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predicting Chaotic Time Series
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We present a forecasting technique for chaotic data. After embedding a time series in a state space
using delay coordinates, we "learn" the induced nonlinear mapping using a local approximation. This al-
lows us to make short-term predictions of the future behavior of a time series, using information based

only on past values. We present an error estimate for this technique, and demonstrate its eAectiveness

by applying it to several examples, including data from the Mackey-Glass delay differential equation,
Rayleigh-Benard convection, and Taylor-Couette flow.
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One of the central problems of science is forecasting:

Given the past, how can we predict the future? The

classic approach is to build an explanatory model from

first principles and measure initial data. Unfortunately,

this is not always possible. In fields such as economics,

we still lack the "first principles" necessary to make good

models. In other cases, such as fluid flow, the models are

good, but initial data are dificult to obtain. We can

derive partial difterential equations that allow us to pre-

dict the evolution of a fluid (at least in principle), but

specification of an initial state requires the measurement

of functions over a three-dimensional domain. Acquisi-

tion of such large amounts of data is usually impossible.

Typical experiments employ only a few probes, each of
which produces a single time series. Partial diAerential

equations simply cannot operate on such data. In either

case, when we lack proper initial data or when we lack a

good model, we must resort to alternative approaches.
Such an alternative is exemplified by the work of

Yule, ' who in 1927 attempted to predict the sunspot cy-
cle by building an ad hoc linear model directly from the

data. The modern theory of forecasting as it has

evolved since then views a time series x(t;) as a realiza-

tion of a random process. This is appropriate when

eA'ective randomness arises from complicated motion in-

volving many independent, irreducible degrees of free-

dom.

An alternative cause of randomness is chaos, which

can occur even in very simple deterministic systems.

While chaos places a fundamental limit on long-term

prediction, it suggests possibilities for short-term pre-

diction: Random-looking data may contain simple deter-

ministic relationships, involving only a few irreducible

degrees of freedom. In chaotic fluid flows, for instance,

experimental and theoretical results indicate that in

some cases the state space collapses onto an attractor of
only a few dimensions.

In this paper we present a method to make predictions

about chaotic time series. These ideas were originally in-

spired by eAorts to beat the game of roulette, in colla-

boration with Packard.

If the data are a single time series, the first step is to
embed it in a state space. Following the approach intro-

duced by Packard et al. , and put on a firm mathemati-

cal basis by Takens, "
we create a state vector x(t) by as-

signing coordinates x (t) =x(t), x2(t) =x(t —r), . . . ,

xd(t) =x(1 —(d —1)r), where r is a delay time. If the

attractor is of dimension D, a minimal requirement is

that d ~ D.
The next step is to assume a functional relationship

between the current state x(t) and the future state
x(t+ T),

x(t + T) =fr(x(t) ).

We want to find a predictor FT which approximates fT
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If the data are chaotic, then fr is necessarily nonlinear.

There are several possible approaches: One can assume

a standard functional form, such as an mth-order poly-

nomial in d dimensions, and fit the coefficients to the

data set using least squares. Forecasts for longer times

2T, 3T, . . . , can then be made by composing FT with it-

self. This approach has the disadvantage that errors in

approximation grow exponentially with composition. An

alternative is to fit a new function FT for each time T.

This has the advantage that global approximation tech-

niques only work well for smooth functions —and higher

iterates of chaotic mappings are not smooth. Yet anoth-

er approach is to recast Eq. (1) as a diII'erential equation

and write x(t + T) as its integral. All of these ap-

proaches suffer from the problem that the number of free

parameters for a general polynomial is (m +d)!/(m!d.')
= d, which is intractable for large d.

Our preliminary results suggest that a more effective

approach is the local approximation, using only nearby

states to make predictions. To predict x(t+T) we first

impose a metric on the state space, denoted by, and

find the k nearest neighbors of x(t), i.e. , the k states

x(t') with t'(t that minimize
~

x(t) —x(t') . We then

construct a local predictor, regarding each neighbor

x(t ') as a point in the domain and x(t '+ T) as the cor-

responding point in the range. The simplest approach to

construct a local predictor is approximation by nearest

neighbor, or zeroth-order approximation, i.e. , k =1 and

x~„,q(t, T) =x(t'+ T) Asuperior ap.proach is the first-

order, or linear, approximation, with our taking k

greater than d, and fitting a linear polynomial to the

pairs (x(t '), x(t '+ T) ). For convenience we usually

treat the range as a scalar, mapping d-dimensional states

into one-dimensional values, although for some purposes

it is desirable to let the range be d dimensional. The fit

can be made in any of several ways; for the work report-

ed here we did least squares by singular-value decompo-

sition. When k=d+1 this is equivalent to linear inter-

polation, but to ensure stability of the solution it is f're-

quently advantageous to take k & d + 1. We have also

experimented with approximation using higher-order

polynomials, but in higher dimensions our results are not

significantly better than those obtained with first order.

If done in the most straightforward manner, finding a

neighboring value in a data base of N points requires the

order of N computational steps. This can be reduced to

logN by the partitioning of the data in a decision tree. "

Furthermore, once the neighbors are found predictors for

many times T can be computed in parallel. With these

speedups the computations reported here can be done on

small computers.

To facilitate the comparison of results, in this paper

we simply build the data base from the first part of the

time series, and hold it fixed as we make predictions on

the remainder. Alternatively, it is possible for one to op-

timize the performance with respect to either memory or

data limitations by dynamically updating the data base.

To evaluate the accuracy of our predictions, we com-

pute the root-mean-square error, o~(T) =([x~„„q(t,T)
—x(t+T)] )' . For convenience we normalize this by

the rms deviation of the data a, =((x —(x)) ) ', form-

ing the normalized error E =crt(T)/o, If E=0., the

predictions are perfect; E =1 indicates that the perfor-

mance is no better than a constant predictor x~„„q(t,T)
=(x). To estimate E we make as many predictions as

we need for reasonable convergence, typically on the or-

der of 1000.
We have applied our method to several artificial and

experimental systems, including the logistic map, the

Henon map, the Mackey-Glass delay-differential equa-

tion, ' Taylor-Couette flow,
'' and Rayleigh-Benard con-

vection in an He- He mixture. ' Our results are surn-

marized in Table I.
An illustration of the performance of the local linear

approximation is given in Fig. 1, with use of convection

data obtained by Haucke and Ecke. ' The dimension of
this time series is D = 3. 1 (see Ref. 12). To compare

with a "standard forecasting technique,
"

we also show

TABLE I. A summary of forecasts using local linear approximation for several diAerent data sets. D is an estimate of the attrac-

tor dimension, d is the embedding dimension, 1V is the number of data points used, T,„ is the rough prediction time (Ref. 13) at

which the normalized error approached 1, and t,h„ is the "characteristic time" for the time series estimated as the inverse of the

mean frequency in the power spectrum. In comparison, a standard forecasting technique (global linear autoregression) gave T,„
values that were typically about one characteristic time.
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FIG. 1. Top: A time series obtained from Rayleigh-Benard

convection in an He- He mixture (Ref. 12), with Rayleigh

number R/R, =12.24, and dimension D = 3. 1. Bottom: The

normalized error E(T) =a~(T)lo . The top and bottom time

scales are the same. We show results for the local linear (LL)
and global linear (GL) methods; numbers following the initials

indicate the embedding dimension. The dashed lines are from

Eq. (2), with k equal to the computed metric entropy from

Ref. 12, and C determined by a least-squares fit.

E —t"e ~~~+ ~ ~I TN
—™+I &» (2)

where m is the order of approximation and C is a con-

stant. k equals the largest Lyapunov exponent when

m =0, and equals the metric entropy otherwise. The ar-

results obtained using a global linear approximation
(linear autoregression ). When d & D, the quality of

prediction for the local approximation is roughly the

same as that obtained with the global linear approach,

but for d sufficiently large the predictions are signifi-

cantly better.

How well does this local approximation work? This

depends on the parameters of the problem, including the

number of data points N, the attractor dimension D, the

metric entropy h, the signal-to-noise ratio S, and the pre-

diction time T. There are two distinct regimes: If the

typical spacing between data points, t = N ' & 5
then the forecast is limited by noise. Following Shaw,

the average information in a prediction is (I(T))= InS
—hT. For a narrowly peaked distribution with E «1, to

first order (1(T)) is proportional to —lnE.

The second regime occurs when e & 5 ' and the ac-

curacy of forecasts is limited by the number of data

points. In this case, providing d is suKciently greater

than D, in the limit that E«1 we propose the following

error estimate:

FIG. 2. The normalized error as a function of the prediction

time T, for the logistic and Henon maps (Ref. 3). Results are

shown using zeroth-order (0) and first-order (1) local approxi-

mation. The dashed lines are from Eq. (2), with a least-

squares fit for C and the positive Lyapunov exponents, k =log2
for the logistic map, and k = 0.42 for the Henon map (Ref.
14).

guments leading to this formula are too involved to re-

port here, but they are based on the following facts: The

error of interpolation in one dimension is proportional to

f +'
e +', to leading order the mth derivative grows

under iteration as the mth power of the first derivative,

and the average derivatives along the unstable manifold

grow according to the positive Lyapunov exponents. De-

tailed arguments leading to this result will be presented

elsewhere. '

The scalings predicted by Eq. (2) are illustrated in

Figs. 2 and 3. The exponential increase of E(T) is

demonstrated in Fig. 2, for numerical experiments on the

logistic and Henon maps. For the logistic map the

slopes are very close to those predicted. For the Henon

map, a least-squares fit gives slopes about 10% greater

than those expected with the positive Lyapunov ex-

ponent, indicating a possible correction' to Eq. (2). For

the convection data on Fig. 1, agreement with computed

values of the metric entropy' is very good as indicated

in the figure.

Note that setting E(T,„)=1 in Eq. (2) yields

T,„=(InN )/kD, independent of the order m. Thus

zeroth-order interpolation is less eA'ective than first or-

der, except when E is the order of l. Equation (2) sug-

gests that higher-order polynomial interpolation might

be more effective, but this is difficult in more than two

dimensions.

The power-law variation of E with N is illustrated in
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portant point is not the specific technique, but rather the

demonstration that approaches based on deterministic

chaos can be effective; we expect that new and better

techniques will emerge rapidly as more attention is fo-

cused on this problem. Such methods should be effective

for problems in fluid dynamics, control theory, artificial

intelligence, and possibly even economics.
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FIG. 3. The normalized error with use of local linear ap-

proximation as a function of the number of data points A', at
fixed prediction time T For the logist. ic map (Ref. 3) r =4 and

T=3; for the Mackey-Glass delay-diff'erential equation (Ref.
10) T=40, with two values of the delay parameter td. The
dashed lines are from Eq. (2), with D = I for the logistic map

and D =D L, the Lyapunov dimension, from Ref. 10 for

Mackey-Glass equation.

Fig. 3, where we show the behavior for the logistic map

and the Mackey-Glass equation. The agreement of the

slopes with the expected values of (m+ I)/D based on

computations of the Lyapunov dimension' is quite good.

This scaling law breaks down for large N, on account of
an approach to the noise floor (when e(5 ').

In addition to the obvious practical applications of
forecasting, the construction of approximate models can

be a useful diagnostic tool to investigate chaos. Equation

(2) detnonstrates how forecasting can be used to esti-

mate dimension and entropy; Lyapunov exponents are

also easily obtained. Forecasting provides a way to

determine whether the resulting numerical values of di-

mension and entropy are reliable. Ultimately, the ability

to forecast successfully with deterministic methods may

be the strongest test of whether or not low-dimen-

sionality chaos is present.

At this point, this work is still in a preliminary stage
and many possibilities remain to be investigated. In a

future paper we plan to compare the local approximation

in more detail to some other approaches, in particular

recursive-ordinary-differential-equation models such as

neural nets.

In this paper we have shown that a forecasting ap-

proach based on deterministic chaos can be quite

effective in predicting low- to moderate-dimensionality

time series. Furthermore, this can be done with reason-

able amounts of data and computer time. The most im-
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