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Abstract

Single-cell RNA-seq technologies are rapidly evolving but while very informative, in

standard scRNAseq experiments the spatial organization of the cells in the tissue of origin

is lost. Conversely, spatial RNA-seq technologies designed to keep the localization of the

cells have limited throughput and gene coverage. Mapping scRNAseq to genes with spatial

information increases coverage while providing spatial location. However, methods to perform

such mapping have not yet been benchmarked. To bridge the gap, we organized the DREAM

Single-Cell Transcriptomics challenge focused on the spatial reconstruction of cells from

the Drosophila embryo from scRNAseq data, leveraging as gold standard genes with in situ

hybridization data from the Berkeley Drosophila Transcription Network Project reference atlas.

The 34 participating teams used diverse algorithms for gene selection and location prediction,

while being able to correctly localize rare subpopulations of cells. Selection of predictor

genes was essential for this task and such genes showed a relatively high expression entropy,

high spatial clustering and the presence of prominent developmental genes such as gap and

pair-ruled genes and tissue defining markers.

1 Introduction

The recent technological advances in single-cell sequencing technologies have revolutionized1

the biological sciences. In particular single-cell RNA sequencing (scRNAseq) methods allow2

transcriptome profiling in a highly parallel manner, resulting in the quantification of thousands of3

genes across thousands of cells of the same tissue. However, with a few exceptions [1, 2, 3, 4, 5]4

current high-throughput scRNAseq methods share the drawback of losing the information relative5

to the spatial arrangement of the cells in the tissue during the cell dissociation step.6

One way of regaining spatial information computationally is to appropriately combine the single-7

cell RNA dataset at hand with a reference database, or atlas, containing spatial expression patterns8

for several genes across the tissue. This approach was pursued in a few studies [6, 7, 8, 9, 10].9

Achim et al identified the location of 139 cells using 72 reference genes with spatial information10

from whole mount in situ hybridization (WMISH) of a marine annelid and Satija et al developed11

the Seurat algorithm to predict position of 851 zebrafish cells based on their scRNAseq data and12

spatial information from in situ-hybridizations of 47 genes in ZFIN collection [11]. In both cases,13

cell positional predictions stabilized after the inclusion of 30 reference genes. Karaiskos et al14

reconstructed the early Drosophila embryo at single-cell resolution and while the authors were15

successful in their reconstruction, their approach did not lead to a predictive algorithm and mainly16

centered around maximizing the correlation between scRNAseq data and the expression patterns17

from in situ-hybridizations of 84 mapped genes in The Berkeley Drosophila Transcription Network18

Project (BDTNP). In this project, in situ hybridization data was collected resulting in a quantitative19

high-resolution gene expression reference atlas [12]. Indeed, Karaiskos et al showed that the20

combinatorial expression of these 84 BDTNP markers suffice to uniquely classify almost every cell21

to a position within the embryo.22

In the absence of a reference database, it is also possible to regain spatial information compu-23

tationally solely from the transcriptomics data by leveraging general knowledge about statistical24

properties of spatially mapped genes against the statistical properties of the single-cell RNA dataset25

[13, 14]. Bageritz et al. were able to reconstruct the expression map of a Drosophila wing disc26

using scRNAseq data by correlation analysis. They exploited the coexpression of non-mapping27

genes to a few mapping genes with known expression patterns, to predict the spatial expression28

patterns of 824 genes [13]. Nitzan et al. exploited the knowledge of the distribution of distances29

between mapping genes in physical space to predict the possible locations of cells based on the30

distribution of distances between genes in the expression space. Following this approach, they31

were able to successfully reconstruct the locations of cells of the Drosophila and zebrafish embryos32

2
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from scRNAseq data [14]. Although these approaches have indicated important steps to reconstruct33

the position of a cell in a tissue from their RNAseq expression, a global assessment is needed34

to evaluate the methods used and the number and nature of the genes with spatial expression35

information required for correctly assigning a location to each cell.36

With this purpose in mind, and to catalyze the development of new methods to predict the37

location of cells from scRNAseq data we organized the DREAM Single cell transcriptomics38

challenge which ran from September through November 2018. DREAM challenges are a platform39

for crowdsourcing collaborative competitions[15] where a rigorous evaluation of each submitted40

solution allows for the comparison of their performance. The quality and reproducibility of each41

provided solution is also ensured. The combination of the individual solutions, i.e., the different42

approaches and insights to a common problem, leads to an overall wisdom-of-the-crowds (WOC)43

solution, with generally superior performance to any individual solution, from where collective44

insights can be garnered. We set up the challenge with 3 goals in mind. First, we used the data45

from Karaiskos et al to foster the design of a variety of algorithms and objectively tested how46

well they could predict the localization of the cells. Second, we evaluated how the predictive47

performance of the algorithms was impacted by the number of reference genes from BDTNP48

with in situ hybridization information included in the predictions. Third, we investigated how the49

biological information carried in the selected genes was implemented in the algorithms to determine50

embryonic patterning.51

The challenge, a first of its kind for single cell data, consisted of predicting the position of52

1297 cells among 3039 Drosophila melanogaster embryonic locations for one half of a stage 653

pre-gastrulation embryo from their scRNAseq data (Figure 1A) [10]. At this stage cells in the54

embryo are positioned in a single two dimensional sheet following a bilateral symmetry, so that55

only positions in one half of the embryo where considered - accounting for the 3039 locations.56

Participants used the scRNAseq data for each of the 1297 cells obtained from the dissociation57

of 100-200 stage 6 embryos and the spatial expression patterns from in situ-hybridizations of 8458

genes in the BDTNP database [12]. Gene determinants of different tissues such as neurectoderm,59

dorsal ectoderm, mesoderm, yolk and pole cells were provided as a hint. To aid the development60

of prediction algorithms, we provided (when available) the regulatory relationship -positive or61

negative- between the 84 genes in the in situ-hybridizations and the rest of the genes. We asked62

participants to provide an ordered list of 10 most probable locations in the embryo predicted for63

each of the 1297 cells using the expression patterns from (i) 60 genes out of the 84 in subchallenge64

1, (ii) 40 genes out of the 84 in subchallenge 2, and (iii) 20 genes out of the 84 in subchallenge65

3. The predictions were compared to the ground truth location determined by calculating the66

maximum correlation using all 84 in situs [10]. We received submissions from 34 teams, and67

the overall analysis of the results showed that the selection of genes is essential for accurately68

locating the cells in the embryo. The most selected genes had a relatively high expression entropy,69

showed high spatial clustering and featured developmental genes such as gap and pair-ruled genes70

in addition to tissue defining markers.71

2 Results72

2.1 Challenge setup73

A distinctive feature of the single cell transcriptomics challenge was the public availability of74

the entire dataset and the ground truth locations produced by DistMap, a method using the in75

situ-hybridizations available at BDTNP [12], published together with the data [10]. We took three76

actions to mitigate the issue of not having a blinded ground truth. First, for the purpose of predictor77

gene selection, we allowed the use of scRNA-Seq data and biological information from other78

3
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Figure 1: Overview of the challenge and results. A. In the DREAM Single-Cell Transcriptomics

Challenge participants were asked to map the location of 1297 cells to 3039 location bins of an

embryo of Drosophila melanogaster, by combining the scRNAseq measurements of 8924 genes

for each cell and the spatial expression patterns from in situ hybridization of 60, 40 or 20 genes,

for subchallenge 1, 2 and 3 respectivelly, for each embryonic location bin, selected from a total

of 84 driver-genes. B. Ranking of the top 10 best performing teams and a wisdom of the crowds

(WOC, in italic) solution, based on results from a post challenge cross-validated selection and

prediction performance measured with three complementary scoring metrics. The boxplots show

the distribution of ranks for each team on the 10 test folds. The rank for each fold is calculated as

the average of the ranking on each scoring metric.

databases, but prohibited the use of in situ data. Second, to assess the quality of predictions, we79

devised three scores (detailed in the Methods section) that were not disclosed to the participants80

during the challenge. The scores measured not only the accuracy of the predicted location, but also81

how well the expression in the cell at the predicted location correlates with the expression from the82

reference atlas, the variance of the predicted locations for each cell, and how well the gene-wise83

spatial patterns were reconstructed. Finally, we devised a post-challenge cross-validation scheme to84

evaluate the soundness and robustness of the methods.85

The challenge was organized in two rounds, a leaderboard round, and a final round. During the86

leaderboard round the participants were able to obtain scores for five submitted solutions before87

submitting a single solution in the final round. We received submissions from 40 teams in the88

leaderboard round and 34 submissions in the final round. Out of the 34 teams that made submissions89

in the final round, 29 followed up with public write-ups of their approaches and source code. For90

subchallenges 1 and 3 we were able to determine a clear best performer, but for subchallenge 2,91

there were two top ranked teams with statistically indistinguishable difference in performance (see92

Supplementary Figures S1,S2 and S3).93

As stated, given that the ground truth for this challenge was publicly available and to avoid94

over-fitting, we decided to invite the top 10 performing teams to contribute to a post-challenge95

collaborative analysis phase to assess the soundness and stability of their gene selection and96

cell location prediction. Consequently, teams were tasked to provide predictions for a 10-fold97

cross-validation (CV) scenario, under the same conditions as for the challenge phase. The folds98

were extracted from the same RNA-seq dataset as in the challenge and every team used the same99

4
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Table 1: Best mean score for metrics s1, s2 and s3 achieved by the teams (Thin Nguyen, WhatATeam

and OmicsEngineering) and the WOC solution. The standard deviation of scores across folds are in

parenthesis. For more details on the scoring metrics see the Methods section.
s1 s2 s3

Teams WOC Teams WOC Teams WOC

Subchallenge 1 0.76(±0.04) 0.73(±0.04) 2.52(±0.28) 2.16(±0.20) 0.59(±0.01) 0.62(±0.01)
Subchallenge 2 0.69(±0.03) 0.70(±0.05) 1.16(±0.12) 1.84(±0.26) 0.67(±0.02) 0.65(±0.01)
Subchallenge 3 0.65(±0.05) 0.68(±0.03) 0.88(±0.13) 1.42(±0.16) 0.79(±0.02) 0.71(±0.01)

assignment of cells to folds. We evaluated the performance of the teams using the same scoring100

approach as in the challenge. To ensure the validity of the findings we decided to perform all further101

analysis and interpretation only from the results of the post-challenge phase.102

2.2 Overview of results103

Interestingly, for subchallenge 1 and 2, when participants had to use 60 or 40 genes for their104

predictions, the ranking of the best performing teams in the CV scenario did not change significantly105

compared to the challenge (Figure 1B cf. Figures S1 and S2). This was not the case in subchallenge106

3 as no particular team from the top 10 outperformed in a statistically significant way the others107

when using 20 genes for their predictions. The results from the cross-validation showed that the108

approaches generalize well, i.e. the gene selection is performed consistently across the folds and109

the variance of the achieved scores across the folds is small for all teams (Figure S4). For each110

subchallenge we combined the gene selection and location predictions from the top 10 participants111

into a WOC solution (see details below) that performed better compared to the individual solutions112

(Figure 1B). The scores obtained by the best performing teams and the WOC solution are shown in113

Table 1.114

A summary of the methods used by participants for gene selection and location prediction can115

be seen in Table S2. The most frequently used method by participants for location prediction was a116

similarity based prediction, such as the maximum Matthews correlation coefficient between the117

binarized transcriptomics and the in situs that was proposed by Karaiskos et al. [10]. Another well118

performing approach was combining the predictions of a machine learning model and the Matthews119

correlation coefficients. The models were trained to predict either the coordinates of each cell or120

the binarized values of the selected in situs given transcriptomics data as input. The predictions121

were then made by selecting the location bins that corresponded to the nearest neighbors of the122

predicted values.123

The most frequently used method by participants for gene selection was unsupervised or124

supervised feature importance estimation and ranking. For example, in a supervised feature125

importance estimation approach a machine learning model is trained to predict the coordinates of126

each cell, given the transcriptomics data at input, that is, the genes with available in situ hybridization127

measurements or all genes. Different machine learning models were trained such as Random Forest128

(BCBU, OmicsEngineering) or a neural network (DeepCMC, NAD). There were examples of129

unsupervised feature importance estimation and ranking by expression based clustering (NAD,130

Christoph Hafemeister, MLB), or a greedy feature selection based on predictability of expression131

from other genes (WhatATeam). Background knowledge about location specific marker genes, or132

the expected number of location clusters, was used by a small number of teams (WhatATeam and133

NAD) to inform the gene selection. Given the diversity of approaches to gene selection, we focused134

our analysis on better understanding the properties of frequently selected genes and providing135

recommendations for future experimental designs.136
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Figure 2: Wisdom of crowds location prediction. The location predictions for each cell by the

top performing teams in the post-challenge cross-validation phase were aggregated in a wisdom of

the crowds solution based on a k-means clustering approach.

2.3 Analysis of the location prediction137

A recurrent observation across DREAM challenges is that an ensemble of individual predictions138

performs usually better and is more robust than any individual method [16, 17]. This phenomenon,139

common also in other contexts, is denoted as the wisdom-of-the-crowds (WOC) [15]. In a typical140

challenge, individual methods output a single probability reflecting the likelihood of occurrence of141

an event. The WOC prediction is then constructed in an unsupervised manner by averaging the142

predictions of individual methods.143

Given that in the single cell RNAseq prediction challenge participants had to submit 10 positions144

per cell, we developed a novel method that is based on k-means clustering to generate the WOC145

predictions. A diagram of the k-means approach is given in Figure 2 where for each single cell146

we first used k-means clustering to cluster the locations predicted by the individual teams [18]147

where the euclidean distance between the locations was used as the distance metric. In order to148

find the optimal k, we used the elbow method, i.e. we chose a k that saturates the sum of squares149

between clusters [19]. Note that each cluster consists of a group of locations and each location150

is predicted by one or more teams. Hence, for each cluster we calculated the average frequency151

that its constituent locations are predicted by individual teams. We then picked the cluster with152

the highest average frequency as our final cluster and ranked each location in this cluster based on153

how frequently it was predicted by individual methods. For each cell, the final prediction of the154

proposed WOC method consisted of the top 10 locations based on the above ranking. The k-means155

approach is based on the intuition that a single cell belongs to one location and its expression is156

mostly similar to that of cells in locations surrounding it.157

The WOC location prediction approach does not take the genes used by the teams to make the158

predictions into account. However, after the WOC predictions are generated, in order to score them,159

we needed a list of genes for every subchallenge. To this end we used a WOC approach to gene160

selection (see the following section for more details) and used the most frequently selected genes161

per challenge. As reported above, the WOC solution performed better compared to the individual162

solutions (Figure 1B).163
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Figure 3: Analysis of gene selection. The results in all figures were generated from the genes

that were selected by the top performing teams in the post-challenge cross-validation scenario. A.

Frequency of selected genes in subchallenge 1 (blue), subchallenge 2 (green) and subchallenge 3

(red). The genes are ordered according to their cumulative frequency. B. Venn diagrams of the most

frequently selected genes in the subchallenges with cutoff at 20, 40 and 60 most frequently selected

genes, corresponding to the number of genes required for each subchallenge C. Left, the similarity

of most frequently selected genes for pairs of subchallenges. The Jaccard similarity measures

the ratio of the size of the intersection and the union of two sets J(A,B) = |A\B|
|A[B| . Right, table of

correlations between gene rankings (by frequency) for pairs of subchallenges. D. Validation of

the performances of the wisdom of the crowds (WOC) selection of genes, i.e the most frequently

selected 60, 40 and 20 genes in the respective subchallenges. The violin plots represent null

distribution of scores obtained by 100 randomly selected sets of 60, 40 and 20 genes using DistMap.

The red dots represents the performance obtained by using DistMap with the WOC selection of

genes.

2.4 Analysis of selected genes164

The selection of a subset of in situs used for cell location prediction was the hallmark that differen-165

tiated the subchallenges. It is unfeasible to evaluate all subsets of 20, 40 or 60 genes from the 84166

due to the immense number of possible combinations of genes. Different approaches and heuristics167

can be used to select a subset of genes and the most frequent among the top 10 ranked teams were168

based on model based feature ranking algorithms, using normalized transcriptomics data (for more169

details see Table S2). However, if a subset of genes is selected as a candidate for solving the general170

task of location prediction, it should be consistently identified when similar sets of single cells are171

used as inputs. Therefore, we analyzed the consistency of gene selection for each team across folds172

by 10-fold cross-validation. More importantly, we were interested in subsets of genes that were173

consistently selected by multiple teams as this could underlie biological relevance.174

The approaches for selecting genes taken by the top 10 teams resulted in consistent selection175

across folds, significantly better than random, for all subchallenges. Indeed, all of the pairwise176

Jaccard similarities of sets of selected genes for all teams were significantly higher than the expected177
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Jaccard similarity of a random pair of subset of genes (see Supplementary Figure S4). Importantly,178

we measured an observable increase in variance and decrease of mean similarity as the number of179

selected genes decreased.180

For each subchallenge we counted the number of times that the genes were selected by all teams181

in all folds. The genes, ordered by the frequency of selection in all subchallenges are depicted in182

Figure 3A. Forty percent of the top 20, 67% of the top 40 and 81% of the top 60 most frequently183

selected genes are the same for all three subchallenges (Figure 3B). The ranks assigned to all genes184

in the three subchallenges are highly correlated. Namely, the rank correlations range from 0.69185

between subchallenges 1 and 3, to 0.83 between subchallenges 1 and 2, and subchallenges 2 and 3.186

Figure 3C shows a plot of the Jaccard similarity of the sets of top-k most frequently selected genes187

for pairs of subchallenges. We observe that a high proportion of genes are consistently selected188

across subchallenges. The lists of most frequently selected 60, 40 and 20 genes in subchallenges 1,189

2 and 3 respectively are available in the supplementary material (Table S3).190

We conclude that the gene selection is not only consistent by team across folds, but also across191

teams and subchallenges. This finding outlines a direction for further analysis, namely the validation192

of the predictive performance and analysis of the common properties of the most frequently selected193

genes.194

2.4.1 Validation of frequently selected genes195

We defined a simple procedure to obtain a WOC gene selection for each of the subchallenges. It196

consisted on selecting the most frequently selected genes for each subchallenge (different colored197

bars in Figure 3A). For example, for subchallenge 1 we chose the 60 most frequently selected genes198

looking only at the heights of blue portion of the bar. Interestingly, the 20 most frequently selected199

genes in subchallenge 3 are included in the list of 40 most selected genes in subchallenge 2 (except200

for Doc2), conversely included in the list of 60 most selected genes in subchallenge 1.201

To validate the predictive performance of the WOC gene selection, we predicted the cell202

locations using DistMap and scored the predictions using the same scoring metrics as for the203

challenge, estimating the significance of the scores through generated null distributions of scores204

for each subchallenge. The null distribution of the scores was generated by scoring the DistMap205

location prediction using 100 different sets of randomly selected genes. For each subchallenge and206

each score we estimated the empirical distribution function and then calculated the percentile of the207

values of the scores obtained with the WOC gene selection.208

The null distributions and the values of the scores obtained with the WOC gene selection209

are shown in Figure 3D. All values of the scores for subchallenge 1 fall in the 99th percentile.210

For subchallenge 2 s1 and s3 fall into the 92nd percentile and s2 in the 100th percentile. For211

subchallenge 3 all scores fall in the 100th percentile. Overall the performance of DistMap with the212

WOC selected genes performs significantly better than a random selection of genes. The actual213

values of the scores are on par with those achieved by the top 10 teams in the challenge.214

2.4.2 Properties of frequently selected genes215

We conjectured that the most frequently selected genes should carry enough information content216

collectively to uniquely encode a cell’s location. Furthermore, genes should also contain location217

specific information, i.e. their expression should cluster well in space. To quantify these features,218

we calculated the entropy and the join count statistic for spatial autocorrelation of the in situs (see219

Figure 4A and Methods for description). We observed that most of the in situ genes have relatively220

high entropy as observed by the high density in the upper part of the plots and show high spatial221

clustering, i.e show values of the join count test statistic lower than zero.222
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To test our conjectures of high entropy and spatial correlation we tested the significance of the223

shift of the values between the WOC selected genes and the non-selected genes from all in situs for224

each subchallenge. Since the Shapiro-Wilk test of normality rejected the null-hypothesis for both225

entropy and join count metrics (p < 2.3 ·10�6 and p < 1.8 ·10�15) that their values are distributed226

normally for the in situ genes, we opted for a nonparametric, one sided Mann-Whitney U test. We227

observed significant value shift for the autocorrelation statistic for all subchallenges 1 to 3 (see228

bottom of Figure 4A right red part of violin plots and table). Although we see a decrease of the229

statistical significance of the mean value shift for the distribution of values of the entropy of the230

selected subsets of genes, the shift is significant for all subchallenges and at the same time, we231

observe that tail of the distribution shortens.232

To test whether the information relative to different cell types is retained with the selected233

subset of 60, 40 or 20 WOC selected genes, we embedded the cells into 2D space using t-distributed234

stochastic embedding (t-SNE) [20] aiming for high accuracy (θ = 0.01), Figure 4B and Figure S5.235

We then clustered the t-SNE embedded data using density-based spatial clustering of applications236

with noise (DBSCAN) [21]. DBSCAN determines the number of clusters in the data automatically237

based on the density of points in space. The minimum number of cells in a local neighborhood was238

set to 10 and the parameter ε = 3.5 was selected by determining the elbow point in a plot of sorted239

A B

p-value Subchallenge 1 Subchallenge 2 Subchallenge 3

Entropy 0.0005   0.0212 0.1554
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Figure 4: Properties of selected genes. A. Double violin plots of the distribution of entropy and

spatial autocorrelation statistic of Left, green all in situs calculated on all embyonic location bins

and Right, red the most frequently selected 60, 40 and 20 genes in the respective subchallenges.

[bottom table] p-values of a one sided Mann-Whitney U test of location shift comparing the selected

(red part of the violin plot) genes vs the non-selected genes. B. Top left, visualization of the

transcriptomics data containing only the most frequently selected 60 genes from subchallenge 1 by

the top performing teams (embedding to 2D by t-SNE). Each point (cell) is filled with the color of

the cluster that it belongs to (density-based clustering with DBSCAN). Top right, spatial mapping

of the cells in the Drosophila embryo as assigned by DistMap using only the 60 most frequently

selected genes from subchallenge 1. The color of each point corresponds to the color of the cluster

from the t-SNE visualization. Bottom, highlighted (red) location mapping of cells in the Drosophila

embryo for each cluster separately.
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Table 2: Correlations of transcriptomics to in situ properties of the genes where both measurements

are available. σ2 - variance of a gene across cells, cv - coefficient of variation, 0 - number of cells

with zero expression, Hb - entropy of binarized expression, H - entropy, Z - join count test statistic

ρ
in situ

H Z

sc
R

N
A

se
q σ2 0.50 0.18

cv -0.69 0.26

0 -0.64 0.29

Hb 0.72 -0.30

distances of each cell to its 10th nearest neighbor. We found that the 9 prominent cell clusters240

identified in the study by Karaiskos et al. [10] are preserved in our t-SNE embedding and clustering241

experiments when considering the most frequently selected 60 or 40 genes from subchallenges 1242

and 2. The number of clusters of cells with specific localization is reduced when considering the243

most frequently selected 20 genes from subchallenge 3.244

We next associated the properties of the in situs that were found to be indicative of good perfor-245

mance in the task of location prediction with statistical properties of the genes in the transcriptomics246

data. Our goal was to discover statistical properties of the transcriptomics data that might inform247

future experimental designs when selecting target genes for in situ hybridizations. We calculated248

statistical features across cells for the subset of genes from the transcriptomics data for which we249

also have in situ measurements. These include the variance of gene expression σ2 across cells,250

the coefficient of variation cv =
σ
µ

, the number of cells with expression zero 0 and the entropy of251

binarized expression Hb. We then calculated the correlation across genes for each of these metrics252

and the measured spatial properties of interest of the in situs, i.e entropy H and the value of the253

joint count statistic Z (see Table 2). Although the selection of highly variable genes was one of254

the approaches used by some of the top 10 teams, the variance for each gene in the scRNAseq255

expression, although highly correlated to the entropy of the corresponding in situ measurements of256

that gene, it is less correlated than other properties. Also, we observed that the positive correlation257

of the entropy to the variance of each gene, becomes a negative correlation against their coefficient258

of variation. This negative correlation can have two sources, the genes with high entropy may have259

low standard deviation or high mean expression. Since we observe positive correlation of entropy260

to the variance of expression, we can conclude that the negative correlation is a result of highly261

expressed genes. Since a known drawback of scRNAseq is a high number of dropout events for262

lowly expressed genes [22], this observation is further supported by the negative correlation of the263

entropy and the number of cells with zero expression. We observed the highest correlation of in264

situ entropy to the entropy of the binarized expression. Regarding the spatial autocorrelation, all265

statistical features of the transcriptomics were only slightly positively correlated to the join count266

statistic except for the entropy of binarized expression which had slightly negative correlation.267

3 Discussion268

In this paper we report the results of a crowdsourcing effort organized as a DREAM challenge,269

around the issue of predicting the spatial arrangement of cells in a tissue from scRNAseq data.270

Analysis of the top performning methods and their performance provided us a number of unbiased271

insights. First, it unveiled a connection in the cell-to-cell variability in Drosophila embryo gene272

expression and the selection of the best genes for predicting the localization of a cell in the embryo273

from their scRNAseq expression. The most selected genes had a relatively high entropy, hence high274

variance and expression while also showing high spatial clustering. The smaller the number of275
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selected genes, i.e going from subchallenge 1 to 3, the more these features became apparent. The276

observed advantage of genes with high overall expression in cells might lead to less dropout counts277

in the scRNAseq data, a known disadvantage of the technology, leading to more accuracy in the cell278

placement. We also found that the 9 prominent spatially distinct cell clusters previously identified279

[10] are preserved when considering the most frequently selected 60 or 40 genes, but the number280

of clusters is reduced when considering only the most frequently selected 20 genes. This finding281

is in line with the conclusions of Howe et al. [11] where in a related task of location prediction282

the performance stabilized after the inclusion of 30 genes in a related experiment. The WOC gene283

selection and the k-means clustered WOC model for cell localization performed comparably or284

better than the participant’s models, showing once more the advantage of the wisdom-of-the-crowds.285

All these results can be explored in animated form at https://dream-sctc.uni.lu/.286

Given that it has been shown that positional information of the anterior-posterior (A-P) axis is287

encoded as early in the embryonic development as when the expression of the gap genes occurs288

[23, 24], we thought that it should be possible to implement in algorithms for this challenge the289

information contained in the regulatory networks of Drosophila development [25]. Although only a290

small number of participants, among them the best performers, directly used biological information291

related to the regulation of the genes or their connectivity, the most frequently selected genes in292

all 3 subchallenges have interesting biological properties. Indeed, gap genes such as giant (gt),293

kruppel (kr), knirps (kni) were selected in all 3 subchallenges (see Figure 5 and Table S3 that also294

includes kni-like knrl) although tailless (tll) and hunchback (hb) were not. Along the A-P axis,295

maternally provided bicoid (bcd) and caudal (cad) first establish the expression patterns of gap and296

terminal class factors, such as hb, gt, kr and kni. These A-P early regulators then collectively direct297

transcription of A-P pair-rule factors, such as even-skipped (eve), fushi-tarazu (ftz), hairy (h), odd298

skipped, (odd), paired (prd) and runt (run) which in turn cross-regulate each other. Not being part299

of the in situs, neither bcd, nor cad were selected but ama sitting near bcd in the genome might300

have been selected for its similar expression properties. Furthermore, we also find that pair-rule301

genes were most prominently selected in subchallenges 1 ( eve, odd, prd, the Paired-like bcd and302

bcd) and 2 (h, ftz and run). A similar cascade of maternal and zygotic factors controls patterning303

Figure 5: Gene regulatory network of early Drosophila development. Not all regulations are

represented, nor pair ruled genes odd & prd. Frequently selected genes are represented in bold.
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along the dorsal-ventral (D-V) axis were dorsal (d), snail (sna) and twist (twi) specify mesoderm304

and the pair rule factors eve and ftz specify location along the trunk of the A-P axis. Again, sna and305

twi were selected in all subchallenges and d in subchallenges 1 and 2. These selected transcription306

factors specify distinct developmental fates and can act via different cis-regulatory modules but307

their quantitative differences in relative levels of binding to shared targets correlates with their308

known biological and transcriptional regulatory specificities [26]. The rest of the selected genes309

were the homeobox genes (nub, antp) and differentiators of tissue such as mesoderm (ama, mes2,310

zfh1), ectoderm (doc2 and doc3), neural tissue (noc, oc, rho) and EGFR pathway (rho, edl). The311

complete lists of most frequently selected genes are available in Table S3.312

Since the ground truth of single cell locations was publicly available, the organization of this313

DREAM challenge brought risks that, given the importance of the scientific question asked, we314

thought worth taking. However, without the post-challenge phase it would have been impossible to315

distinguish the robust and sound methods from methods that were overfitting the results. Overall,316

the single cell transcriptomics challenges unveils not only the best gene-selection methods and317

prediction approaches to localize a cell in the Drosophila embryo, but also explains the biological318

and statistical properties of the genes selected for the predictions. Further identification of additional319

properties such as spatially autocorrelated genes might require the use of alternative scRNAseq320

focused approaches [13, 14]. However, we think that the approach defined here could be used or321

adapted when performing similar cell-placing tasks in other organisms, including human tissues.322

Given the importance of spatial arrangements for disease development and treatment, we foresee323

an application of these methods to medical questions as well.324
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4 Methods412

4.1 Scoring413

We scored the submissions for the three subchallenges using three metrics s1, s2 and s3. s1 measured414

how well the expression of the cell at the predicted location correlates to the expression from the415

reference atlas and included the variance of the predicted locations for each cell. While s2 measured416

the accuracy of the predicted location and s3 measured how well the gene-wise spatial patterns417

were reconstructed.418

Let c represent the index of a cell, given in the transciptomics data in the challenge where419

1  c  1297. Each cell c is located in a bin εc 2 {1..3039} at a position with coordinates420

r(εc) = (xc,yc,zc). Each cell is associated with a binarized expression profile tc = (tc1, tc2, . . . , tcE),421

where 1  E  8924, and a corresponding binarized in situ profile fc = ( fc1, fc2, . . . , fcK), where422

the maximum possible value of K for which we have in situ information is K = 84. For different423

subchallenges we consider K 2 {20,40,60}. Using K selected genes the participants were asked to424

provide an ordered list of 10 most probable locations for each cell. We represent with the mapping425

function A(c, i,K) the value of the predicted i-th most probable location for cell c using K in situs.426

For the first scoring metric s1 we calculated the weighted average of the Mathews correlation427

coefficient (MCC) between the in situ profile of the ground truth cell location fεc
and the in situ428

profile of the most probable predicted location fA(c,1,K) for that cell429

s1 =
N

∑
c=1

pK(c,A)

∑
N
i=1 pK(i,A)

MCC( fA(c,1,K), fεc
),
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where N is the total number of cells with predicted locations.430

The Matthews correlation coefficient, or φ coefficient, is calculated from the contingency table431

obtained by correlating two binary vectors. The MCC is weighted by the inverse of the distance of432

the predicted most probable locations to the ground truth location pK(c). The weights are calculated433

as pK(c,A) =
^d84(c,A)

dK(c,A)
, where dK(c,A) =

1
10 ∑

10
i=1kr(A(c, i,K))� r(εc)k2, ^d84(c,A) is the value of434

dK(c,A) using the ground truth most probable locations assigned with K = 84 using DistMap, and435

k·k2 is the Euclidean norm.436

The second metric s2 is simply the average inverse distance of the predicted most probable

locations to the ground truth location

s2 =
1

N

N

∑
c=1

pK(c,A).

Finally, the third metric s3 measures the accuracy of reconstructed gene-wise spatial patterns437

s3 =
K

∑
s=1

MCC(tcs, fεcs)8c

∑
K
i=1 MCC(tci, fεir)8c

MCC(tcs, fA(c,1,K)s)8c,

where 8c denotes that the MCC is calculated cell wise for each gene.438

For 287 out of the 1297 cells, the ground truth location predictions were ambiguous, i.e., the439

MCC scores were identical for multiple locations. These cells were removed both from the ground440

truth and the submissions before calculating the scores.441

The teams were ranked according to each score independently. The final assigned rank rt442

for team t was calculated as the average rank across scores. Teams were ranked based on the443

performance as measured by the three scores on 1000 bootstrap replicates of the submitted solutions.444

The three scores were calculated for each bootstrap. The teams were then ranked according to445

each score. These ranks were then averaged to obtain a final rank for each team on that bootstrap.446

The winner for each subchallenge was the team that achieved the lowest ranks. We calculated the447

Bayes factor of the bootstrap ranks for the top performing teams. Bayesian factor of 3 or more was448

considered as a significantly better performance. The Bayes factor of the 1000 bootstrapped ranks449

of teams T1 and T2 was calculated as450

BF(T1,T2) =
∑

1000
i=1 1(r(T1)i < r(T2)i)

∑
1000
i=1 1(r(T1)i > r(T2)i)

,

where r(T1)i is the rank of team T1 on the i-th bootstrap, r(T2)i is the rank of team T2 on the i-th451

bootstrap, and 1 is the indicator function.452

4.2 Entropy and spatial autocorrelation453

The entropy of a binarized in situ measurements of gene G was calculated as

H(G) =�p log2 p� (1� p) log2(1� p),

where p is the probability of gene G to have value 1. In other words, p is the fraction of cells where454

G is expressed.455

The join count statistic is a measure of a spatial autocorrelation of a binary variable. We will456

refer to the binary expression 1 and 0 as black (B) and white (W ). Let nB be the number of bins457

where G is expressed (G = B), and nW = n� nB the number of bins where G is not expressed458

(G =W ). Two neighboring spatial bins can form join of type J 2 {WW,BB,BW}.459
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We are interested in the distribution of BW joins. If a gene has a lower number of BW joins460

that the expected number of BW, then the gene is positively spatially autocorrelated, i.e., the gene is461

highly clustered. Contrarily, higher number of BW joins points towards negative spatial correlation,462

i.e. dispersion.463

Following Cliff and Ord [27] and Sokal and Oden [28], the expected count of BW joins is

E[BW ] =
1

2
∑

i
∑

j

wi jn
2
B

n2
,

where the spatial connectivity matrix w is defined as

wi j =

(

1 if i 6= j and j is in the list of 10 nearest neighbors of i

0 otherwise

The variance of BW joins is

σ2
BW = E[BW 2]�E[BW ]2.

where the term E[BW 2] is calculated as

E[BW 2] =
1

4

✓

2x2nBnW

n2
+

(x3 �2x2)nBnW (nB +nW �2)

n3
+

4(x2
1 + x2 � x3)n

2
Bn2

W

n4

◆

,

where x1 = ∑i ∑ j wi j, x2 =
1
2 ∑i ∑ j(wi j �w ji)

2, x3 = ∑i

�

∑ j wi j +∑ j w ji

�2
.464

Note that the connectivity matrix w can also be asymmetric, since it is defined by the nearest465

neighbor function.466

Finally, the observed BW counts are

BW =
1

2
∑

i
∑

j

wi j(Gi �G j)
2
.

The join counts test statistic is then defined as

Z(BW ) =
BW �E[BW ]

q

σ2
BW

,

which is assumed to be asymptotically normally distributed under the null hypothesis of no spatial467

autocorrelation. Negative values of the Z statistic represent positive spatial autocorrelation, or468

clustering, of gene G. Positive values of the Z statistic represent negative spatial autocorrelation, or469

dispersion, of gene G.470

4.3 Implementation details471

The challenge scoring was implemented and run in R version 3.5, the post analysis was performed472

with R version 3.6 and the core tidyverse packages. We used the publicly available implemen-473

tation of DistMap (https://github.com/rajewsky-lab/distmap). MCC calculated474

with R package mccr (0.4.4). t-SNE embedding and visualization produced with R package475

Rtsne (0.15). DBSCAN clutering with R package dbscan (1.1-4).476

4.4 Code availability477

https://github.com/dream-sctc/Scoring478
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4.5 Data description479

Reference Database The reference database comes from the Berkeley Drosophila Transcription480

Network Project. The in situ expression of 84 genes (columns) is quantified across the 3039481

Drosophila embryonic locations (rows) for raw data and for binarized data. The 84 genes were482

binarized by manually choosing thresholds for each gene.483

Spatial coordinates One half of Drosophila embryo has 3039 cells places as x, y and z (columns)484

for a total of 3039 embryo locations (rows) and a total of 3039·3 coordinates.485

Single cell RNA sequencing The single-cell RNA sequencing data is provided as a matrix with486

8924 genes as rows and 1297 cells as columns. In the raw version of the matrix, the entries are the487

raw unique gene counts (quantified by using unique molecular identifiers – UMI). The normalized488

version is obtained by dividing each entry by the total number of UMIs for that cell, adding a489

pseudocount and taking the logarithm of that. All entries are finally multiplied by a constant. For a490

given gene and only considering the Drop-seq cells expressing it we computed a quantile value491

above (below) which the gene would be designated ON (OFF). We sampled a series of quantile492

values and each time the gene correlation matrix based on this binarized version of normalized data493

versus the binarized BDTNP atlas was computed and compared by calculating the mean square494

root error between the elements of the lower triangular matrices. Eventually, the quantile value495

0.23 was selected, as it was found to minimize the distance between the two correlation matrices.496

The short sequences for each of the 1297 cells in the raw and normalized data are the cell497

barcodes.498
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