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Predicting clinical outcomes from 
large scale cancer genomic profiles 
with deep survival models
Safoora Yousefi1, Fatemeh Amrollahi1, Mohamed Amgad1, Chengliang Dong2, Joshua E. 

Lewis3, Congzheng Song4, David A. Gutman5, Sameer H. Halani6, Jose Enrique Velazquez 

Vega7, Daniel J. Brat7,8 & Lee A. D. Cooper  1,3,8

Translating the vast data generated by genomic platforms into accurate predictions of clinical outcomes 

is a fundamental challenge in genomic medicine. Many prediction methods face limitations in learning 

from the high-dimensional profiles generated by these platforms, and rely on experts to hand-select 
a small number of features for training prediction models. In this paper, we demonstrate how deep 

learning and Bayesian optimization methods that have been remarkably successful in general high-

dimensional prediction tasks can be adapted to the problem of predicting cancer outcomes. We 

perform an extensive comparison of Bayesian optimized deep survival models and other state of the art 
machine learning methods for survival analysis, and describe a framework for interpreting deep survival 

models using a risk backpropagation technique. Finally, we illustrate that deep survival models can 

successfully transfer information across diseases to improve prognostic accuracy. We provide an open-

source software implementation of this framework called SurvivalNet that enables automatic training, 

evaluation and interpretation of deep survival models.

Advanced molecular platforms can generate rich descriptions of the genetic, transcriptional, epigenetic and pro-
teomic pro�les of cancer specimens, and data from these platforms are increasingly utilized to guide clinical 
decision-making. Although contemporary platforms like sequencing can provide thousands to millions of fea-
tures describing the molecular states of neoplastic cells, only a small number of these features have established 
clinical signi�cance and are used in prognostication1–4. Making reliable and accurate predictions of clinical out-
comes from high-dimensional molecular data remains a major challenge in realizing the potential of precision 
genomic medicine.

Traditional Cox proportional hazards models require enormous cohorts for training models on 
high-dimensional datasets containing large numbers of features. Consequently, a small set of features is 
selected in a subjective process that is prone to bias and limited by imperfect understanding of disease biol-
ogy. High-dimensional learning problems are common in the machine-learning community, and many 
machine-learning approaches have been adapted to predicting survival or time to progression5. Prior knowledge 
has been used to reduce dimensionality by learning gene signatures of cancer hallmarks to generate intermediate 
features that successfully predict outcomes6,7. Regularization methods for Cox models like elastic net have been 
developed to perform objective and data-driven feature selection with time-to-event data8. Random forests are 
reputed to resist over�tting in high-dimensional prediction problems, and have been adapted to survival mode-
ling9. Neural network based approaches have been used in low-dimensional survival prediction problems10, but 
subsequent evaluation of these methods found no performance improvement over ordinary Cox regression11. �e 
di�culty of deconstructing these black-box models to gain insights into disease progression or biology remains 

1Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, 30322, USA. 2Department 
of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA. 3Department of 
Biomedical Engineering, Georgia Institute of Technology/Emory University School of Medicine, Atlanta, GA, 30322, 
USA. 4Department of Computer Science, Cornell University, Ithaca, NY, 14850, USA. 5Department of Neurology, 
Emory University School of Medicine, Atlanta, GA, 30322, USA. 6Emory University School of Medicine, Atlanta, GA, 
30322, USA. 7Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 
30322, USA. 8Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA. Correspondence and requests for 
materials should be addressed to L.A.C. (email: lee.cooper@emory.edu)

Received: 23 May 2017

Accepted: 30 August 2017

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0002-3504-4965
mailto:lee.cooper@emory.edu


www.nature.com/scientificreports/

2Scientific RepoRts | 7: 11707  | DOI:10.1038/s41598-017-11817-6

a key challenge in their adoption. Deep neural networks were combined with input-level feature selection to 
identify promoters and enhancers of gene regulation, with the goal of creating interpretable nonlinear models12.

Advances in neural networks broadly described as deep learning have shattered performance benchmarks 
in general machine-learning tasks, enabled by improvements in methodology, computing hardware, and data-
sets13. �ese networks are composed of densely interconnected layers that sequentially transform the inputs into 
more predictive features through adaptive learning of the interconnection parameters (see Fig. 1). Deep networks 
composed of many layers perform feature-learning on high dimensional datasets to extract latent explanatory fea-
tures14, and have been successfully applied to biomedical problems including image classi�cation15, transcription 
factor binding site prediction16, and medication dosing control17. A fundamental challenge in deep learning is 
determining the network design that provides the best prediction accuracy, a process that involves choosing net-
work hyperparameters including the number of layers, transformation types, and training parameters. Searching 
the vast space of network designs quickly becomes intractable, given the considerable time required to train a 
single deep network. Bayesian optimization techniques have been developed to automate the search of the hyper-
parameter space, and provide measurable gains in accuracy over expert tuning18 or random search19, and identify 
optimal models with fewer experiments19,20. Advanced deep learning techniques including dropout regulariza-
tion, unsupervised pre-training, and Bayesian optimization were �rst applied to build unbiased deep models from 
high-dimensional genomic data in ref.21 where deep networks were trained to optimize proportional hazards 
likelihood. A subsequent study applied deep networks to model survival in breast cancer using a low-dimensional 
dataset (14 features) that were selected with a priori disease knowledge22. �is study did not evaluate prediction 
using high-dimensional data or compare to state-of-the-art methods like regularized Cox regression that perform 
unbiased feature selection.

�is paper extends the preliminary studies exploring deep learning for survival modeling, and presents a so�-
ware package called SurvivalNet (SN) that enables users to train and interpret deep survival models. SurvivalNet 
uses Bayesian optimization to identify optimal hyperparameter settings, saving users considerable time and e�ort 
in choosing model parameters. We also illustrate how backpropagation methods can be modi�ed to interpret deep 
survival models, scoring individual features for their contribution to risk, and show how feature risk scores can 
be used with pathway analysis tools to uncover higher-order biological themes associated with patient survival. 
Using clinical and molecular data from �e Cancer Genome Atlas (TCGA), we show that Bayesian-optimized 

Figure 1. Overview of the SurvivalNet framework. (A) Accurate prognostication is crucial to clinical decision 
making in cancer treatment. Molecular platforms produce data that can be used for precision prognostication 
with learning algorithms. (B) Deep survival models are neural networks composed of layers of non-linear 
transformations, driven by a Cox survival model at the output layer. Model likelihood is used to adaptively 
train the network to improve the statistical likelihood of the overall survival prediction. (C) �e SurvivalNet 
framework enables automatic design optimization and validation of deep survival models. Molecular pro�les 
obtained from TCGA datasets are randomized, assigning patients to training, testing and validation sets. 
Bayesian optimization searches the space of hyperparameters like the number of network layers to optimize 
the model design. Each selected design is trained and evaluated using validation samples to update the 
Bayesian optimizer. �e best model design is then evaluated on the independent testing set to measure the �nal 
optimized model accuracy.
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deep survival models provide comparable performance to Cox elastic net regression, and superior performance 
to random survival forests when analyzing high-dimensional genomic data. Finally, we show how deep survival 
models can learn prognostic information from multi-cancer datasets to improve prognostication through transfer 
learning.

Results
Automatic training and validation of deep survival models. An overview of the SurvivalNet frame-
work is presented in Fig. 1. SurvivalNet is implemented as an open-source Python module (https://github.com/
CancerDataScience/SurvivalNet) using �eano and is available as a pre-built Docker so�ware container. A deep 
survival model uses the Cox partial log likelihood to train the weights of neural network to transform molec-
ular features into explanatory factors that explain survival. �e partial log likelihood serves as a feedback sig-
nal to train the model weights using backpropagation. Deep neural networks have many hyperparameters that 
impact prediction accuracy including the number of layers, number and type of activation functions in each 
layer, and choices for optimization/regularization procedures. �e time needed to train a deep survival model 
prohibits exhaustive hyperparameter search, and so SurvivalNet employs a Bayesian optimization strategy to 
identify hyperparameters that optimize prediction accuracy including the number of network layers, the number 
of elements in each layer, the activation function, and the dropout fraction. Bayesian optimization enables users 
who lack experience tuning neural networks to optimize model designs automatically, and results in considerable 
savings in time and e�ort as previously reported19. Data is �rst split into training (60%), validation (20%), and 
testing (20%) sets. Training samples are used to train the model weights with backpropagation using the network 
design suggested by Bayesian optimization. �e prediction accuracy of the trained deep survival model is then 
estimated using the validation samples, and is used to maintain a probabilistic model of performance as a func-
tion of hyperparamters. Based on the probabilistic model, the design with the best expected accuracy is inferred 
as the next design to test. A�er the Bayesian optimization process is �nished (typically a�er a prescribed number 
of experiments), the best network design is used to re-train a deep survival model using the training and  valida-
tion samples, and the accuracy of this best model is reported using the held-out testing samples.

Comparing deep survival networks with Cox elastic net and random survival forests. We com-
pared the performance of SurvivalNet models with Cox elastic net (CEN) and random survival forest (RSF) mod-
els using data from multiple TCGA projects: pan-glioma (LGG/GBM), breast (BRCA), and pan-kidney (KIPAN) 
which consists of chromophobe, clear cell, and papillary carcinomas. Datasets were selected based on the avail-
ability of molecular and clinical data and for extent of complete clinical follow up. Performance was evaluated 
with two feature-sets: 1) a “transcriptional” feature set containing 17,000 + gene expression features obtained 
by RNA-sequencing, and 2) an “integrated” feature set containing 3–400 features describing clinical features, 
mutations, gene and chromosome arm-level copy number variations, and protein expression features. Details of 
these datasets are presented in Methods and Tables S1 and S2. Optimization procedures for CEN and RSF hyper-
parameters are described in Methods.

In each experiment, samples were randomized to training (60%), validation (20%), and testing (20%) sets, and 
the performance of optimized SN, CEN, and RSF models was assessed. Performance was calculated using Harrell’s 
c-index, a non-parametric statistic that measures concordance between predicted risks and actual survival23. A 
c-index of 1 indicates perfect concordance, and a c-index of 0.5 corresponds to random chance. Experiments were 
repeated for 20 randomizations to account for variations due to sample assignment. Di�erences in performance 
between methods were evaluated through rank-sum statistical testing of c-index values. Results are presented in 
Fig. 2 (extended results are presented in Table S3).

Both SN and CEN signi�cantly outperform RSF models in most experiments. All methods perform markedly 
better than random, with median c-index scores ranging from: 0.75–0.84 in LGG/GBM; 0.52–0.68 in BRCA; and 
0.73–0.79 in KIPAN. In the transcriptional feature set (Fig. 2B), SN models have a slight advantage over CEN 
models in LGG/GBM (Wilcoxon rank-sum p = 2.39e-2) and KIPAN (p = 0.0565). In the integrated feature set 
(Fig. 2A), SN and CEN performance were indistinguishable in the BRCA dataset (p = 0.770), but CEN mod-
els have a slight advantage over SN models in the LGG/GBM (p = 1.78e-3) and KIPAN (p = 0.0699) datasets. 
Performance is generally better on the integrated feature set than the transcriptional feature set for all meth-
ods. One exception to this is the performance of SN on the LGG/GBM feature sets, where performance on the 
transcriptional feature set exceeds the integrated feature set (c-index 0.841 versus 0.818). RSF models have the 
worst performance generally, and are severely challenged in learning from the BRCA transcriptional feature set, 
with a median c-index of 0.520 (slightly better than random guess). Comparing performance across diseases, 
we noticed that prediction accuracy generally decreases as the proportion of right-censored samples in a dataset 
increases. �is pattern holds for all prediction methods. Glioma had the highest overall prediction accuracy, 
being a uniformly fatal disease that has relatively fewer long-term survivors and incomplete follow-up (62–64%). 
Breast carcinoma had the lowest overall prediction accuracy with more than 86–91% of BRCA samples being 
right-censored.

Finally, we observed that CEN model execution routinely fails with some randomizations, producing a seg-
mentation fault so�ware error. In these instances, we generated a new randomization for CEN and repeated the 
experiments. �e performance accuracy of SN and RSF models on these failed randomizations does not suggest 
that they present particularly di�cult learning problems, but we cannot exclude the possibility of introducing a 
performance bias for CEN by generating new randomizations when CEN execution fails.

Interpreting deep survival models with risk backpropagation. Linear survival models weight indi-
vidual features based on their contribution to overall risk, providing a clear interpretation of the prognostic sig-
ni�cance of individual features, and insights into the biology of disease progression. �e complex transformations 
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that machine-learning methods apply to input features makes interpreting these models more di�cult. �is is 
especially true for deep learning where the input features are subjected to multiple sequential nonlinear trans-
formations. To enable interpretation of deep survival models, we implemented a technique that we describe as 
risk backpropagation. In the same way that backpropagation can propagate prediction errors back through the 
layers of a deep model for training, backpropagation can also propagate predicted risks back to the input layer to 
assess how individual features contribute to risk (see Fig. 3). Partial derivatives were �rst used to analyze variable 
importance in ref.24.

A linear survival model is de�ned by a static set of weights that represent the importance of features in pre-
dicting patient risk. In the linear model the predicted risk can be conceptualized as a plane that has a uniform 
gradient for any input feature values. �e slope of this plane is de�ned by the model weights and represents the 
rate of change of risk with respect to each feature. Partial derivatives in SurvivalNet are directly analogous to 
model weights in a linear model, yet the weights di�er depending on the values of the features. In the nonlinear 
SurvivalNet, the prediction can be conceptualized instead as a nonlinear surface where the risk gradients change 
depending on a patient’s feature values, and so these feature weights are calculated separately for each patient.

We applied risk backpropagation to our LGG/GBM integrated feature set model to investigate the prognostic 
signi�cance of features (see Fig. 4). Risk backpropagation was applied to each patient to generate feature risk 
scores, and then each feature was ranked using its median score across patients as a measure of overall prognostic 
signi�cance (see Fig. 4A). Among the top-ranked features indicative of poor prognosis are: increased age at diag-
nosis (rank 3); histologic classi�cation as de novo grade IV glioblastoma (rank 5); loss of chromosome arms 10p 
and 10q (ranks 2, 4); and deletions of tumor suppressor genes CDKN2A and PTEN (ranks 1, 8). �e top-ranked 
features associated with better prognosis included mutations in SMARCA4 (rank 6), IDH1/IDH2 (ranks 9, 10) 
and in CIC (rank 17). We note that many of these features are either incorporated or highly correlated with the 
recently published World Health Organization genomic classi�cation of gliomas25.

To investigate molecular pathways related to glioma prognosis, we also performed a risk backpropaga-
tion gene-set enrichment analysis of our LGG/GBM transcriptional model. Median risk scores from the 

Figure 2. Performance comparison of SurvivalNet, Cox elastic net, and random survival forest models. �e 
prognostic accuracy of these methods was evaluated in di�erent diseases/datasets (GBMLGG, BRCA, KIPAN) 
using a high-dimensional transcriptional feature set and a lower-dimensional integrated feature set that 
combines clinical, genetic, and protein expression features. Patients were randomized to 20 training/validation/
testing sets that were used to train, optimize, and evaluate models in each case. (A) SurvivalNet models have an 
advantage over Cox elastic net in predicting survival using high-dimensional transcriptional features. (B) Cox 
elastic net has an advantage in predicting survival using lower-dimensional integrated features. Dashed red lines 
corresponding to a random prediction (c-index = 0.5). Dashed blue lines corresponds to c-index of molecular 
classi�cation of gliomas.
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Figure 3. Interpreting deep survival models with risk backpropagation. (A) Backpropagation was used to 
calculate the sensitivity of predicted risk to each input feature, generating feature risk scores for each feature and 
patient. (B) Feature risk scores can be analyzed to gain insights into the deep survival model. Risk scores can be 
used to evaluate the prognostic signi�cance of individual features, or to identify gene sets or molecular pathways 
that are enriched with high-risk or low-risk features.

Figure 4. Interpretation of glioma deep survival models. (A) SurvivalNet learns features that are de�nitional 
(IDH mutation) or strongly associated (CDKN2A deletion, SMARCA4 mutation) with WHO genomic 
classi�cation of di�use gliomas. Feature risk scores for the top 10 of 399 features in the integrated model 
are shown here, in order. Each boxplot represents the risk scores for one feature across all patients. Features 
were ranked by median absolute risk score. (B) Kaplan-Meier plots for select features from (A). (C) A 
gene set enrichment analysis of transcriptional feature risk scores identi�ed the TGF-Beta 1 signaling and 
epithelialmesenchymal transition (EMT) gene sets as enriched with features associated with poor prognosis. 
(D) Kaplan-Meier plots for select features from (C).
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transcriptional model were calculated for each transcript, and gene set enrichment analysis was performed on 
these scores to identify pathways enriched with prognosis-associated transcripts26 (See Table S4). Pathways and 
gene sets associated with poor-prognosis include cell cycle (G2M checkpoint, E2F targets), apoptosis, angiogen-
esis, in�ammation (Interferon alpha, gamma responses) and epithelial to mesenchymal transition (EMT and 
TGF-Beta signaling). EMT has received signi�cant attention in cancer27, and also speci�cally in glioma28–30 as 
being associated with aggressive phenotypes and poor clinical outcomes. �e TGF-Beta signaling hallmark gene 
set was signi�cantly enriched (p = 6e-3, FDR q = 2.7e-2) with genes having high risk scores including RHOA, 
TGFB1, TGFBR1, SERPINE1, JUNB1 and ARID4B. �e Epithelial to Mesenchymal Transition gene set was also 
signi�cantly enriched (p = 1.6e-1, FDR q = 1.55e-1) with genes having high risk scores including MMP1/2/3, 
IL6, ECM1, and VCAM1. TGF-Beta signaling is understood to be one of the main pathways involved in EMT, 
and our results support the importance of EMT in determining glioma patient outcomes. �e feature risk scores 
of the EMT-related transcription factors TGF-Beta induced EMT signaling as described in ref.27 are visualized 
in Fig. 4C. Major TGF-Beta-EMT inducing factors (RHOA, RAC1, ROCK2, CDC43 and LIMK1) and EMT tran-
scription factors (TWIST1, SOX9, TRIM28 and SERP2) have among the highest risk scores in our glioma tran-
scriptional model.

Extended feature risk scores for the LGG/GBM integrated and transcriptional models are presented in 
Table S4. �e procedure for obtaining models used for interpretation is described in Methods.

Transfer learning with multi-cancer datasets. We performed a series of transfer learning experi-
ments to evaluate the ability of deep survival models to bene�t from training with data from multiple cancer 
types. �e transfer learning paradigm is illustrated in Fig. 5A. Survival models were trained using three di�er-
ent datasets: BRCA-only, BRCA + OV (ovarian serous carcinoma), and BRCA + OV + UCEC (corpus endome-
trial carcinoma), and were evaluated for their accuracy in predicting BRCA outcomes. �e large proportion of 
right-censored cases in the BRCA dataset (90%) makes training accurate models di�cult, and so we hypothesized 
that augmenting BRCA training data with samples from other hormone-driven cancers could improve BRCA 
prognostication. BRCA samples were randomized to training, validation, and testing and full Bayesian optimi-
zation was performed to measure c-index on BRCA testing samples for 20 randomizations. For the integrated 
feature set, we combined datasets by discarding disease-speci�c clinical features.

Adding samples from the OV and UCEC datasets provides measurable improvements in BRCA prognostic 
accuracy for both integrated and transcriptional feature set deep survival models (see Fig. 5B). For integrated 
models, training with BRCA + OV samples increases median c-index from 0.588 to 0.643 (rank-sum p = 2.92e-
3), and training with BRCA + OV + UCEC improves this further to 0.710 (p = 3.10e-5). For the transcrip-
tional feature set, training with BRCA + OV does not produce a measurable improvement over BRCA-alone 
(p = 0.978), but training with BRCA + OV + UCEC provides a marginal 3.5% improvement (p = 0.168).

We also evaluated the ability of Cox elastic net to bene�t from transfer learning, and found signi�cant perfor-
mance degradation with transfer learning in transcriptional feature set (see Figure 5 C). Training with BRCA + OV 
reduces the median c-index to from 0.664 to 0.599 (p = 0.0699), and training with BRCA + OV + UCEC reduces 
this further to 0.59335 (p = 0.0165). Performance improvements with the integrated feature set for CEN were 
similar to those observed with deep survival models.

Risk backpropagation analysis of transfer learning. To understand the information that OV 
and BRCA samples provide in predicting BRCA prognosis, we performed analysis of the BRCA and 
BRCA + OV + UCEC deep survival models using risk backpropagation. Risk backpropagation analysis was 
applied independently to the BRCA and BRCA + OV + UCEC transcriptional models to generate features risk 
scores, and gene set enrichment analyses were performed on these risk scores for each model to identify di�er-
ences in pathway enrichment between the two models. Gene set enrichment scores for the BRCA + OV + UCEC 
model show increased emphasis on in�ammatory pathways (particularly IL2-STAT5 signaling, IL6-JAK-STAT3 
signaling and Interferon gamma response) as well as the apical junction gene set (known for its relevance to 
cell adhesion and metastasis). KRAS signaling and MYC targets v1 gene sets were de-emphasized in the 
BRCA + OV + UCEC model, pointing to a less prominent role of these pathways in determining breast cancer 
disease progression (See Fig. 5D and Tables S5 and S6).

Discussion
We created a so�ware framework for Bayesian optimization and interpretation of deep survival models, and eval-
uated the ability of optimized models to learn from high-dimensional and multi-cancer datasets. Our so�ware 
enables investigators to e�ciently construct deep survival models for their own applications without the need for 
expensive manual tuning of design hyperparameters, a process that is time consuming and that requires consider-
able technical expertise. We also provide methods for model interpretation, using the backpropagation of risk to 
assess the prognostic signi�cance of features and to gain insights into disease biology. Our analysis shows the abil-
ity of deep learning to extract important prognostic features from high-dimensional genomic data, and to e�ec-
tively leverage multi-cancer datasets to improve prognostication. It also reveals limitations in deep learning for 
survival analysis and the value of complex and deeply layered survival models that need to be further investigated.

SN models have slightly better prognostic accuracy on two of three learning tasks using 17,000 + transcrip-
tional features (GBMLGG and KIPAN), where CEN performed better using the lower-dimensional 300–400 
integrated features. �e high dimensionality of the transcriptional feature set presents a more challenging pre-
diction problem where algorithms are more likely to over�t training data noise. CEN models are regularized 
linear models that use data-driven feature selection to identify a core subset of informative features for linear 
prediction. �eir linearity does not appear to limit performance in our experiments, as their accuracy is similar 
to deep learning models and surpasses RSF models. While the deep models can e�ectively learn survival from 
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high-dimensional data, the feature-learning capabilities of layered nonlinear transformations did not translate 
into signi�cant gains as has been demonstrated in general image classi�cation or language processing tasks13. 
Larger datasets may be needed to overcome over�tting issues and to reveal anticipated performance bene�ts 
of deep learning. Deep learning methods typically require large amounts of training data to e�ectively learn 
their many parameters31, although empirical results in some applications have demonstrated otherwise32. In our 
experiments data requirements were exacerbated by the need to allocate validation samples for hyperparameter 
optimization. Smaller testing sets also introduced considerable variance in performance measurements.

Risk backpropagation analysis of gliomas demonstrated that SurvivalNet models could identify key features 
in high-dimensional datasets, recovering important genetic alterations that currently used to classify gliomas 
in clinical practice. Survival of patients diagnosed with in�ltrating glioma depends largely on age, histologic 
grade and classi�cation into three molecular subtypes de�ned by mutations in the Krebs cycle enzyme isoc-
itrate dehydrogenase (IDH1/IDH2) and co-deletion of chromosome arms 1p and 19q1: 1. Gliomas with wild-type 
IDH (astrocytoma) have an expected survival of 18 months, and are overwhelmingly diagnosed as advanced 
grade IV glioblastoma 2. Gliomas with co-deletion of 1p and 19q and mutations in IDH (oligodendroglioma) 
have the best outcomes, with some patients surviving 10 years or more and 3. Gliomas with IDH mutations that 
lack co-deletions (IDH-mutant astrocytoma) have intermediate outcomes. Risk backpropagation analysis of our 
model identi�ed IDH1 and IDH2 mutations (ranks 9, 10) as strongly associated with better prognosis, consistent 

Figure 5. Learning with data from multiple cancer types improves deep survival models. (A) Data from 
the BRCA dataset was partitioned into training, validation, and testing sets. �e BRCA training set was 
augmented with samples from the OV and UCEC and used to construct models for BRCA survival prediction. 
(B) Augmented training sets signi�cantly improve the performance of SurvivalNet models for the integrated 
feature set. For the transcriptional feature set, marginal improvement was observed when training with 
BRCA + OV + UCEC data, but training with BRCA + OV data provides no improvement. (C) For Cox elastic 
net, augmentation signi�cantly degrades performance for the high-dimensional transcriptional feature set. (D) 
Gene set enrichment analysis of feature risk scores from the BRCA and BRCA + OV + UCEC transcriptional 
models. �e model trained with BRCA + OV + UCEC samples emphasizes di�erent biological concepts than 
the BRCA-only model.
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with the role of these mutations as the primary feature in classifying gliomas. While our analysis did not explic-
itly identify 1p and 19q deletions as strongly associated with better prognosis (ranks 45, 233), it did identify CIC 
mutations, a signature of oligodendrogliomas (CIC mutations occur in more than 50% of oligodendrogliomas), 
and SMARCA4 mutations, that occur frequently in both the less aggressive oligodendroglioma and IDH-mutant 
astrocytoma subtypes. �e top-ranked feature associated with poor prognosis in our analysis was deletion of 
CDKN2A which is strongly associated with the aggressive astrocytomas, as well as with a subset of poor prognosis 
IDH-mutant astrocytomas that lack broad DNA hypermethylation (GCIMP-low)33. Loss of PTEN (rank 8) is also 
characteristic of astrocytomas, has been shown to be an early event in gliomagenesis, and related to the loss of 
its parent chromosome 10 (10q and 10p were ranked 2 and 4, respectively)34. Similarly, enrichment analysis of 
our transcriptional glioma model risk scores identi�ed molecular pathways and processes related to epithelia to 
mesenchymal transition, a process that is associated with poor prognosis in cancers generally and speci�cally in 
gliomas.

Transfer learning experiments showed that deep survival models could benefit from training with 
multi-cancer datasets in the high-dimensional transcriptional feature set. Training with combined BRCA, OV 
and UCEC transcriptional data signi�cantly degraded the accuracy of Cox elastic net models in predicting BRCA 
outcomes, but provided a small bene�t to deep survival models (3.5% improvement). Both methods bene�t sig-
ni�cantly from training on multi-cancer integrated feature sets. Given that the integrated feature sets contain a 
much smaller number of samples than the transcriptional datasets (see Figure S1), it is reasonable that they would 
bene�t more from additional training data. A similar rationale could explain the performance di�erence between 
SurvivalNet and Cox elastic net on the transcriptional feature set: SurvivalNet likely requires more training data 
and so it would be more likely to bene�t from additional cancer types. Additional experiments are needed to 
investigate if SurvivalNet has a real advantage in transfer learning common prognostic signals across cancer 
types. Although genetic alterations and expression patterns are o�en strongly associated with primary disease 
site, common mechanisms of progression are likely shared by many cancers, and deep survival models can ben-
e�t from training with augmented datasets that provide additional evidence of these mechanisms. Enrichment 
analysis of risk scores from the BRCA-only and BRCA + OV + UCEC transcriptional models showed changes in 
the biological themes associated with highly prognostic transcripts, with increased emphasis on in�ammatory 
response and cell adhesion in the BRCA + OV + UCEC model.

Although our study provides important insights into the use of deep learning for survival modeling, it has 
some limitations. Larger genomic datasets with clinical follow-up are needed to determine if the feature learning 
and nonlinearity of deep learning methods can provide substantial bene�ts in predicting survival. Secondly, our 
risk backpropagation analysis was simpli�ed by averaging feature risk scores across patients. With nonlinear 
models, feature risk scores can vary signi�cantly from patient to patient, and an in-depth analysis of these varia-
tions could yield insights into alternative paths for disease progression.

Methods
Data. All datasets were created using TCGAIntegrator (https://github.com/cooperlab/TCGAIntegrator), a 
Python module for assembling integrated TCGA genomic and clinical datasets with the Broad Institute Firehose 
(https://gdac.broadinstitute.org/). Datasets were �ltered to remove patients lacking essential data platforms 
required in each experiment. Clinical variables including age and stage were required for each experiment, with 
missing radiation treatment status (binary) being mean-imputed to re�ect prior likelihood in receiving radiation 
therapy. Features with categorical or ordinal values (i.e. stage) were expanded to a series of binary variables for 
model training. Copy number features were derived from the A�ymetrix Genome-Wide Human SNP Array 6.0 
platform. Gene expression features were taken as RSEM values from the Illumina HiSeq. 2000 RNA Sequencing 
V2 platform. Protein expression measurements were taken from the MD Anderson Reverse Phase Protein Array 
(RPPA) Core platform that measures expression of cancer-relevant proteins and phosphoproteins. Sparse missing 
values in protein or gene expression features were 1nn-imputed (<20% missing values), where features exceeding 
this missing value threshold were discarded. Signi�cant mutations were identi�ed for inclusion in each dataset 
(LGG/GBM, KIPAN, BRCA) using a MutSig2CV<= 0.1 q-value threshold. Gene-level copy number features 
were �ltered using a GISTIC<= 0.25 q-value threshold to identify focal events, and were further �ltered using the 
Sanger Cancer Gene Census35. All clinical and molecular features were standardized to zero-mean unit-variance 
to comply with best practices for training deep-learning algorithms. All datasets used to create this paper, along 
with the TCGAIntegrator commands used to generate these datasets are available on request.

Software and hardware. All so�ware used in training deep survival models, bayesian optimization, and 
model interpretation are provided as an installable python package at https://github.com/CancerDataScience/
SurvivalNet. We have also provided a Docker container containing an installation of the package and all depend-
encies that provides access to SurvivalNet functionality without the need for so�ware installations. SurvivalNet 
is implemented on top of the Numpy (v1.11)/SciPy (v0.18) stack using �eano (v0.8.2). Bayesian optimization 
was performed using the BayesOpt package (https://github.com/rmcantin/bayesopt). Survival analysis statistics 
like Kaplan Meier analysis and logrank testing were performed using the Python lifelines package (v0.8.0.1). 
Cox elastic net models were trained using Glmnet for Matlab (http://web.stanford.edu/~hastie/glmnet_matlab/). 
Random survival forest models were trained using the RandomForestSRC (2.2.0) R package. Experiments were 
performed on a workstation equipped with two Intel Xeon E5–2620 v3 six-core processors, 64GB RAM, and two 
Titan-X GTX graphics processing units.

http://S1
https://github.com/cooperlab/TCGAIntegrator
https://gdac.broadinstitute.org/
https://github.com/CancerDataScience/SurvivalNet
https://github.com/CancerDataScience/SurvivalNet
https://github.com/rmcantin/bayesopt
http://web.stanford.edu/~hastie/glmnet_matlab/
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Training, model selection and validation procedures. Deep survival models are multi-layer feed for-
ward arti�cial neural networks with a Cox proportional hazards output layer that calculates negative log partial 
likelihood

∑ ∑β β= −
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where Xi are the inputs to the output layer, β are the Cox model parameters, U is the set of uncensored samples 
and Ri is the set of “at-risk” samples with survival or follow-up times Yj ≥ Yi.

�is likelihood was optimized using backpropagation and line-search gradient descent. In each backpropaga-
tion iteration, the log partial likelihood is backpropagated throughout the network layers to update the intercon-
necting weights. �e derivative used in backpropagation is
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where Xi is the input to the output/Cox layer. �is derivative is multiplied by derivatives of the hidden layers 
using the chain rule to update all the network parameters back to the �rst network layer. Training was performed 
by combining all samples into a single batch, and updating the model once per epoch, due to the dependence 
between samples in calculating the Cox partial likelihood (Equations 1, 2). We note that mini-batch training can 
be performed with SurvivalNet by �tting the likelihood to smaller batches of samples, but this approach was not 
used in our experiments. Regularization of the network during training was performed using random dropout 
of network weights.

Bayesian optimization was performed by splitting samples into training (60%), validation (20%) and testing 
(20%) sets. �e training and validation sets were used by Bayesian optimization to determine the optimal model 
hyperparameters, namely number of layers (1–5), layer width (10–1000), dropout fraction (0–0.9) and activation 
function (Recti�ed-linear or hyperbolic tangent). �e optimal model architecture was then applied to the testing 
set to evaluate c-index of the selected model. We repeated this procedure on 20 randomized assignments of the 
samples to training/validation/testing.

Cox elastic net models contain two hyparparameters, λ which controls the overall degree of regularization and 
the mixture coe�cient α that controls the balance between L2 and L1 norm penalties. Grid search over λ, α was 
performed to optimize the choice of these parameters. For each choice of α, a separate λ sequence was generated 
by Glmnet since the range of λ depends strongly on the α. A model was trained for each α/λ pair using the train-
ing set, and the model with the best performance on the validation set was then evaluated on the testing set. �e 
same validation procedure was used to tune RSF hyperparameters including the number of trees (50, 100, 500, 
1000), node size (1, 3, 5, 7, 9), and random splitting based on the recommendations in the randomForestSRC R 
package.

Risk backpropagation and model interpretation. �e models used for risk backpropagation and 
interpretation were created by identifying the best performing model con�guration from the 20 randomized 
experiments. �ese con�gurations were then used to re-train a model using all available samples. Risk back-
propagation was implemented using �eano to calculate the partial derivatives of risk with respect to each input 
variable using the multivariable chain rule. Given a deep survival model with H hidden layers that operates on an 
N-dimensional feature vector f to predict risk R, the feature risk scores are calculated as the partial derivative of 
the model with respect to inputs

∏β
∂

∂
= ×

=

R

f
J

(3)h
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h
1

where Jh is the Jacobian matrix of the h-th hidden layer with respect to its inputs, and β is the vector of parameters 
of the �nal layer that is a linear transformation (note the exponential is not applied since we are dealing with risk). 
�is partial derivative is evaluated using the features of each patient fi to generate an N-dimensional feature risk 
score vector for each patient. Features were ranked by calculating the median risk score for each feature across 
all patients.

For transcriptional models, feature risk scores were analyzed using the Preranked Gene Set Enrichment 
Analysis (GSEAPrerankedv1) module in GenePattern. The Hallmark gene set36 from the MSigDB data-
base (http://so�ware.broadinstitute.org/gsea/msigdb/) was used for enrichment analysis. �e HUGO Gene 
Nomenclature Committee database was used to harmonize gene symbols between gene sets and model features 
prior to GSEA analysis (http://www.genenames.org/).

Transfer learning experiments. Datasets were combined using their shared features. For transcriptional 
and molecular features this merging is trivial, although many of the mutations and copy-number variations are 
dataset speci�c since they are �ltered by GISTIC and MutSig to identify frequent alterations for each disease 
(integrated feature sets used in transfer learning are considerably smaller as a result). Pathologic stage and clin-
ical stage were merged as a single “stage” variable where necessary, since their de�nitions of stage are similar 
(although the method of determining this stage di�ers). No additional normalization measures were employed 
to remove disease-speci�c biases.

http://software.broadinstitute.org/gsea/msigdb/
http://www.genenames.org/
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Data availability. �is paper was produced using large volumes of publicly available genomic data. �e 
authors have made every e�ort to make available links to these resources as well as making publicly available the 
so�ware methods used to produce the datasets, analyses, and summary information. All data not published in the 
tables and supplements of this article are available from the corresponding author on request.
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