edges based on p values calculated by CellPhoneDB18.
The resulting heatmap (Fig. 3c) is similar to that observed for the
expression filtered network (Fig. 3a) suggesting NATMI may
better highlight high specificity edges. (Note, the heatmap shown
in Fig. 3c should not be confused with those generated by
CellPhoneDB which are symmetric. NATMI heatmaps are
asymmetric and have direction from the ligand expressing cell
type to the receptor expression cell type.) Lastly, the network can
also be summarised using the summed-specificity weights
between each cell type pair (Fig. 3d). This generates a similar
network to that in Fig. 3b, without requiring to set an arbitrary
threshold on specificity. Noticeably, as each approach generates a
different view of the network and highlights different most-
communicating cell type pairs (Fig. 3e), users need to consider
these differences when interpreting their own cell-to-cell com-
munication networks. In NATMI, the user can choose any of its
built-in approaches, however, we recommend to use summed
specificity for most analyses as this captures specific signalling
between cell types (Fig. 3d). Different edge filtering methods are
further explained in a concept Supplementary Fig. 3.

Application of NATMI to an organism-wide single-cell
dataset. One of the ultimate aims of developing intercellular

communication network methods is to understand the general
principles of cell-to-cell communication within multicellular
organisms. Previously, analysis of the FANTOM5 (bulk expres-
sion) dataset1 revealed that most cell types express tens to over a
hundred different ligands and receptors, and that hematopoietic
cells tend to express fewer ligands and receptors than cells from
other lineages. Importantly, it also predicted a substantial
potential for autocrine signalling, with over 50% of the ligands
and receptors detected in each cell type having cognate partners
expressed in the same cell type. To examine whether these
observations were consistent when using single-cell expression
data, we repeated the analysis by applying NATMI to the Tabula
Muris atlas24 (a mouse cell atlas containing 44,949 FACS sorted
cells from 20 organs and classified into 117 organ-resident cell
types).

Autocrine, self, and intra-organ signalling in Tabula Muris. At
a detection rate threshold of 20% (commonly applied to single-
cell datasets11,25), most cell types in the Tabula Muris dataset
expressed over a hundred ligands and receptors, with hemato-
poietic cell types expressing fewer ligands/receptors than other
lineages (Supplementary Fig. 4a). Notably, almost half of the
ligands detected in any given cell type in Tabula Muris had
cognate receptors (and vice versa) detected in the same cell type
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further confirming our previous prediction of large potential for
autocrine signalling in cell-to-cell communication networks
(Fig. 4a).

Next, using the single-cell resolution data we could discrimi-
nate whether a ligand and its cognate receptor were actually
expressed in the same cell or two different cells of the same
cell type (a distinct advantage over bulk measurements where
autocrine and self-signalling cannot be discriminated). Across the
117 cell types in Tabula Muris, a median of 54 ligand–receptor
pairs were co-detected in at least 20% of the same cells (from each
cell type) at an expression threshold of 10 counts per million
(CPM, Fig. 4b, Supplementary Data 3 lists the ligand–receptor
pairs co-detected in each cell type). This extends on our original
observations of substantial autocrine signalling potential
using the FANTOM5 data1 and is the first finding that cognate
ligands and receptors are co-expressed in a substantial fraction
of single cells suggesting their potential for self-signalling.
Moreover, we observed that a substantial fraction of all
ligand–receptor pairs (31%, 719/2293) were co-detected in at

least 20% of cells of at least one cell type at an expression
threshold of 10CPM (Supplementary Data 4 and Supplementary
Fig. 4b).

To examine autocrine signalling in more detail, we next
generated cell-connectivity-summary networks weighted by the
summed specificity between each of the 117 cell types in the
Tabula Muris dataset (Supplementary Data 5 and Supplementary
Fig. 5). To discriminate between contact-dependent and contact-
independent signalling, we generated two separate analyses based
on pairs that involved either secreted ligands or plasma-
membrane ligands.

For each of these 117 cell types, we ranked their connections
(outgoing and incoming edges) by their summed-specificity
weights and classified cell-to-cell summary edges as autocrine,
intra-organ (excluding autocrine) and inter-organ. In Fig. 4c–f,
we then plotted the distribution of ranks for autocrine (‘blue’),
intra-organ (‘pink’), and inter-organ (‘green’) summary edges.
When compared, autocrine edges had higher rankings, meaning
that, on average, autocrine edges tend to be more specific than
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intra-organ and inter-organ edges (solid lines in Fig. 4c–f),
whereas repeated analyses using randomly permuted receptor-
ligand pairs abolished these differences (dashed lines in Fig. 4c–f).
A slight enrichment was also observed for intra-organ signalling
for outgoing plasma-membrane ligand-mediated edges (Fig. 4e),
while no such enrichment was found for the secreted ligand-
mediated edges (Fig. 4c, d) and for the plasma-membrane
receiving edges (Fig. 4f).

To test whether the observed higher autocrine rankings depend
on the edge weighting method used, we repeated the analysis
using simple edge counts and summed-expression weights and
again observed higher (albeit to a lesser degree than shown in
Fig. 4) rankings of autocrine signalling for the edge-count-based
analysis (Supplementary Fig. 4c–j). Another repeated analysis
using the FANTOM5 bulk data further confirmed autocrine edges
had higher ranks (Supplementary Fig. 6c–f). Hence, we conclude
that autocrine signalling is a major predicted feature of cell-to-cell
communication networks.

Prediction of cellular communities in the Tabula Muris. To
examine whether the summed-specificity weighted cell-
connectivity-summary networks might help reveal sets of cell
types that work together within an organ or to achieve a biolo-
gical process, we carried out hierarchical clustering of cell types
by the vectors of their summed-specificity weights (Supplemen-
tary Fig. 5). For both the secreted ligand and plasma-membrane
ligand mediated networks, this failed to reveal any underlying
clustering of cell types into organs, tissues or cellular commu-
nities. Instead, cells tended to cluster by lineage (indicated as
colour bars in Supplementary Fig. 5).

We next examined the top 10 summed-specificity edges
based on the secreted and plasma-membrane ligands and
visualised them as cell-connectivity-summary networks which
revealed distinct cell communities for both secreted and plasma-
membrane ligands (Fig. 5). For the connections involving
secreted ligands, we observed four disconnected communities
(Fig. 5a). The largest community involved hepatocytes broad-
casting to basophils, microglial cells, megakaryocyte-erythroid
progenitors, and proximal tubule epithelial cells. Proximal tubule

epithelial cells were also predicted to receive signals from
pancreatic beta cells and epithelial cells of the trachea. We also
predicted two smaller communities of cardiac muscle cells
communicating to endocardial cells, and pancreatic delta cells
communicating to enteroendocrine cells of the large intestine.
Lastly, oligodendrocyte precursor cells (OPC) were predicted to
undergo strong autocrine signalling and receive incoming
communication from bladder cells. Repeating this analysis using
the FANTOM5 bulk primary cell data also predicted a large
community with hepatocytes as a central broadcasting node
(Supplementary Fig. 6a).

Examining the most specific ligand–receptor pairs involved in
each cellular interaction identified both well-known and novel
pairs that appear to be biologically relevant (Supplementary
Data 6). The most specific ligands driving communication from
cardiac muscle cells to endocardial cells included factors relevant
to cardiac development and homoeostasis such as Angpt1,
Bmp10, Vegfa, Vegfb, and Nppa. The most specific communica-
tion was carried out via Nppa-Npr3, where Npr3 was previously
reported as an endocardial marker26, and Nppa was reported to
be expressed in cardiomyocytes27. These expression patterns have
also been recently confirmed in another single-cell analysis of
heart28.

Similarly, for pancreatic delta cells communicating to enter-
oendocrine cells of the large intestine we also identified
somatostatin (Sst) as the most specific factor generated by delta
cells29 and confirmed that two of its receptors, Sstr1 and Sstr5, are
specifically expressed in enteroendocrine cells30. Interestingly, Sst
has been shown to signal via Sstr5 to induce mucin production in
the large intestine31. Additionally, a recent study of intestinal
delta cells validated Sst-Sstr5 mediated signalling to intestinal
enteroendocrine cells32.

In the case of the hepatocyte-centred community, we re-
identified the well-known endocrine relationship from hepato-
cytes to megakaryocyte-erythroid progenitors mediated by Thpo
and its receptor Mpl33. In addition to identifying such specific
edges, we also predicted that multiple fibrinogens produced by
hepatocytes (Fga, Fgb, and Fgg) are used to signal via Itgb1
(proximal tubule cells), Itga2b (megakaryocyte progenitors and

a Secreted-ligand-based cell-connectivity-summary network in Tabula Muris b PM-ligand-based cell-connectivity-summary network in Tabula Muris
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basophil), Itgb2 (basophils) and Itgam (basophils and microglial
cells).

For the plasma-membrane ligand-mediated interactions, we
observed two communities, which consisted of cell types that
were more likely to be physically collocated than those seen from
the secreted ligand pairs. One community consisted of seven cell
types including four brain-derived cell types (neurons, OPCs,
astrocytes, and Bergmann glial cells), while the other consisted of
keratinocytes predicted to strongly signal with themselves and
epidermal cells (Fig. 5b). Repeating this analysis using the
FANTOM5 bulk primary cell data also predicted a community of
neural cells (Supplementary Fig. 6b). Examining the most specific
ligand–receptor pairs involved in signalling within the epidermal
cell community (Supplementary Data 6) identified binding
between multiple desmogleins and desmocollins (Dsg–Dsc), as
well as ephrins and eph receptors (Efn–Eph). These proteins are
known to be expressed in skin and are important to its biological
functioning34–39. Similarly, for the edges between the four
nervous system cell types (neuron, OPC, astrocyte, and Bergmann
glial cell) multiple neuroligins were predicted to signal via
multiple neurexins and multiple Slirtk ligands via Ptprs.
Interestingly, although neuroligin–neurexin complexes are known
key interactors at neuronal synapses, growing evidence indicates
that they are also used for interactions involving astrocytes,
oligodendrocytes and OPCs40,41. We also observed interacting
pairs with more restricted cell tropism, such as Rtn4 signalling to
Lingo1 (used between neurons and OPCs) and Cntn6, Dll3, Cntn1
signalling to Notch1 (used between OPC and astrocytes).

Differential network analysis in NATMI. Lastly, we used
NATMI to predict age-related changes in cell communication
within the murine mammary gland (mammary glands from 3-
and 18-month-old mice profiled in the Tabula Muris Senis42 were
compared). A simple edge count analysis, at a detection rate
threshold of 20%, revealed that there were substantially more
ligand–receptor edges predicted as active at 3 months than at
18 months (2045 edges were detected at both ages; 1247 edges
were detected at 3 months only; and 340 edges were detected at
18 months only, Supplementary Data 7 and 8). Examining dif-
ferences in the cell-connectivity-summary networks based on the
3- and 18-month-old mammary gland (Fig. 6) revealed specific
cell types were driving these age-related differences. In particular,
edges involving basal cells (basal cell > basal cell, luminal epi-
thelial cell > basal cell, stromal cell > basal cell and basal cell >
stromal cell) were more than twofold higher in the 3-month-old
mammary gland than the 18-month sample. Similarly, edges
involving B and T lymphocytes (B cell > B cell, B cell > T cell and
T cell > T cell) were more than twofold higher in the older mice
(Fig. 6).

Furthermore, 266 (78.2%) of the 340 edges only detected in the
18-month-old mammary gland involved signalling to or from T
and B cells, while only 141 (11.3%) of the 1247 edges exclusively
active at 3 months involved lymphocytes. Conversely, 613
(49.2%) of the 1247 ligand–receptor edges only detected at
3 months involved signalling to or from basal cells while only 52
(15.6%) of the 340 edges exclusively active at 18 months involved
basal cells.

Examining the basal cell data in more detail identified 9
receptors (Gpc1, Procr, Fzd7, Itga5, Ldlr, Tlr2, Lrp6, Ephb1, and
Tfrc) and 8 ligands (Tgfa, Ngf, Col5a2, Il11, Col4a2, Jag1, Col18a1
and Hspg2) at least twofold down-regulated at 18 months
(Supplementary Data 8). Notably, many of these top down-
regulated ligands and receptors are known to be important in
maintenance of normal mammary basal stem cells and are
implicated in basal-like and triple negative breast cancer43–51.

Discussion
Here, we have described NATMI, a tool to help users explore cell-
to-cell communication using scRNA-seq or other omics expres-
sion data. In the first part of the manuscript, we described
the underlying network concepts and explored the effect of dif-
ferent edge weighting approaches. To help identify cell types
communicating ‘the most’, we introduced the concept of cell-
connectivity-summary networks and demonstrated how the
weight metric and edge filtering used can influence the order of
top communicating edges. We recommend using cell specificity
weighting for most applications; however, both simple edge count
and expression-weighted edges are provided in our outputs as
default to yield additional insights on the communicating net-
works. As a note, the specificity weights were calculated based on
the input dataset and thus should be considered local or dataset
specific. With larger reference datasets becoming available
through efforts such as the Human Cell Atlas52, we will aim to
provide global specificities based on expression across most
profiled cell types in future versions of NATMI.

Applying NATMI to the Tabula Muris data (the broadest
single-cell atlas to date), we reconfirmed our original findings
from FANTOM5 bulk data that autocrine signalling is a major
predicted component of cell-to-cell communication networks.
This work is also the first to systematically assess the potential for
individual cells to express cognate ligand–receptor pairs and to

b 
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a 
Comparison of the cellular composition between 3 and 8 m time point
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Fig. 6 Differential analysis of cell-connectivity-summary networks from
aging mammary gland in Tabula Muris. a Comparison of population
fraction of seven cell types in the 3- and 18-month-old murine mammary
gland. b Comparison of edge-count-based cell-connectivity-summary
networks at two time points. Summary edges with twofold or more active
ligand–receptor pairs connecting them at 3 months than 18 months are
shown in red while those with twofold or more active ligand–receptor pairs
connecting them at 18 months than 3 months are shown in blue. Edge
thickness is weighted by the log2-transformed fold changes between the
two networks. Cell types (nodes) with a twofold difference in cell fraction
are shown in red (higher in the 3-month timepoint) and blue (higher in the
18-month timepoint).
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find substantial potential for their self-signalling. Together, these
results predicted that most cell types are major contributors to
their own niche53,54.

In contrast to expectations that cells based in the same tissue
would tend to communicate more than those in different tissues,
we found essentially no difference between ranks for intra-tissue
and inter-tissue edges (Fig. 4c–f) across all cell types within the
Tabula Muris atlas. Focusing on the cells connected by the pre-
dicted top 10 summary edges identified biologically plausible
communities (Fig. 5), which included communities involving cells
from the same tissue and communities involving more distant
endocrine relationships.

Lastly, we have demonstrated how NATMI can be used to
identify changes in cell-to-cell communication by comparing
networks predicted from comparable datasets (e.g., paired sam-
ples or time-course experiments in which two datasets under
consideration have almost identical cellular composition). Using
the Tabula Muris Senis dataset, we showed that signalling
involving mammary basal cells is down-regulated between 3 and
18 months (Fig. 6). Notably, this is observed both with specificity
weighted summary edges and with simple edge counts.

We acknowledge that NATMI is not the first tool to attempt
cell-to-cell communication analyses at the single-cell level. Sup-
plementary Data 9 systematically compares features and
approaches used in NATMI and 13 other methods18–21,55–63. The
major discriminating features incorporated in NATMI are that
(1) NATMI uses connectomeDB2020, the most comprehensive
set of ligand–receptor pairs with primary literature support to
date (note, a substantial number of ligand–receptor pairs in other
resources lack primary literature support, Supplementary Data 1),
(2) NATMI can identify and visualise the cell-types that are
communicating the most or the most specifically (both the
directed heatmap visualisation and summed-specificity weighting
of cell-connectivity summary edges is unique to NATMI) (Fig. 3),
(3) NATMI allows users to easily identify and visualise top
ligand–receptor pairs based on expression or specificity (Fig. 1)
and (4) NATMI allows comparison of networks to identify
changes in both ligand–receptor signalling and overall cell-to-cell
signalling between cells under different conditions (Fig. 6).

Our comparison to the 13 other tools also highlights three
features that are currently not incorporated into NATMI, such as
(1) the handling of heteromeric complexes (CellPhoneDB18,
RNA-Magnet19), (2) the prediction of downstream signalling
consequences (NicheNet55, SoptSC59), and (3) the analysis of
spatial transcriptomics data (RNA-magnet19, SpaOTsc61). The
modelling of heteromers pioneered in CellPhoneDB18 acknowl-
edges that many receptors and ligands only function as hetero-
mers. As the full set of biologically relevant heteromers is still yet
to be described, modelling heteromers based on what is currently
known can result in biases toward well-studied interactors, thus
we do not model them in NATMI. Similarly, although using
changes in the expression of predicted target genes induced by
ligand mediated signalling (used in NicheNet55) may provide
greater confidence that the ligand–receptor pair is active and
inducing a change of state in the target cell we suspect that
the predictions are biased toward well-studied ligands and cell
types (292 of the ligands in connectomeDB2020 are not in
NicheNet). Lastly, although NATMI has not been specifically
designed for spatial data, cell type labels based on clusters that
incorporate spatial context information (e.g., tumour infiltrating
T cells, tumour proximal T cells, tumour distal T cells) can also be
analysed.

Furthermore, comparison of NATMI and CellPhoneDB18

using the same input and ligand–receptor pair lists (Supple-
mentary Notes 1 and 2) revealed NATMI identifies similar edges
but is faster, especially with limited computational resources. In

Fig. 3, we also showed that edges filtered based on expression or
p values (calculated in CellPhoneDB) are very similar whereas the
specificity metric used in NATMI identifies a different set of
edges, which tend to be more unique and specific to a given pair
of communicating cells.

We also acknowledge there are several limitations and caveats
to the case studies presented and, more generally, to the meth-
odology used here. First, for the single-cell data analyses we have
used the original cellular annotations provided by the authors of
each manuscript11,24,64, which can potentially affect the accuracy
of predicted networks. As the quality of user-defined clusters/cell
type annotations will define the quality of NATMI predictions, we
recommend optimising the clustering/cell type annotation prior
to running NATMI. Additionally, the edges that we highlighted
in the manuscript are based on experiments without replicates
(unfortunately common in current single-cell analyses) making
them potentially specific only to the samples tested. Moreover, for
single-cell transcriptome data, the predictions are necessarily
based on the mRNA expression levels rather than on protein
concentration and the data is subject to dropouts where a weakly
expressed ligand or receptor may be missed in shallowly profiled
cells. As mentioned above, we do not model heterodimerization
or requirements for co-receptors. We also do not have estimates
of the binding kinetics for each ligand–receptor pair, which can
vary across interacting pairs and, ultimately, in conjunction with
the number of functional ligand/receptor molecules dictate the
physiological response of the interacting pair.

In conclusion, we expect NATMI will greatly facilitate analysis
of cell-to-cell communication networks based on single-cell gene
expression data as well as for bulk RNA-seq and proteomic data.
Note, a distinct advantage of using single-cell data for building
these networks is that rare and difficult to isolate cell types can be
more easily profiled while avoiding many of the biases introduced
by cell isolation/purification and from cell culture needed for bulk
profiling. Thus the generation of cell-connectivity-summary
networks from this data will allow users to highlight the cell
types that are communicating the most and then further explore
individual ligand–receptor pairs that are driving these connec-
tions. The next exciting, but non-trivial, challenge will be to
validate these inferred intercellular communication pathways
experimentally (using for example such methods as PIC-seq65).

Methods
High quality manually curated ligand–receptor interaction database. To
expand upon our previous list of ligand–receptor pairs, we first incorporated pairs
from CellPhoneDB v2.018. We downloaded 1144 interactions from https://www.
cellphonedb.org/downloads/interactions_cellphonedb.csv and then extracted
693 simple:simple interaction pairs (CellPhoneDB internal ID of format ‘CPI-
SSxxx’. Heteromeric complexes were excluded). All protein/gene identifiers were
updated to HGNC IDs and then compared to our previous catalogue. In total, 478
of these were already in our 2015 resource1. For the remaining 215, we used
PubMed and google scholar searches to search for primary literature evidence.
Finally, 121 pairs with primary literature evidence were kept.

To further expand upon our previous interaction lists we used the following
strategy: (1) manual literature search for ligand–receptor pairs using terms ‘ligand’,
‘receptor’, ‘cytokine’, ‘growth factor’ and for genes from known ligand and receptor
families that were not yet covered in the database (2) systematic extraction of PPI
pairs from STRINGDB (https://stringdb.org/cgi/download.pl?
sessionId=oCkT8UeKh8rN&species_text=Homo+sapiens. Specifically, physical-
binding interactions ‘9606.protein.actions.v11.0.txt’ with score ≥700, and
experimental interaction ‘9606.protein.links.full.v11.0.txt’ experiments score ≥700)
involving known ligands and receptors from the merged list above and putative
secreted and plasma-membrane proteins from our previous publication1. In total,
3147 putative pairs involving a secreted protein and 1777 involving 2 plasma-
membrane proteins were compared to our previous lists and the remainder was
manually curated. This combined strategy identified a further 340 ligand–receptor
pairs that were absent from our 2015 resource and from CellPhoneDB. During the
peer review, we manually reviewed and incorporated an additional 50 pairs from
Supplementary Table 3 of RNA-magnet19, 22 pairs from SingleCellSignalR20

(source: https://github.com/SCA-IRCM/LRdb/blob/master/LRdb_122019.txt), and
9 pairs from Supplementary Table 1 of ICELLNET21.
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Lastly, feedback from a user of our previous database of one of our entries being
incorrect prompted us to re-review the literature support of our original database.
This led to exclusion of 143 pairs, mostly from HPRD, where the PubMedID did
not actually support the interaction. Excluded putative ligand–receptor pairs from
our 2015 resource, CellPhoneDB, RNA-magnet, SingleCellSignalR and ICELLNET
are listed along with the reasons for removal in a separate tab of Supplementary
Data 1.

User supplied ligand–receptor interactions (optional). Currently, NATMI uses
connectomeDB2020 as the default ligand–receptor pair list, but users can also
provide their own custom ligand–receptor pairs lists, as described at https://github.
com/forrest-lab/NATMI.

Identification of ortholog ligand/receptors in other vertebrate species. The
curated ligand–receptor database provided in this manuscript is based on inter-
actions between human ligands and receptors. To run NATMI on other species we
extracted the homologues of interacting pairs from the NCBI HomoloGene
Database23. The homologous pairs for 20 commonly requested species including
mouse, rat, zebrafish (https://www.ncbi.nlm.nih.gov/homologene/statistics/) can be
automatically inferred by NATMI based on the input gene expression data. Note,
as there are known species specific ligand–receptor pairs, we recommend to always
check the literature and validate reported edges when applying NATMI to other
species. For the case studies presented here using mouse single-cell data, we did not
systematically review the human–mouse ortholog pairs but we might consider
systematically annotating all pairs in a future database release. There are, however,
some drawbacks to limiting the pairs to those that have been confirmed in the
species of interest only vs a broader survey based on the largest collection of
available pairs followed by post analysis confirmation. Our recommendation to
end-users is to run NATMI with all L–R pairs available in connectomeDB2020,
rank the predicted top L–R pairs and then confirm the pairs of interest in the
literature or experimentally. Note it is also highly dependent on the degree of
orthology and the coverage/paucity of ligand–receptor studies in the species
considered.

Required input data. NATMI requires the user to provide a gene expression file
(NATMI can process both raw and normalised gene expression data but we
recommend users to use a normalisation appropriate for their data), with columns
containing expression measurements for a single cell (or bulk measurement) and
rows corresponding to genes. For single-cell analyses, the user also needs to provide
a metadata file with the mapping between each cell in the dataset and a cell type/
cluster label. Step-by-step instructions on how to generate or export these two
tables from Seurat66 and SCANPY67 are provided online in the GitHub resource:
https://github.com/forrest-lab/NATMI. For the expression data table, all datasets
used in this paper were normalised by total number of unique molecular identifiers
(or reads if the data does not use UMIs) and then rescaled by multiplying by
1,000,000 (i.e., counts per million UMIs/reads).

Using connectomeDB2020 (or a user-specified ligand–receptor pair list)
NATMI extracts the expression levels of every ligand and receptor in the provided
single-cell (or bulk) dataset. When using single-cell data, NATMI summarises the
expression of every ligand and receptor for each cell type/cluster specified in the
metadata file (by calculating mean expression, total expression and fraction of cells
the gene is detected in). For the analyses presented in this manuscript we consider a
gene as expressed in a given cell type if more than 20% of cells of the cell type had
non-zero read counts for that gene. The user however is free to alter the
detectionThreshold parameter to suit the capture efficiency of their dataset and can
use expressionThreshold parameter to filter out weakly expressed ligands and
receptors.

Ligand–receptor edge weights. NATMI outputs weights of edges from a ligand-
producing cell type/cluster to a receptor-expressing cell-type/cluster using three
metrics. These are mean-expression weight, specificity weight and total-expression
weight. The mean-expression weight is calculated as the product of the mean
expression of the ligand in a cell type/cluster and the mean expression of the
receptor in a cell type/cluster: edge(cell-type1→ cell-type2)mean

ligand1-receptor1=
cell-type1mean

ligand1 × cell-type2mean
receptor1. The specificity weight is calculated as

the product of (1) the mean expression of the ligand in a cell type divided by the
sum of the mean expression of the ligand across all cell types in the dataset and (2)
the mean expression of the receptor in a cell type divided by the sum of the mean
expression of the receptor across all cell types in the dataset: edge(cell-type1→ cell-
type2)specificityligand1-receptor1= cell-type1mean

ligand1 × (∑ (cell-typemean
ligand1))−1 ×

cell-type2mean
receptor1 × (∑ (cell-typemean

receptor1))−1.
Note, we do not use total-expression weight for any of the analyses presented in

the manuscript, however it is provided as a feature for future applications. The
total-expression weight is calculated as the product of the sum of expression of the
ligand in a cell type and the sum of expression of the receptor in a cell-type: edge
(cell-type1→ cell-type2)sumligand1-receptor1= cell-type1sumligand1 × cell-
type2sumreceptor1. Weighting by total-expression acknowledges that each cell type in
the network is present at different abundancies, thus a cell type that weakly

expressed a ligand at a lower mean-expression level than another may still be the
major cell type producing the ligand if it is more abundant (e.g., 500 cells of cell
type A expressing mean 10CPM of a ligand vs 10 cells of cell type B expressing
mean 80CPM of the same ligand→ 5000 in cell type A vs 800 in cell type B). Care
must be taken in interpreting total-expression weights as they assume unbiased
(truly representative) sampling of the cells in the sample.

Cell-connectivity-summary-network edge weights. To summarise cell-to-cell
connectivity within the network, NATMI generates a matrix of cell-connectivity-
summary-network edges. These can be weighted by edge-count or summed
expression and specificity. Using the ligand–receptor weights described above users
can generate edge-count based summaries that simply count the number of
ligand–receptor pairs, from cell-type1 to cell-type2, that pass a set of user-defined
thresholds. For example, count all pairs observed at a detectionThreshold of 20%,
an expressionThreshold of 10CPM, or with a specificityThreshold of 0.1. In con-
trast, the summed-specificity weight sums all specificity weights from cell-type1 to
cell-type2 without applying a hard threshold. Cell type pairs connected by many
specific edges will have high summed-specificity weights.

Visualising cell-to-cell communication edges using NATMI. NATMI uses
multiple plot types to visualise cell-to-cell communication networks. With the
Skelly et al.11 cardiac dataset as a demonstration, we used NATMI to generate
heatmaps of top-ranked ligand–receptor pairs based on expression and specificity
weights (Fig. 1) and three different cell-connectivity-summary networks visuali-
sations (heatmap, network graph and circos views, Figs. 2 and 3).

To generate these plots, users can run the following commands: ‘python
ExtractEdges.py --emFile expression.matrix.txt --annFile annotation.txt --out
outfolder’ and ‘python VisInteractions.py --sourceFolder outfolder’. By default, this
will generate nine cell-connectivity-summary-network visualisations (three views
with three kinds of edge weighting strategies (summed expression, summed
specificity, and edge count)), two heatmaps of top-ranked ligand–receptor
pairs based on average expression and specificity weights, and filtered
ligand–receptor-mediated edge list, adjacency matrices of cell-connectivity-
summary networks.

To visualise delta networks (as shown in Fig. 6), users should first extract edges
in the two conditions by running the following commands: ‘python ExtractEdges.
py --emFile expression.matrix.condition1.txt --annFile annotation.condition1.txt
--out condition1.folder’ and ‘python ExtractEdges.py --emFile expression.matrix.
condition2.txt --annFile annotation.condition2.txt --out condition2.folder’. These
are then compared using the command: ‘python DiffEdges.py --refFolder
condition1.folder --targetFolder condition2.folder --out compare.folder’. To
visualise the delta networks use the command: ‘python VisInteractions.py compare.
folder’. Consequently, six heatmaps and six network graphs of the delta networks
based on three kinds of edge weighting strategies (averaged expression, summed
specificity, and edge count) and two change quantification methods (absolute
difference and fold change) are generated. Adjacency matrices of cell-connectivity-
summary networks in the two conditions and delta networks are also provided for
further exploration.

More details (such as how to apply different edge filters) can be found in
NATMI’s GitHub tutorial page: https://github.com/forrest-lab/NATMI

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data analysed within this paper are publicly available. The Skelly et al.11 mouse
cardiac dataset can be downloaded from ArrayExpress (experiment E-MTAB-6173). The
Tabula Muris data can be downloaded from figshare (https://figshare.com/articles/Single-
cell_RNA-seq_data_from_Smart-seq2_sequencing_of_FACS_sorted_cells/5715040). The
Tabula Muris Senis mammary gland data can also be downloaded from figshare (https://
figshare.com/articles/Single-cell_RNA-seq_data_from_microfluidic_emulsion/5715025).
The FANTOM5 CAGE expression data for human protein-coding genes in the 144
human primary cells are publicly available on FANTOM5 website (https://fantom.gsc.
riken.jp/5/suppl/Ramilowski_et_al_2015/data/ExpressionGenes.txt).

Code availability
NATMI, an open-source Python tool, and connectomeDB2020 database are available at
GitHub (https://github.com/forrest-lab/NATMI). The repository also includes
installation instructions, format requirements, detailed function descriptions, example
workflows for the user and FAQs section. In addition, we provide the output of an
example workflow in the repository so users can preview the analysis results before
installing NATMI.
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