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Abstract 

Predicted changes in the global climate are likely to cause large shifts in the geographic 

ranges of many plant and animal species. To date, predictions of future range shifts have 
relied on a variety of modeling approaches with different levels of model accuracy. Using 

a common data set, we investigated the potential implications of alternative modeling 
approaches for conclusions about future range shifts and extinctions. Our common data 

set entailed the current ranges of 100 randomly selected mammal species found in the 

western hemisphere. Using these range maps, we compared six methods for modeling 
predicted future ranges. Predicted future distributions differed markedly across the 

alternative modeling approaches, which in turn resulted in estimates of extinction rates 
that ranged between 0% and 7%, depending on which model was used. Random forest 

predictors, a model-averaging approach, consistently outperformed the other techniques 

(correctly predicting >99% of current absences and 86% of current presences). We 

conclude that the types of models used in a study can have dramatic effects on predicted 

range shifts and extinction rates; and that model-averaging approaches appear to have 
the greatest potential for predicting range shifts in the face of climate change. 

Keywords: climate change, climate-envelope models, extinction, geographic range, model averaging, 

model prediction, random forest predictors 
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Introduction 

Global temperatures have risen an average 0.6 "C over 

the past century (Houghton et al., 2001). Recent studies 

suggest that this climate change has caused shifts in the 

geographic ranges of both plants and animals (Parmesan 

& Yohe, 2003; Root et al., 2003). Given that average 

global temperatures are predicted to rise between 1.4 

and 5.8 "C over the next century (Houghton et al., 2001), 

it is likely that many species will undergo dramatic 

range shifts in the future. To anticipate the effects of 

climate change, and to identify conservation strategies 

that might mitigate the undesirable consequences of 

climate change, it is essential that we develop models 

that link the distributions of species to alternative 

scenarios of climate change. 

Correspondence: Joshua Lawler, c/o US Environmental Protection 
Agency, 200 SW 35th Street, Corvallis, OR 97333, USA, 

tel. + 541 754 4834, fax + 541 754 4799, 
e-mail: lawler. joshua@epa.gov 

Several studies have attempted to predict future 

range shifts, often with the goal of estimating climate- 

induced extinction rates (Williams et al., 2003; Thomas 

et al., 2004). Most predictions of future species distribu- 

tions rely on what are commonly called climate-envel- 

ope or niche models. Collectively, these models can be 

referred to as bioclimatic models because they relate 

biotic distributions to climate. At large spatial scales, 

the distributions of plant and animal species are, in 

part, determined by climatic factors (Lomolino et al., 

2005). Bioclimatic models attempt to relate species 

current geographic distributions to a set of current 

climatic factors. Relatively simple climate variables are 

used to define the abiotic conditions, or 'climate envel- 

ope' in which a species exists. Predicted future climate 

variables, usually derived from a general circulation 

model (GCM), are used as input for these models to 

predict future distributions. 

These predictive models are generally either based on 

statistical techniques (e-g. ThuilIer et al., 2004~) or 

machine learning approaches (e.g. Peterson et al., 
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2002). There are several limitations to this correlative 

approach. In general, these models do not account for 

biotic interactions, evolutionary change, or dispersal 

(Pearson & Dawson, 2003). Furthermore, because they 

are correlative in nature, there is no guarantee that the 

current relationships between a species' distribution 

and the current climate will adequately predict the 

future distribution of a species. Despite these limita- 

tions, these approaches currently provide the best meth- 

ods for predicting climate-induced range shifts for large 

numbers of species. Consequently, they have been used 

extensively in a wide range of studies (Pearson et al., 

2002; Huntley et al., 2004; Thomas et a]., 2004; Thuiller 

et al., 2005a, b). 

Unfortunately, researchers have reported large uncer- 

tainties and error rates in these bioclimatic model pre- 

dictions, and we have little understanding of which, if 

any of the various modeling approaches is most reliable 

(Thuiller, 2003; Segurado & Araujo, 2004). In this paper, 

we report on a systematic comparison of all the major 

approaches to predicting range shifts with a common 

data set and common metrics for estimating error rates. 

Our goal was to quantify the types of errors associated 

with bioclimatic models and to determine whether any 

approach clearly outperforms the alternatives. The 

approaches we examined were: generalized linear 

models (McCullagh & Nelder, 1989), classification trees 

(Breiman et al., 1984), generalized additive models 

(GAM, Hastie & Tibshirani, 1990), random forest 

predictors (Breiman, 2001 ), artificial neural networks 

(Ripley, 1996), and genetic algorithms for rule-set 

prediction (GARP, Peterson et al., 2002). 

Methods 

We compared the model accuracy and the future 

predictions of the six different modeling approaches 

described below by applying each approach to 100 

randomly selected mammal species in the western 

hemisphere. All analyses were conducted on a 

50 km x 50 krn resolution grid consisting of 15 323 cells. 

Current species distributions were based on digital 

range maps (Patterson et al., 2003). We selected the 

100 species at random from 1022 mammals with ranges 

occupying at least 50 grid cells. We chose this threshold 

to eliminate many species for which it was impossible 

to build predictive models while still including species 

with a wide range of geographic range sizes. 

Current climate data were derived from average 

monthly precipitation and temperature values from 

1961 to 1990 for the land surface of the globe at 0.5" 

resolution (Leemans & Cramer, 1991). For that 30-year 

period, we calculated mean annual temperature, aver- 

age temperature of the hottest and coldest months, and 

degree-days over 5 "C. We also calculated average 

yearly precipitation as well as precipitation in the 

hottest, coldest, wettest, and driest months. 

In addition to climate data, we used land-cover data 

to predict current and future species distributions. Most 

models used to predict climate-induced range shifts 

have used only climate data, making the assumption 

that climate will act as a surrogate for land cover for 

species that respond to vegetation patterns. Although 

climate might act as a suitable surrogate for vegetation 

in a static environment, climate-induced shifts in vege- 

tation will depend in part on responses to changing C02 

levels, as well as the distribution of soil types. There- 

fore, for many animal species, we should be able to 

make more accurate future projections if models 

include vegetation. 

Current land cover was derived from both predicted 

current potential vegetation and measured land cover 

derived from Advanced Very High Resolution Radio- 

meter (AVHRR) satellite data (Loveland ef a1 ., 1999). 

Predicted current vegetation types were produced 

using the Mapped Atmospheric-Plant-Soil System 

(MAPSS) model (Neilson, 1995). Although measured 

vegetation provides a more accurate representation 

of current vegetation, we chose to use the predicted 

current vegetation to best correspond with the classifi- 

cation of predicted future vegetation for the years 2061- 

2090. MAPSS predictions of current potential vegetation 

have been shown to closely approximate other potential 

vegetation classifications (Bachelet et al., 2001). We over- 

laid the 44 land-cover classes of predicted potential 

current vegetation from the MAPSS model with five 

agriculture classes and one urban and suburban land- 

cover class from the AVHRR-derived land-cover data to 

produce the new 50-class land-cover data set used for 

building the models. 

Predicted future climate data were produced using 

the Hadley Climate Centre's HADCM2SUL model 

(Johns et al., 1997) using Intergovernmental Panel on 

Climate Change predicted future greenhouse gas con- 

tributions (IS92a) for the years 2061-2090 (Kattenberg 

et al., 1996). This model and greenhouse gas contribu- 

tion scenario together generally predict larger increases 

in precipitation and smaller increases in temperature 

(particularly for North America) than do more recent 

models. Although a wide array of more recent GCM 

predictions based on alternative emissions scenarios 

exist, the purpose of our study was not to draw con- 

clusions about the future, but to compare the differ- 

ences in predictions resulting from using different 

bioclimatic modeling approaches. Using the future 

climatic predictions, we calculated the same set of nine 

climate variables for all 0.5" grid cells. Predicted future 

land cover was produced with the MAPSS model using 
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the predicted climate data for input. For the purposes of 

these analyses, we assumed no change in the distribu- 

tion of agriculture and urban-suburban areas. We over- 

laid the predicted future potential vegetation data with 

the current agriculture and urban-suburban data to 

produce predicted future land cover. All data compiled 

at 0.5" resolution were projected to the 50 km resolution 

grid. For comparison, a 0.5" cell is approximately 

3025 km2 at the equator, 2139 km2 at 45" latitude, and 

514 km2 at 80" latitude. 

Modeling approaches 

For all six modeling approaches, we used the presence 

and absence of a species as the response variable and 

the set of nine continuous variables representing cur- 

rent climate and one categorical variable representing 

the 50 land-cover classes as predictors. All models 

except the GARP models were built using the R soft- 

ware package (version 1.9.1). For all 100 species, we 

selected a training- and a test-data set. For the training 

set, we randomly selected 80% of all species presences 

and 80% of all species absences. For each species, 

we then used the remaining 20% of the data for testing 

the models and determining their errors in terms of 

absences falsely predicted as presences (commission 

error), and presences falsely predicted to be absences 

(omission error). 

Generalized linear models. Generalized linear models 

offer a slightly more flexible modeling framework 

than basic linear regression models as they allow for 

the modeling of alternative distributions in the response 

variable and nonronstant variance functions (Guisan 

et al., 2002). We built logistic regression models 

(generalized linear models with an assumed binomial 

error distribution) using a combined backward- and 

forward-stepwise selection process. Variable inclusion 

was based on Akaike's information criterion (Chambers 

& Hastie, 1991). We modeled all linear and second- 

order polynomials of the climatic predictor variables. 

Because the test-data sets for 21 species contained land- 

cover classes that were not found in the training sets of 

those species, we chose to drop the land-cover variable 

from the models for these species. 

Classification tree models. Classification trees, and 

regression trees, their counterpart for analyzing 

continuous response variables, are nonparametric 

modeling approaches (Breiman et al., 1984; Venables & 

Ripley, 2002). Both techniques involve the recursive 

binary partitioning of data. Each split of the data is 

made using the predictor variable and the point along 

that variable's distribution that divides the data into the 

Journal compilation 0 

two most homogeneous groups with respect to the 

response variable. The result is a tree-like structure 

with one root node and a number of terminal nodes. 

In a classification tree, the proportional class 

membership of the observations in a terminal node 

form the basis for predicted probabilities. De'ath & 

Fabricius (2000) provide excellent examples of the use 

of tree-based models for ecological analyses. We fit 

classification trees using the RPART package in R 

originally designed for S-Plus (Therneau & Atkinson, 

1997). Because most trees tend to over-fit the data, we 

selected the optimal tree size using the modal size 

suggested by fifty 10-fold cross-validations applying a 

1-SE rule (De'ath & Fabricius, 2000). 

GAM.  GAMs are similar to generalized linear models, 

but they are more flexible because they do not require a 

specific response curve to be fit to the predictor 

variables (Hastie & Tibshirani, 1990). Smoothing 

functions allow data-driven response curves to be fit 

for each predictor variable. We fit GAMs using 

penalized regression splines (Wood & Augustin, 2002). 

This approach takes advantage of generalized spline 

smoothing (Wahba, 1990) but can be equally or less 

computationally expensive than backfit GAMs. To 

increase the speed of the modeling process, we 

prescreened each variable by fitting a GAM model for 

that variable alone. We dropped all variables for which 

the fitting algorithm was unable to converge. Variable 

selection for those variables included in the modeling 

process was based on smoothness penalties in 

conjunction with a shrinkage parameter. Variables 

were effectively dropped from a model based on the 

fit smoothing parameter. We used the MGCV package 

in R to fit all GAM models (Wood & Augustin, 2002). As 

for the generalized linear models, we did not include 

the categorical land-cover variable in the models built 

for the 21 species for which the test-data set contained 

land-cover classes not found in the training-data set. 

Random forest predictors. Random forest predictors are a 
model-averaging approach based on regression or 

classification trees (Breiman, 2001). Instead of building 

one tree model, the random forest algorithm builds 

multiple trees using randomly selected subsets of the 

observations and random subsets of the predictor 

variables. The predictions from the trees are then 

averaged (in the case of regression trees) or tallied 

using a voting system (for classification trees). We 

used the R package RandomForest to build random 

forest predictors. As part of the random forest 

procedure, 500 classification trees were built for each 

species. To build each tree, 12258 observations were 

selected at random, with replacement, from the training 

0 2006 The Authors 
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set. For each split in these trees, three predictor 

variables were selected at random from the full set of 

10 predictor variables as candidates for that particular 

split. 

Artificial neural networks. Artificial neural networks are a 

machine-learning approach based on real neural 

networks (Ripley, 1996). The networks are composed of 

a series of interconnected nodes (neurons) which receive 

and process input signals and potentially generate output 

signals. A network is trained on a data set to recognize the 

patterns in the data. We built artificial neural networks 

using the NNET package in R which was based on the S- 

Plus package NNETW (Venables & Ripley 2002). These 

feed-forward networks had one hidden layer with eight 

nodes. To train the network, we used 5000 presence and 

5000 absence observations selected at random, with 

replacement, from the training-data set. Trial and error 

determined that these 10000 observation data sets were 

most effective and efficient for training the networks. To 

produce more robust predictions, we built 10 networks 

for each species and averaged the model predictions 

(Thuiller, 2003; Segurado & Araujo, 2004). 

GARP. GARP is a machine learning-based approach 

that uses a genetic algorithm (a stochastic 

optimization technique) to assemble a set of rules to 

define a species' range (Stockwell & Noble, 1992). The 

approach was developed expressly for predicting 

species distributions. The rules used by the GARP 

algorithm include logistic relationships, climate 

envelopes (Nix, 1986), and simple Boolean rules. We 

used the Unix version of GARP to build 500 models for 

each species. All models were selected from all rule 

types. GARP limits model training sets to 2500 

observations. For each of the 500 models, we selected 

1250 presences and 1250 absences, with replacement, 

from the training-data set for the given species. For each 

species, we used Cohen's K statistic (Monserud & 

Leemans, 1992), calculated using the training-data set, 

to select the 10 best performing models from the set 

abilities, calculating these three metrics required select- 

ing a threshold with which to classify predicted 

presences and absences. We used receiver-operating 

characteristic (ROC) curves to select the optimal thresh- 

old, assuming that predicting presences correctly was 

twice as important as predicting absences correctly 

(Fielding & Bell, 1997). This is a conservative approach 

and should generally reduce the chances of overesti- 

mating future range contractions. In addition to the 

three metrics listed above, we used the area under the 

ROC curve (AUC) to provide an assessment of model 

performance that was independent of a specific classi- 

fication threshold (Fielding & Bell, 1997). 

There are advantages and disadvantages to using 

each of these different measures of model accuracy. 

The percentage of correctly predicted presences and 

absences are the simplest and most straightforward 

measures. The main drawback to using these measures 

is that both are required to assess the accuracy of a 

model. The large extent of our study is also likely to 

inflate the percentage of correctly predicted absences. 

This inflation will be more pronounced for species with 

small ranges. Both K and AUC are commonly used 

statistics for assessing overall model accuracy taking 

both omission and commission error into account. The 

K statistic makes an adjustment for chance agreement 

and that adjustment can produce different accuracy 

estimates that depend on the structure of the data set 

in question (Stehman, 1997). Because AUC assesses 

accuracy independent of a given classification thresh- 

old, it likely produces an overly optimistic estimate of 

model accuracy when applied to test-set data. Given the 

various advantages and disadvantages to using these 

different measures, we chose not to use any one single 

measure to assess model accuracy in our analyses. 

For all four measures of accuracy, we compared 

model performance across model types using Wilcox- 

on's signed-ranks tests with a Holm correction for 

conducting multiple tests (Holm, 1979). 

of 500 models. We combined the binary predictions of 
Future predictions 

these 10 models to produce a predicted probability 

of presence. 

Model comparisons 

Using the reserved test-data set, we computed four 

different metrics to compare the performance of the 

six different modeling approaches. The first three 

of these approaches included the percentage of the 

presences correctly classified, the percentage of the 

absences correctly classified, and Cohen's K, Because 

a11 six modeling approaches produced predicted prob- 

We used the models to predict future geographic ranges 

under two alternative dispersal scenarios. First, we 

assumed that a species would be able to completely 

disperse into any new geographic range. For the second 

scenario, we assumed that a species would be unable to 

disperse from its current range. These two extreme 

assumptions have been made in several recent studies 

with which we wish to draw comparisons (Peterson 

et al., 2002; Thomas et al., 2004). Realistic future range 

shifts are likely to fall somewhere between these two 

extremes. 
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Table 1 Accuracy of six different modeling approaches used to model the current geographic ranges of 100 mammal species in the 

western hemisphere 

Model % presences correct % absences correct K AUC 

GLM 77.7 (17.3), a 

TREE 55.5 (19.0), b 

GAM 68.9 (19.3), a 

RF 86.0 (12.1), c 

ANN 75.6 (12.5), a 

GARP 85.0 (6.2), c 

Accuracy was assessed using a reserved test-data set composed of a randomly selected 20% of the presences and 20% of the absences 

for each species. Values reported are the medians and one half of the interquartile range of the accuracy of the model predictions for 

100 species. Values with the same letters were not significantly different (P> 0.05). 
GLM, generalized linear model; TREE, classification tree; GAM, generalized additive model; I@, random forest; ANN, artificial 

neural network; GARP, genetic algorithm for rule-set prediction; AUC, area under the receiver-operating characteristic curve. 

Results 

How did alternative modeling approaches affect the 

types of error and uncertainty in our analyses? The 

amounts and types of error were markedly influenced 

by which approach was used to predict range shifts 

(Table 1). The most significant consistencies in model 

performance were the over-prediction of current pre- 

sences (commission error) by the neural networks and 

GARP models, the under-prediction of current pre- 

sences (omission error) by the classification tree models, 

and the small number of errors predicted by the ran- 

dom forest models. For example, classification trees 

often incorrectly predicted current presences (median 

of 56% correct). This is a higher rate of omission error 

than produced by the other five approaches (medians of 

6946% correct presences). GARP models tended to 

have higher commission error rates than the other 

approaches, correctly predicting 96% of test-set ab- 

sences compared with correct prediction rates of be- 

tween 98% and 100% of absences for the other types of 

models. The spatial patterns of both commission and 

omission errors also differed across the six modeling 

approaches (e.g. Fig. -1). Whereas the commission errors 

of the GARP models and artificial neural networks 

tended to be relatively widely distributed, the few 

errors that the random forest models produced were 

generally clustered tightly around the area occupied by 

the species (Fig. 1). 

We also found that different modeling approaches 

produced dramatically different predictions of future 

range shifts for many species. Not surprisingly, these 

differences were heavily influenced by assumptions 

regarding dispersal. On average, if one assumes no 

dispersal, so that species cannot move to occupy newly 

predicted portions of their range, only 19% of the 

cumulative future range of a species was similarly 

predicted by all six models. The percent agreement 

was even lower (11%) when full dispersal (species can 

fuIly exploit new range space that arises in the future) 

was assumed. For example, for the black tufted-ear 

marmoset (Callithrix pmicillata), assuming unlimited 

dispersal, the generalized linear model and classifica- 

tion tree predicted contractions of 70% and 58% of the 

current range, respectively, whereas the artificial neural 

network and the GARP model, respectively, predicted 

expansions of 180% and 53% of the range (Fig. 2). 

These differences in model prediction translated into 

different estimates of overall range contractions and 

expansions as predicted by the alternative modeling 

approaches (Fig. 3). When we assumed unlimited dis- 

persal, classification trees predicted range contractions 

of over 50% for 36% of the species in the study com- 

pared with neural networks and GARP models, which 

respectively predicted similar range contractions for 

16% and 17% of all species. Because these models are 

often used to predict extinction rates, it is worth noting 

that depending on the modeling approach used, extinc- 

tion rates ranged from 0% to 7% assuming unlimited 

dispersal and from 6% to 14% assuming no dispersal. In 

general, GARP models predicted the most drastic range 

expansions including at least a tripling in range size for 

19% of all species compared with classification tree 

models that predicted at least a tripling in range size 

for only 7% of the species. 

All of the differences among models would be daunt- 

ing were it not for the finding that one modeling 

approach clearly performed better than all of the alter- 

natives. In particular, random forest models had the 

highest median performance scores across all four 

measures of model accuracy (Table I), and were con- 

sistently ranked the best performing of the six model 

types (Fig. 4). Random forests were the best performing 

models with respect to AUC and K for 88% of species. 
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GLM TREE GAM 

RF ANN GARP 

Correctly predicted absence 

Incorrectly predicted absence (commission error) 

Correctly predicted presence 

Incorrectly predicted presence (omission error) 

Fig. 1 Maps of the current range of the black tufted-ear marmoset (Callifhrix penicillafa) as predicted by six alternative modeling 

approaches. See Table 1 for an explanation of model abbreviations. 

The superiority of the random forest models as mea- 

sured by AUC, K, and the percentage of correctly 

predicted presences was independent of species range 

size. Range size did, however, affect the accuracy of the 

models and the ranking of some of the approaches. For 

all approaches, the percentage of correctly predicted 

presences increased with initial range size (Fig. 5), 
whereas the percentage of correctly predicted absences 

decreased with initial range size (Fig. 6). Range size had 

little effect on the ranking of the modeling approaches 

with respect to the percentage of correctly predicted 

absences (Table 2) but more substantially affected the 

ranking of the approaches with respect to correctly 

predicted presences (Table 3). In particular, GARP mod- 

els were the best at predicting presences for the species 

with the smallest ranges. This reduced omission error 

came at a cost, however, because GARP models had the 

highest commission error rates. 

We noted some distinct differences in the models 

built for the 21 species for which land-cover data were 

not used in the modeling process. For all but the 

generalized linear models and random forest models, 

the predictions for these species had higher commission 

error rates and lower omission error rates than the other 

79 species for which land-cover data were used. 

Discussion 

Differences in bioclimatic modeling approaches 

There are several different approaches to predicting 

changes in species distributions as a result of climate 

change (Iverson & Prasad, 1998; Shafer et al., 2001; 

Pearson et al., 2002; Araujo et al., 2004; Meynecke, 

2004; Thomas et al., 2004). With few exceptions, pre- 

vious studies have found very little consistency in 

the performance of these alternative approaches (Moisen 

& Frescino, 2002; Robertson d al., 2003; Thuiller, 2003; 

Segurado & Araujo, 2004). We have found similar incon- 

sistency among models. Others have demonstrated that 

certain modeling approaches work differently for groups 

of species that demonstrate qualitatively different rela- 

tionships with their environments (Segurado & Araujo, 

2004). The six modeling techniques that we applied in 
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GLM TREE GAM 

RF ANN GARP 

Fig. 2 Maps of the predicted future range of the black tufted-ear marmoset (Callithrix penicillata) as predicted by six alternative 

modeling approaches. See Table 1 for an explanation of model abbreviations. 

this study make different assumptions about the relation- 

ships between species and their environments (Guisan & 

Zimmermann, 2000). For example, generalized linear 

models assume a given response curve that defines the 

relationship between the probability of presence and 

various environmental gradients. These models will gen- 

erally work well for species with relatively simple rela- 

tionships to environmental gradients. The other five 

techniques that we tested are more flexible with respect 

to the complexity of the relationships that they can 

model. For example, GAMs allow for complex relation- 

ships with individual variables to be modeled. They are 

not, however, as adept at modeling complex interactions 

between variables as are classification tree models or 

random forests. Artificial neural networks and GARP 

models, the two machine-learning-based approaches 

tested here, are in part an attempt to model both complex 

relationships with individual variables and complex in- 

teractions among those variables. 

inconsistencies in bioclimatic model predictions 

The inconsistency among bioclimatic models has led 

some to suggest innovative methods for addressing 

model uncertainty that involve finding consensus 

among different models and then selecting the model 

that best represents these commonalities (Thuiller, 2003; 

Thuiller et al., 2004b). Another approach to reducing 

uncertainty is to ask whether some models might 

simply perform better than others, and hence we need 

not consider all of their predictions. Pursuing that 

strategy, our study compares essentially the full suite 

of correlative bioclimatic modeling approaches with a 

common data set, several metrics of model perfor- 

mance, and alternative assumptions about dispersal. 

The lessons are clear. First, random forest predictors, 

which averaged the predictions of hundreds of models, 

were consistently the best performers, and for the data 

we examined, performed remarkably well. They 

achieved error rates of less than 15% for presences 

and less than 1% for absences. We are aware of only 

one other study that has compared the performance of 

random forest predictors to other models for use as 

climate-envelope models. Prasad et al. (2006) found that 

random forest models and bagging (another tree-based 

model-averaging approach) consistently produced bet- 

ter predictions than multivariate adaptive regression 

splines and regression trees for predicting the distribu- 
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Fig. 3 Climate-induced range contractions and expansions for 

100 species as predicted by six different modeling approaches. 

We report the percentage of species predicted to experience each 

of three levels of range contraction when (a) individuals are 

assumed to be able to disperse completely into their future range 

and (b) when individuals cannot disperse out of their current 

E - I N D U C E D  R A N G E  S H I F T S  

(a) Correct presences 

0 1  

G M  TREE GAM RF ANN GARP 

I t f 
* I 

QLM TREE GAM RF ANN GARP 

00 
GLM TREE GAP4 WF ANN GARP 

0 0  
GLM TREE W RF AMfS GARP 

range. We also report the percentage of species predicted to 

experience three levels of range expansion (c). 
Fig. 4 Ranking of the performance of six different modeling 

approaches for predicting the current distribution of 100 mam- 

tions of four tree species. The performance of each of the 

other five modeling approaches tested here, but not by 

Prasad et al., is generally comparable with the perfor- 

mance of models of the same type tested elsewhere 

(Thuiller et al., 2003; Pearson et al., 2004; Segurado & 

Araujo, 2004). 

Our results raise the obvious question of why random 

forest models work so remarkably well. The strength of 

this approach likely lies in the power derived from 

ma1 species. Performance was assessed as (a) the percentage of 

correctly predicted presences, (b) the percentage of correctly 

predicted absences, (c) the K statistic, and (d) the area under 

the receiver-operating characteristic curve (AUC). Each set of 

box and whiskers represents the median, first and third quar- 

tiles, and the maximum and minimum values. See Table 1 for an 

explanation of model abbreviations. 

averaging hundreds of different models (Breiman, 

2001). The individual models are built with randomly 

selected subsets of the data and randomly selected 
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Fig. 5 Relationships between model accuracy (as measured by the percentage of correctly predicted presences) and species range size 

for 100 mammal species using six different modeling approaches. See Table 1 for an explanation of model abbreviations. 

subsets of the predictor variables. Although we aver- 

aged 10 artificial neural networks and 10 GARP models 

to produce predictions for each species, the model 

averaging accomplished by random forest predictors 

is much more comprehensive. Although it is possible 

that model averaging applied similarly to techniques 

other than the classification trees on which random 

forests are based would produce models of comparable 

accuracy, the tree-based models themselves provide 

. added advantages over other modeling approaches. In 

addition to providing a method for modeling complex 

interactions without having to specify them a priori, 

tree-based models allow the relationships between the 

response and the predictors to vary over the domain of 

the study. This is particularly advantageous for model- 

ing data that cover large and diverse geographic areas. 

The second lesson to be taken from our study is that 

the different modeling approaches tend to be relatively 

consistent in the types of errors they make. For example, 

classification trees produced the most omission errors 

whereas GARP models had the highest commission 

error rates. These errors, in turn, lead to different 

predicted range shifts, extinction rates, and changes in 

species composition at specific sites. The large number 

of commission errors produced by the GARP models 

may, in part, reflect a difference in philosophy inherent 

in the design and execution of GARP. The model is 

generally used with presence-only data (e.g. Peterson 

et al., 2002). Without true absences, it is impossible to 

fully assess model accuracy; one cannot determine 

whether predicted presences that do not coincide with 

the presence data represent commission error or un- 

sampled presences. Indeed, when GARP is applied, 

many of the predicted presences that do not correspond 

with presence data points are generally assumed to 

either represent unrecorded presences or the unrealized 

portions of a speciesf fundamental niche (Anderson 

et al., 2003). While this assumption may be true, our 

results indicate that it may lead to an overly optimistic 

view of model performance. In our study, because we 

used both presence and absence data, we were able 

to identify commission error and thus fully test the 

GARP models. 

It is important to recognize that no correlative mod- 

eling approach can accurately model the fundamental 

niche of a species. Whether using presence only data or 

data on presences and absences, the best one can do 

with a correlative approach is to approximate a species' 
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Fig. 6 Relationships between model accuracy (as measured by the percentage of correctly predicted absences) and species range size 

for 100 mammal species using six different modeling approaches. See Table 1 for an explanation. 
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Table 2 Median rankings of the accuracy of six different 

modeling approaches for predicting current absences of 100 

mammal species 

100 

96 

Median model rankings (for correctly predicted absences) 

Species with Species with Species with 

ranges of ranges of ranges > 1000 

50-200 cells 201-1000 cells cells 

GLM 

GAM 

ANN 

GARP 

RF 

TREE 

GLM 

IG AM 

ANN 

GARP 

RF 

TREE 

GAM 

GLM 

ANN 

Species have been divided into three groups based on current 

range size. The three columns in the table represent model 

rankings for (from left to right) 39 species with ranges con- 

sisting of 50-200 grid cells, 31 species with ranges of 201-1000 

grid cells, and 30 species with ranges of > 1000 grid cells. The 

highest ranked models are at the tops of the columns and 

models tied in rank are linked with a vertical line. See Table 1 

for an explanation of model abbreviations. 

current realized niche and hope that the modeled 

relationships hold in the future. Although there is no 

assurance that the model that most accurately predicts 

the current distribution of a species will always produce 

the most accurate future predictions, it is likely that 

minimizing known errors in the current predictions will 

reduce the total amount of error in projections of future 

or past ranges. 

In addition to being prone to committing specific 

types of errors, different modeling approaches may also 

be more or less sensitive to various attributes of the data 

used in the modeling process. For example, some 

modeling approaches may be more robust to changes 

in spatial resolution (Thuiller et al., 2003) and some may 

be more robust to the changes in spatial extent (Thuiller 

d al., 2004~). Some modeling approaches may be more - - -  

sensitive to the ratio of presences to absences in the data 

set (Fielding & Haworth, 1995). Finally, some modeling 

approaches may be more or less sensitive to the type of 

predictor variables used in the modeling process (Thuil- 

ler et a1 ., 2004a). Determining the degree to which these 

attributes of data sets differentially affect modeling 

approaches will require a concerted research effort in 

the future. 
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Table 3 Median rankings of the accuracy of six different els as a proxy for animal-habitat interactions. Although 
modeling approaches for predicting current presences of 100 simple vegetation associations cannot capture all biotic 
mammal species interactions, they likely represent some of the most 

basic, resource use, predator-prey, and competitor in- 
Median model rankings (for correctly predicted presences) 

teractions. Models that assume climate variables will 

Species with Species with Species with 

ranges of ranges of ranges > 1000 

50-200 ceIls 201 -1 000 cells cells 

GARP 

RF 

GLM 

ANN 
GAM 

TREE 

RF 

GARP 

GLM 

ANN 

TREE 

RF 

GLM 

TREE 

Species have been divided into three groups based on current 

range size. The three columns in the table represent mode1 

rankings for (from left to right) 39 species with ranges con- 

sisting of 50-200 grid cells, 31 species with ranges of 201-1000 

grid cells, and 30 species with ranges of > 1000 grid cells. The 

highest ranked models are at the tops of the columns and 

models tied in rank are linked with a vertical line. See Table 1 

for an explanation of model abbreviations. 

The last lesson we can take from our study is that the 

models differed greatly in the extent to which they 

predicted shrinking ranges vs. expanding ranges in 

the face of climate change. For example, when we 

assumed unlimited dispersal, classification tree models 

predicted extinctions for 7% of the species compared 

with GARP models, which predicted no extinctions. 

Similarly, Thuiller et al. (2004b) demonstrated potential 

differences in predicted extinction rates across model- 

ing approaches ranging from less than 1% to roughly 

5% over a 50-year period. 

Limitations and advances in bioclimatic modeling 

Although bioclimatic models are a useful tool for in- 

vestigating the effects of climate change on biodiversity 

at large spatial scales, they are not without their limita- 

tions. Our analyses address one aspect of the uncer- 

tainty associated with current bioclimatic models and 

highlight a tool for reducing this uncertainty. There are, 

however, several other points at which uncertainty 

enters the bioclimatic-modeling process. The limitations 

of bioclimatic models have been thoroughly reviewed 

by Pearson & Dawson (2003). Here, we discuss four of 

these limitations. 

First, most correlative approaches do not directly 

model biotic interactions. These interactions can have 

strong influences on species' responses to climate 

change (Davis et al., 1998). As a first step to addressing 

biotic interactions, we included vegetation in our mod- 

serve as a proxy for vegetation, will fail to capture the 

effects of changes in atmospheric C02 concentrations on 

animal habitat. Including vegetation in bioclimatic 

models for animals is only a first step to addressing 

biotic interactions. Explicitly modeling interspecific in- 

teractions will involve linking bioclimatic models for 

multiple species or further integrating mechanistic and 

correlative models. 

The second limitation of correlative models is that 

they do'not address dispersal. Assuming that organ- 

isms can fully disperse into their projected future range 

or that they will be limited to that portion of their 

projected future range that overlaps their current range 

is overly simplistic. One solution is to link bioclimatic 

model projections with simulated dispersal patterns 

(e-g. Peterson et al., 2002). Such integrated modeling 

approaches will provide more accurate predictions of 

future distributions. 

The third limitation of bioclimatic models is that they 

cannot account for evolutionary change. For species 

with rapid adaptation rates, evolutionary changes 

may influence the impacts of climate change on species 

distributions (Hoffmann & Parsons, 1991; Thomas et al., 

2001). However, for many species, evolutionary change 

will likely lag far behind climate change (Peters & 

Darling, 1985; Etterson & Shaw, 2001). With respect to 

evolutionary change, bioclimatic approaches will most 

accurately model species with poor dispersal capabil- 

ities and long generation times (Pearson & Dawson, 

2003). 

Finally, the fourth limitation of bioclimatic ap- 

proaches is that the models are exceedingly difficult to 

validate. Ideally, models are validated with data that are 

completely independent of the data used to build them. 

However, many models are evaluated with the same 

data used in model building (e-g. Huntley et al., 2004). 

In these cases, there is a complete lack of independence 

of the data sets, which prevents any assessment of 

whether or not the models over-fit the data. Another 

common approach is the one taken in this and many 

other studies (Iverson & Prasad, 1998; Pearson et al., 

2002; Thuiller, 2003) in which data are split into two 

sets, one of which is used to build the models and the 

other of which is reserved for model validation. 

Although this approach provides some independence 

of the model building and validating data sets, the 

reserved data are not completely independent because 

of spatial autocorrelation (Koenig, 1999). To obtain a 

completely independent data set, one must find data 
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from a geographically distinct region (Fielding & 

Haworth, 1995) or from a historical period (Araiijo 

et al., 2005) - although the latter may still be both 

spa tially and temporally autocorrela ted. 

For continental analyses, truly independent data sel- 

dom exist. Many species that occur on multiple con- 

tinents do so because they are invasive exotics and, 

thus, may not be at equilibrium with their new envir- 

onments. Historic data for most species do  not exist. 

When they do, they often provide few data points for 

model validation. Fortunately, there is evidence that 

bioclimatic model validation estimates based on semi- 

forward, it appears that random forest models or other 

model-averaging approaches may yield robust predic- 

tions of range shifts in the face of climate change. It will 

still be difficult to translate these predictions into ex- 

pected extinctions and species turn-over rates because 

actual range shifts will depend on dispersal, evolution- 

ary flexibility, and species interactions. Nonetheless, for 

the sake of adaptive management and conservation 

planning, random forest models provide a useful and 

reIiable tool. By minimizing the uncertainty in biocli- 

matic models, studies of climate-induced range shifts 

can concentrate on elucidating the effects of the more 

independent reserved vaIidation data sets may approx- important uncertainties in climate-change predictions. 

imate estimates based on more independent data sets. 

Aralijo et al. (2005) found that model performance 
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Table A1 Future predicted range sizes of 100 mammal species in the western hemisphere as a proportion of current range 

Predicted future range as a proportion of current range 

Scientific name English name 

Unlimited dispersal No dispersal 
Current range 

(km2) GLM TREE GAM RF ANN GARP GLM TREE GAM RF ANN GARP 

Akodon albiventer 

Akodon cursor 

Alouatta caraya 

Alouatta pigra 

Alouatta Sara ' 

Amorphochilus schnablii 

Y Anoura latidens 
Aotus vociferans - Artibeus fra terculus 

Auliscomys pictus 

Blastocerus dichotomus +g 
P, Bradypus torquatus 
8 Cabreramops aequatorian~ 

0 Callicebus moloch 
t~ Callicebus nigrifrons 

W Callicebus personatus 

Callicebus regulus 

& Callicebus torquatus 

Callithrix penicillata 
I% 

Cavia aperea 

Caviamagna 

Cen tronycteris cen tralis 

w Chinchilla lanigera 
C Chinchillula sahamae 
0- 

Chiroderma trinitatum 

Chiropotes albinasus 

Chiropotes albinasus 

CS Chrotopterus auritus 
5 
% Coendou bicolor 

g@ Cryptotis mayensis 

Ctenomys torquatus 

Cyclopes didactylus 
CI 
.N 4 Cynomops paranus 

Dasyprocta azarae 
% > 

Dasypus sabanicola 

Delomys dorsalis 
E 5 

White-bellied grass mouse 

Cursor grass mouse 

Black howling monkey 

Black howling monkey 

Bolivian red howling monkey 

Smoky bat 

Broad-toothed tailless bat 

Tropical night monkey 

Fraternal fruit-eating bat 

Painted big-eared mouse 

Marsh deer 

Maned three-toed sloth 

us Equatorial dog-faced bat 

Titi monkey 

Black-fronted titi 

Northern masked titi 

Titi monkey 

Collared titi 

Black tufted-ear marmoset 
Brazilian guinea pig 

Greater guinea pig 

Bat 

Chinchilla 

Altiplano chinchilla mouse 

Little big-eyed bat 

White-nosed bearded saki 
White-nosed Bearded saki 

Big-eared wooly bat 

Bicolor-spined porcupine 

Maya small-eared shrew 
Collared Tucu-tuco 

Silky anteater 

Dog-faced bat 

Azara'a Agouti 

Llanos long-nosed armadillo 

Striped Atlantic forest rat 



Table Al. (Contd.) 

Predicted future range as a proportion of current range 

Scientific name , 

Delomys sublineatus 

Eptesicus diminutus 

Eptesictis fuscus 

Heteromys anomalus 

Hisfiotus macrotus 

Hydrochaeris hydrochaeris 

Leopardus pardalis 

Lepus alleni 

Lepus townsendii 

Lichonycteris obscura 

Lonchophylla hesperia 

Lonchorhina orinocensis 

Lyncodon patagonicus 

Marmosa robinsoni 

Marmosops noctivagus 

Marmosops parvidens 

Martes pennan ti 

Megasorex gigas 

Mephitis macroura 

Micronycteris hirsuta 

Microtus oeconomus 

Microtus pinetorum 

Mustela frenata 

Myoprocta acouchy 

Myotis evotis 

Myotis levis 

Myotis ruber 

Nasuella olivacea 

Necromys lasiurus 

Neotonla goldmani 

Nyctirzonzops fenzorosaccus 

Oecoinys speciosus 

Oryzomys angouya 

0 yzomys rostra tus 

Oryzornys yunganus 

Oxymycterus rufus 

Peromyscus leuipes 

English name 

Pallid Atlantic forest rat 

Diminutive Serotine 

Big brown bat 

Trinidad spiny pocket mouse 

Big-eared brown bat 

Capybara 

Ocelot 

Antelope jackrabbit 

White-tailed jackrabbit 
Dark long-tongued bat 

Western nectar bat 

Orinoco sword-nosed bat 

Patagonian weasel 

Robinsona's mouse opossum 

White-bellied slender mouse opossum 

Delicate slender mouse opossum 

Fisher 

Mexican shrew 

Hooded skunk 

Hairy big-eared bat 

Tundra Vole 

Woodland vole 

Long-tailed weasel 

Red acouchy 

Long-eared myotis 
Yellowish myotis 

Red myotis 

Mountain coati 

Hairy-tailed bolo mouse 

Goldmana's woodrat 

Pocketed free-tailed bat 

Arboreal rice rat 

Rice rat 

Long-nosed rice rat 

Yungas rice rat 

Red Hocicudo 

Nimble-footed mouse 

Current range 

(km2) 

- -- 

Unlimited dispersal No dispersal 

GLM TREE GAM RF ANN GARP GLM TREE GAM RF ANN GARP 



Table Al. (Contd.) 

Scientific name English name 

Predicted future range as a proportion of current range 

Unlimited dispersal No dispersal 
Current range 

(km2) GLM TREE GAM RF ANN GARP GLM TREE GAM RF . ANN GARP 

Peromyscus polionotus 

Pla tyrrhinus helleri 

Proeclzimys cayennensis 

Proechimys oris 

Proechinzys roberti 

Pteronotus dauyi 

RIzogeessa tumid0 

Saccoy teryx gymlzura 

Scapanus latimanus 

Sciiirus aestuans 

Scitirus niger 

Scotinomys teguina 

Sigmodon arizonae 

Sorex dispar 

Sorex frowbridgii 

Speothos vena ticus 

Sperrnophilus elegans 

Sturnira magna 

Sturnira nana 

Tamias rufus 

Tamias umbrinus 

Tamiasciurus hudsonicus 

Thomomys bottae 

Tonatia saurophila 

Uroderma bilobatum 

Vampyressa bidens 

Zaedyus pichiy 

Oldfield mouse 
Hellera's broad-nosed bat 

Cayenne spiny rat 

Para spiny rat 
Spiny rat 

Davya's naked-backed bat 

Black-winged little yellow bat 

Amazonian sac-winged bat 

Broad-footed mole 

Guianan squirrel 

Eastern fox squirrel 

Alstona's brown mouse 

Arizona cotton rat 

Long-tailed shrew 

Trowbridgea's shrew 

Bush dog 

Wyoming ground squirrel 

Greater yellow-shouldered bat 

Lesser yellow-shouldered bat 
Hopi chipmunk 

Uinta chipmunk 

Red squirrel 

Bottaa's pocket gopher 
Stripe-headed round-eared bat 

Tent-making bat 

Bidentate yellow-eared bat 

Pichi 

Future ranges were predicted using six different modeling approaches given two different dispersal scenarios. The models included generalized linear models (GLM), 

classification trees (TREE), generalized additive models (GAM), random forest predictors (RF), artificial neural networks (ANN), and genetic algorithms for rule-set prediction 

(GARP). The dispersal scenarios assumed that individuals could disperse completely into the predicted new range (unlimited dispersal) or conversely, that they were restricted to 

areas in which the current and future predicted ranges overlapped (no dispersal). 




