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Abstract	

With	 advancing	 age	 individuals	 experience	 a	 deterioration	 in	 cognitive	

abilities	 that	 is	 characterized	 by	 substantial	 inter-individual	 variation	 in	 the	

observed	trajectories	of	cognitive	decline.	Late	onset	Alzheimer’s	disease	(LOAD)	

susceptibility	 genes	 and	 environmental	 risk	 factors	 are	 good	 candidates	 for	

association	with	cognitive	decline,	as	the	pathological	features	of	LOAD	progress	to	

varying	degrees	in	individuals	without	dementia	or	cognitive	impairment	and	are	

associated	with	nonclinical	cognitive	decline.		

This	 thesis	 investigates	 whether	 Alzheimer’s	 disease	 risk	 factors	 and	

genetic	variants	previously	associated	with	cognitive	 function	are	also	associated	

with	cognitive	decline.	Data	collected	 from	the	60+	cohort	of	 the	Personality	and	

Total	 Health	 (PATH)	 through	 life	 project	 was	 used,	 in	 which	 2,551	 participants	

were	 assessed	 at	 4-year	 intervals	 for	 a	 total	 of	 12	 years	 on	 a	 comprehensive	

battery	of	cognitive	tests.		

The	 publications	 in	 this	 thesis	 investigate	 the	 following.	 First,	 whether	

APOE*e4 moderates	 the	 association	 between	 high	 blood	 pressure	 and	 cognitive	

function	 in	 late	 life.	 It	 was	 observed	 that	 a	 APOE–hypertension	 interaction	 was	

associated	with	a	small	but	statistically	significant	increase	in	the	rate	of	decline	of	

episodic	memory,	 verbal	 ability	 and	 global	 cognition.	 In	 contrast,	 the	 interaction	

between	 APOE	 and	 mean	 arterial	 pressure	 interaction	 had	 no	 effect	 on	 rate	 of	

decline.		

Second,	 the	 role	 of	 25	 LOAD	 risk	 loci	 in	 non-linear	 cognitive	 change	was	

examined,	both	individually	and	collectively	as	a	genetic	risk	score	(GRS).	Twelve	

LOAD	 risk	 loci	 were	 associated	 with	 baseline	 cognitive	 performance	 (ABCA7,	

MS4A4E,	SORL1),	 linear	 rate	 of	 change	 (APOE,	ABCA7,	EPHA1,	 INPP5D,	ZCWPW1,	

CELF1)	or	quadratic	rate	of	change	(APOE,	CLU,	FERMT2).	 In	addition,	a	weighted	

GRS	was	associated	with	linear	rate	of	change	in	episodic	memory	and	information	

processing	speed.		

Third,	 the	 role	 of	 9	 single	 nucleotide	 polymorphisms	 that	 have	 been	

previously	 associated	with	 cognitive	 performance	was	 further	 examined,	 with	 6	

SNPs	 observed	 to	 be	 associated	 with	 baseline	 cognitive	 performance	 (BDNF,	

PDE7A,	AKAP6),	 linear	rate	of	change	(COMT,	CTNNBL1,	PDE7A)	or	quadratic	rate	

of	change	(MIR2113).		
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Finally,	it	was	examined	whether	a	risk	score	comprised	of	lifestyle,	medical	

and	demographic	 factors	 (the	Australian	National	University	Alzheimer’s	disease	

Risk	 Index;	 ANU-ADRI)	 and	 a	 LOAD	GRS	were	 predictors	 of	 progression	 to	Mild	

Cognitive	 Impairment	 (MCI).	 A	 higher	 ANU-ADRI	 score	 was	 associated	 with	 a	

higher	probability	of	transitioning	from	normal	cognition	to	cognitive	impairment,	

while	the	GRS	was	associated	with	an	increased	risk	of	transitioning	from	normal	

cognition	to	dementia.	

These	results	suggest	that	a	subset	of	LOAD	related	SNPs	may	be	associated	

with	 cognitive	 decline.	 However,	 the	 effect	 size	 of	 each	 locus	 is	 small	 and	when	

demographic	and	 lifestyle	 factors	are	 taken	 into	account,	neither	 individual	SNPs	

nor	GRS	explain	a	significant	proportion	of	the	variance	in	cognitive	decline	in	our	

sample.	 Further	 research	 is	 required	 to	 verify	 these	 results	 and	 to	 examine	 the	

effect	 of	preclinical	 LOAD	 in	 genetic	 association	 studies	of	 cognitive	decline.	The	

identification	of	LOAD	risk	loci	associated	with	cognitive	performance	may	help	in	

screening	for	individuals	at	greater	risk	of	cognitive	decline.	
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MRI	 	 Magnetic	resonance	imaging	

MSM	 	 Multi-state	models	

naMCI		 Non-amnestic	mild	cognitive	impairment	

NFT	 	 Neurofibrillary	tangle	

SC-GRS	 Simple	count	genetic	risks	score	

SNP	 	 Single	nucleotide	polymorphism		

VaD	 	 Vascular	dementia	
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Chapter	1:	 Introduction	

With	 advancing	 age	 individuals	 experience	 a	 deterioration	 in	 cognitive	

abilities	 that	 is	 characterized	 by	 substantial	 inter-individual	 variation	 in	 the	

observed	trajectories	of	cognitive	decline,	reflecting	a	broad	spectrum	of	cognitive	

change	 (Figure	 1.1).	 This	 continuum	 consists	 of	 individuals	 at	 one	 end	 whose	

cognitive	abilities	are	preserved	or	decline	at	a	rate	that	is	considered	within	the	

bounds	of	normal	cognitive	aging,	 to	 those	who	exceed	expected	rates	of	decline	

and	 see	 their	 cognitive	 and	 functional	 abilities	 severely	 impaired,	 and	 who	 are	

often	diagnosed	with	dementia.	In	between	these	two	extremes,	there	are	various	

stages	of	cognitive	impairment.		

	

1.1	 The	Continuum	of	Cognitive	Change		

1.1.1	 Cognitive	Aging		

Inter-individual	 differences	 in	 cognitive	 abilities	 follow	 a	 hierarchical	

structure,	 with	 individuals	 differing	 in	 their	 general	 cognitive	 ability	 (‘g’),	 their	

cognitive	ability	in	broad	cognitive	domains,	and	their	ability	in	relation	to	specific	

cognitive	 tests.	The	concept	of	general	cognitive	ability	was	 initially	proposed	by	

Spearman,	who	 observed	 that	 an	 individual’s	 abilities	 on	 specific	 cognitive	 tests	

were	 highly	 correlated	 and	 that	 g	 explained	 about	 40%	 of	 total	 variance	 in	

cognitive	 test	 performance	 [1].	 Furthermore,	 it	 was	 observed	 that	 specific	

cognitive	 tasks	 with	 similar	 content	 correlated	 more	 strongly	 than	 those	 with	

different	 content,	 implying	 that	 specific	 tests	 were	 associated	 with	 different	

cognitive	 domains	 [2].	 Individual	 cognitive	 tests	 can	 be	 broadly	 categorized	 as	

measuring	either	1)	crystallized	cognitive	abilities	related	to	verbal	and	numerical	

abilities	and	general	knowledge,	which	are	assessed	by	tests	of	stored	knowledge,	

or	2)	fluid	cognitive	abilities	related	to	memory,	executive	functions,	reasoning	and	

processing	speed,	which	are	assessed	by	tests	of	on-the-spot	processing.	However,	

these	 cognitive	 domains	 explain	 a	 relatively	 small	 proportion	 of	 individual	

cognitive	 variation.	 Most	 is	 explained	 by	 either	 general	 cognitive	 ability	 (g)	 or	

specific	tests.		
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Cognitive	domains	are	affected	differently	by	age.	Ageing	has	 the	greatest	

adverse	 impact	 on	 domains	 related	 to	 fluid	 intelligence,	 with	 ability	 peaking	

around	 the	 third	decade	of	 life	 and	 then	declining	 at	 a	 rate	of	 -0.02	SD	per	 year	

thereafter	 [4].	Conversely	aging	has	positive	effects	on	cognitive	domains	related	

to	 crystallized	 intelligence,	 resulting	 in	 a	 gradual	 improvement	 in	 crystallized	

abilities	at	a	rate	of	0.02	SD	per	year	through	to	the	sixth	or	seventh	decades	of	life	

before	gradually	declining	[4].		

Age-associated	cognitive	decline	is	associated	with	increased	difficulties	

in	performing	tasks	 involving	memory	or	rapid	information	processing.	This	is	

particularly	 important	 in	daily	 living,	 as	many	activities	 in	 contemporary	 life	

require	 these	cognitive	abilities.	Declines	in	cognitive	performance	have	been	

associated	 with	 poor	 decision	 making	 [5],	 difficulties	 with	 instrumental	

activities	 of	 daily	 living	 [6,7]	 and,	 poor	 health	 literacy	 [8].	 Even	 though	 no	

single	 aspect	 of	 daily	 life	 is	 critically	 impaired,	 the	 slight	 reduction	 across	

multiple	aspects	can	accumulate	over	one’s	 life	and	have	 a	 significant	 impact	

on	 quality	of	life,	even	in	the	absence	of	dementia.	Furthermore,	a	faster	rate	of	

	
Figure	 1.1:	 The	 Hypothetical	 trajectory	 of	 normal	 and	 pathological	 cognitive	

decline.	Individuals	who	undergo	pathological	decline	pass	through	several	stages	

including	Pre-clinical	dementia	(see	subsection	1.2.4),	mild	cognitive	impairment	

(see	 subsection	 1.1.2)	 and	 dementia	 (see	 subsection	 1.1.3).	 (Reprinted	 by	

permission	 from	Macmillan	 Publishers	 Ltd:	 Nature	 Reviews	 Neurology,	 Hampel	

and	Lista	2016	[3],	copyright	2016).	
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decline	 is	associated	with	 life	outcomes,	particularly	with	 the	development	of	

dementia	 [9,10]	 and	mortality	[11,12].	

	

1.1.2	 Mild	Cognitive	Impairment		

Mild	Cognitive	Impairment	(MCI)	refers	to	self-reported	decline	in	cognitive	

function	that	 is	corroborated	by	an	 informant	or	clinician,	and	for	which	there	 is	

objective	 evidence	 of	 cognitive	 impairment	 via	 neuropsychological	 testing.	 The	

cognitive	 deficits	 does	 not	 impair	 global	 cognitive	 function	 or	 basic	 activities	 of	

daily	living	and	the	individual	does	not	meet	the	clinical	criteria	for	dementia	[13].		

MCI	 can	 be	 stratified	 into	 amnestic	 (aMCI)	 and	 non-amnestic	 (naMCI)	 subtypes,	

with	aMCI	 characterized	by	 specific	 cognitive	 impairment	 in	memory	and	naMCI	

characterized	 by	 cognitive	 impairment	 in	 non-memory	 domains	 [14].	 Both	 aMCI	

and	naMCI	can	further	be	classified	into	single	or	multiple	domain	MCI	depending	

on	the	number	of	cognitive	domains	that	are	impaired	[14].		

The	 global	 prevalence	 of	MCI	 is	 estimated	 be	 15-20%	 in	 individuals	 aged	

over	 65,	with	 the	 rates	 heavily	 dependent	 on	 age	 group	 [15].	 Incidence	 rates	 of	

MCI	range	between	51	and	76.8	per	1,000	person-years	 for	all	MCI	subtypes;	9.9	

and	40.6	per	1,000	person-years	for	aMCI;	and	28	and	36.3	per	1,000	person-years	

for	naMCI	[16].	

Individuals	 who	 develop	 MCI	 are	 more	 likely	 to	 further	 progress	 to	 AD.	

However,	 the	 clinical	 course	 of	 MCI	 is	 heterogeneous,	 as	 many	 individuals	 will	

revert	 to	normal	cognition,	remain	cognitively	stable	and	not	progress	 further	or	

progress	 towards	 non-AD	 dementia.	 A	 meta-analysis	 found	 that	 the	 annualized	

conversation	rate	(ACR)	from	MCI	to	AD	was	8.1%	[17],	which	is	similar	to	a	more	

recent	systematic	review	which	found	that	it	ranged	from	5.4%	to	16.5%	per	year	

[18].	The	risk	of	conversion	to	dementia	is	heavily	dependent	on	age,	with	an	ACR	

of	 4.6	 and	 20.8	 in	 individuals	 aged	 50-59	 years	 and	 90+	 years	 respectively.	

Furthermore,	there	is	a	higher	rate	of	progression	to	AD	in	individuals	with	aMCI	

than	 with	 naMCI,	 while	 conversely,	 individuals	 with	 naMCI	 are	 more	 likely	 to	

progress	to	other	types	of	dementia	[19,20].		

A	recent	meta-analysis	found	that	25%	of	individuals	who	are	classified	as	

MCI	will	at	a	subsequent	 interview	revert	 to	normal	cognition	[21],	 though	these	

individuals	still	have	a	higher	risk	of	progressing	to	MCI	or	dementia	at	a	later	date	

[22].	 This	 instability	 in	 the	 classification	 of	 MCI	 has	 lead	 to	 the	 US	 National	
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Institute	of	Aging	and	 the	Alzheimer’s	Association	proposing	a	definition	of	 ‘MCI	

due	to	AD’	whereby	individuals	meet	the	clinical	criteria	for	MCI	and	have	varying	

levels	of	AD	biomarkers	that	are	consistent	with	an	early	diagnosis	of	AD	[23].		

	

1.1.3	 Alzheimer’s	Disease	

At	 the	 extreme	 end	 of	 the	 continuum	 of	 cognitive	 decline	 is	 ‘pathological	

cognitive	 decline’	 which	 leads	 to	 the	 development	 of	 dementia.	 In	 2015	 it	 was	

estimated	that	there	were	46.8	million	people	worldwide	living	with	dementia	and	

an	estimated	incidence	of	9.9	million	new	cases	each	year	[24].	The	number	of	new	

cases	doubles	with	every	6.3-year	increase	in	age,	from	3.9	per	1000	person	years	

at	 age	 60-64	 to	 104.8	 per	 1000	 person	 years	 at	 age	 90+	 [24].	 The	 projected	

prevalence	 of	 dementia	 is	 expected	 to	 double	 every	 20	 years,	 to	 74.7	million	 in	

2030	and	131.5	million	in	2050	[24].	This	will	have	major	implications	for	national	

health	and	social	services,	with	the	cost	of	caring	for	afflicted	individuals	expected	

to	rise	from	USD	$818	billion	in	2015	to	USD	$2	trillion	in	2030	[24].	

Alzheimer’s	 disease	 is	 the	most	 common	 cause	 of	 dementia,	 estimated	 to	

account	for	60-80%	of	cases	[25].	The	clinical	symptoms	of	AD	typically	begin	with	

a	gradual	deterioration	of	episodic	memory	(84-96%	of	cases)	with	other	cognitive	

dysfunctions	 becoming	 apparent	 as	 the	 disease	 progresses	 resulting	 in	

impairments	 in	 visual-spatial	 abilities,	 reasoning,	 executive	 function,	 language	

ability	and	changes	in	personality	and	behavior	[26,27].	Accompanying	the	loss	of	

cognitive	function	is	a	decline	in	functional	abilities	that	begins	with	impairment	in	

basic	activities	of	daily	living,	eventually	resulting	in	complete	loss	of	independent	

living,	necessitating	full-time	care,	and	it	is	ultimately	fatal.		

AD	 is	 best	 conceptualized	 as	 a	 spectrum	 in	 which	 the	 underlying	

pathophysiological	process	begins	decades	before	 the	onset	of	 clinical	 symptoms	

[26,27].	The	preclinical	stage	of	AD	is	characterized	by	the	gradual	accumulation	of	

AD	 pathology,	 which	 can	 be	 objectively	 measured	 using	 biomarkers.	 Critically,	

based	 on	 cognitive	 measures,	 individuals	 with	 preclinical	 AD	 do	 not	 meet	 the	

clinical	 criteria	 for	 either	 AD	 or	 for	 MCI	 due	 to	 AD.	 As	 a	 result,	 they	 are	

indistinguishable	from	individuals	who	are	cognitively	normal.			
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1.2	 Neuropathology	of	Alzheimer’s	Disease		

The	aggregation	and	accumulation	of	extracellular	amyloid-b	peptides	into	

amyloid	plaques	and	the	accumulation	of	intraneuronal	hyperphosphorylated	and	

misfolded	tau	into	neurofibrillary	tangles	are	the	characteristic	neuropathological	

hallmarks	of	AD.	The	accumulation	of	amyloid	plaques	and	neurofibrillary	tangles	

prompts	 the	 pathogenesis	 of	 AD	 by	 promoting	 alterations	 in	 lipid	 metabolism,	

neuro-inflammation,	endocytosis	and	synaptic	dysfunction	and	loss	that	ultimately	

leads	to	neuronal	cell	death	[28,29].	

	

1.2.1	 b-Amyloid		

Ab	 peptides	are	produced	by	 the	 cleavage	of	 the	 transmembrane	amyloid	

precursor	 protein	 (APP),	 which	 can	 occur	 via	 either	 the	 amyloidgenic	 or	 non-

amyloidogenic	 proteolytic	 cleavage	 pathways	 (Figure	 1.2).	 The	 majority	 of	 APP	

processing	 occurs	 via	 the	 non-amyloidogenic	 pathway	 which	 is	 initiated	 by	

cleavage	of	APP	in	the	Ab	domain	by a-secretase,	releasing	two	molecules,	soluble	

APPa and	 C83	 [30].	 Amyloidogenic	 processing	 of	 APP	 is	 initiated	 by	b-secretase	

cleavage	of	APP,	which	releases	two	molecules,	soluble	APPb,	and	C99,	containing	

the	Ab	 domain	 [31].	 C99	 is	 further	 cleaved	by	 γ-secretase	 releasing	Ab	 peptides	

that	are	34-50	amino	acids	in	length.	The	major	form	of	Ab is	Ab40		(90%),	while	a	

smaller	 faction	 is	 Ab42-43	 (5%)	which	 is	 the	more	 neurotoxic	 form	 as	 it	 is	more	

prone	 to	 oligomerization	 and	 the	 formation	 of	 amyloid	 plaques	 [32].	 Non-

amyloidogenic	processing	primarily	occurs	at	the	cell	surface	where	 a-secretase	is	

present,	while	 amyloidogenic	 processing	 occurs	 after	 APP	 has	 been	 internalized	

and	trafficked	through	endocytic	and	recycling	organelles	where	 it	encounters	b-	

and	γ-secretase	[33].	

Increased	 accumulation	 of	 Ab	 peptides	 can	 be	 attributed	 to	 increased	

production	 of	 Ab,	 particularly	 in	 familial	 Alzheimer’s	 disease	 as	 a	 result	 of	

increased	 γ-secretase	 activity.	 However,	 in	 sporadic	 Alzheimer’s	 disease	

perturbations	 in	Ab	 clearance	and	degradation	pathways	play	a	 larger	role	 in	Ab	

accumulation	 [33].	 The	 principal	 clearance	 pathway	 of	 Ab	 is	 transcytosis	 across	

the	 blood-brain	 barrier	 mediated	 by	 low-density	 lipoprotein-receptor	 related	

protein	 1	 (LRP1)	 [34].	 LRP1	 regulates	 receptor-mediated	 endocytosis	 of	 cellular	

Ab	 uptake	 that	 delivers	 Ab	 to	 lysosomes	 for	 degradation	 [35].	 Proteolytic	
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degradation	also	plays	a	major	role	 in	the	removal	of	Ab	by	cleaving	Ab	peptides	

into	 shorter	 soluble	 molecules	 with	 less	 neurotoxic	 effects.	 Insulin-degrading	

enzyme	 and	 neprilysin	 are	 the	 principal	 enzymes	 involved	 in	 extracellular	 and	

intracellular	degradation	of	Ab [36,37],	with	other	proteases	including	cathepsin	B	

[38],	 matrix	 metalloprotein-9	 [39],	 angiotensin-converting	 enzyme	 [40],	

endothelin-converting	enzyme	[41]	and	plasmin	[42]	also	playing	roles.		

In	 Alzheimer’s	 disease	 Ab	 plaque	 deposits	 are	 initially	 observed	 in	 the	

isocortical	 regions	of	 the	brain,	 subsequently	progressing	 to	other	 regions	of	 the	

allocortex	(including	the	hippocampus,	amygdala,	entorhinal	region	and	cingulate	

gyrus)	 and	 in	 the	 latter	 stages	 of	 AD	 progressing	 into	 subcortical	 regions	 (basal	

ganglia,	diencephalon	midbrain,	medulla	oblongata	pons	and	the	cerebellum)	[43]	

(Figure	1.3).	

	

1.2.2	 Tau	

Tau	is	encoded	by	the	microtubule-associated	protein	tau	(MAPT)	gene	and	

is	 predominantly	 expressed	 in	 neurons	where	 it	 is	mainly	 located	 in	 axons	 and	

binds	to	tubulin,	promoting	the	assembly	and	stabilization	of	microtubules	in	the	

cytoskeleton	 [44,45].	 Binding	 of	 tau	 to	 microtubules	 is	 regulated	 by	

phosphorylation	 of	 tau	 via	 kinases,	 and	 dephosphorylation	 via	 phosphatases	

[44,45].	An	 imbalance	 in	the	activities	of	kinases	and	phosphatases	results	 in	 the	

	
Figure	 1.2:	 Processing	 of	 APP	 via	 the	 nonamyloidgenic	 and	 amyloidgenic	

pathways	 (Reproduced	with	 permission	 from	 Querfurth	 and	 Laferla	 2012	 [45],	

Copyright	Massachusetts	Medical	Society).	
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aberrant	 hyperphosphorylation	 of	 tau,	 leading	 to	 the	 detachment	 of	 tau	 from	

microtubules	 where	 it	 is	 prone	 to	 self-aggregate	 into	 paired	 helical	 filaments	

(PHFs)	 that	 further	 aggregate	 into	 neurofibrillary	 tangles	 [44,45].	 The	

sequestering	 of	 tau	 into	 PHFs	 and	NFTs	 disrupts	 normal	microtubule	 dynamics,	

which	are	essential	for	normal	cell	morphology,	trafficking,	functions	and	viability	

[44,45].		

There	 are	 three	morphological	 stages	 in	 the	 development	 of	 intracellular	

tau	pathology	[46].	First	abnormally	phosphorylated	tau	protein	is	observed	in	the	

axon,	 soma,	 and	 dendrites	 of	 otherwise	 morphologically	 normal	 neurons.	

Subsequently,	 mature	 NFTs	 develop	 in	 the	 cytoplasm,	 gradually	 expanding	 and	

displacing	the	nucleus	to	the	periphery	of	the	soma.	Finally,	after	neuronal	death,	

the	NFT	remains	as	an	extracellular	‘ghost’	NFT.	

Tau	pathology	can	spread	to	surrounding	cells	in	a	prion-like	fashion	[47].	

Disruption	 of	 normal	 microtubule	 dynamics	 induces	 zeiosis,	 releasing	 vesicles	

containing	 hyperphosphorylated	 tau	 into	 the	 surrounding	 extracellular	 space,	

which	 is	 taken	 up	 into	 the	 surrounding	 neurons	 via	 endocytosis	 [48-50].	 The	

hyperphosphorylated	 tau	 interacts	with	 the	 healthy	 tau	 in	 the	 recipient	 neuron,	

sequestering	the	healthy	tau	in	a	new	NFT	and	causing	the	healthy	tau	to	become	

pathogenic	[51].		

In	AD	the	progression	of	tau	pathology	across	the	brain	mostly	goes	in	the	

opposite	direction	to	the	spread	of	Ab	plaques.	The	Braak	staging	scheme	is	used	

to	describe	the	spread	of	tau	pathology,	with	NFT	first	observed	in	the	entorhinal	

cortex	and	hippocampus	(stages	I-II),	progressing	to	the	limbic	structures	(stages	

III-IV)	and	finally	to	the	isocortex	(stages	V-VI)	[52]	(Figure	1.4).				

	
Figure	 1.3:	 Progression	 of	 the	 disposition	 of	 Ab	 in	 the	 brain.	 (Reprinted	 from	

Trends	in	Neurosciences	38/10,	Mhatre	et	al,	Microglial	Malfunction:	The	Third	Rail	

in	 the	 Development	 of	 Alzheimer's	 Disease,	 621-636,	 Copyright	 2015,	 with	

permission	from	Elsevier	[56])	
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1.2.3	 Amyloid	Cascade	Hypothesis		

	 The	dominant	model	of	AD	pathogenesis	is	the	amyloid	cascade	hypothesis,	

which	 states	 that	 the	 aggregation	 of	 Ab	 peptides	 is	 the	 first	 step	 in	 a	 chain	 of	

pathological	 events	 that	 results	 in	 AD	 [53].	 Translation	 of	 the	 amyloid	 cascade	

hypothesis	 into	 a	 model	 that	 can	 be	 objectively	 tested	 using	 contemporary	

techniques	 led	 to	 the	 most	 influential	 heuristic	 model	 for	 biomarkers	 in	 AD	

pathogenesis	 [54].	 In	 this	model	 (Figure	 1.5)	 biomarkers	 become	 abnormal	 in	 a	

temporal	 order	 beginning	 with	 amyloid	 deposition	 (CSF	 Ab	 and	 amyloid	 PET),	

progressing	to	markers	of	neurodegeneration	(CSF	Tau	and	FDG-PET)	and	ending	

with	 neuroanatomical	 atrophy	 (structural	 MRI).	 The	 gradual	 accumulation	 of	

abnormal	 levels	 of	 these	 biomarkers	 is	 associated	 with	 the	 development	 of	 the	

clinical	 symptoms	 of	 AD,	 though	 risk	 factors	 for	 AD	 can	 moderate	 the	 levels	

required	for	the	expression	of	clinical	symptoms.		

The	strongest	evidence	for	the	amyloid	cascade	hypothesis	comes	from	the	

underlying	genetic	pathways	of	autosomal	dominant	familial	AD	(fAD).	Mutations	

and	three	genes,	APP,	PSEN1,	and	PSEN2	are	linked	to	the	development	of	fAD	[60].	

These	genes	are	involved	in	the	production	of	Ab	peptides	(see	section	1.2.1),	with	

APP	 the	 precursor	 protein	 for	 Ab	 peptides	 and	 PSEN1	and	 PSEN2	encoding	 the	

proteins	Presenilin	1	and	2,	which	are	catalytic	subunits	of	the	γ-secretase	complex	

involved	in	the	cleavage	of	Ab	peptides.	Mutations	in	these	genes	favour	increased	

production	of	the	amyloidogenic	Ab42	peptide	[55,56].	This	evidence	is	consistent	

with	the	amyloid	cascade	hypothesis	because	the	accumulation	of	abnormal	levels	

of	 Ab	 plaques	 in	 fAD	 occurs	 prior	 to	 tau	 pathology,	 neurodegeneration,	 and	

	
Figure	 1.4:	 Progression	 of	 the	 disposition	 of	 Tau	 pathology	 in	 the	 brain.	

(Reprinted	 from	 Trends	 in	 Neurosciences	 38/10,	 Mhatre	 et	 al,	 Microglial	

Malfunction:	The	Third	Rail	in	the	Development	of	Alzheimer's	Disease,	621-636,	

Copyright	2015,	with	permission	from	Elsevier	[56]).	
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dementia	 [57].	Evidence	of	 this	 temporal	ordering	also	comes	 from	mutations	 in	

MAPT	which	are	associated	with	neurodegenerative	disease	but	do	not	induce	Ab	

pathology	[58,59].	This	observation	has	been	confirmed	in	mouse	models	in	which	

human	 APP	 and	 MAPT	 are	 co-expressed	 and	 the	 presence	 of	 Ab	 peptides	

accelerates	the	formation	of	NFT,	but	not	vice	versa	[60].	

The	 disposition	 of	 Ab	 peptides	 into	 senile	 plaques	 is	 necessary	 but	 not	

sufficient	for	the	development	of	the	clinical	symptoms	of	AD.	Ab	burden	does	not	

correlate	well	with	the	severity	or	the	duration	of	AD	[61-66],	with	the	burden	of	

Ab	plaques	reaching	a	plateau	shortly	after	the	development	of	clinical	symptoms	

[67],	 or	 anatomically,	 with	 neurodegeneration	 first	 observed	 to	 occur	 in	 the	

hippocampus	and	entorhinal	cortex	[68,69].	Conversely,	tau	pathology	is	strongly	

correlated	 with	 the	 severity	 and	 duration	 and	 the	 temporal	 and	 spatial	

development	 of	 AD	 [61-66].	 Nevertheless,	 the	 neurodegenerative	 effects	 of	 tau	

require	 the	 presence	 of	 Ab	 to	 be	 triggered,	 with	 the	 spread	 of	 tau	 pathology	

	
Figure	1.5:	The	amyloid	cascade	model	proposed	by	Jack	et	al	2013	[54].	As	time	

progresses	AD	biomarkers	become	progressively	abnormal	with	accumulation	of	

Amyloid	followed	by	increased	Tau	pathology	and	neurodegeneration.	At	a	given	

time	(T)	 the	 level	of	cognitive	 impairment	 is	 indicated	by	the	biomarker	profile,	

although	clinically	it	may	be	moderated	by	risk	and	protective	factors.	(Reprinted	

from	 The	 Lancet	 Neurology,	 12/2,	 Jack	 et	 al,	 “Tracking	 pathophysiological	

processes	 in	 Alzheimer's	 disease:	 an	 updated	 hypothetical	 model	 of	 dynamic	

biomarkers”,	207-216,	Copyright	2013,	with	permission	from	Elsevier	[54]).	
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beyond	the	limbic	system	and	the	neuronal	loss	associated	with	tau	pathology	only	

observed	in	individuals	with	coexistent	Ab	pathology	[70-73].	It	is	unclear	exactly	

how	 Ab	 triggers	 tau	 toxicity,	 although	 there	 is	 suggestive	 evidence	 that	

Ab stimulates	protein	kinases	and	phosphatases	that	regulate	tau	phosphorylation	

[74].		

The	 Ab	 cascade	 does	 not	 operate	 in	 isolation	 and	 a	 complex	 network	 of	

cellular	 mechanisms	 may	 either	 moderate	 or	 exacerbate	 the	 Ab cascade	 [53].	

These	include	cerebrovascular	disease	[75],	oxidative	and	nitrative	stress	[76,77],	

mitochondrial	dysfunction	[78]	and	inflammation	[79]. 		

To	summarize	the	amyloid	cascade	hypothesis:	In	the	normal	brain	there	is	

homeostasis	 between	 the	 production,	 degradation	 and	 clearance	 of	 Ab peptides.	

An	 imbalance	 in	 Ab production	 and/or	 clearance	 results	 in	 the	 gradual	

accumulation	 and	 aggregation	 of	 pathological	 Aβ	 species.	 The	 aggregation	 of	 Aβ	

triggers	 acceleration	 in	 the	 formation	 of	 NFT,	 possibly	 by	 modulating	 protein	

kinases	 and	 phosphatases	 that	 regulate	 tau	 phosphorylation.	 Genetic	 variation,	

environmental	 stressors,	 other	 cellular	 mechanisms	 or	 their	 interactions	 can	

either	 moderate	 or	 exacerbate	 the	 accumulation	 of	 abnormal	 Aβ	 and	 tau.	

Formation	 of	 NFTs	 disrupts	 normal	 microtubule	 dynamics,	 cell	 morphology,	

trafficking	and	synaptic	function,	and	promotes	neuronal	death.	The	gradual	loss	of	

neurons	as	a	result	of	the	spread	of	NFT	throughout	the	brain	underlies	the	clinical	

symptoms	 of	 AD.	 Additional	 comorbid	 pathologies	 can	 influence	 the	 rate	 of	

neuronal	loss,	thereby	accelerating	the	appearance	of	clinical	symptoms.	

	

1.2.4	 AD	pathology	in	Normal	Cognitive	Decline		

Post-mortem	analysis	has	shown	 that	at	40	years	of	age,	most	 individuals	

contain	evidence	of	pre-tangle	tau	pathology,	and	a	small	percentage	of	individuals	

have	evidence	of	early	stage	NFT	and	amyloid	plaques	 [80].	With	 increasing	age,	

the	 prevalence	 of	 individuals	 with	 early	 or	 late	 stage	 NFT	 and	 amyloid	 plaques	

increases,	with	NFT	Braak	stage	III-VI	(see	subsection	1.2.2)	and	amyloid	plaques	

observed	 in	80%	and	50%	of	 individuals	aged	80,	 respectively	 [80]	 (Figure	1.6).	

This	pattern	has	been	verified	in	studies	assessing	AD	pathology	using	biomarkers	
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in	 cerebrospinal	 fluid	 (CSF)	 and	 positron	 emission	 tomography	 (PET).	 A	 meta-

analysis	 of	 forty-one	 studies	 evaluating	 the	 prevalence	 of	 amyloid	 pathology	 in	

participants	with	normal	cognition	showed	that	prevalence	increases	from	10%	to	

44%	from	the	ages	of	50	to	90	[81].	Tau	pathology	is	mostly	limited	to	early	Braak	

stages	(0-IV)	in	cognitively	normal	individuals,	with	pathology	steadily	increasing	

with	advancing	age	[82,83].		

	 This	 raises	 the	 question	 of	 whether	 all	 individuals	 with	 evidence	 of	 AD	

pathology	 will	 eventfully	 develop	 AD	 if	 they	 live	 long	 enough,	 or	 if	 the	

accumulation	 of	 AD	 pathology	 is	 a	 process	 associated	 with	 healthy	 aging.	 This	

prompted	 the	 NIA-AA	 [84]	 and	 International	Working	 Group	 2	 (IWG-2)	 [26]	 to	

propose	 a	 framework	 for	 the	 preclinical	 stage	 of	 AD	 consisting	 of	 cognitively	

normal	 individuals	 (i.e.,	 the	 absence	 of	 the	 clinical	 symptoms	 of	 AD)	 with	

biomarker	evidence	of	AD	pathology.	Emerging	evidence	from	longitudinal	studies	

indicates	that	using	biomarkers	to	classify	individuals	in	preclinical	stages	of	AD	is	

predictive	 of	 future	 progression	 towards	 dementia.	 Abnormal	 levels	 of	 amyloid	

pathology	 in	cognitively	normal	 individuals	does	 increase	the	risk	of	progression	

to	 dementia,	 with	 a	 recent	 meta-analysis	 showing	 an	 approximate	 ~fourfold	

increased	risk	of	progression	over	a	period	of	2-7	years	[85].	The	co-occurrence	of	

both	Ab	and	tau	pathology	substantially	increases	the	risk	of	progressing	towards	

dementia,	with	risk	increasing	exponentially	with	age	[86,87].	As	such,	preclinical	

AD	 can	 be	 further	 subdivided	 based	 on	 low/high-risk	 of	 future	 progression	

	
Figure	1.6:	Distribution	of	(A)	Tau	and	(B)	Ab	pathology	by	age(Reprinted	from	

Trends	 in	Neurosciences	38/10,	Mhatre	 et	al,	Microglial	Malfunction:	The	Third	

Rail	 in	 the	 Development	 of	 Alzheimer's	 Disease,	 621-636,	 Copyright	 2015,	 with	

permission	from	Elsevier	[56]).	
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towards	AD.	Individuals	with	a	single	pathophysiological	marker	(either	Ab	or	tau)	

are	at	low	risk	and	those	with	co-occurrence	of	both	markers	are	at	high	risk	[88].	

Nevertheless,	not	all	individuals	with	abnormal	levels	of	AD	pathology	will	

manifest	 clinical	 symptoms	 of	 AD	 in	 their	 lifetime.	 Post-mortem	 analysis	 of	

individuals	 without	 a	 clinical	 diagnosis	 of	 dementia	 has	 shown	 that	 upwards	 of	

30%	of	 non-demented	 individuals	 at	 death	meet	 the	pathological	 criteria	 for	AD	

[89].	Under	the	current	model	of	AD	pathogenesis	this	is	expected	because	of	the	

15-20	 year	 lag	 between	 the	 initial	 accumulation	 of	 AD	 pathology	 and	 the	

development	 of	 clinical	 symptoms,	 which	 results	 in	 many	 individuals	 with	 AD	

pathology	 dying	 before	 they	 show	 clinical	 symptoms	 [88,90].	 From	 a	 practical	

point	of	view,	however,	Ab	and	tau	pathology	are	associated	with	subtle	changes	in	

cognitive	performance	in	individuals	even	if	they	die	before	they	manifest	clinical	

symptoms	of	AD.	

Neurotic	 plaques	 and	 NFT	 have	 been	 estimated	 to	 explain	 30%	 of	 the	

variation	 in	 cognitive	decline	 [91],	with	pathway	analysis	 indicating	 that	 the	age	

effect	 on	 cognitive	 decline	 is	 predominantly	 mediated	 via	 direct	 effects	 on	 tau	

pathology,	 in	 addition	 to	 small	 indirect	 effects	of	Ab	 on	 cognitive	decline	via	 tau	

pathology	[92].	Furthermore,	the	effect	of	age	on	cognitive	performance	is	severely	

attenuated	when	individuals	in	the	preclinical	stages	of	AD	are	excluded	from	the	

analysis	[93]	or	after	controlling	for	AD	pathology	[94].	

	 Increased	amyloid	burden	was	correlated	with	decreased	episodic	memory,	

executive	 function	 and	 global	 cognition	 in	 a	 meta-analysis	 of	 16	 cross-sectional	

datasets	that	used	Pittsburgh	compound	B	(PiB)	PET	imaging	and,	in	an	expanded	

analysis	 of	 34	 datasets	 that	 included	 additional	 methods	 of	 assessing	 amyloid	

burden	[95].	In	retrospective	longitudinal	post-mortem	studies,	individuals	in	the	

preclinical	stages	of	AD	have	a	faster	rate	of	decline	in	global	cognition	compared	

to	 cognitively	 normal	 individuals	 [96].	 Increased	 amyloid	 and	 tau	 pathology	 are	

also	associated	with	increased	cognitive	decline	in	working	and	episodic	memory,	

respectively,	in	addition	to	global	cognition	[97].	These	results	are	well	supported	

by	 prospective	 longitudinal	 biomarker	 studies	where	 individuals	with	 abnormal	

levels	 of	 amyloid	 pathology	 have	 a	 faster	 rate	 of	 decline	 in	 episodic	 memory,	

executive	 function,	 attention,	 visuospatial	 skills	 and	 global	 cognition	 [82,98,99].	

Furthermore,	individuals	that	accumulate	Ab	at	a	faster	rate	have	an	increased	rate	

of	cognitive	decline	[67].		Increased	Tau	pathology	in	the	entorhinal	cortex	(Braak	
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Stage	 I/II)	 is	 associated	with	 increased	 rate	 of	 decline	 in	 episodic	memory,	 and	

increased	tau	pathology	in	the	entorhinal	cortex,	the	limbic	system	(Braak	stages	

III/IV),	 and	 isocortical	 structures	 (Braak	 stages	 V/VI)	 are	 associated	 with	 an	

increased	 rate	of	decline	 in	global	 cognition	 [82].	Co-occurrence	of	both	amyloid	

pathology	 and	 neurodegenerative	 biomarkers	 is	 associated	 with	 accelerated	

decline	 in	 composites	 of	 neuropsychological	 tests	 assessing	 global,	memory	 and	

non-memory	 cognition,	 suggesting	 that	 Ab	 and	 tau	 interact	 synergistically	

[100,101].	

	 In	 summary,	 the	 influence	 of	 age	 on	 cognitive	 performance	 is	 heavily	

influenced	by	AD	pathology.	This	raises	the	possibility	that	genetic,	environmental	

and	 lifestyle	 factors	 that	mediate	 the	 accumulation	 of	 LOAD	 pathology	may	 also	

affect	the	rate	of	cognitive	change	in	normal	aging.	

	

1.3	 Genetic	Risk	Factors			

1.3.1	 Genetics	of	Cognition		

Genetic	 factors	 contribute	 to	 the	 inter-individual	 variability	 observed	 in	

cognitive	decline,	with	common	genetic	variants	estimated	to	account	for	40-50%	

of	 the	 variance	 in	 general	 cognitive	 functioning	 in	 later	 life	 and	 24%	 of	 the	

variance	 in	 lifetime	 cognitive	 change [102,103]. To	 date,	 the	 majority	 of	 genetic	

research	 on	 cognitive	 decline	 has	 focused	 on	 candidate	 genes	 that	 have	 been	

previously	 associated	 with	 age-related	 disease,	 traits	 or	 mechanisms	 [104,105],	

and	particularly	with	genes	related	to	neurotransmitters,	neurotrophins,	cognitive	

function	 and	 neurodegenerative	 disease.	 Despite	 the	 publication	 of	 numerous	

genetic	associations	with	cognitive	decline,	the	variants	identified	typically	explain	

a	very	small	fraction	of	the	phenotypic	variance,	and	many	remain	to	be	replicated.	

Furthermore,	 failure	 to	 reproduce	 an	 initial	 positive	 result	 is	 common	 due	 to	

differences	 in	 participant	 characteristics	 (e.g.	 baseline	 education,	 mean	 age,	

gender,	and	ethnicity)	and	methodologies	(e.g.	sample	size,	duration	of	the	study,	

number	 of	 follow-ups,	 population	 stratification,	 variation	 in	 classification	 and	

cognitive	measures)	[104].	 
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1.3.2	 The	role	of	Alzheimer’s	Disease	Risk	Loci	in	Cognitive	Aging	

Late-onset	 Alzheimer's	 disease	 (LOAD)	 susceptibility	 genes	 are	 good	

candidates	 for	 association	 with	 cognitive	 decline	 because,	 as	 described	 above,	

pathological	 features	of	LOAD	progress	to	varying	degrees	 in	 individuals	without	

dementia	 or	 cognitive	 impairment	 and	 are	 associated	with	non-clinical	 cognitive	

decline.		

Genetic	variance	accounts	for	53%	of	the	total	phenotypic	variance	of	LAOD	

[106].	 The	 Apolipoprotein	 E	 (APOE)	 epsilon	 (*e4)	 allele	 was	 the	 first	 common	

genetic	 variant	 to	 be	 associated	with	 LOAD	 and	 it	 remains	 the	 strongest	 genetic	

predictor	 of	 LOAD	 [107].	 In	 addition	 to	 APOE,	 recent	 GWAS	 of	 LOAD	 have	

identified	single	nucleotide	polymorphisms	(SNPs)	at	23	loci	associated	with	LOAD	

(Figure	 1.7;	 Table	 1.1).	 GWAS	 performed	 separately	 by	 four	 LOAD	 genetic	

consortia	 initially	 identified	11	 loci	 (ABCA7,	BIN1,	CD2AP,	CD33,	CLU,	CR1,	EPHA1,	

MS4A4A,	MS4A4E,	MS4A6A,	and	PICALM	 [108-112]).	A	 further	12	 loci	 (HLA-DRB5,	

PTK2B,	 SORL1,	 SLC24A4-RIN3,	 DSG2,	 INPP5D,	 MEF2C,	 NME8,	 ZCWPW1,	 CELF1,	

FERMT2,	and	CASS4	[113])	were	identified	in	a	meta-analysis	by	the	International	

Genomics	of	Alzheimer’s	Project	(IGAP).		

Previous	 studies	 of	 associations	 between	 the	 initial	 GWAS	 LOAD	 risk	 loci	

and	cognitive	performance	are	characterized	by	a	lack	of	consistent	findings.	The	

limited	number	of	studies	that	have	examined	the	role	of	the	IGAP	LOAD	risk	loci	

in	 cognitive	 performance	 have	 also	 produced	 mixed	 results	 [114-133].	 The	

characteristics	for	these	studies	are	listed	in	Table	1.2.	

	

The	APOE	 gene	 contains	 three	 common	alleles,	 *e2,	 *e3,	 and	 *e4,	with	 the	

*e4	 allele	 conferring the largest known genetic risk for LOAD, approximately 2-3 fold 

and 10-12 fold increased risk for heterozygotes and homozygotes, respectively [134]. 

Conversely, the *e2	allele	 is	associated	with	reduced	risk [134].	APOE	is	 involved	 in	

lipid	 homeostasis,	mediating	 transport	 of	 cholesterols	 and	 other	 lipids	 from	one	

tissue	or	cell	type	to	another	[135].	Within	the	brain	APOE	binds	to	soluble	Ab	and	

influences	 the	 aggregation,	 deposition	 and	 clearance	 of	 Ab	 in	 an	 isoform-

dependent	manner,	with	*e4	being	the	least	efficient	[135].	Neuropathological	and	

neuroimaging	 studies	 have	 shown	 that	 the	 *e4	 allele	 is	 associated	 with	 more	

abundant	Ab	disposition.	 In	biomarker	studies	 it	 is	associated	with	CSF	Ab42	and	

tau	levels	[146,147].	The	APOE	genotypes	are	also	associated	with	specific	effects	
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on	 the	 cognitive	 domains	 of	 episodic	memory,	 executive	 functioning,	 perceptual	

speed	and	global	cognitive	ability	[136].  	

ABCA7’s	 (ATP-binding	 cassette	 sub-family	 A	 member	 7)	 known	 functions	

include	roles	 in	phagocytosis	of	apoptotic	cells	and	efflux	of	 lipids	across	the	cell	

membrane	 into	 lipoprotein	particles,	which	 include	APOE	[137,138].	Knockout	of	

ABCA7	 in	 mice	 leads	 to	 an	 increased	 Ab	 accumulation	 as	 a	 result	 of	 impaired	

phagocytic	Ab	clearance [139,140].	ABCA7	is	associated	with	neurotic	plaque	and	

NFT	 burden	 in	 a	mixed	 case/control	 analysis	 of	 AD	 autopsied	 brains	 [141,142],	

although	not	with	CSF,	Ab	tau	or	p-tau	in	MCI	patients	[117].	In	SNP	univariate	and	

gene-based	analysis,	ABCA7	was	associated	with	a	decline	in	the	mini	mental	state	

examination	 (MMSE)	 in	women	 and	 3MS	 in	men,	 and	with	 a	 decline	 in	 episodic	

memory	 in	 individuals	 with	 a	 final	 diagnosis	 of	 either	 MCI	 or	 LOAD	 [120].	

	
Figure	1.7:	Conceptual	overview	of	the	genetic	factors	involved	in	AD.	Single	gene	

mutations	in	PSEN1,	PSEN2	and	APP	cause	early	onset	AD,	while	variants	with	a	

low	 to	 moderate	 risk	 are	 associated	 with	 late	 onset	 AD.	 Colours	 represent	

pathways	 in	 which	 genes	 are	 implicated.	 (Reprinted	 from	 The	 Lancet,	 388,	

Scheltens	 et	 al	 2016,	 “Alzheimer's	 disease”,	 505-517,	 Copyright	 2016,	 with	

permission	from	Elsevier	[141]).	
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Table	1.1:	Single	Nucleotide	Polymorphisms	(SNPs)	associated	with	LOAD	

Gene	 SNP	 Chromosome	 Alleles
*
	 MAF

†
	 OR

‡
	 Study	

APOE	
rs429358	

rs7412	

19	 e2/e3/e4	 0.8/0.14	 0.54/3.81	 [107]	

ABCA7	 rs3764650	 19	 T/G	 0.11	 1.23	 [109]	

BIN1	 rs744373	 2	 A/G	 0.31	 1.17	 [111]	

CASS4	 rs7274581	 20	 T/C	 0.11	 0.88	 [113]	

CD2AP	 rs9296559	 6	 T/C	 0.27	 1.11	 [109,110]	

CD33	 rs34813869	 19	 A/G	 0.3	 0.89	 [109,110]	

CELF1	 rs7933019	 11	 G/C	 0.34	 1.08	 [113]	

CLU	 rs11136000	 8	 C/T	 0.35	 0.88	 [108,112]	

CR1	 rs3818361	 1	 G/A	 0.26	 1.17	 [112]	

DSG2	 rs8093731	 18	 C/T	 0.01	 0.73	 [113]	

EPHA1	 rs11767557	 7	 T/C	 0.2	 0.89	 [109,110]	

FERMT2	 rs17125944	 14	 T/C	 0.08	 1.14	 [113]	

HLA-DRB5	 rs9271100	 6	 C/T	 0.31	 1.11	 [113]	

INPP5D	 rs35349669	 2	 C/T	 0.44	 1.08	 [113]	

MEF2C	 rs304132		 5	 G/A	 0.46	 0.93	 [113]	

MS4A4A	 rs4938933	 11	 T/C	 0.5	 0.88	 [110]	

MS4A4E	 rs670139	 11	 G/T	 0.34	 1.08	 [109]	

MS4A6A	 rs610932	 11	 T/G	 0.45	 0.9	 [109]	

NME8	 rs2718058	 7	 A/G	 0.36	 0.93	 [113]	

PICALM	 rs3851179	 11	 C/T	 0.41	 0.88	 [108]	

PTK2B	 rs28834970	 8	 T/C	 0.32	 1.1	 [113]	

SLC24A4-

RIN3	
rs10498633	 14	 G/T	 0.19	 0.91	 [113]	

SORL1	 rs11218343	 11	 T/C	 0.03	 0.77	 [113]	

ZCWPW1	 rs1476679	 7	 T/C	 0.32	 0.91	 [113]	
*
Major/Minor	Allele;	

†
Minor	Allele	Frequency:	HapMap-CEU	[143];	

‡
OR	for	minor	allele	reported	by	

Alzegene	or	IGAP	[113] 
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Table	1.2:	Characteristics	of	studies	investigating	the	association	between	LOAD	risk	SNPs	and	cognitive	function.	

Study	 Sample	 Mean	

Age	

Years	of	

Education	

Years	of	

Follow	up	

Cognitive	Domains	 Genes	close	to	SNPs	associated	with	AD	

Barral	et	al	2012	[126]	 n	=	1,365	European	subjects.	

337	with	LOAD	

72.8	 14.6	 -	 EM	 CR1,	BIN1,	CLU,	PICALM,	APOE	

Carrasquillo	et	al	2014	

[120]	

n	=2,262	Caucasian	subjects.	

AD	free	at	baseline,	129	

incident	AD		

77	 14	 3.8		 EM	 CLU,	PICALM,	CR1,	ABCA7,	BIN1,	MS4A6A,	

EPAH1,	CD2AP,	CD33,	APOE	

Chibnik	et	al	2011	

[128]	

n	=1,666	Caucasian	subjects.	

Dementia	free	at	baseline.		404	

incident	AD	

78.4	 16.1	 6	 EM,	EF,	GC,	PS,	VA,	

VS	

CR1,	CLU,	PICALM	

Davies	et	al	2015	

[122]	

n	=53,949	European	subjects.	

Dementia	free	at	baseline.			

>45	 -	 -	 GC	 APOE,	MEF2C,	PICALM,	EPHA1,	ABCA7,	

ZCWPW1,	HLA-DRB5,	FERMT2,	BIN1,	CD33,	

DSG2,	SLC24A4-RIN3,	CLU,	MS4A6A,	CR1,	

INPP5D,	CD2AP,	PTK2B,	SORL1,	CASS	

Davies	et	al	2014	

[121]	

n	=	3,511	Caucasian	subjects.	

Dementia	free	

68.2	 -		 -		 GC	 APOE,	BIN1,	CLU,	ABCA7,	CR1,	PICALM,	

MS4A6A,	CD33,	CD2AP,	APOE	

De	Jager	et	al	2012	

[116]	

n	=	749	Caucasian	subjects.	

Dementia	free	at	baseline,	152	

incident	dementia	

75.3	 18.2	 9	 GC	 CLU,	CR1,	PICALM,	BIN1,	ABCA7,	MS4A,	CD2AP,	

EPHA1,	CD33,	APOE	

Engelman	et	al	2013	

[118]	

n	=	1,153	Caucasian	Subjects	

with	parental	history	of	AD.	

Dementia	free	at	baseline.		

53.6	 62%	≥	

college	

4-6	 EM,	EF,	VA	 APOE,	ABCA7,	CLU,	CR1,	BIN1,	CD2AP.	EPHA1,	

MS4A4A,	PICALM,	CD33	

Gui	et	al	2014	[114]	 n	=	2,408	Chinese	Subjects.	

224	neurological	disorder	

cases	

	63.7	 26%	≥	

college	

4	 EM	 BIN1,	CD2AP,	CLU,	SORL1,	PICALM,	MS4A6A,	

MS4A4E,	ABCA7,	CD33,	APOE	

Hamilton	et	al	2011	

[125]	

n	=	998	Caucasian	subjects.		

Dementia	free.	

10.9	 -	 58.68	 EM,	EF,	GC,	VS	 BIN1,	CLU,	CR1,	PICALM	

Keenan	et	al	2012	

[131]	

n	=1,709	Caucasian	subjects.		

Dementia	free	at	baseline.		340	

incident	AD	

78.5	 16.4	 6	 EM	 CR1	
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Table	1.2	(Continued)	

Study	 Sample	 Mean	

Age	

Years	of	

Education	

Years	of	

Follow	up	

Cognitive	Domains	 Genes	close	to	SNPs	associated	with	AD	

Liu	et	al	2014	[132]	 n	=	719	Caucasian	subjects.	

162	AD	cases		

75	 15.5	 -	 EM,	GC	 NME8	

Louwersheimer	et	al	

2016	[117]	

n	=	1,730	MCI.	723	incident	AD	 73.4	 -	 3.8	 EM,	GC	 ABCA7,	BIN1,	CD2AP,	CD33,	CLU,	CR1,	EPHA1,	

MS4A4E,	PICALM,	PTK2B,	SORL1,	SLC24A4-

RIN3,	INPP5D,	MEF2C,	NME8,	ZCWPW1,	

FERMT2,	CASS4	

Mengal-From	et	al	

2011	[130]	

n	=	1,380	Danish	subjects	 92.5	 -	 -	 GC	 CLU,	CR1,	PICALM	

Mengal-From	et	al	

2013	[129]	

n	=1,651	Danish	subjects	

n	=	689	Danish	Twins	

92.5	

78.8	

-	

-	

7	

10	

GC	 CLU	

Nettiksimmons	et	al	

2016	[123]	

n	=	3,026	Caucasian	males		

	

n	=	3,267	Caucasian	females	

73.4	

	

71	

56%	w/	

college	

18%	w/	

college	

Up	to	10	

	

Up	to	10	

GC	 ABCA7,	BIN1,	CD2AP,	CD33,	CLU,	CR1,	EPHA1,	

MS4A6A,	PICLAM,	HLA-DRB5,	PTK2B,	SORL1,	

SLC24A4-RIN3,	INPP5D,	MEF2C,	NME8,	

ZCWPW1,	CELF1,	FERT2,	CASS4	

Sweet	et	al	2012	[144]	 n	=	1,831	Caucasian	Subjects.	

Dementia	free	at	baseline	

71.7	 39.9%	w/	

college	

	 AT,	GC	 APOE,	CLU,	PICALM,	CR1	

Thambisetty	et	al	2013	

[127]	

n	=	599.	134	African	American,	

465	Caucasians.	Dementia	free.	

67.5	 16.25	 6.6	 AT,	EM,	EF,	GC,	

PM,	VA,	VS	

CLU	

Verhaaren	et	al	2013	

[119]	

n	=	5171	Non-demented	

Caucasian	Subjects.		

66.2	 12.8%	w/	

primary	

only	

-	 EM,	EF,	GC,	VA	 APOE,	CLU,	PICALM,	BIN1,	CR1,	ABCA7,	

MS4A6A,	MS4A4E,	CD2AP,	EPHA1,	CD33	

Vivot	et	al	2015	[124]	 n	=	4,931	French	Subjects.	

Dementia	Free	

74	 36%	>	9	 Up	to	10	 EM,	EF,	GC	 APOE,	CR1,	BIN1,	CLU,	PICALM,	ABCA7,	

MS4A6A,	CD33,	MS4A4E,	CD2AP	

Zhange	and	Pierce	

2014	[115]	

n	=	5,808	European	subjects	 64	 43.8%	w/	

college	

2-13	 GC	 APOE,	PICALM,	CD2AP,	CR1,	EPHA1,	MS4A,	

CLU,	CD33,	ABCA7,	BIN1	

Cognitive	tests	are	classified	into	cognitive	domains	as	outlined	in	Wisdom	et	al	2011	[145]:	AT	=	attention,	EM=	episodic	memory,	EF=	executive	functioning,	GC=	global	

cognitive	ability,	PM=	primary	memory,	PS	=	perceptual	speed,	VA=	verbal	ability,	VS	=	visuospatial	functioning
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However,	 associations	 in	 other	 studies	 are	 predominantly	 negative,	 with	 no	

associations	 observed	 with	 episodic	 memory	 [114,117-119,124,133],	 executive	

function	 [118,119,124,133],	 global/general	 cognitive	 function	 [115-

117,119,121,122,124]	perceptual	speed	[119,133]	and	verbal	ability	[118,124].	

BIN1	 (Bridging	 Integrator	 1)	 is	 involved	 in	 regulating	 clathrin-mediated	

endocytosis	and	membrane	trafficking	[146].	Due	to	its	role	in	endocytosis,	a	role	

in	 APP	 processing	 has	 been	 suggested,	 and	 it	 has	 been	 associated	with	 neurotic	

plaque	 burden	 [142].	 An	 association	 between	BIN1	and	 tau	 pathology	 has	 been	

established,	 where	 BIN1	 knockdown	 in	 a	 Drosophila	 model	 suppressed	 tau-

mediated	neurotoxicity,	while	 in	human	neuroblastoma	 cell	 lines	 and	 the	mouse	

brain	BIN1	 and	 tau	were	 observed	 to	 colocalize	 and	 interact	 [147].	 Accordingly,	

BIN1	has	also	been	associated	with	NFT	burden	 [142].	BIN1	has	been	associated	

with	a	decline	in	MMSE	in	women	[123],	in	a	community-based	cohort	[124],	and	

with	general	cognitive	ability	at	age	11	[125].	However,	negative	associations	have	

been	 observed	 for	 episodic	 memory	 [114,117,119,120,124-126,133,148],	

executive	 function	 [118,119,124,125],	 global/general	 cognitive	 function	 [115-

117,119,121,122,133],	 perceptual	 speed	 [119,133],	 verbal	 ability	 [118,124]	 and	

visuospatial	skills	[125].	

CD2AP	(CD2-Associated	Protein)	 is	 a	 scaffolding	protein	 that	 is	 involved	 in	

cytoskeletal	 reorganization	 and	 vesicle	 trafficking	 [149],	 where	 it	 is	 a	 critical	

regulator	 of	 trafficking	 to	 the	 lysosome,	 suggesting	 that	 it	may	play	 a	 role	 in	Ab	

degradation	[150].	CD2AP	is	associated	with	neurotic	plaque	burden	[142].	CD2AP	

is	associated	with	episodic	memory	in	a	population-based	study	of	non-demented	

adults	 [119].	 However,	 the	majority	 of	 studies	 have	 found	 negative	 associations	

with	 episodic	 memory	 [114,117,118,120,124,133],	 executive	 function	

[118,119,124,133],	 global/general	 cognitive	 function	 [115-117,119,121-124],	

perceptual	speed	[119,133]	and	verbal	ability	[118,124].	

CD33	(SIGLEC-3)	 is	 a	 immune	 cell	 surface	 receptor	 that	 is	 predominantly	

expressed	 in	 microglia	 where	 it	 promotes	 immune	 cell-cell	 interactions	 [151].	

CD33	expression	 and	 CD33-postive	 microglia	 are	 increased	 in	 the	 brains	 of	 AD	

patients,	and	are	correlated	with	amyloid	plaque	burden	[142,151,152].	Thus	CD33	

likely	 influences	 AD	 by	 mediating	 Ab	 clearance.	 Genetic	 variation	 in	 CD33	 is	

associated	with	cognitive	performance	 in	executive	 function	[119]	and	decline	 in	
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MMSE	 in	women	 [123].	 However,	 negative	 associations	 have	 been	 observed	 for	

episodic	 memory	 [114,117-120,124,133],	 executive	 function	 [118,124,133],	

global/general	 cognitive	 function	 [115-117,119,121,122,124],	 perceptual	 speed	

[119,133]	and	verbal	ability	[118,124].	

CLU	(Clusterin)	 is	 a	multifunctional	 chaperone	 protein	 that	 is	 involved	 in	

several	 cellular	 processes	 including	 complement	 regulation,	 lipid	 transport,	 cell-

cell	interactions,	membrane	protection	and	apoptosis	[153].	CLU	directly	interacts	

with	Ab	and	influences	Ab aggregation	in	a	concentration-dependent	manner	such	

that	aggregation	is	promoted	when	Ab	levels	are	10-fold	higher	than	those	of	CLU,	

but	 prevented	 when	 CLU/Ab	 ratios	 are	 lower	 [154,155].	 Additionally,	 CLU	

promotes	 the	 clearance	 of	 Ab across	 the	 blood	 brain	 barrier	 via	 LRP-2	 and	

degradation	by	directing	Ab	to	microglia	for	phagocytosis	[156].	CLU	is	one	of	the	

most	extensively	studied	LOAD	risk	loci	in	relation	to	cognitive	performance.	It	has	

been	associated	with	a	decline	 in	episodic	memory	 in	a	community-based	cohort	

[120]	and	in	individuals	who	developed	either	MCI/LOAD	[120,127].	Additionally,	

CLU	 has	 been	 associated	with	 a	 decline	 in	 the	Modified	Mini-Mental	 state	 (3MS)	

[144]	and	a	measure	of	global	cognition	[129,130].	However,	negative	associations	

have	been	observed	for	attention	[127,144],	episodic	memory	[114,117-119,124-

126,128,133],	 executive	 function	 [118,119,124,125,127,128,133],	 global/general	

cognitive	 function	 [115-117,119,121-125,127,128],	 perceptual	 speed	

[124,128,133],	 primary	 memory	 [127],	 verbal	 ability	 [118,124,127,128]	 and	

visuospatial	skills	[125,127,128].	

CR1	 (Complement	 receptor	 type	 1)	 is	 a	 component	 of	 the	 complement	

response	 system	 and	 a	 crucial	mediator	 in	 innate	 immunity.	 It	 is	 predominantly	

expressed	 in	 erythrocytes,	 where	 it	 acts	 to	bind	 to	 complement	 C3b-	 and	 C4b-

activated	particles	in	the	bloodstream	and	promote	their	removal	by	transporting	

the	 particles	 to	 the	 liver	 for	 degradation	 [157].	 CR1	 expressed	 in	 leukocytes	

promotes	phagocytosis	of	complement	activated	particles	[157].	Circulating	Ab42	is	

bound	 to	 complement	 C3b	 and	 is	 cleared	 via	 adherence	 to	 CR1	 on	 erythrocytes	

[158].	CR1	has	been	associated	with	greater	amyloid	plaque	burden	[128].	CR1	is	

one	 of	 the	 LOAD	 risk	 loci	 most	 extensively	 studied	 in	 relation	 to	 cognitive	

performance.	 Genetic	 variation	 in	 CR1	 is	 associated	 with	 more	 rapid	 decline	 in	

attention	[144],	episodic	memory	[128,131],	global	cognition	[116,128],	MMSE	in	

women	 [123],	 perceptual	 speed	 [128,131],	 verbal	 ability	 [124,128,131]	 and	
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visuospatial	 skill	 [128].	 However,	 negative	 associations	 have	 been	 observed	 for	

episodic	 memory	 [114,117-120,124-126,133],	 executive	 function	

[118,119,124,125,128,133],	 global/general	 cognitive	 function	

[115,117,119,121,122,124,125,130,144],	 perceptual	 speed	 [119,133],	 verbal	

ability	[118]	and	visuospatial	skills	[125].	

EPHA1	(EPH	Receptor	A1)	 belongs	 to	 the	 ephrin	 family	 of	 tyrosine	 kinase	

receptors	 that	 bind	 to	 membrane-bound	 ephrin-A	 ligands	 on	 adjacent	 cells,	

allowing	 contact-dependent	 bidirectional	 signalling	 between	 adjunct	 cells	 [159].	

EPAH1	plays	a	role	in	synaptic	formation	and	plasticity,	axonal	guidance	and	brain	

development;	however,	 its	role	in	AD	is	not	well	understood	[160-162].	EPAH1	is	

not	associated	with	amyloid	or	NFT	burden	[142],	although	it	has	been	associated	

with	dementia	progression	[163]	and	atrophy	in	the	hippocampus	and	the	lateral	

occipitotemporal	 and	 inferior	 temporal	 gyri	 [164].	 EPAH1	 has	 been	 associated	

with	 a	 more	 rapid	 decline	 in	 episodic	 memory	 in	 participants	 who	 eventually	

develop	 MCI/LOAD	 [120].	 No	 significant	 associations	 between	 EPAH1	 and	

cognitive	performance	in	episodic	memory	[114,117-120,133],	executive	function	

[118,119,133],	 global/general	 cognitive	 function	 [115-117,119,121,123],	

perceptual	speed	[119,133]	or	verbal	ability	[118]	have	been	observed	

The	MS4A	(Membrane-spanning	4A)	gene	cluster	contains	18	known	genes	

that	have	similar	polypeptide	sequences	and	topographical	structures	within	cells	

[165].	 SNPs	near	 three	genes	 in	 the	 cluster,	MS4A4A,	MS4A4E,	and	MS4A6A,	have	

been	 associated	with	 LOAD.	 The	 function	 of	 these	 genes	 is	 not	well	 understood,	

however,	their	homologs	MS4A1,	2	and	3	have	been	implicated	in	the	regulation	of	

calcium	homeostasis,	 immune	response,	cell	activation,	growth	and	development,	

suggesting	 they	 may	 have	 a	 similar	 role	 [166].	 Genetic	 variation	 and	 increased	

expression	of	MS4A6A	has	been	associated	with	neuropathological	amyloid	and	tau	

burden	[142,152].	MS4A6A	has	been	associated	with	more	rapid	decline	in	3MS	in	

men	 and	 poor	 memory	 performance	 [133].	 Other	 studies	 have	 observed	 no	

significant	associations	between	either	MS4A4A,	MS4A6A	or	MS4A4E	and	episodic	

memory	[114,117-120,124],	executive	function	[118,119,124,133],	global/general	

cognitive	 function	 [115-117,119,121,122,124],	 perceptual	 speed	 [119,133]	 and	

verbal	ability	[118,124].	

PICALM	(Phosphatidylinositol	Binding	Clathrin	Assembly	Protein)	 is	 involved	

in	 clathrin-mediated	 endocytosis	 and	 intracellular	 trafficking	 of	 endocytic	
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proteins.	 PICALM	 has	 been	 implicated	 in	 several	 processes	 that	 influence	

Ab pathogenesis	 including	 regulating	 APP	 internalization	 and	 subsequent	 Aβ	

generation	 [167],	 regulating	 Aβ	 blood	 brain	 barrier	 transcytosis	 and	 clearance	

[168]	 and	 autophagy-mediated	 Aβ	 clearance	 [169].	 PICALM	 is	 associated	 with	

neuropathological	amyloid	and	NFT	burden	[142].		In	addition	to	CLU	and	CRI,	the	

association	 between	 PICALM	 and	 cognitive	 performance	 has	 been	 extensively	

studied.	PICALM	has	been	associated	with	more	rapid	decline	in	episodic	memory	

[128],	global	cognitive	function	[115,128],	3MS	in	men	[123],	verbal	ability	[128],	

and	general	cognitive	function	[122,130].	Conversely,	other	studies	have	observed	

non-significant	associations	for	cognitive	performance	in	attention	[144],	episodic	

memory	 [114,117-119,124-126,133,170],	 executive	 function	

[118,119,124,125,128,133],	 global/general	 cognitive	 function	

[116,117,119,121,124,125,144],	 perceptual	 speed	 [119,128,133],	 verbal	 ability	

[118,124]	and	visuospatial	skills	[125,128].	

HLA-DRB5/HLA-DRB51	(Major	Histocompatibility	Complex,	Class	II,	DR	Beta	

1)	 are	members	 of	 the	major	 histocompatibility	 complex	 (MHCII),	 a	 gene	 dense	

region	 associated	 with	 various	 immune	 functions	 [171].	 The	 role	 of	 HLA-

DRB5/HLA-DRB51	 loci	 in	 LOAD	 is	 not	 well	 characterized,	 however,	 GWAS	 have	

associated	 this	 locus	 with	 Parkinson’s	 disease	 that	 is	 characterized	 by	 the	

accumulation	 of	 a-synuclein,	 which	 induces	 neurodegeneration	 [172].	 In	 a	 PD	

mouse	 model,	 overexpression	 of	 a-synuclein	 induced	 expression	 of	 MHCII	

signaling	and	activation	of	microglia,	whereas	knocking	out	MHCII	protects	against	

a-synuclein	induced	neurodegeneration	[173].	This	suggests	that	HLA-DRB5/HLA-

DRB51	 may	 play	 a	 similar	 role	 in	 LOAD,	where	 the	 accumulation	 of	 Ab	 and	 tau	

promote	 microglia	 activation.	 Methylation	 of	 the	 HLA-DRB5	 locus	 has	 been	

associated	with	 Ab	 and	NFT	 burden	 [174].	HLA-DRB5	is	 associated	with	 greater	

decline	 in	 3MS	 and	MMSE	 in	men	 and	women,	 respectively	 [123],	 although	 not	

with	 general	 cognitive	 function	 [122],	 episodic	 memory,	 executive	 function	 or	

perceptual	speed	[133].	

PTK2B	(Protein	Tyrosine	Kinase	2	Beta)	 is	 a	member	 of	 the	 focal	 adhesion	

kinase	family	and	is	activated	by	autophosphorylation	and	phosphorylation	by	Src-

family	kinases	in	response	to	stimuli	such	as	calcium	levels	[175,176].	In	a	recent	

study,	 it	 was	 observed	 that	 the	 Drosophila	 PTK2B	 orthologoue	 modulated	 Tau	

toxicity;	 that	 human	 Tau	 and	 PTK2B	 proteins	 biochemically	 interacted	 in	 vitro;	
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and	 that	 PTK2B	 co-localized	 with	 hyperphosphorylated	 and	 oligomeric	 Tau	 in	

progressive	 pathological	 stages	 in	 the	 brains	 of	 AD	 patients	 and	 transgenic	 Tau	

mice	 [177].	 PTK2B	was	 associated	 with	 greater	 decline	 in	 3MS	 in	 men	 [123],	

though	 conversely	 not	 in	 MMSE	 [117,123],	 episodic	 memory	 [117]	 or	 with	

performance	 in	 general	 cognitive	 function	 [122],	 episodic	 memory,	 executive	

function	or	perceptual	speed	[133].	

SORL1	 (Sortilin-Related	Receptor,	 L	 (DLR	Class)	A	Repeats	 Containing)	 is	 a	

sorting	 receptor	 that	 directs	 target	 proteins	 to	 intracellular	 compartments	 in	

neurons	 [178].	 SORL1	directly	 interacts	 with	 APP,	 redirecting	 APP	 to	 the	 trans-

Golgi	network	and	away	from	the	late	endosome	pathway,	where	APP	undergoes	

b-	 and	 g-	 secretase	 cleavage	 to	 produce	 Ab,	 and	 directs	 Ab	 peptides	 to	 the	

lysosome	for	degradation	[178,179].	SORL1	deficient	mice	have	increased	Ab	levels	

[180],	 and	 SORL1	SNPs	 have	 been	 associated	 with	 increased	 CSF	 tau,	 ptau,	 and	

neuropathological	 NFT	 burden	 [117,142,181].	 SORL1	 is	 associated	 with	 greater	

decline	 in	 3MS	 in	 men,	 though	 conversely	 not	 in	 MMSE	 [117,123],	 episodic	

memory	 [114,117]	 or	 with	 performance	 in	 general	 cognitive	 function	 [122],	

episodic	memory,	executive	function	or	perceptual	speed	[133].		

SLC24A4	(Solute	Carrier	Family	24	(Sodium/Potassium/Calcium	Exchanger),	

Member	4)	 is	a	solute	carrier	that	 is	abundantly	expressed	in	the	brain	[182]	and	

has	 been	 associated	 with	 iris	 development,	 hair	 and	 skin	 colour,	 neuronal	

development	and	risk	of	hypertension	[183-186],	although	its	function	in	AD	is	not	

currently	known.	Methylation	of	SLC24A4	has	been	associated	with	 increased	Ab	

load	[174].	The	SLC24A4	SNP	associated	with	AD	is	also	in	the	vicinity	of	the	gene	

RIN3	 (Ras	and	Rab	 Interactor	3),	which	 interacts	 with	 BIN1,	 suggesting	 that	 the	

functional	 SNP	 may	 lie	 within	 RIN3	 [187].	 	 SLC24A4/RIN3	was	 associated	 with	

greater	decline	in	3MS	in	men	and	with	general	cognitive	function	[122],	although	

conversely	not	with	a	decline	in	MMSE	[117,123],	episodic	memory	[117]	or	with	

performance	in	episodic	memory,	executive	function	or	perceptual	speed	[133].	

DSG2	 (Desmoglein	 2)	 is	 a	 desmosomal	 cadherin	 and	 is	 an	 essential	

component	 of	 the	desmosome,	which	 is	 involved	 in	 cell-cell	 adhesion	 [188].	 The	

function	of	DSG2	in	AD	is	not	currently	known,	although	it	should	be	noted	that	the	

DSG2	SNP	was	only	associated	with	AD	 in	 the	stage	1	meta-analysis	and	was	not	

validated	in	the	replication	analysis,	suggesting	that	it	may	not	associate	with	AD	
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[113].	 DSG2	was	 not	 associated	 with	 general	 cognitive	 function	 [122],	 episodic	

memory,	executive	function	or	perceptual	speed	[133].	

INPP5D	 (Inositol	 Polyphosphate-5-Phosphatase,	 145	 kDa,	 aka	 SHIP1)	 is	

involved	in	the	immune	system,	where	it	regulates	cytokine	signalling	and	plays	a	

role	in	inflammatory	responses,	and	has	been	implicated	in	many	diseases	that	are	

characterized	 by	 deregulated	 immune	 responses	 such	 as	 cancer,	 inflammatory	

diseases,	 diabetes	 and	 atherosclerosis	 [189-191].	 INPP5D	 is	 functionally	 linked	

with	two	other	AD	risk	loci,	TREM2	and	CD2AP,	and	modulates	their	effect	on	Ab	

degradation,	 inflammatory	 responses	 and	 phagocytosis	 [192].	 	 INPP5D	was	 not	

associated	with	greater	decline	 in	3MS	[123],	MMSE	 	[117,123]	episodic	memory	

[117]	or	with	performance	 in	general	cognitive	 function	[122],	episodic	memory,	

executive	function	or	perceptual	speed	[133].	

MEF2C	(Myocyte	Enhancer	Factor	2C)	is	a	transcription	factor	that	facilitates	

neuronal	and	muscle	development,	with	mutations	in	MEF2C	being	associated	with	

severe	mental	 retardation	[193,194].	MEF2C	is	highly	expressed	 in	microglia	and	

MEF2C	binding	sites	are	enriched	near	inflammatory	genes,	suggesting	that	MEF2C	

may	play	a	role	in	regulating	inflammatory	gene	expression	in	response	to	Ab	and	

tau	 [195,196].	MEF2C	has	 been	 associated	 with	 neuropathological	 Ab	 and	 NFT	

burden	 [142].	MEF2C	is	 associated	with	 greater	 decline	 in	MMSE	 in	women	 and	

with	general	cognitive	function	[122],	although	conversely	not	with	decline	in	3MS	

[123],	MMSE	 [117],	 episodic	memory	 [117]	or	performance	 in	episodic	memory,	

executive	function	or	perceptual	speed	[133].	

NME8	(NME/NM23	Family	Member	8)	 is	 primarily	 expressed	 in	 the	 testis	

and	 respiratory	 epithelial	 cells	 and	 has	 been	 associated	 with	 primary	 ciliary	

dyskinesia	[197],	knee	osteoarthritis	risk,	bone	mineral	density,	and	susceptibility	

to	 oxidative	 stress	 in	 sperm	 [198-201].	 It	 is	 not	 clear	 how	NME8	 influences	 AD	

pathogenesis,	 although	 it	has	been	 suggested	 it	may	be	a	quantitative	 trait	 locus	

regulating	 expression	 of	 other	 genes	 directly	 relevant	 to	 AD	 risk	 [202].	NME8	is	

associated	with	CSF	tau	[132].	NME8	was	associated	with	baseline	performance	on	

the	 CDRSB	 [132],	 although	 conversely	 not	 with	 decline	 in	 3MS	 [123],	 MMSE	

[117,123,132],	 episodic	memory	 [117],	or	with	performance	 in	general	 cognitive	

function	[122],	episodic	memory,	executive	function	or	perceptual	speed	[133].	

ZCWPW1	(Zinc	Finger,	CW	Type	with	PWWP	Domain	1)	 is	 one	 of	 the	 least	

studied	 LOAD	 risk	 genes	 and	 has	 been	 implicated	 in	 modulating	 epigenetic	
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regulation	[203].	 	However,	 the	LD	region	surrounding	 the	LOAD	associated	SNP	

contains	 ten	 other	 genes,	 any	 one	 of	 which	may	 be	 functionally	 relevant.	 This	

uncertaintly	 was	 highlighted	 in	 a	 recent	 finding	 that	 the	 LOAD	 associated	 SNP	

serves	as	an	expression	quantitative	trait	loci	(eQTL)	for	two	of	these	genes:	PILRB	

and	 GATS	 [204].	 PILRB	 expression	 levels	 are	 associated	 with	 AD,	 is	 highly	

expressed	 in	microglia,	 and	 it	 functionally	 associates	with	 another	AD	 risk	 gene,	

TREM2,	 suggesting	 that	PILRB	plays	 a	 role	 in	 neuroinflammation	 AD	 risk	 [204].	

The	 ZCWPW1	 SNP	 is	 associated	 with	 neuropathological	 NFT	 burden	 [142].	

ZCWPW1	was	not	associated	with	greater	decline	in	3MS	[123],	MMSE		[117,123]	

episodic	memory	 [117]	or	with	performance	 in	general	 cognitive	 function	 [122],	

episodic	memory,	executive	function	or	perceptual	speed	[133].	

CELF1	(CUGBP,	Elav-like	Family	Member	1)	 is	a	member	of	a	protein	 family	

that	 regulates	 pre-mRAN	 processing.	 Its	 role	 in	 AD	 pathogenesis	 is	 not	 clear,	

although	 it	 has	 been	 shown	 to	 be	 a	 modulator	 of	 tau	 toxicity	 in	 Drosophila	

[205,206].	 CELF1	was	 associated	 with	 better	 performance	 in	 verbal-numerical	

reasoning	[133]	and	a	greater	rate	of	decline	in	MMSE	in	women	[123],	although	

no	 significant	 associations	 were	 observed	 for	 3MS	 [123],	 episodic	 memory	 or	

perceptual	speed	[133].	

FERMT2	(Fermitin	Family	Member	2)	 is	a	member	of	the	Fermitin	family	of	

proteins	 that	regulates	cell	adhesion,	spreading,	migration,	survival,	proliferation	

and	differentiation	and	the	assembly	of	the	extracellular	matrix	[207].	The	role	of	

FERMT2	 in	 LOAD	 is	 not	 clear,	 however,	 an	 association	 between	 the	 Drosophila	

ortholog	 of	FERMT2	and	 tau	 toxicity	 has	 been	described	 [206].	FERMT2	was	not	

associated	with	greater	decline	 in	3MS	 [123],	MMSE	 [117,123]	 episodic	memory	

[117]	or	with	performance	 in	general	cognitive	 function	[122],	episodic	memory,	

executive	function	or	perceptual	speed	[133].	

CASS4	(Cas	Scaffolding	Protein	Family	Member	4)	 is	 a	 member	 of	 the	 CAS	

adaptor	 protein	 family,	 consisting	 of	 CASS4,	 NEDD9	 and	 BCAR1,	 which	 act	 as	

scaffolds	for	assembling	larger	signalling	complexes	[208].	The	function	of	CASS4	is	

not	 well	 understood,	 however	 NEDD9	 directly	 interacts	 another	 AD	 risk	 gene,	

PTK2B,	and	CASS4	retains	the	same	sequence	motif	for	this	interaction,	suggesting	

it	may	also	interact	with	PTK2B	[208].	Based	on	this	interaction	several	roles	in	AD	

pathogenesis	 have	 been	 proposed	 including	 hypoxia,	 vascular	 changes,	

inflammation,	microtubule	stabilization	and	calcium	signaling	 [209].	SNPs	within	
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CASS4	 have	 been	 associated	 with	 neuropathological	 amyloid	 and	 NFT	 burden	

[142]	 and	 with	 longitudinal	 change	 in	 amyloid	 burden	 [210].	 CASS4	 is	 not	

associated	with	greater	decline	 in	3MS	[123],	MMSE		[117,123]	episodic	memory	

[117]	or	with	performance	 in	general	cognitive	 function	[122],	episodic	memory,	

executive	function	or	perceptual	speed	[133].	

	

1.3.3	 Genetic	Risk	Scores	

Genetic	 risk	 scores	 are	 based	 on	 the	 cumulative	 effect	 of	 many	 variants.	

They	 can	 have	 better	 predictive	 ability	 than	 individual	 variants,	 the	 effects	 of	

which	 may	 be	 too	 small	 to	 be	 reliably	 detected	 in	 a	 univariate	 analysis.	 GRS	

composed	 of	 genome-wide	 significant	 LOAD	 SNPs	 identified	 in	 the	 initial	 LOAD	

GWAS	studies	have	been	associated	with	baseline	general	cognition	[119],	episodic	

memory	 [120],	 visual	 memory	 and	 MMSE	 [124]	 and	 with	 a	 decline	 in	 episodic	

memory	 [120],	 verbal	 fluency,	 visual	memory	 and	MMSE	 [124].	 However,	 these	

associations	 largely	 reflect	 the	 effect	 of	 APOE	 as	 they	 are	 not	 statistically	

significant	when	APOE	is	excluded	from	the	GRS.		

Two	studies	have	investigated	a	GRS	composed	of	the	IGAP	LOAD	SNPs,	one	

of	which	showed	that	a	GRS,	with	APOE	excluded,	was	associated	with	a	decline	in	

MMSE	 in	participants	with	MCI	 [117].	The	second	study	showed	that	a	GRS	with	

APOE	 included	was	associated	with	memory	performance	at	baseline	and	with	a	

faster	 rate	 of	 decline	 that	 accelerated	 with	 age.	 However,	 after	 excluding	APOE,	

only	linear	rate	of	change	remained	significant	[211].		

Genome-wide	 significant	 IGAP	 LOAD	 risk	 loci	 do	 not	 reflect	 the	 full	

spectrum	of	genetic	susceptibility	to	LOAD	risk	loci,	explaining	only	30%	of	genetic	

variance	 in	LOAD	[106].	Thus,	an	alternative	approach	 is	 to	construct	a	genome-

wide	 polygenic	 score	 (GPS),	 which	 is	 calculated	 with	 genome	 wide	 significant	

SNPs,	plus	all	nominally	associated	variants	at	a	given	significance	level.	The	first	

study	 to	 use	 this	 method	 did	 not	 find	 an	 association	 with	 cognitive	 ability	 or	

cognitive	 change	 [212].	 A	 more	 recent	 study	 using	 data	 collected	 from	 the	 UK	

Biobank	(n	=	112,151)	 found	that	an	AD	GRS	constructed	 from	20,437	SNPs	that	

were	 associated	 with	 AD	 at	 a	 threshold	 of	 p	 <	 0.05	 in	 the	 IGAP	 study	 was	

significantly	 associated	 with	 lower	 verbal-numerical	 reasoning,	 memory	 and	

educational	attainment	[213].	
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1.4	 Environmental	and	Lifestyle	Risk	Factors		

The	 greatest	 risk	 factors	 for	 dementia	 are	 age,	 sex,	 family	 history	 of	

dementia	 and	 genetic	 risk	 loci	 [214].	 These	 risk	 factors,	 however,	 are	 non-

modifiable.	 In	 the	 absence	 of	 therapeutical	 interventions	 for	 AD,	 employing	

successful	 intervention	 and	 treatment	 strategies	 that	 focus	 on	 modifiable	

environmental	 and	 lifestyle	 factors	 is	 currently	 the	 only	 available	 approach	 to	

reducing	 rates	 of	 dementia	 [215,216].	 Targeting	 these	 risk	 factors	 is	 likely	 to	

promote	 healthy	 cognitive	 aging.	 Evidence	 is	 emerging	 that	 supports	 the	

association	 between	 modifiable	 risk	 factors	 and	 cognitive	 aging	 and	 the	

development	of	dementia.		

	

1.4.1	 Health	and	Medical	Factors	

A	 number	 of	 health	 and	 medical	 factors	 are	 associated	 with	 cognitive	

decline	 and	dementia,	 including	obesity,	 diabetes,	 hypertension,	 hyperlipidaemia	

(high	cholesterol),	depression	and	traumatic	brain	Injury	(TBI).		

In	a	meta-analysis	of	21	studies,	midlife	obesity	was	associated	with	a	41%	

increased	 risk	 of	 dementia,	 although	 in	 late-life	 the	 opposite	 is	 the	 case,	 with	

obesity	 being	 associated	 with	 17%	 reduction	 in	 risk	 [217].	 Evidence	 is	 also	

emerging	that	obesity	impairs	normal	cognitive	function,	though	more	studies	are	

needed	 [218,219].	 Obesity	may	 contribute	 to	 cognitive	 decline	 and	 dementia	 by	

acting	on	mediating	pathways	such	as	hypertension,	hyperlipidaemia,	and	diabetes	

[220].	Additionally,	adipose	tissue	secretes	a	number	of	hormones,	cytokines	and	

growth	 factors	 that	 can	 cross	 the	blood	brain	 barrier	 and	 influence	 brain	 health	

[220].	

	 Diabetes	has	been	associated	with	a	46	–	56%	increased	risk	of	developing	

AD	and	a	134	–	156%	increased	risk	of	developing	vascular	dementia	[221-223].	

Meta-analyses	have	shown	that	diabetes	results	in	mild	to	moderate	deficits	in	all	

cognitive	 abilities,	 with	 particular	 effect	 on	 episodic	 memory	 and	 cognitive	

flexibility	 [224,225].	 The	 biological	 mechanisms	 underpinning	 the	 association	

between	 diabetes,	 cognitive	 performance	 and	 dementia	 are	 likely	 to	 be	

multifactorial	 in	 nature,	 involving	 vascular	 changes,	 hyperglycaemic	 toxicity,	

insulin	 resistance	 and	 inflammation	 [226].	 In	 particular,	 diabetes	 is	 associated	

with	increased	risk	of	cerebrovascular	disease	[227],	accounting	for	the	higher	risk	

of	 vascular	 dementia,	 and	 hyperinsulinemia	 as	 a	 result	 of	 insulin	 resistance	
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limiting	 Ab degradation	 as	 it	 directly	 competes	 against	 Ab	 for	 degradation	 by	

insulin	degrading	enzyme	[228].		

	 Hypertension	 in	midlife	 is	associated	with	an	 increased	risk	of	developing	

VaD	but	not	with	AD	[229-231].	 Increased	blood	pressure	 is	also	correlated	with	

worse	 performance	 in	 global	 cognition	 and	 episodic	 memory	 and	 better	

performance	in	attention	[232].		Hypertension	causes	alterations	in	cerebral	artery	

structure	and	function	that	affect	cerebral	blood	flow,	resulting	in	an	increased	in	

cerebrovascular	 injury	 that	 accounts	 for	 the	 observed	 higher	 risk	 of	 VaD	 [233-

235].	 Additionally,	 increased	 blood	 pressure	 has	 been	 observed	 to	 impair	 Ab	

clearance	from	the	brain	and	enhance	amyloidogenic	APP	processing,	resulting	in	

increased	amyloid	burden	[236-238].	

	 Hyperlipidaemia	 in	midlife	 is	 associated	with	 an	 increased	 risk	 of	AD	but	

not	 with	 VaD,	 whereas	 late-life	 cholesterol	 levels	 is	 not	 [239].	 A	 non-linear	

relationship	 between	 cholesterol	 level	 and	 cognitive	 decline	 has	 been	 observed,	

with	 higher	 cholesterol	 levels	 in	 the	 middle-aged	 or	 the	 young-old	 and	 lower	

cholesterol	levels	in	the	old-old	associated	with	a	greater	rate	of	cognitive	decline	

[240].	 Furthermore,	 therapeutic	 intervention	 using	 statins	 to	 control	 cholesterol	

levels	 in	 late-life	 does	not	prevent	 cognitive	decline	or	dementia,	 though	 further	

analysis	 is	needed	to	assess	 the	effects	of	midlife	and	 long-term	statin	use	 [241].	

Cholesterol	may	 influence	AD	pathogenesis	by	promoting	APP	processing	via	 the	

amyloidogenic	 pathway	 by	 increasing	 the	 activity	 of	 b-	 and	 γ-secretases	 and	

repressing	activity	of	a-secretases,	resulting	in	excess	Ab	accumulation	[242,243].	

Additionally,	 cholesterol	 may	 influence	 other	 non-amyloid	 factors	 such	 as	 NFT	

formation,	inflammation	and	neuronal	cell	growth	and	survival	[242,243].		

	 Major	depression	in	late	life	is	associated	with	a	98%	and	104%	increased	

risk	of	developing	either	all-cause	dementia	or	AD,	whereas	a	milder	presentation	

increases	 risk	 by	 69%	 and	 58%	 respectively	 [244].	 Higher	 levels	 of	 depressive	

symptoms	are	also	associated	with	a	more	rapid	rate	of	decline	in	global	cognition	

[245].	 Several	 mechanisms	 have	 been	 proposed	 that	 underlie	 the	 relationship	

between	depression	and	cognitive	decline	and	dementia.	The	vascular	depression	

hypothesis	 is	 that	 cerebrovascular	 disease	 predisposes,	 precipitates	 or	

perpetuates	some	depressive	symptoms,	 implying	that	vascular	disease	mediates	

the	 effect	 of	 depression	 on	 dementia	 [246,247].	 Alternatively,	 individuals	 with	

late-life	 depression	 have	 a	 greater	 accumulation	 of	 Ab	 peptides	 than	 individuals	
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with	 no	 depressive	 symptoms	 suggesting	 depression	 may	 affect	 Ab	 metabolism	

[247,248].	Other	possible	mechanisms	by	which	depression	affects	AD	risk	include	

alterations	 in	 glucocorticoid	 steroid	 levels	 inducing	 hippocampal	 atrophy,	

inflammatory	 responses,	 and	 deficits	 of	 nerve	 growth	 factors	 or	 neurotrophins	

[247].	

Traumatic	 Brain	 Injury	 is	 associated	 with	 a	 40%	 increased	 risk	 of	

developing	AD	[249]	and	moderate	to	severe	TBI	is	associated	with	impairments	in	

general	 intelligence,	 verbal	 and	 visuospatial	 working	memory	 and	 verbal	 short-

term	 memory	 [250,251].	 	 In	 animal	 models	 TBI	 is	 followed	 by	 an	 increase	 in	

cerebral	 Ab	 levels,	 suggesting	 that	 TBI	 may	 influence	 AD	 pathogenesis	 via	 Ab	

metabolism	[252].	The	most	common	pathological	feature	of	TBI	is	diffuse	axonal	

injury,	 which	 causes	 cytoskeletal	 disruption	 that	 interrupts	 axonal	 transport	 of	

proteins,	 and	 promotes	 their	 accumulation	 in	 the	 form	 of	 swellings	 at	 their	

disconnected	terminals	known	as	axon	bulbs	[253].	APP,	b-	and	γ-secretases	and	

Ab  are	among	the	proteins	that	accumulate	in	axon	bulbs,	with	Ab	been	expelled	

into	the	extracellular	space	as	injured	axons	degenerate	and	lyse	[253].			

	

1.4.2	 Lifestyle	Factors		

	 Lifestyle	risk	factors	that	have	been	associated	with	dementia	and	cognitive	

performance	include	physical	activity,	smoking,	diet	and	alcohol	consumption.		

	 Physical	 activity	 is	 associated	 with	 a	 14%	 reduction	 in	 the	 risk	 of	

developing	 dementia	 [254]	 and	 a	 35%	 reduction	 in	 risk	 of	 developing	 cognitive	

decline	 [254,255],	 with	 both	 low-moderate	 and	 high	 levels	 of	 physical	 activity	

having	a	protective	effect.	Furthermore,	randomized	control	trials	have	shown	that	

physical	 activity	 interventions	 improve	 cognitive	 function	 in	 patients	 with	

dementia	 [256].	 Possible	 mechanisms	 underlying	 the	 positive	 effect	 of	 physical	

activity	 on	 cognitive	 function	 have	 been	 proposed	 [257].	 Regular	 exercise	

stimulates	 the	 release	 of	 neurotrophins	 promoting	 neurogenesis,	 neuronal	

survival	and	 improved	neurovasculature	and	protecting	against	 the	degenerative	

brain	changes	associated	with	aging	and	dementia	[257].	Physical	activity	also	has	

positive	 influences	 on	 cardiovascular	 risk	 factors	 such	 as	 diabetes,	 obesity	 and	

hypertension,	which	in	turn	diminish	the	risk	of	dementia	[257].	

	 Smoking	 is	 strongly	 associated	 with	 the	 development	 of	 dementia,	 with	

current	smokers	showing	a	30%,	40%	and	38%	increased	risk	of	developing	all-
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cause	dementia,	AD	or	VaD,	respectively	 [258].	Quitting	smoking	may	reduce	the	

adverse	effects	of	smoking	since	former	smokers	have	a	similar	risk	of	developing	

dementia	as	non-smokers	 [258-260].	Furthermore,	 in	comparison	 to	people	who	

have	 never	 smoked,	 current	 and	 former	 smokers	 have	 poorer	 cognitive	 abilities	

and	experience	greater	rates	of	cognitive	decline	[259,261].	The	increased	risk	of	

dementia	 and	 poorer	 cognitive	 function	 due	 to	 smoking	 may	 be	 a	 result	 of	

increased	 cardiovascular	 disease	 promoting	macro-	 and	micro-vascular	 cerebral	

damage	 [262,263].	 Additionally,	 smoking	 may	 promote	 oxidative	 stress,	 with	

contributes	to	the	development	of	tau	and	amyloid	pathology	[264].	

	 The	role	of	diet	in	cognitive	function	and	dementia	risk	has	gained	attention	

in	 recent	 years	 with	 a	 particular	 emphasis	 on	 the	 Mediterranean	 diet,	 which	 is	

characterized	 as	 consumption	 of	 relatively	 little	 read	 meat	 and	 high	 intake	 of	

whole	 grains,	 fruits,	 vegetables,	 fish,	 nuts	 and	 olive	 oil.	 Adherence	 to	 the	

Mediterranean	 diet	 reduces	 risk	 of	 developing	 dementia	 by	 31%	 [265].	

Mediterranean	diet	has	also	been	associated	with	less	cognitive	decline,	but	results	

between	 retrospective	 studies	 are	 inconsistent	 highlighting	 the	 need	 for	

intervention	 studies	 [266].	 Individual	 nutrients	 associated	 with	 reduced	 risk	 of	

dementia	 include	 unsaturated	 fatty	 acids,	 antioxidants,	 vitamin	 B	 and	 vitamin	D	

[265].	The	Mediterranean	diet	may	exert	its	effects	on	cognitive	health	by	reducing	

the	risk	of	cardiovascular	comorbidities	such	as	hypertension,	dyslipidaemia,	and	

coronary	artery	disease,	in	addition	to	obesity	and	diabetes	[267].	Additionally,	the	

Mediterranean	 diet	 may	 influence	 dementia	 pathogenesis	 via	 anti-inflammatory	

and	anti-oxidative	pathways	[267].	

	 Light	 to	 moderate	 alcohol	 consumption,	 as	 distinct	 from	 abstinence,	 has	

been	 associated	 with	 a	 25%-43%	 reduction	 in	 risk	 of	 developing	 all-cause	

dementia,	 AD	 and	 VaD	 [268,269].	 Associations	with	 cognitive	 decline	were	 non-

significant	 in	 early	 meta-analyses	 [268,269],	 although	 in	 a	 recent	 systematic	

review,	8	of	18	prospective	 studies	 and	9	of	12	 cross-sectional	 studies	 indicated	

that	moderate	alcohol	consumption	was	associated	with	cognitive	outcomes	[270].	

In	 contrast,	 excessive	 alcohol	 consumption	 is	 associated	with	 brain	 damage	 and	

increased	 risk	 of	 dementia	 [271,272].	 These	 effects	 may	 be	 mediated	 partly	 by	

decreased	 cardiovascular	 risk	 due	 to	 improved	 lipid	 profiles	 and	 lower	 platelet	

aggregation,	 reduction	 in	 oxidative	 stress	 associated	 with	 the	 antioxidant	

properties	of	 flavonoids	 found	 in	 red	wine	or	a	direct	effect	on	cognition	via	 the	
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release	of	acetylcholine	in	the	hippocampus	which	enhances	learning	and	memory	

[270].		

	 	

1.4.3	 Factors	Influencing	Cognitive	Reserve		

	 Cognitive	reserve	is	a	theory	posited	to	explain	the	observed	differences	in	

cognitive	abilities	in	individuals	with	equivalent	levels	of	AD	pathology,	suggesting	

that	some	individuals	can	compensate	for	the	pathological	changes	associated	with	

AD	 better	 than	 others	 [273].	 It	 is	 thought	 to	 reflect	 more	 efficient	 use	 of	 pre-

existing	brain	networks	(neural	reserve)	and	recruitment	of	areas	of	the	brain	not	

previously	 used	 to	 compensate	 for	 damage	 (neural	 compensation)	 [274].	 The	

cognitive	 reserve	 hypothesis	 explains	 why	 certain	 activities	 such	 as	 education,	

social	 engagement,	 and	 cognitively	 stimulating	 activities	 can	 increase	 an	

individual’s	reserve	and	reduce	the	risk	of	dementia	and	cognitive	decline	[275].	

	 One	 of	 the	 most	 consistent	 associations	 with	 dementia	 and	 cognitive	

function	 is	 education,	 with	 fewer	 years	 of	 formal	 education	 associated	 with	 an	

increased	 risk	of	dementia,	 lower	 cognitive	 function	and	higher	 rate	of	 cognitive	

decline	[270,276].	Education	may	affect	cognitive	 function	by	promoting	synapse	

formation	 and	 vascularisation	 in	 early	 life.	 In	 late-life,	 individuals	 with	 higher	

levels	of	education	undertake	more	mentally	stimulating	activities	that	may	lead	to	

further	 beneficial	 changes	 in	 brain	 structure,	 increasing	 cognitive	 reserve	 [277].	

Additionally,	 greater	 education	 is	 associated	 with	 a	 ‘healthier	 lifestyle’	 with	 a	

lower	 incidence	 of	 cardiovascular	 disease	 and	 greater	 engagement	 in	 healthy	

behaviours	that	promote	a	more	favourable	trajectory	of	cognitive	decline	[278].		

	 The	 definition	 and	 operationalization	 of	 cognitively	 stimulating	 activities	

differ	 between	 studies	 and	 has	 prevented	 a	 meta-analytic	 summary	 of	 the	

influence	cognitively	stimulating	activities	may	have	on	the	incidence	of	dementia.	

However,	 systematic	 reviews	 of	 the	 field	 suggest	 that	 increased	 participation	 in	

cognitively	 stimulating	 activities	 does	 reduce	 the	 risk	 of	 dementia	 [279].	

Furthermore,	 in	 randomized	 control	 trials	 in	 demented	 patients,	 cognitive	

stimulation	 improves	cognitive	outcomes	and	 in	cohort	 studies	of	non-demented	

participants	it	is	associated	with	improved	cognitive	function	[280,281].	Increased	

cognitive	activity	has	been	associated	with	reduced	b-amyloid	disposition	and	may	

compensate	 for	 the	 reduced	 cognitive	 function	 associated	 with	 lower	 education	

[282-284].			
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	 As	 with	 cognitively	 stimulating	 activities,	 the	 definition	 and	

operationalization	 of	 social	 engagement	 differs	 between	 studies.	 Lower	 levels	 of	

social	participation,	 frequency	of	 social	 contact	and	greater	 feelings	of	 loneliness	

are	associated	with	a	41%,	57%	and	58%	increased	risk	of	developing	dementia	

respectively	 [285].	 No	 significant	 associations	were	 observed	 for	 social	 network	

size	 or	 satisfaction	 with	 social	 network	 [285].	 Greater	 social	 activity	 is	 also	

associated	with	better	cognitive	function,	though	results	with	cognitive	decline	are	

inconsistent	[286,287].	As	with	engagement	in	intellectual	activities,	greater	social	

engagement	may	increase	cognitive	reserve,	with	a	socially	engaged	lifestyle	being	

associated	 with	 increased	 neurogenesis	 and	 synaptic	 density	 [288].	 Other	

potential	 mechanisms	 include:	 acting	 as	 a	 buffer	 against	 stress,	 which	 has	 been	

associated	with	an	increased	risk	of	AD	[288];	promoting	the	uptake	of	protective	

behaviours	such	as	exercise;	and	providing	multiple	sources	of	information	about	

available	healthcare	and	services	[289].	

	

1.4.4	 Environmental	and	lifestyle	risk	scores	

Numerous	 models	 for	 predicting	 dementia	 that	 incorporate	 known	 risk	

factors	have	been	developed	that	allow	for	the	identification	of	individuals	at	high	

risk	[290,291].	This	information	can	be	used	to	refine	inclusion	of	participants	in	

clinical	 trials,	 allow	 for	 targeted	 treatment	 and	 intervention	 strategies	 aimed	 at	

reducing	an	 individual’s	personalized	risk	of	dementia,	 and	 to	 inform	population	

health	policy.	Risk	models	can	be	broadly	divided	into:	demographic	only	models;	

neuropsychological	 models,	 incorporating	 subjective	 or	 objective	 measures	 of	

cognition;	health-based	models,	incorporating	self-report	or	objective	measures	of	

health	status,	with	or	without	genetic	and	biomarker	data;	and	multifactor	models	

that	include	multiple	types	of	risk	factors	[291].	The	discriminative	accuracy	of	the	

currently	developed	models	range	from	AUC	of	0.49-0.91	in	development	cohorts,	

with	 only	 a	minority	 of	 test	 results	 undergoing	 external	 validation,	which	 raises	

doubts	about	their	generalizability	[290,291].			

	

1.5	 Methodological	Considerations	

As	highlighted	above	 (see	 section	1.3),	 the	 results	 of	 studies	 investigating	

the	 associations	 between	 the	 LOAD	 risk	 loci	 and	 cognitive	 performance	 are	

characterized	by	a	lack	of	consensus.	This	is	in	contrast	to	the	weight	of	evidence	
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associated	with	environmental,	medical	and	lifestyle	risk	factors	(see	section	1.4)	

in	moderating	the	risk	of	cognitive	decline	and	dementia,	such	that	management	of	

health	 medical	 factors	 (diabetes,	 obesity,	 smoking	 and	 hypertension)	 in	

conjunction	 with	 regular	 physical	 activity,	 a	 healthy	 diet	 and	 lifelong	

learning/cognitive	training	can	reduce	the	risk	of	cognitive	decline	and	dementia.	

Different	 methodological	 features	 between	 studies	 may	 account	 for	 the	 lack	 of	

consistent	findings,	and	restrict	comparisons	between	studies,	between	LOAD	risk	

loci	and	cognitive	performance.	

	

1.5.1	 Cohort	Differences		

	 Differences	in	cohort	design	could	account	for	the	lack	of	replication	across	

studies.	 First,	 the	 age	 of	 participants	 in	 a	 study	 and	 the	 length	of	 follow-up	may	

affect	 observed	 associations.	 While	 cognitive	 decline	 begins	 relatively	 early	 in	

adulthood,	it	has	been	observed	to	accelerate	at	older	ages	[292,293].	Additionally,	

the	heritability	of	cognitive	performance	increases	linearly	with	age,	from	20%	in	

infancy	 to	 60%	 in	 adulthood	 [294].	 This	may	 be	 accounted	 for	 by	 the	 resource-

modulation	 hypothesis,	 which	 posits	 that	 genetic	 differences	 may	 exert	 large	

effects	with	increasing	age	due	to	the	loss	of	anatomical	and	neurochemical	brain	

resources	 associated	 with	 normal	 aging	 [295].	 Robust	 effect	 sizes	 may	 only	 be	

observed	when	investigating	cognitive	change	in	older	participants.	

Second,	 sex	 specific	 effects	 may	 affect	 associations	 with	 cognitive	

performance	 as	 a	 result	 of	 sex	 differences	 in	 hormones,	 immune	 regulation,	

inflammatory	 responses	and	comorbidities.	This	 is	 indicated	by	women	having	a	

greater	risk	of	developing	AD	[296],	a	 faster	rate	of	decline	after	diagnosis	of	AD	

[296],	and	by	differential	associations	between	LOAD	risk	loci	in	sex	cohorts	[123].	

Third,	population	stratification	can	limit	the	statistical	power	to	identify	an	

association.	 This	 can	 be	 due	 to	 different	 racial	 groups	 having	 different	 linkage	

disequilibrium	blocks,	 reducing	 the	 ability	 to	 detect	 associations	 between	 causal	

SNPs	 and	 GWAS	 tagging	 SNPs	 [297];	 gene-gene	 interactions	 may	 behave	

differentially	 [298];	 minor	 allele	 frequencies	 may	 differ,	 altering	 the	 detectable	

effect	sizes	for	those	SNPs	[299];	and	comorbidities	between	different	populations	

may	 differ,	 influencing	 gene-environment	 interactions	 [298,299].	 Additionally,	

most	studies	investigating	the	association	of	LAOD	risk	loci	with	cognitive	decline	

have	 been	 performed	 in	 people	with	 European	 ancestry,	 as	 highlighted	 in	 Table	
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1.2,	 limiting	their	generalizability	to	people	with	ancestry	from	other	parts	of	the	

world.		

Finally,	 phenotypic	 heterogeneity	 due	 to	 the	 use	 of	 different	

neuropsychological	 tests	 between	 studies	 may	 limit	 replication	 [122].	 	 While	

cognitive	test	results	are	highly	correlated,	some	tests	may	lack	the	sensitivity	to	

identify	associations	with	 small	 effect	 sizes	 [300].	MMSE	as	a	 cognitive	outcome,	

for	example,	has	strong	ceiling	effects,	 limiting	its	ability	to	differentiate	between	

medium	and	high	cognitive	performers	[301].	

	

1.5.2	 Sample	Size	and	Statistical	Power	

	 Another	explanation	for	the	lack	of	replication	across	studies	is	insufficient	

samples	 size	 and	 thus	 low	 statistical	 power.	 It	 has	 been	 recommended	 that	 to	

identify	 a	 SNP	 that	 accounts	 for	1%	of	 the	 variance	 in	 an	 cognitive	performance	

with	80%	power,	a	sample	size	of	between	800-1000	is	required	[302].	However,	

recent	 GWAS	 of	 cognitive	 performance	 have	 indicated	 that	 the	 effects	 sizes	 for	

individual	 SNPs	 associated	 with	 cognitive	 performance	 are	 likely	 to	 be	 smaller,	

suggesting	that	even	larger	sample	sizes	would	be	required	[122,133].	To	detect	an	

effect	 that	explains	0.2%	of	 the	variance	with	80%	power,	a	sample	greater	 than	

4000	is	required,	achieved	by	only	4	of	the	studies	reviewed	in	Table	1.2.	As	LOAD	

pathology	 consisting	 of	 Ab	 and	 NFT	 only	 accounts	 for	 ~30%	 of	 the	 variance	 in	

cognitive	 decline,	 the	 effect	 sizes	 for	 LOAD	 risk	 loci	 that	 influence	 cognitive	

performance	via	amyloid	and	tau	pathways	are	expected	to	be	small	[91].		

	

1.5.3	 Interactions		

	 As	 the	 biological	 pathways	 that	 underlie	 LOAD	 are	 characterised,	 it	 is	

becoming	clear	that	LOAD	is	a	multifactorial	disease	in	which	genetic	variants	are	

likely	to	have	both	additive	and	interactive	effects	[303].	Furthermore,	the	effects	

of	 genetic	 variants	may	be	 further	moderated	by	 environmental	 exposure	 [304].	

However,	 to	 date,	 much	 of	 the	 research	 investigating	 the	 association	 of	 LOAD	

genetic	risk	factors	with	cognitive	performance	has	focused	on	the	effects	of	single	

genes.	 Interactions	are	generally	only	considered	for	APOE.	The	small	effect	sizes	

for	other	genes	limit	statistical	power	to	detect	interactive	effects.	The	number	of	

interactions	between	covariates,	and	thus	hypothesis	tests,	increases	exponentially	
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with	 the	 inclusion	 of	 additional	 variables,	 requiring	 ever-larger	 sample	 sizes	

[303,304].	Nevertheless,	 evidence	of	 interactive	effects	between	AD	risk	variants	

and	 environmental	 variables	 have	 been	 observed,	 highlighting	 that	 further	

research	 needs	 to	 account	 for	 gene-gene	 and	 gene-environmental	 interactions	

[118,305-308].		

	

1.5.4	 Controlling	for	Dementia		

Inclusion	 of	 individuals	who	 develop	 dementia	 during	 a	 study	may	 affect	

results	 and	 bias	 results	 in	 favour	 of	 a	 positive	 association	 [122,309].	 Table	 1.2	

shows	 that	 of	 the	 20	 studies	 evaluating	 the	 associations	 of	 LOAD	 risk	 loci	 with	

cognitive	performance,	11	studies	retained	participants	that	developed	LOAD	over	

the	course	of	 the	study.	Selectively	removing	participants	who	develop	dementia	

may	not	 resolve	 this	 issue	as	 the	preclinical	phase	of	dementia	may	 last	decades	

before	 clinical	 diagnosis	 [93].	 Exclusion	 of	 participants	 with	 biomarker	 and	

neuroimaging	 evidence	 of	 preclinical	 AD	 in	 a	 cohort	 of	 cognitively	 normal	

individuals	 greatly	 attenuated	 age-related	 effects	 on	 cognitive	 declines	 across	

multiple	domains	 [93].	This	 suggests	 that	participants	who	are	 in	 the	preclinical	

stages	of	AD	may	drive	the	reports	of	positive	associations	of	LOAD	risk	loci	with	

cognitive	decline.		

	

1.5.5	 Temporal	Associations		

The	 GWAS	 studies	 that	 identified	 the	 LOAD	 risk	 loci	 were	 designed	 to	

investigate	the	progression	from	healthy	to	a	clinical	diagnosis	of	AD.	However,	as	

highlighted	 in	Figure	1.1	and	Figure	1.5,	 the	development	of	LOAD	spans	several	

cognitive	states	that	are	characterized	by	gradual	accumulation	of	LOAD	pathology	

beginning	 with	 amyloidosis,	 followed	 by	 tau	 accumulation	 and	 subsequent	

structural,	 functional	 and	 cognitive	 declines	 [3,54].	 Furthermore,	 cognitive	

domains	 associated	with	 fluid	 intelligence	 are	 generally	 the	 first	 to	 decline	with	

age,	 followed	 by	 measures	 of	 crystalized	 intelligence	 [310].	 This	 is	 further	

reflected	in	LOAD,	with	memory	impairment	being	the	first	cognitive	symptom	to	

be	reported	[311].	Where	and	when	a	risk	locus	is	involved	in	LOAD	pathogenesis	

may	influence	whether	 it	 is	associated	with	processes	that	predispose,	 initiate	or	

propagate	cognitive	decline.	This	effect	will	be	further	influenced	by	the	age	of	the	
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cohort	and	the	cognitive	tests	used,	with	loci	associated	with	non-memory	related	

domains	only	being	observed	in	older	aged	cohorts.		

	

1.5.6	 Reverse	Causality		

An	 important	 consideration	when	 investigating	 the	association	of	 lifestyle	

risk	 factors	 with	 dementia	 is	 reverse	 causation.	 As	 the	 neurodegenerative	 and	

cerebrovascular	changes	that	underlie	dementia	began	decades	before	the	onset	of	

clinical	 symptoms,	 lifestyle	 risk	 factors	 that	 are	 associated	 the	 development	 of	

dementia	 in	 late-life	 may	 themselves	 be	 a	 consequence	 of	 the	 same	 underlying	

pathological	 processes	 and	 not	 a	 casual	 factor	 of	 dementia.	 As	 such	 life-course	

approaches	that	study	the	long	term	effects	of	risk	factors	observed	in	younger-life	

on	 late-life	 disease	 processes	 are	 required	 to	 clearly	 establish	 a	 causative	 link	

between	an	exposure	and	cognitive	impairment	or	dementia	[312].	

	The	issue	of	reverse	causation	is	observed	in	studies	examining	obesity	and	

hypertension.	 Obesity	 in	 late-life	 has	 been	 observed	 to	 be	 associated	 with	 a	

reduced	 risk	 of	 dementia,	 however,	 this	 may	 be	 due	 to	 weight	 loss	 in	 the	

prodromal	phase	of	dementia	ascribed	to	diminished	self-care	as	manifested	by	a	

poor	 diet,	 leading	 to	 spurious	 inverse	 BMI-dementia	 association	 [313,314].	

Similarly,	 a	 progressive	 decline	 in	 blood	 pressure	 during	 the	 early	 stages	 of	

dementia	may	be	attributable	to	neurodegenerative	process	affecting	brain	regions	

that	 regulate	 arterial	 pressure,	 also	 resulting	 in	 spurious	 associations	 between	

high	blood	pressure	and	a	reduced	risk	of	dementia	 [230,315].	Studies	examining	

cognitive,	 social	 and	 physical	 activities	 working	 under	 the	 assumption	 that	

individuals	who	are	more	engaged	with	their	environment	are	less	likely	to	suffer	

the	adverse	effects	of	cognitive	impairment	or	delay	its	onset	may	also	be	prone	to	

the	 possibility	 of	 reverse	 causation.	 Cognitive	 decline	 as	 a	 result	 of	 dementia	

related	pathology	may	lead	to	individuals	having	a	reduced	interest	in	or	ability	to	

engage	 in	 cognitively	 stimulating	 activities	 [316],	 social	 interactions	 [317]	 and	

physicaly	demanding	activities	[318,319]	and	thus	potentially	overestimating	their	

cognitive	 benefits.	 Furthermore,	 leisure	 actives	 may	 be	 influenced	 by	 prior	

intelligence	 and	 educational	 attainment,	 which	 heavily	 influences	 the	 choice	 of	

leisure	 times	 activities	 that	 are	 pursued,	 particularly	 in	 regards	 to	 mentally	

stimulating	activities	[320].		
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Randomized	control	 trials	have	also	produced	conflicting	results,	with	 the	

Dutch	Prevention	 of	Dementia	 by	 Intensive	Vascular	 Care	 (PreDiva)	 trial	 finding	

that	 a	 multinomial	 intervention	 targeting	 cardiovascular	 risk	 factors	 did	 not	

reduce	 the	 incidence	 of	 all-cause	 dementia	 [321];	 the	 Multidomain	 Alzheimer	

Preventional	Trial	(MAPT)	did	not	affect	rate	of	cognitive	decline	over	3	years	after	

a	 multidomain	 intervention	 consisting	 of	 physical	 activity,	 cognitive	 training,	

nutritional	advice	and	with	either	omega	3	polyunsaturated	fatty	acid	supplements	

or	 placebos;	while	 the	 Finnish	 Geriatric	 Intervention	 Study	 to	 Prevent	 Cognitive	

Impairment	 and	Disability	 (FINGER)	 found	 that	multidomain	 interventional	 trial	

consisting	 of	 diet,	 exercise,	 cognitive	 training,	 and	 vascular	 risk	 monitoring	

resulted	in	improved	cognitive	function	over	2	years	[216].	As	such	there	is	a	lack	

of	 research	 from	 randomized	 controlled	 trials	 confirming	 the	 associations	

observed	in	observational	studies.	

	

1.6	 Aims	of	this	Study	

	 Alzheimer’s	 disease	 is	 a	 debilitating	 neurological	 disease	 that	 is	

characterized	 by	 a	 progressive	 deterioration	 in	 cognitive	 function,	 eventually	

resulting	in	a	complete	loss	of	 independent	living	that	necessitates	full-time	care,	

and	 is	 ultimately	 fatal.	 AD	 is	 increasingly	 understood	 as	 a	 multifactorial	

neurodegenerative	 disease,	 with	 a	 long-term,	 complex,	 and	 dynamic	 etiology.	 A	

variety	 of	 genetic,	 health,	 environmental	 and	 lifestyle	 risk	 and	protective	 factors	

can	 influence	whether	 an	 individual’s	 genetic	predisposition	 to	developing	AD	 is	

elevated,	 exacerbated,	 buffered,	 or	 protected.	 These	 relevant	 exposures	 and	

experiences	begin	unfolding	well	before	neuropathology	or	pronounced	cognitive	

decline	can	be	detected.	Thus,	an	 important	direction	of	research	 is	aimed	at	 the	

early	 detection	 of	 multi-modal	 risk	 and	 protective	 factors	 that	 may	 exert	 their	

influence	independently	and	interactively.		

The	primary	aim	of	this	thesis	is	to	investigate	the	association	of	AD	genetic,	

environmental	 and	 lifestyle	 risk	 factors	 with	 normal	 cognitive	 decline.	 I	 also	

investigate	 the	 effect	 of	 selected	 SNPs	 that	 had	 previously	 been	 associated	with	

cognition	function.	

This	 thesis	 uses	 data	 collected	 from	 the	 Personality	 and	 Total	 Health	

(PATH)	Through	Life	Project,	a	large	longitudinal	community	survey	of	health	and	

wellbeing	 in	adults	 [322].	Compared	with	previous	studies,	 the	PATH	cohort	has	
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several	attributes	that	allow	more	robust	statistical	inference	about	the	effect	the	

selected	 genetic	 factors	 on	 nonclinical	 cognitive	 decline.	 First,	 data	 is	 collected	

from	4	assessments	over	a	period	of	12	years	allowing	for	the	investigation	of	non-

linear	 cognitive	 change.	 Second,	 a	 comprehensive	 cognitive	 assessment	 in	 four	

different	 cognitive	 domains	was	 performed	 in	 each	 participant.	 Third,	 the	 PATH	

cohort	 was	 recruited	 from	 a	 narrow	 age	 band,	 reducing	 the	 impact	 of	 age	

differences	influencing	the	results	and	allowing	the	study	of	aging	effects	distinct	

from	cohort	effects.	 	

	

In	this	thesis	I	report	results	from	the	following	studies:	

	

1. Interactive	Effect	of	APOE	Genotype	and	Blood	Pressure	on	Cognitive	

Decline:	The	PATH	Through	Life	Study.		

Here,	 I	 examine	whether	APOE	 genotype	moderates	 the	 effect	 of	 late-life	

hypertension	on	cognitive	decline.	

2. Association	 of	 genetic	 risk	 factors	 with	 cognitive	 decline:	 the	 PATH	

through	life	project.	

Here,	 I	 investigate	 the	 association	 between	 selected	 genetic	 risk	 factors	

with	 cognitive	 decline	 over	 eight	 years	 in	 a	 longitudinally	 followed	

community-based	cohort	of	1689	older	adults.	First,	 I	 investigate	whether	

12	single	nucleotide	polymorphisms	(SNPs)	 from	the	 top	replicated	LOAD	

associated	 genes	 are	 associated	with	 cognitive	 decline,	 either	 individually	

or	collectively	as	a	genetic	risk	score	(GRS).	Second,	we	investigate	whether	

16	SNPs,	previously	associated	with	either	dementia	or	 cognition	are	also	

associated	with	cognitive	decline.	

3. Late	Onset	Alzheimer’s	disease	risk	variants	in	cognitive	decline:	The	

PATH	Though	Life	Study.	

Here,	 I	 extend	 the	 previous	 study	 by	 reporting	 the	 associations	 of	 the	 24	

most	 significant	 LOAD	 risk	 loci	 with	 longitudinal	 change	 in	 cognitive	

performance,	based	on	four	neuropsychological	outcomes,	over	12	years	in	

1,626	community-dwelling	older	adults.	I	investigate	whether	these	loci	are	

associated,	 either	 individually	 or	 collectively	 as	 genetic	 risk	 scores	 (GRS),	

with:	 average	 differences	 in	 cognitive	 performance;	 rate	 of	 cognitive	

decline;	and	acceleration	of	the	rate	of	decline	over	time.	
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4. Association	 of	AKAP6	 and	MIR2113	 with	 cognitive	 performance	 in	 a	

population-based	sample	of	older	adults.	

In	this	study,	I	extend	the	research	of	a	previous	GWAS	study	that	identified	

associations	 of	 SNPs	 in	 the	 AKAP6	and	MIR2113	 loci	 with	 cross-sectional	

general	 cognitive	 function.	 I	 investigate	whether	 SNPs	with	 the	 strongest	

association	at	each	 loci	are	associated	with	non-linear	cognitive	change	 in	

episodic	memory,	working	memory,	verbal	ability	and	processing	speed.	

5. Validating	 the	 role	 of	 the	Australian	National	University	Alzheimer’s	

Disease	Risk	Index	(ANU-ADRI)	and	a	genetic	risk	score	in	progression	

to	cognitive	 impairment	 in	a	population-based	cohort	of	older	adults	

followed	for	12	years.	

Here,	I	examine	the	association	between	the	Australian	National	University	

Alzheimer’s	 Disease	 Risk	 Index,	 an	 environmental	 and	 lifestyle	 risk	 index	

for	 AD	 and	 a	 LOAD	 genetic	 risk	 score	 with	 cognitive	 impairment,	 as	

assessed	using	a	clinical	criterion	for	mild	cognitive	impairment	(MCI)	and	

a	 psychometric	 test-based	 criterion	 for	 MCI	 (MCI-TB)	 using	 cox	

proportional	hazard	models	and	multi-state	models.	
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Chapter	2:	 The	Personality	and	Total	Health	(PATH)	Through	Life	Project	

The	 PATH	 project	 is	 a	 longitudinal	 study	 of	 health	 and	wellbeing	 in	 community	

dwelling	Australian	adults.	The	original	aims	of	the	study	of	were	[322]:		

1. to	delineate	the	course	of	depression,	anxiety,	substance	use	and	cognitive	

ability	with	increasing	age	across	the	adult	life	span;		

2. to	 identify	 environmental	 and	 genetic	 risk	 factors	 influencing	 individual	

differences	in	the	courses	of	these	characteristics;	and		

3. to	 investigate	 inter-relationships	over	 time	between	 the	 three	domains	of	

depression	and	anxiety,	substance	use,	and	cognitive	ability	and	dementia.	

	

To	examine	these	aims,	the	PATH	project	aims	to	follow	participants	for	20	years,	

spanning	the	ages	from	20-84	using	three	narrow	age	ranged	cohorts.	Participants	

in	 PATH	 were	 sampled	 randomly	 from	 the	 electoral	 rolls	 of	 Canberra	 and	 the	

neighbouring	town	of	Queanbeyan	into	one	of	 three	cohorts	based	on	birth	year:	

The	 ‘20+’	 cohort	who	were	born	between	1975-79	 (aged	20-24	at	baseline);	 the	

‘40+’	 cohort	 born	 between	 1956-60	 (aged	 40-44)	 and;	 the	 ‘60+’	 cohort	 born	

between	 1937-41	 (aged	 60-64).	 	 Participants	 have	 been	 assessed	 at	 4-year	

intervals,	with	each	cohort	interviewed	in	turn	over	a	1-year	period	starting	with	

the	20+.	To	date	four	waves	of	data	have	been	collected	for	all	three	cohorts,	for	a	

total	of	12	years	of	follow-up	(Figure	2.1).	The	work	conducted	in	this	thesis	used	

data	from	the	60+	cohort.	

	

2.1	 Environmental	and	lifestyle	factors		

A	broad	range	of	fixed	and	time-varying	variable	have	been	collected	in	the	

interviews	including	demographics	(eg.	Marital	Status;	Education;	Income),	Health	

(eg.	BMI;	Medical	Conditions;	Smoking),	Stressors	(eg	Lifetime	trauma;	Stress;	Life	

events),	Physical	Measures	(Blood	Pressure;	Eye	chart;	Reaction	Time);	Cognitive	

Measures	 (See	Below),	Mental	Health	 (eg.	Patient	health	questionnaire;	Goldberg	

Anxiety	 and	 Depression	 scale),	 Psychological	 Scales	 (eg.	 Big	 five	 personality	

measure;	 Mastery;	 Ruminative	 style)	 and	 General	 health	 self-report	 (Self-report	

IQCODE;	Instrumental	activities	of	daily	living)	[322].	
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		 The	environmental	and	lifestyle	risk	factors	used	in	thesis	were	drawn	from	

the	literature	(See	Chapter	1.4).	Descriptive	statistics	for	these	environmental	and	

lifestyle	variables	are	presented	in	Table	2.1	and	include:	Self-reported	education	

assessed	 as	 total	 number	 of	 years	 spent	 studying,	 age,	 gender,	 alcohol	

consumption	assessed	as	number	of	drinks	per	week,	smoking	status	for	current,	

past	or	never	smoker.	Self-reported	medical	history	of	diabetes,	epilepsy,	stroke	or	

transient	 ischemic	 attack	 (TIA),	 brain	 tumours,	 brain	 infections	 and	 traumatic	

brain	 injury	 with	 loss	 of	 conscious.	 Hypertension	 was	 determined	 with	 blood	

pressure	 measured	 twice	 during	 interviews	 while	 participants	 were	 seated.	

Participants	 were	 classified	 as	 hypertensive	 if	 they	 met	 any	 of	 the	 following	

criteria:	 i)	 mean	 systolic	 blood	 pressure	 ≥140	 mm	 Hg;	 ii)	 mean	 diastolic	 blood	

pressure	≥90	mm	Hg;	iii)	taking	hypertensive	medication	at	baseline.	Obesity	was	

assessed	 using	 the	 Body	 Mass	 Index	 (BMI)	 as	 weight/height2,	 in	

kilograms/meters2.	Depression	was	assessed	using	the	assessed	using	the	Patient	

Health	 Questionnaire	 (PHQ-9)	 [323]	 following	 the	 coding	 algorithm	 provided	 in	

the	PHQ-9	instruction	manual.	Social	engagement	was	assessed	using	self-reported	

marital	 status,	 the	 Lubben	 Social	 Network	 Scale	 [324],	 social	 support	 using	 the	

Schuster	Social	Support	Scale	 [325]	and	 level	of	social	activities.	Physical	activity	

was	assessed	using	self-reported	number	of	hours	performing	mild,	moderate	and	

vigorous	activities.	Cognitively	stimulating	activities	was	assessed	using	questions	

Figure	2.1:	Sample	size	of	the	PATH	cohorts	across	waves.	At	wave	1	participated	

refers	 to	participants	who	 joined	 the	 study	 from	 the	 random	sampling	 from	 the	

electoral	role.	Retained	refers	to	percentage	of	participants	retained	from	wave	1.	

The	60’s	Cohort	is	the	focus	of	the	work	conducted	in	this	thesis.	
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from	the	Holland	Occupational	Themes,	which	assess	an	individual’s	occupational	

preferences	 according	 to	 six	 domains	 of	 Realistic,	 Investigative,	 Artistic,	 Social,	

Enterprising,	and	Clerical		[326].		

		

Table	2.1:	Descriptive	statistics	of	environmental	and	lifestyle	variables	in	the	PATH	

60+	Cohort	

Variable	 Wave	1	 Wave	2	 Wave	3	 Wave	4	

n	 2551	 2222	 1973	 1645	

Age		 62.51	±	1.51	 66.6	±	1.5	 70.6	±	1.49	 75.08	±	1.49	

Male†	 1317	(51.63)	 1147	(51.62)	 1020	(51.7)	 854	(51.95)	

Education	 13.78	±	2.84	 13.89	±	2.74	 -	 -	

Ethnicity†		 	 	 	 	

				Caucasian		 2441	(95.8)	 2133	(96.08)	 1898	(96.3)	 1590	(96.77)	

				Asian	 62	(2.43)	 52	(2.34)	 44	(2.23)	 35	(2.13)	

				Other	 45	(1.77)	 35	(1.58)	 29	(1.47)	 18	(1.1)	

Diabetes†	 193	(7.58)	 218	(10.17)	 260	±	13.2	 250	±	15.39	

Alcoholic	drinks	

				per	week	

6.72	±	8.54	 6.81	±	8.27	 6.64	±	7.6	 6.5	±	7.58	

Smoking†	 	 	 	 	

				Current	 276	(10.84)	 176	(7.99)	 108	(5.48)	 75	(4.57)	

				Past	 951	(37.34)	 854	(38.75)	 794	(40.26)	 673	(40.99)	

				Never	 1320	(51.83)	 1174	(53.27)	 1070	(54.26)	 894	(54.45)	

Epilepsy†		 21	(0.82)	 14	(0.65)	 13	(0.66)	 11	(0.68)	

Stroke/TIA†	 116	(4.55)	 139	(6.25)	 162	(8.21)	 179	(10.88)	

Brain	Tumours†	 -	 34	(1.59)	 35	(1.77)	 -	

Brain	Infections†	 -	 55	(2.59)	 53	(2.68)	 47	(2.85)	

Traumatic	Brain	

				Injury†	

142	(5.58)	 148	(6.66%)	 132	(6.69%)	 113	(6.86%)	

Hypertension†	 1600	(63.62)	 1453	(66.44)	 1503	(77.75)	 1217	(77.32)	

				Diastolic	blood									

				pressure	

83.05	±	10.72	 81.23	±	10.26	 79.46	±	9.94	 74.69	±	10.12	

				Systolic	blood	

				pressure	

139.79	±	19.52	 137.93	±	19.03	 145.62	±	19.1	 140.99	±	18.46	

BMI†	 	 	 	 	

				Underweight	 20	(0.87)	 20	(0.92)	 21	(1.09)	 22	(1.37)	

				Normal	 888	(38.52)	 862	(39.78)	 745	(38.54)	 616	(38.43)	

				Overweight	 949	(41.17)	 876	(40.42)	 782	(40.46)	 640	(39.93)	

				Obese		 448	(19.44)	 409	(18.87)	 385	(19.92)	 325	(20.27)	

Physical	Activity	 	 	 	 	

				Vigorous	 294	(13.07)	 305	(14.29	 281	(14.38)	 182	(11.06)	

				Moderate	 744	(33.08)	 1067	(49.98)	 805	(41.2)	 698	(42.43)	

				None/mild	 1211	(53.85)	 763	(35.74)	 868	(44.42)	 765	(46.5)	

BPHQ	depression	

				score	

2.5	±	3.32	 2.48	±	3.22	 2.42	±	2.97	 2.91	±	3.31	

				Depression†		 89	(3.51)	 83	(3.8)	 71	(3.6)	 67	(4.11)	

Marital	Status	 	 	 	 	

				Never	 68	(2.67)	 59	(2.66)	 54	(2.74)	 47	(2.87)	

				Widowed	 180	(7.06)	 198	(8.92)	 223	(11.31)	 268	(16.35)	

				Divorced	 244	(9.58)	 271	(12.21)	 241	(12.22)	 177	(10.8)	

				Separated	 68	(2.67)	 50	(2.25)	 32	(1.62)	 27	(1.65)	

				De	facto	 77	(3.02)	 -	 -	 -	

				Remarried	 -	 255	(11.49)	 232	(11.76)	 186	(11.35)	

				Married	 1911	(75)	 1387	(62.48)	 1190	(60.34)	 934	(56.99)	

Social	network	 -	 -	 18.26	±	5.28	 18.38	±	5.06	

Social	Support	 	 	 	 	

				Friends	 -	 3.11	±	1.93	 3.2	±	1.85	 2.73	±	1.81	

				Partner	 -	 8.71	±	4.92	 10.05	±	4.79	 8.45	±	4.54	
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				Family	 -	 2.49	±	2.35	 2.78	±	2.22	 2.38	±	2.2	

RIASEC	Scales		 	 	 	 	

				Realistic		 3.95	±	1.67	 3.79	±	1.65	 -	 -	

				Investigative	 2.37	±	1.69	 2.27	±	1.65	 -	 -	

				Artistic	 2.67	±	1.71	 2.47	±	1.63	 -	 -	

				Social	 5.3	±	1.89	 5.04	±	1.95	 -	 -	

				Enterprising	 3.27	±	2.18	 2.78	±	2.04	 -	 -	

				Clerical	 4.32	±	2.43	 3.95	±	2.39	 -	 -	
†Categorical	variables:	n	(%);	continuous	variables	mean	±	SD	

	

2.3	 Neuropsychiatric	tests		

PATH	participants	undergo	extensive	neuropsychiatric	testing	at	each	wave	

assessing	a	broad	 range	of	 cognitive	domains.	Across	all	 four	waves	participants	

have	 been	 assessed	 on	 the	 following	measures:	 Global	 cognitive	 ability	 assessed	

using	 the	 mini-mental	 state	 examination	 (MMSE),	 which	 consists	 of	 a	 series	 of	

questions	and	 tests	assessing	memory,	attention	and	 language;	Episodic	memory	

using	the	Immediate	and	Delayed	recall	on	California	Verbal	Learning	Test,	which	

involves	recall	a	list	of	16	nouns	[327];	working	memory,	assessed	using	the	Digit	

Span	 Backward	 from	 the	 Wechsler	 Memory	 Scale,	 which	 presents	 participants	

with	series	of	digits	increasing	in	length	at	the	rate	of	one	digit	per	second	and	asks	

them	 to	 repeat	 the	 Digits	 Backwards	 [328];	 and	 vocabulary,	 assessed	 with	 the	

Spot-the-Word	 Test,	 which	 asks	 participants	 to	 choose	 the	 real	 words	 from	 60	

pairs	of	words	and	nonsense	words	[329].	Fine	motor	control	was	assessed	using	

the	Purdue	Pegboard	which	consists	of	placing	pins	into	a	row	of	25	holes	moving	

top	 to	 bottom	 and	 is	 repeated	 with	 the	 participants	 using	 their	 dominant,	 non-

dominant	and	both	hands	 [330].	Simple	and	choice	reaction	 time	(SRT	and	CRT)	

tasks	were	administrated	using	a	hand	held	box	with	two	depressible	buttons,	two	

red	stimulus	 lights	and	one	green	 ‘get	ready’	 light.	SRT	was	measured	using	 four	

blocks	of	20	trials,	in	which	the	participant	was	instructed	to	press	the	right	hand	

button	 (regardless	 of	 dominance)	 in	 response	 to	 the	 activation	 of	 one	 of	 the	

stimulus	 lights.	 CRT	 was	 measured	 using	 two	 blocks	 of	 20	 trials,	 in	 which	

participants	were	instructed	to	press	the	button	corresponding	to	the	left	or	right	

stimulus	light.	Mean	reaction	times	were	calculated	as	described	previously	[331].	

The	above	cognitive	measures,	except	the	Purdue	pegboard,	were	used	in	the	work	

conducted	 in	 this	 thesis.	 Observed	 and	 fitted	 cognitive	 trajectories	 for	 these	

measures	 are	displayed	 in	Figure	2.2	 and	 the	mean	 cognitive	 test	 scores	 at	 each	

wave	for	the	whole	60+	Cohort	and	wave	4	completers	only	are	displayed	in	Table	

2.2.	
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Figure	 2.2:	Spaghetti	plots	displaying	cognitive	trajectories	 for	50	randomly	select	

participants	 in	 the	 60’s	 Cohort	 and	 fitted	 trajectories	 extracted	 from	 linear	mixed	

effects	models	for	the	entire	60’s	cohort	(bold	trajectory).	
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Table	 2.2:	 Cognitive	 test	 scores	at	 each	wave	 for	 the	whole	PATH	60’s	 cohort	and	

Wave	4	completers	only	(mean	±	SD)	

Cognitive	Variable		 Wave	1	 Wave	2	 Wave	3	 Wave	4	

Whole	Cohort	
	 	 	 	

				CVLT	Immediate		 7.1	±	2.29	 6.93	±	2.21	 6.62	±	2.25	 5.32	±	1.92	

				CVLT	Delayed		 6.14	±	2.5	 6.09	±	2.39	 5.88	±	2.32	 7.47	±	3.23	

				Digits	Backwards	 4.88	±	2.25	 5.1	±	2.21	 5.03	±	2.2	 5.22	±	2.25	

				Spot-the-Word	 51.82	±	5.84	 52.96	±	5.21	 53.24	±	5.04	 53.62	±	5.02	

				Symbol	digits		

				modalities	test	
49.65	±	9.8	 49.33	±	9.39	 47.61	±	9.37	 45.83	±	9.76	

				Simple	Reaction	Time		 251.7	±	62.57	 276.55	±	77.07	 279.41	±	65.73	 277.42	±	70.67	

				Choice	Reaction	Time		 317.87	±	55.42	 326.51	±	54.82	 340.29	±	58.39	 343.48	±	64.45	

				MMSE	 29.1	±	1.4	 29.17	±	1.26	 29.09	±	1.33	 28.78	±	1.75	

Wave	4	Completers		

				CVLT	Immediate		 7.33	±	2.19	 7.05	±	2.18	 6.71	±	2.22	 5.32	±	1.92	

				CVLT	Delayed		 6.35	±	2.43	 6.21	±	2.35	 5.98	±	2.28	 7.47	±	3.23	

				Digits	Backwards	 5.16	±	2.23	 5.29	±	2.2	 5.13	±	2.21	 5.22	±	2.25	

				Spot-the-Word	 52.63	±	5.34	 53.38	±	5.04	 53.51	±	4.87	 53.62	±	5.02	

				Symbol	digits		

				modalities	test	
51.19	±	8.9	 50.32	±	9.03	 48.32	±	9.05	 45.83	±	9.76	

				Simple	Reaction	Time		 247.37	±	54.5	 272.69	±	72.38	 276.63	±	64.22	 277.44	±	70.69	

				Choice	Reaction	Time		 314.16	±	45.13	 323.38	±	50.99	 337.44	±	56.14	 343.5	±	64.47	

				MMSE	 29.31	±	1.14	 29.3	±	1.08	 29.17	±	1.2	 28.78	±	1.75	

	

In	addition	to	the	above	cognitive	measures	that	have	been	assessed	across	

all	4	waves,	additional	 cognitive	 tests	 that	have	been	assessed	at	wave	4	 include	

the	 tests	 assessing	 complex	 attention	 (the	 Trail	 Making	 Test	 part	 A	 [332]),	

executive	function	(Trail	Making	Test	part	B,	The	Stroop	Color	and	Word	Test,	and	

the	Zoomap	Test	 [332])	visual	memory	(the	Benton	Visual	Retention	Test	 [332])	

and	language	(the	Controlled	Oral	Word	Association	Test	and	the	Boston	Naming	

Test	 [332]).	 However,	 as	 these	 cognitive	 tests	 were	 not	 conducted	 across	 all	 4	

waves,	these	cognitive	measures	cannot	be	used	to	assess	cognitive	change	and	as	

such	were	not	used	in	the	work	conducted	in	this	thesis.		

	

2.3	 Genetic	factors		

A	 number	 of	 genetic	 markers	 have	 been	 genotyped	 in	 the	 60+	 cohort	

including	APOE	[333],	 HT1A	 Serotonin	 Receptor	 [334,335]	 and	 simple	 sequence	

variants	 [336,337].	 As	 part	 of	 the	 work	 conducted	 in	 this	 thesis,	 80	 SNPs	 were	

selected	 for	 genotyping	 based	 on	 their	 previously	 observed	 associations	 with	

dementia,	 cognition,	 neuroanatomical	 differences	 blood	 pressure	 (Table	 2.2).	

Genomic	 DNA	 was	 extracted	 from	 cheek	 swabs	 (n	 =	 4,597)	 using	 Qiagen	 DNA	

blood	kits	or	from	peripheral	blood	leukocytes	(n	=	64)	using	QIAamp	DNA	96		
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Table	2.3:	SNPs	that	were	genotyped	as	part	of	this	thesis.	

Gene	 SNP	 Chromsome	 Alleles†	 MAF‡	 Association	

ABCA7	 rs3764650	 19	 T/G	 0.11	 Alzheimer’s	disease	[109]	

ADRB1	 rs1801253	 10	 C/G	 0.31	 Blood	Pressure	[338,339]	

AGT	 rs2004776	 1	 C/T	 0.26	 Blood	Pressure	[338,339]	

ARHGAP42	 rs633185	 11	 C/G	 0.3	 Blood	Pressure	[340]	

ASTN2	 rs7852872	 9	 C/G	 0.39	 Neuroanatomy	[340]	

ATP2B1	 rs2681472	 12	 A/G	 0.12	 Blood	Pressure	[341]	

BAG6	 rs805303	 6	 G/A	 0.31	 Blood	Pressure	[340]	

BDNF	 rs6265	 11	 C/T	 0.2	 Cognition	[342,343]	

BIN1	 rs744373	 2	 A/G	 0.31	 Alzheimer’s	disease	[110,111]	

CD2AP	 rs9296559	 6	 T/C	 0.27	 Alzheimer’s	disease	[109,110]	

CD33	 rs34813869	 19	 A/G	 0.29	 Alzheimer’s	disease	[109,110]	

CETP	 rs5882	 16	 A/G	 0.36	 Cognition	[344]	

CHRNA4	 rs1044396	 20	 G/A	 0.42	 Neuroanatomy	[345]	

CLU	 rs11136000	 8	 C/T	 0.35	 Alzheimer’s	disease	[110,112]	

COMT	 rs4680	 22	 G/A	 0.48	 Cognition	[346,347]	

CR1	 rs3818361	 1	 G/A	 0.26	 Alzheimer’s	disease	[110,112]	

CSK	 rs1378942	 15	 A/C	 0.32	 Blood	Pressure	[340]	

CTNNBL1	 rs6125962	 20	 T/C	 0.6	 Cognition	[348]	

CYP19A1	 rs700518	 15	 C/T	 0.42	 Neuroanatomy	

DPP4	 rs6741949	 2	 G/C	 0.43	 Neuroanatomy	[340]	

DRD2	 rs6277	 11	 A/G	 0.47	 Neuroanatomy	[345]	

EPHA1-AS1	 rs11767557	 7	 T/C	 0.2	 Alzheimer’s	disease	[109,110]	

F5	 rs6703865	 1	 G/A	 0.4	 Neuroanatomy	[349]	

FGF5	 rs1458038	 4	 C/T	 0.27	 Blood	Pressure	[340]	

FRMD4A	 rs17314229	 10	 C/T	 0.09	 Alzheimer’s	disease	[350]	

FRMD4A	 rs2446581	 	 	 	 Alzheimer’s	disease	[350]	

FRMD4A	 rs7081208	 10	 G/A	 0.29	 Alzheimer’s	disease	[350]	

FTO	 rs3751812	 16	 G/T	 0.46	 Neuroanatomy	[351]	

GCFC2	 rs2298948	 2	 T/C	 0.33	 Neuroanatomy	[349]	

GNAS-EDN3	 rs6015450	 20	 A/G	 0.07	 Blood	Pressure	[340]	

GRIN2B	 rs10845840	 12	 C/T	 0.46	 Neuroanatomy	[352]	

HFE	 rs1799945	 6	 C/G	 0.18	 Blood	Pressure	[340]	

Intergenic	 rs7294919	 12	 T/C	 0.1	 Neuroanatomy	[340]	

Intergenic	 rs11139399	 9	 T/C	 0.41	 Neuroanatomy	[349]	

Intergenic	 rs2942354	 1	 C/A	 0.44	 Neuroanatomy	[349]	

Intergenic	 rs12007229	 X	 C/A	 0.12	 Dementia	[353]	

LGALS3	 rs4644	 14	 C/A	 0.49	 Cognition	[354]	

LHFP	 rs9315702	 13	 C/A	 0.43	 Neuroanatomy	[349]	

MECP2	 rs2239464	 X	 G/A	 0.22	 Neuroanatomy	[355]	

MMP12	 rs12808148	 11	 T/C	 0.2	 Dementia	[356]	

MS4A4A	 rs4938933	 11	 T/C	 0.5	 Alzheimer’s	disease	[110]	

MS4A4E	 rs670139	 11	 G/T	 0.34	 Alzheimer’s	disease	[109]	

MS4A6A	 rs610932	 11	 T/G	 0.45	 Alzheimer’s	disease	[109]	

MSRB3	 rs17178006	 12	 T/G	 0.09	 Neuroanatomy	[340]	

MTHFD1L	 rs11754661	 6	 G/A	 0.07	 Alzheimer’s	disease	[110,357]	

MTHFR	 rs17367504	 1	 A/G	 0.17	 Blood	Pressure	[340]	

NOS3	 rs3918226	 7	 C/T	 0.04	 Blood	Pressure	[358]	

NPR3	 rs1173771	 5	 G/A	 0.49	 Blood	Pressure	[340]	

NTSR1	 rs4334545	 20	 C/T	 0.29	 Neuroanatomy	[359]	

OPRD1	 rs678849	 1	 T/C	 0.47	 Neuroanatomy	[360]	

PAICS	 rs11549976	 4	 A/C	 0.08	 Dementia	[361]	

PARP1	 rs1136410	 1	 A/G	 0.15	 Neuroanatomy	[362]	

PDE7A	 rs10808746	 8	 G/A	 0.48	 Cognition	[116]	

PICALM	 rs3851179	 11	 C/T	 0.41	 Alzheimer’s	disease	[108,110]	

SELP	 rs3917836	 1	 T/C	 0.05	 Neuroanatomy	[349]	

SNTG1	 rs16914781	 8	 A/G	 0.4	 Dementia	[361]	

SORL1	 rs668387	 11	 C/T	 0.48	 Alzheimer’s	disease	[363]	

SPON1	 rs2618516	 11	 C/T	 0.36	 Neuroanatomy	[364]	

SPON1	 rs11023139	 11	 G/A	 0.06	 Cognition	[365]	
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TNF	 rs1800629	 6	 G/A	 0.17	 Neuroanatomy	[366]	

TRIM65	 rs3744028	 17	 T/C	 0.2	 Neuroanatomy	[367]	

WDR41	 rs163030	 5	 A/C	 0.47	 Neuroanatomy	[368]	

WIF1	 rs6581612	 12	 A/C	 0.25	 Neuroanatomy	[340]	

ZNF224	 rs3746319	 19	 G/A	 0.19	 Dementia	[369]	

HLA-DRB5		 rs9271100	 6	 C/T	 0.31	 Alzheimer’s	disease	[113]	

PTK2B	 rs28834970	 8	 T/C	 0.32	 Alzheimer’s	disease	[113]	

SORL1	 rs11218343	 11	 T/C	 0.03	 Alzheimer’s	disease	[113]	

SLC24A4-RIN3	 rs10498633	 14	 G/T	 0.19	 Alzheimer’s	disease	[113]	

DSG2	 rs8093731	 18	 C/T	 0.01	 Alzheimer’s	disease	[113]	

INPP5D	 rs35349669	 2	 C/T	 0.44	 Alzheimer’s	disease	[113]	

MEF2C	 rs304132	 5	 G/A	 0.46	 Alzheimer’s	disease	[113]	

NME8	 rs2718058	 7	 A/G	 0.36	 Alzheimer’s	disease	[113]	

ZCWPW1	 rs1476679	 7	 T/C	 0.32	 Alzheimer’s	disease	[113]	

CELF1	 rs7933019	 11	 G/C	 0.34	 Alzheimer’s	disease	[113]	

FERMT2	 rs17125944	 14	 T/C	 0.08	 Alzheimer’s	disease	[113]	

CASS4	 rs7274581	 20	 T/C	 0.11	 Alzheimer’s	disease	[113]	

MIR2113	 rs10457441	 6	 C/T	 0.46	 Cognition	[122]	

AKAP6	 rs17522122	 14	 G/T	 0.48	 Cognition	[122]	

TOMM40	 rs10119	 19	 C/T	 0.29	 Cognition	[122]	

	

DNA	 blood	 kits.	 Pre-amplification	 of	 the	 targeted	 loci	 was	 performed	 using	 the	

TaqMan	PreAmp	Master	Mix	Kit	(Life	Technologies).	Each	reaction	included	2.5μl	

TaqMan	PreAmp	Master	Mix	 (2x),	 1.25μl	Pre-amplification	Assay	Pool,	 0.5μl	H20	

and	1.2μl	genomic	DNA.	These	reactions	were	incubated	in	a	Biorad	thermocycler	

for	10	min	at	95°C,	followed	by	12	cycles	of	95°C	for	15	sec	and	60°C	for	4	min,	and	

then	 incubated	 at	 99.9°C	 for	 10	minutes.	 The	 PreAmplified	 products	 were	 then	

held	at	4°C	until	 they	were	diluted	1:20	 in	1x	TE	buffer	and	then	stored	at	 -20°C	

until	 use.	 For	 Format	 64	OpenArray	 Plates,	 2.5μl	 diluted	 pre-amplified	 products	

was	mixed	with	2.5μl	TaqMan	OpenArray	Master	Mix.	The	resulting	samples	were	

dispensed	 using	 the	 OpenArray®	 AccuFillTM	 System	 onto	 OpenArray	 plates	 with	

each	plate	 containing	48	 samples	 and	64	SNP	assays	per	 sample.	 For	Format	32	

OpenArray	Plates,	2μl	diluted	pre-amplified	products	was	mixed	with	2μl	TaqMan	

OpenArray	 Master	 Mix.	 The	 resulting	 samples	 were	 dispensed	 using	 the	

OpenArray®	AccuFillTM	System	onto	OpenArray	plates	with	each	plate	containing	

96	 samples	 and	 16	 SNP	 assays	 per	 sample.	 The	 QuantStudioTM	 12K	 Flex	

instrument	 (Applied	 Biosystems,	 Carlsbad,	 California)	 was	 used	 to	 perform	 the	

real	 time	 PCR	 reactions	 on	 the	 loaded	 OpenArray	 plates.	 The	 fluorescence	

emission	 results	 were	 read	 using	 the	 OpenArray®	 SNP	 Genotyping	 Analysis	

software	 v1	 (Applied	 Biosystems)	 and	 the	 genotyping	 analysis	 was	 performed	

using	TaqMan®	Genotyper	v1.3,	using	the	autocalling	 feature.	Participant-specific	

quality	 controls	 included	 filters	 for	 genotype	 success	 rate	 (>	 90%),	 genotype-

derived	 gender	 concordant	 with	 reported	 gender	 and	 sample	 provenance	 error	
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assessed	 via	 pairwise	 comparisons	 of	 genotype	 calls	 between	 all	 samples	 to	

identify	 samples	with	 >	 90%	 similarity.	 Samples	 that	were	 flagged	 in	 the	 initial	

quality	 control	 checks	 were	 repeated,	 and	 those	 that	 still	 failed	 quality	 control	

were	excluded.	SNP-specific	filters	included	genotype	call	rate	(>	90%)	and	Hardy-

Weinberg	 equilibrium	 (p	 >	 0.001)	 assessed	 using	 an	 exact	 test.	 	 Descriptive	

statistics	for	baseline	cognitive	ability	for	the	SNPs	that	were	used	in	this	thesis	to	

investigate	 the	 association	 of	 genetic	 variants	 with	 cognitive	 performance	 are	

presented	in	Table	2.4		

	

2.5	 Mild	Cognitive	Impairment	and	Dementia		

At	each	wave	participants	have	been	screened	for	MCI	and	dementia	using	

the	 following	 protocol.	 At	 waves	 1-3,	 the	 same	 predetermined	 cut-off	 from	 a	

battery	of	cognitive	tests	were	used	for	inclusion	of	participants	in	a	sub-study	on	

mild	 cognitive	 disorders	 and	 dementia.	 Participants	 from	 the	 full	 cohort	 were	

selected	for	clinical	assessment	if	they	had	any	of	the	following:	(i)	a	Mini	Mental	

State	Examination	(MMSE)	[370]	score	<	25;	(ii)	a	score	below	the	fifth	percentile	

score	 on	 immediate	 or	 delayed	 recall	 of	 the	 first	 list	 of	 the	 California	 Verbal	

Learning	Test	 [327];	or	 (iii)	a	score	below	the	 fifth	percentile	on	 two	or	more	of	

either	 the	Symbol-Digit	Modalities	Test	 [371];	Purdue	Pegboard	with	both	hands	

[372];	or	Simple	Reaction	Time	 [331].	 	At	wave	4,	participants	were	selected	 for	

review	if	(1)	MMSE	score	<25	or	<2.5	percentile	on	one	or	more	cognitive	test;	or	

(2)	previous	diagnosis	at	waves	1-3;	or	(3)	subjective	decline	>25	on	Memory	and	

Cognition	Questionnaire	(MACQ)	or	(4)	Decline	in	MMSE	score	>	3	points.	

At	 waves	 1-3,	 the	 clinical	 assessment	 of	 MCI	 and	 dementia	 involved	 a	

structured	 clinical	 assessment	 for	 Dementia	 by	 one	 of	 two	 physicians	 [373].	

Clinicians	used	clinical	checklists,	data	 from	the	neuropsychological	assessments,	

neuropsychiatric	 history,	 and	medical	 history	 to	 formulate	 consensus	 diagnoses.	

Due	to	the	 large	number	of	participants	screened	for	review	at	wave	4,	case	files	

consisting	of	all	data	derived	from	the	health	survey	and	cognitive	testing	as	well	

as	 informant	 interview	 for	 each	 participant	 were	 automatically	 screened	 to	

identify	 participants	 meeting	 criteria	 for	 any	 one	 of	 the	 following	 diagnoses:	

Diagnostic	and	Statistical	Manual	of	Mental	Disorders,	Fifth	Edition	(DSM-5),	major	

neurocognitive	 disorder	 (NCD);	 DSM-IV	 dementia;	 DSM-5	 mild	 NCD;	 MCI;	 age-	

associated	 cognitive	 decline;	 age-associated	 memory	 impairment;	 DSM-IV
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Table	2.4:	Mean	and	standard	deviation	for	baseline	cognitive	tests	for	SNPs	associated	with	dementia	and	cognitive	ability.		

	 Genotype	 n	 MMSE	

Immediate	

Recall	

Delayed	

Recall	

Digits	

backwards	

Spot	the	

word	

Symbol	Digits	

Modalities	test	

Simple	Reaction	

Time	

Choice	Reaction	

Time	

APOE	 e2/e2	 19	 29.21	±	1.65	 7.26	±	2.08	 6.32	±	1.86	 5.11	±	2.66	 52.79	±	4.02	 48.79	±	6.77	 237.35	±	35.95	 317.3	±	49.04	

	 e2/e3	 274	 29.23	±	1.2	 7.03	±	2.3	 6.04	±	2.54	 5.04	±	2.39	 52.02	±	5.57	 50.06	±	9.81	 248.3	±	51.11	 317.14	±	47.02	

	 e2/e4	 60	 29.37	±	1.06	 7.1	±	2.32	 6.45	±	2.64	 4.82	±	2.22	 52.45	±	5.1	 51.8	±	7.26	 239.95	±	50.79	 315.41	±	37.54	

	 e3/e3	 1444	 29.14	±	1.43	 7.18	±	2.24	 6.22	±	2.46	 4.89	±	2.22	 51.84	±	5.92	 49.82	±	9.59	 250.98	±	59.12	 316.51	±	52.82	

	 e3/e4	 532	 29.17	±	1.28	 7.18	±	2.26	 6.21	±	2.53	 4.93	±	2.22	 52.13	±	5.63	 50.21	±	9.28	 250.66	±	58.89	 316.56	±	45.24	

	 e4/e4	 49	 29.08	±	1.16	 7.12	±	2.32	 6.16	±	2.62	 4.98	±	2.12	 53.75	±	3.91	 50.76	±	10.43	 244.93	±	38.32	 314.15	±	38.83	

ABCA7	 G/G	 24	 28.75	±	1.62	 6.21	±	1.18	 4.88	±	1.73	 5.33	±	2.33	 51.86	±	5.11	 50.87	±	8.21	 256.14	±	52.93	 329	±	49.04	

rs3764650	 G/T	 396	 29.09	±	1.4	 7.06	±	2.29	 5.93	±	2.59	 4.9	±	2.24	 51.85	±	5.68	 49.58	±	9.41	 252.99	±	56.04	 316.93	±	43.06	

	 T/T	 1940	 29.18	±	1.35	 7.19	±	2.25	 6.27	±	2.47	 4.91	±	2.23	 52.01	±	5.78	 50.08	±	9.52	 249.43	±	57.94	 316.26	±	51.19	

BIN1	 A/A	 1203	 29.13	±	1.38	 7.15	±	2.32	 6.22	±	2.54	 4.83	±	2.26	 51.95	±	5.63	 49.66	±	9.47	 250.35	±	56.99	 315.44	±	50.79	

rs744373	 A/G	 949	 29.17	±	1.36	 7.16	±	2.18	 6.18	±	2.47	 5.01	±	2.23	 51.98	±	5.92	 50.31	±	9.54	 250.2	±	60.28	 317.79	±	48.41	

	 G/G	 206	 29.3	±	1.22	 7.09	±	2.15	 6.15	±	2.24	 4.9	±	2.14	 52.17	±	5.76	 50.42	±	9.36	 248.5	±	47.3	 317.44	±	51.66	

BDNF	 C/C	 1529	 29.18	±	1.37	 7.16	±	2.26	 6.21	±	2.46	 4.96	±	2.24	 52.03	±	5.74	 49.91	±	9.44	 249.52	±	57.05	 316.3	±	50.13	

rs6265	 C/T	 705	 29.11	±	1.34	 7.2	±	2.21	 6.26	±	2.52	 4.77	±	2.18	 51.91	±	5.68	 50.17	±	9.54	 253.02	±	60.75	 318.39	±	50.53	

	 T/T	 74	 29.04	±	1.57	 6.41	±	2.33	 5.53	±	2.57	 4.78	±	2.37	 51.64	±	6.65	 49.6	±	9.5	 245.51	±	46.1	 313.78	±	42.65	

CD2AP	 C/C	 199	 29.18	±	1.24	 7.15	±	2.32	 6.17	±	2.57	 4.92	±	2.17	 51.88	±	5.84	 49.65	±	9.98	 251.34	±	57.67	 319.27	±	51.11	

rs9296559	 C/T	 939	 29.18	±	1.41	 7.21	±	2.27	 6.26	±	2.51	 4.93	±	2.25	 52.07	±	5.74	 50.33	±	9.15	 248.59	±	54.56	 314.72	±	46.09	

	 T/T	 1220	 29.15	±	1.33	 7.12	±	2.23	 6.17	±	2.46	 4.88	±	2.23	 51.92	±	5.76	 49.81	±	9.6	 250.82	±	58.42	 317.56	±	52.45	

CD33	 A/A	 1038	 29.15	±	1.31	 7.13	±	2.24	 6.14	±	2.46	 4.92	±	2.29	 51.97	±	5.67	 49.91	±	9.5	 251.14	±	59.91	 317.29	±	51.67	

rs34813869	 A/G	 1047	 29.13	±	1.47	 7.19	±	2.25	 6.22	±	2.51	 4.84	±	2.18	 51.87	±	5.84	 50.12	±	9.38	 248.82	±	53.88	 315.84	±	48.26	

	 G/G	 267	 29.32	±	1.07	 7.18	±	2.29	 6.39	±	2.51	 5.15	±	2.24	 52.45	±	5.73	 49.88	±	10.09	 250.8	±	61.16	 316.55	±	49.5	

CLU	 C/C	 849	 29.09	±	1.41	 7.2	±	2.35	 6.23	±	2.6	 4.83	±	2.21	 51.71	±	5.76	 50.24	±	9.51	 250.52	±	51.58	 316.4	±	44.44	

rs11136000	 C/T	 1123	 29.2	±	1.35	 7.12	±	2.17	 6.17	±	2.4	 4.98	±	2.27	 52.13	±	5.58	 49.87	±	9.57	 249.61	±	59.86	 315.02	±	48.69	

	 T/T	 376	 29.2	±	1.29	 7.15	±	2.28	 6.23	±	2.53	 4.87	±	2.2	 52.21	±	5.85	 49.9	±	9.35	 251.62	±	63.74	 321.15	±	63.22	

COMT	 A/A	 609	 29.14	±	1.36	 7.23	±	2.25	 6.26	±	2.47	 4.87	±	2.27	 51.78	±	5.98	 49.79	±	9.52	 249.72	±	56.23	 317.39	±	50.53	

rs4680	 A/G	 1161	 29.16	±	1.42	 7.19	±	2.24	 6.24	±	2.5	 4.94	±	2.22	 52.09	±	5.73	 50.08	±	9.47	 248.5	±	55.54	 314.75	±	48.39	

	 G/G	 589	 29.19	±	1.25	 7.03	±	2.27	 6.07	±	2.49	 4.9	±	2.24	 51.97	±	5.57	 50.08	±	9.51	 254	±	62.7	 319.14	±	52.15	

CR1	 A/A	 69	 29.39	±	0.86	 7.29	±	2.38	 6.22	±	2.45	 5.45	±	2.44	 53.21	±	4.84	 50.3	±	11.08	 253.45	±	59	 321.71	±	59.72	

rs3818361	 A/G	 697	 29.1	±	1.49	 7.14	±	2.3	 6.13	±	2.54	 4.81	±	2.22	 51.56	±	6.01	 49.65	±	9.6	 252.38	±	56.28	 317.94	±	48.23	

	 G/G	 1584	 29.18	±	1.32	 7.16	±	2.23	 6.23	±	2.47	 4.93	±	2.23	 52.14	±	5.67	 50.13	±	9.36	 249.05	±	58.18	 315.86	±	50.15	
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Table	2.4	(Continued)	
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Recall	
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backwards	 Spot	the	word	
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Time	

CTNNBL1	 C/C	 9	 29.56	±	0.53	 7.33	±	0.87	 6.11	±	1.9	 4.22	±	2.05	 52.89	±	5.13	 46.89	±	8.34	 262.51	±	59.35	 325.87	±	59.44	

rs6125962	 C/T	 259	 29.15	±	1.52	 7.07	±	2.17	 6.12	±	2.45	 4.88	±	2.32	 51.98	±	5.56	 49.63	±	9.73	 248.76	±	46.75	 312.58	±	40.9	

	 T/T	 2095	 29.16	±	1.34	 7.17	±	2.26	 6.21	±	2.5	 4.91	±	2.22	 51.98	±	5.79	 50.06	±	9.47	 250.27	±	58.79	 317	±	50.81	

LGALS3	 A/A	 417	 29.31	±	1.1	 7.18	±	2.33	 6.21	±	2.52	 5	±	2.26	 52.5	±	5.36	 50.43	±	8.72	 246.9	±	50.33	 314.51	±	48.73	

rs4644	 A/C	 1095	 29.2	±	1.33	 7.19	±	2.28	 6.22	±	2.54	 4.9	±	2.19	 51.9	±	5.88	 50.22	±	9.91	 251.94	±	61.83	 318.31	±	50.09	

	 C/C	 813	 29.02	±	1.51	 7.08	±	2.16	 6.14	±	2.4	 4.89	±	2.28	 51.87	±	5.75	 49.56	±	9.3	 249.15	±	55.3	 315.3	±	50.49	

FRMD4A	 A/A	 159	 29.16	±	1.26	 6.96	±	2.1	 6.02	±	2.24	 5.05	±	2.26	 52.17	±	5.36	 50.41	±	9.89	 252.05	±	59.18	 318.97	±	43	

rs7081208	 A/G	 884	 29.15	±	1.47	 7.18	±	2.3	 6.18	±	2.54	 4.88	±	2.29	 52.15	±	5.85	 49.89	±	9.69	 251.85	±	63.78	 316.54	±	53.73	

	 G/G	 1303	 29.16	±	1.3	 7.16	±	2.23	 6.24	±	2.47	 4.9	±	2.19	 51.83	±	5.76	 50.01	±	9.3	 249.06	±	52.92	 316.54	±	47.95	

FRMD4A	 C/C	 2052	 29.15	±	1.37	 7.14	±	2.28	 6.19	±	2.5	 4.94	±	2.24	 51.91	±	5.75	 50.12	±	9.58	 249.96	±	58.15	 316.24	±	50.13	

rs17314229	 C/T	 290	 29.21	±	1.36	 7.28	±	2.07	 6.27	±	2.44	 4.72	±	2.2	 52.49	±	5.87	 49.56	±	8.7	 250.97	±	52.28	 318.01	±	47.64	

	 T/T	 12	 29.75	±	0.45	 7.83	±	1.9	 6.92	±	1.93	 4.92	±	2.11	 53.17	±	4.06	 47	±	12.31	 281.72	±	84.24	 339.87	±	60.45	

rs12007229	 A/A	 91	 28.68	±	1.99	 6.37	±	2.02	 5.55	±	2.22	 4.62	±	2.27	 51.3	±	7.17	 48.19	±	9.69	 260.65	±	68.27	 320.07	±	57.5	

	 A/C	 132	 29.26	±	1.45	 7.89	±	2.3	 6.95	±	2.72	 4.72	±	2.36	 52.16	±	5.79	 51.05	±	10.01	 254.59	±	51.74	 317.6	±	39.62	

	 C/C	 2122	 29.18	±	1.31	 7.15	±	2.24	 6.19	±	2.47	 4.94	±	2.22	 52.02	±	5.66	 50.04	±	9.44	 249.42	±	57.53	 316.27	±	50.12	

EPHA1	 C/C	 91	 29.38	±	0.81	 7.32	±	1.97	 6.34	±	2.45	 4.91	±	2.24	 53.14	±	4.36	 51.26	±	10.33	 253.27	±	58.45	 324.73	±	56.41	

rs11767557	 C/T	 755	 29.17	±	1.28	 7.04	±	2.21	 6.13	±	2.44	 4.88	±	2.18	 51.95	±	5.68	 49.86	±	9.11	 252.99	±	61.38	 318.81	±	52.27	

	 T/T	 1513	 29.14	±	1.42	 7.2	±	2.28	 6.22	±	2.51	 4.92	±	2.26	 51.93	±	5.87	 49.99	±	9.62	 248.53	±	55.49	 314.97	±	48.17	

MMP12	 C/C	 50	 29.18	±	0.97	 7.3	±	2.4	 6.16	±	2.85	 5.38	±	2.3	 52	±	6.07	 49.48	±	8.01	 263.91	±	78.23	 318.95	±	43.78	

rs12808148	 C/T	 595	 29.16	±	1.39	 7.14	±	2.15	 6.16	±	2.38	 4.83	±	2.13	 51.84	±	5.8	 50.17	±	9.33	 249.32	±	52.16	 316.24	±	47.63	

	 T/T	 1713	 29.16	±	1.36	 7.16	±	2.28	 6.21	±	2.52	 4.92	±	2.26	 52.04	±	5.74	 49.96	±	9.57	 249.94	±	58.65	 316.51	±	50.8	

MS4A4A	 C/C	 393	 29.12	±	1.48	 7.18	±	2.21	 6.19	±	2.57	 4.91	±	2.33	 51.1	±	6.2	 48.95	±	9.62	 255.15	±	72.41	 322.56	±	62.82	

rs4938933	 C/T	 1140	 29.17	±	1.36	 7.18	±	2.33	 6.24	±	2.52	 4.95	±	2.22	 52.36	±	5.41	 50.18	±	9.46	 247.95	±	52.64	 314.89	±	45.27	

	 T/T	 826	 29.17	±	1.27	 7.14	±	2.15	 6.17	±	2.41	 4.84	±	2.21	 51.89	±	5.94	 50.31	±	9.34	 250.46	±	55.24	 315.97	±	48.69	

MS4A4E	 G/G	 826	 29.09	±	1.46	 7.17	±	2.31	 6.2	±	2.59	 4.96	±	2.31	 51.36	±	6.13	 49.34	±	9.93	 252.35	±	65.78	 317.73	±	54.95	

rs670139	 G/T	 1095	 29.21	±	1.31	 7.21	±	2.24	 6.26	±	2.43	 4.94	±	2.22	 52.48	±	5.49	 50.41	±	9.18	 248.9	±	50.89	 315.61	±	45.8	

	 T/T	 427	 29.15	±	1.31	 7.03	±	2.16	 6.07	±	2.44	 4.75	±	2.13	 51.83	±	5.61	 50.12	±	9.34	 249.65	±	57.02	 316.96	±	50.1	

MS4A6A	 G/G	 784	 29.16	±	1.28	 7.07	±	2.2	 6.1	±	2.43	 4.81	±	2.23	 51.97	±	5.68	 50.15	±	9.33	 249.52	±	53.93	 315.96	±	46.6	

rs610932	 G/T	 1138	 29.18	±	1.37	 7.2	±	2.28	 6.25	±	2.48	 4.97	±	2.2	 52.21	±	5.65	 50.13	±	9.51	 249.62	±	56.64	 315.97	±	50.93	

	 T/T	 432	 29.1	±	1.49	 7.2	±	2.27	 6.27	±	2.61	 4.92	±	2.33	 51.34	±	6.16	 49.36	±	9.75	 252.64	±	65.44	 319.24	±	52.79	
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MTHFD1L	 A/A	 11	 29.09	±	1.38	 7	±	2.41	 6	±	2.65	 5.18	±	2.44	 51.91	±	6.77	 54.73	±	15.13	 233.83	±	18.38	 290.61	±	15.49	

rs11754661	 A/G	 344	 29.29	±	1.07	 7.17	±	2.22	 6.26	±	2.52	 4.79	±	2.11	 52.07	±	5.52	 50.23	±	9.01	 249.67	±	54.28	 319.6	±	49.69	

	 G/G	 2006	 29.14	±	1.41	 7.16	±	2.25	 6.19	±	2.48	 4.92	±	2.25	 51.96	±	5.79	 49.93	±	9.53	 250.15	±	58.06	 316.14	±	49.98	

MTHFR	 A/A	 1636	 29.14	±	1.39	 7.14	±	2.3	 6.19	±	2.51	 4.88	±	2.21	 52.04	±	5.7	 49.86	±	9.46	 249.38	±	55.97	 316.13	±	50.05	

rs17367504	 A/G	 652	 29.21	±	1.25	 7.21	±	2.14	 6.24	±	2.47	 4.97	±	2.28	 51.93	±	5.88	 50.31	±	9.68	 252.52	±	61.94	 317.42	±	49.39	

	 G/G	 68	 29.06	±	1.61	 7.03	±	2.28	 6.04	±	2.39	 5.06	±	2.31	 50.87	±	5.69	 50.06	±	8.52	 249.64	±	53.64	 320.77	±	51.97	

CETP	 A/A	 1082	 29.18	±	1.34	 7.18	±	2.22	 6.23	±	2.49	 4.95	±	2.21	 51.97	±	5.78	 50.01	±	9.38	 251	±	59.22	 318.47	±	54.12	

rs5882	 A/G	 1042	 29.16	±	1.4	 7.17	±	2.27	 6.21	±	2.47	 4.91	±	2.25	 51.99	±	5.82	 50.19	±	9.53	 249.37	±	57.47	 314.22	±	44.77	

	 G/G	 240	 29.07	±	1.26	 6.97	±	2.3	 6.05	±	2.54	 4.72	±	2.28	 51.95	±	5.38	 49.17	±	9.8	 249.65	±	50.08	 317.83	±	50.57	

PAICS	 A/A	 2084	 29.16	±	1.35	 7.13	±	2.25	 6.17	±	2.49	 4.92	±	2.26	 51.99	±	5.77	 49.98	±	9.59	 250.66	±	58.52	 316.48	±	49.85	

rs11549976	 A/C	 273	 29.14	±	1.49	 7.37	±	2.22	 6.42	±	2.46	 4.8	±	2.07	 51.91	±	5.66	 50.19	±	8.77	 246.26	±	49.34	 317.17	±	50.42	

	 C/C	 2	 29.5	±	0.71	 8	±	0	 6.5	±	0.71	 3	±	1.41	 51	±	0	 51.5	±	0.71	 213.93	±	5.68	 286.78	±	8.1	

PDE7A	 A/A	 490	 29.15	±	1.28	 7.07	±	2.24	 6.15	±	2.43	 4.75	±	2.13	 51.71	±	5.92	 49.41	±	9.91	 251.26	±	55.32	 320.14	±	55.46	

rs10808746	 A/G	 1117	 29.13	±	1.44	 7.15	±	2.29	 6.22	±	2.5	 4.92	±	2.27	 52.09	±	5.66	 50.03	±	9.5	 250.83	±	61.43	 316.75	±	51.99	

	 G/G	 728	 29.21	±	1.31	 7.23	±	2.2	 6.21	±	2.53	 5.01	±	2.23	 52.04	±	5.78	 50.2	±	9.14	 248.36	±	52.48	 314.33	±	42.42	

PICALM	 C/C	 875	 29.21	±	1.36	 7.18	±	2.32	 6.17	±	2.54	 4.96	±	2.21	 52.22	±	5.68	 50.06	±	9.71	 245.97	±	51.14	 313.52	±	46.98	

rs3851179	 C/T	 1146	 29.12	±	1.37	 7.13	±	2.21	 6.23	±	2.45	 4.85	±	2.26	 51.72	±	5.88	 49.93	±	9.33	 252.62	±	61.45	 318.95	±	53.05	

	 T/T	 334	 29.14	±	1.33	 7.18	±	2.19	 6.23	±	2.49	 4.95	±	2.21	 52.25	±	5.49	 50.2	±	9.53	 252.77	±	59.67	 316.28	±	45.89	

SNTG1	 A/A	 753	 29.05	±	1.33	 7.01	±	2.18	 6	±	2.37	 4.87	±	2.21	 52.22	±	5.44	 49.83	±	9.44	 253.5	±	60.41	 318.55	±	50.9	

rs16914781	 A/G	 1148	 29.2	±	1.36	 7.26	±	2.25	 6.31	±	2.49	 4.9	±	2.23	 51.91	±	5.8	 50.13	±	9.64	 247.24	±	52.9	 314.58	±	46.11	

	 G/G	 457	 29.22	±	1.41	 7.16	±	2.35	 6.28	±	2.63	 4.99	±	2.3	 51.82	±	6.07	 50.01	±	9.21	 252.38	±	63.62	 318.6	±	56.86	

SPON1	 A/A	 5	 29.6	±	0.55	 7.8	±	2.59	 6.2	±	3.9	 5.4	±	1.52	 50.8	±	3.11	 52	±	12.61	 251.69	±	37.38	 311.54	±	41.64	

rs11023139	 A/G	 244	 29.13	±	1.42	 7.37	±	2.28	 6.45	±	2.46	 4.75	±	2.19	 51.72	±	6.71	 50.02	±	9.55	 250.42	±	51.85	 315.83	±	46.96	

	 G/G	 2114	 29.16	±	1.36	 7.13	±	2.24	 6.17	±	2.49	 4.92	±	2.24	 52.01	±	5.64	 50	±	9.48	 250.12	±	58.25	 316.64	±	50.25	

ZNF224	 A/A	 83	 29.07	±	1.49	 6.84	±	1.99	 5.67	±	2.52	 4.83	±	2.28	 52.24	±	6.07	 50.63	±	7	 256.36	±	52.51	 322.66	±	44.69	

rs3746319	 A/G	 659	 29.23	±	1.23	 7.23	±	2.26	 6.27	±	2.45	 5.03	±	2.24	 52.28	±	5.82	 50.36	±	9.43	 248.66	±	52.48	 315.42	±	45.75	

	 G/G	 1621	 29.14	±	1.4	 7.14	±	2.26	 6.21	±	2.5	 4.86	±	2.23	 51.85	±	5.71	 49.82	±	9.62	 250.45	±	59.77	 316.73	±	51.7	

MIR2113	 C/C	 602	 29.11	±	1.5	 7.18	±	2.25	 6.23	±	2.45	 4.94	±	2.26	 51.97	±	5.75	 49.7	±	9.37	 249.35	±	53.8	 317.02	±	53.29	

rs10457441	 C/T	 1149	 29.13	±	1.38	 7.1	±	2.24	 6.16	±	2.52	 4.85	±	2.2	 52.02	±	5.72	 50.04	±	9.59	 251.27	±	58.73	 316.74	±	49.68	

	 T/T	 540	 29.28	±	1.17	 7.22	±	2.27	 6.21	±	2.48	 4.99	±	2.26	 51.86	±	5.95	 50.24	±	9.32	 247.53	±	54.02	 315.1	±	45.41	
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SLC24A4-RIN3	 G/G	 1386	 29.16	±	1.33	 7.14	±	2.27	 6.15	±	2.53	 4.92	±	2.25	 51.81	±	5.81	 49.97	±	9.47	 248.32	±	55.32	 315.23	±	48.28	

rs10498633	 G/T	 794	 29.16	±	1.45	 7.2	±	2.23	 6.29	±	2.45	 4.89	±	2.22	 52.28	±	5.75	 50.15	±	9.4	 254.31	±	58.02	 320.08	±	53.61	

	 T/T	 109	 29.13	±	1.27	 6.87	±	2.19	 5.94	±	2.29	 4.85	±	2.15	 51.65	±	5.52	 49.28	±	10.07	 238.29	±	55.44	 305.17	±	32.21	

FRMD4A	
A/A	 32	 28.65	±	1.89	 6.97	±	2.12	 6.25	±	2.29	 4.41	±	2.15	 51.71	±	5.44	 48.47	±	11.09	 253.3	±	60.55	 319.99	±	47.88	

rs2446581	 A/G	 481	 29.12	±	1.39	 7.04	±	2.32	 6.05	±	2.56	 4.81	±	2.19	 51.47	±	5.93	 49.5	±	9.59	 255.34	±	68.62	 319.39	±	60.79	

	 G/G	 1778	 29.18	±	1.35	 7.19	±	2.23	 6.23	±	2.47	 4.95	±	2.24	 52.12	±	5.73	 50.16	±	9.4	 248.29	±	52.41	 315.53	±	46.29	

NME8	 A/A	 943	 29.13	±	1.33	 7.14	±	2.21	 6.16	±	2.48	 4.9	±	2.22	 51.77	±	5.74	 50.41	±	9.15	 250.57	±	55.81	 316.2	±	49.36	

rs2718058	 A/G	 1041	 29.19	±	1.33	 7.1	±	2.25	 6.17	±	2.49	 4.84	±	2.24	 52.07	±	5.63	 49.55	±	9.56	 249.79	±	53.49	 318.07	±	46.75	

	 G/G	 307	 29.15	±	1.59	 7.35	±	2.35	 6.37	±	2.54	 5.17	±	2.2	 52.24	±	6.34	 50.28	±	10.04	 248	±	66.75	 311.35	±	59.37	

MEF2C	 A/A	 402	 29.09	±	1.53	 7.14	±	2.28	 6.05	±	2.67	 4.84	±	2.28	 52.14	±	6.1	 49.8	±	9.48	 254.88	±	59.99	 320.54	±	59.3	

rs304132	 A/G	 1117	 29.16	±	1.37	 7.13	±	2.26	 6.18	±	2.49	 4.93	±	2.24	 51.96	±	5.7	 49.67	±	9.61	 248.89	±	56.1	 316.63	±	46.82	

	 G/G	 774	 29.19	±	1.27	 7.18	±	2.23	 6.28	±	2.4	 4.92	±	2.18	 51.91	±	5.72	 50.59	±	9.22	 248.68	±	54.69	 313.99	±	48.11	

INPP5D	 C/C	 651	 29.05	±	1.5	 7.14	±	2.28	 6.13	±	2.52	 4.78	±	2.24	 51.43	±	5.96	 49.58	±	9.69	 252.5	±	57.56	 318.41	±	49.43	

rs35349669	 C/T	 1077	 29.22	±	1.28	 7.14	±	2.24	 6.21	±	2.47	 4.95	±	2.28	 52.15	±	5.62	 50.27	±	9.39	 248.19	±	52.89	 314.62	±	46.4	

	 T/T	 555	 29.16	±	1.37	 7.18	±	2.24	 6.23	±	2.49	 4.98	±	2.14	 52.21	±	5.83	 49.93	±	9.39	 250.28	±	61.33	 317.5	±	55.4	

CELF1	 C/C	 209	 29.2	±	1.21	 7.03	±	2.24	 5.93	±	2.41	 4.86	±	2.22	 51.76	±	5.64	 49	±	9.83	 253.23	±	60.87	 318.98	±	45.65	

rs7933019	 C/G	 985	 29.18	±	1.33	 7.13	±	2.21	 6.22	±	2.42	 4.94	±	2.22	 51.88	±	5.91	 50.21	±	9.69	 249.84	±	53.47	 315.64	±	46.24	

	 G/G	 1098	 29.13	±	1.43	 7.2	±	2.29	 6.22	±	2.56	 4.9	±	2.24	 52.11	±	5.67	 50	±	9.19	 249.16	±	57.93	 316.6	±	53.25	

AKAP6	 G/G	 619	 29.16	±	1.4	 7.3	±	2.29	 6.34	±	2.57	 5.03	±	2.21	 52.14	±	5.52	 50.33	±	9.34	 250.47	±	56.01	 316.78	±	50.16	

rs17522122	 G/T	 1173	 29.2	±	1.35	 7.15	±	2.23	 6.16	±	2.49	 4.9	±	2.24	 52.09	±	5.83	 50.07	±	9.52	 248.69	±	56	 315.31	±	50.57	

	 T/T	 496	 29.07	±	1.36	 6.99	±	2.24	 6.1	±	2.4	 4.78	±	2.23	 51.47	±	5.97	 49.42	±	9.53	 252.26	±	57.71	 318.68	±	47.07	

SORL1	 C/C	 5	 28.4	±	0.55	 6.6	±	3.36	 4.8	±	2.59	 4.2	±	1.92	 48.8	±	8.32	 57	±	7.52	 308.32	±	91.3	 326.15	±	32.6	

rs11218343	 C/T	 187	 29.03	±	1.45	 7.01	±	2.41	 6.22	±	2.54	 4.85	±	2.17	 51.34	±	6.18	 50.83	±	8.61	 248.3	±	61.72	 312.01	±	47.46	

	 T/T	 2096	 29.17	±	1.36	 7.16	±	2.23	 6.19	±	2.49	 4.92	±	2.24	 52.03	±	5.74	 49.91	±	9.54	 249.93	±	55.76	 316.81	±	49.91	

FERMT2		 C/C	 16	 28.81	±	1.68	 7.62	±	2.96	 6.81	±	2.93	 4.94	±	2.35	 51.88	±	8.2	 49.69	±	8.99	 238.22	±	26.45	 316.46	±	28.73	

rs17125944	 C/T	 378	 29.27	±	1.23	 7.26	±	2.24	 6.35	±	2.53	 4.8	±	2.19	 52.07	±	5.24	 51.31	±	9.39	 249.94	±	59.38	 315.56	±	50.22	

	 T/T	 1899	 29.14	±	1.39	 7.12	±	2.25	 6.16	±	2.48	 4.93	±	2.24	 51.96	±	5.86	 49.74	±	9.46	 249.95	±	55.93	 316.59	±	49.71	

HLA-DRB5		 C/C	 1208	 29.11	±	1.48	 7.11	±	2.27	 6.14	±	2.51	 4.81	±	2.22	 51.75	±	5.96	 49.87	±	9.61	 250.2	±	56.75	 316.3	±	47.99	

rs9271100	 C/T	 933	 29.23	±	1.23	 7.19	±	2.21	 6.24	±	2.43	 5.01	±	2.24	 52.24	±	5.57	 50.35	±	9.22	 249.64	±	56.35	 316.47	±	52.32	

	 T/T	 147	 29.18	±	1.21	 7.27	±	2.39	 6.31	±	2.73	 5.08	±	2.27	 52	±	5.6	 48.87	±	9.86	 249.48	±	54.1	 317.4	±	46.47	
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Table	2.4	(Continued)	

	 Genotype	 n	 MMSE	

Immediate	

Recall	

Delayed	

Recall	

Digits	

backwards	 Spot	the	word	

Symbol	Digits	

Modalities	test	

Simple	Reaction	

Time	

Choice	Reaction	

Time	

DSG2	 C/C	 2225	 29.16	±	1.35	 7.15	±	2.25	 6.19	±	2.49	 4.9	±	2.24	 51.97	±	5.74	 50.02	±	9.41	 249.92	±	56.56	 316.59	±	49.92	

rs8093731	 C/T	 62	 29	±	1.99	 7.05	±	2.38	 6.15	±	2.65	 5.02	±	2.05	 51.62	±	7.19	 49.47	±	11.35	 248.1	±	50.51	 308.91	±	39.15	

	 T/T	 1	 30	±	NA	 8	±	NA	 7	±	NA	 8	±	NA	 56	±	NA	 58	±	NA	 294.56	±	NA	 357.9	±	NA	

PTK2B		
C/C	 314	 29.24	±	1.17	 7.3	±	2.2	 6.25	±	2.43	 4.89	±	2.22	 52.29	±	5.44	 50.68	±	9.45	 246.4	±	55.06	 313.79	±	49.4	

rs28834970	 C/T	 1100	 29.13	±	1.4	 7.06	±	2.29	 6.16	±	2.53	 4.95	±	2.27	 51.89	±	6.1	 49.59	±	9.52	 251.25	±	58.42	 316.78	±	51.22	

	 T/T	 874	 29.16	±	1.4	 7.2	±	2.22	 6.2	±	2.47	 4.86	±	2.19	 51.93	±	5.49	 50.25	±	9.39	 249.52	±	54.24	 316.96	±	47.81	

ZCWPW1	 C/C	 213	 29.29	±	1.24	 7.16	±	2.23	 6.16	±	2.56	 4.94	±	2.16	 52.3	±	5.51	 50.62	±	9.2	 243.81	±	55.82	 310.8	±	42.34	

rs1476679	 C/T	 972	 29.18	±	1.31	 7.14	±	2.31	 6.18	±	2.51	 4.94	±	2.24	 52.16	±	5.51	 50.25	±	9.28	 249.41	±	53.01	 316.97	±	49.43	

	 T/T	 1108	 29.11	±	1.43	 7.16	±	2.21	 6.21	±	2.46	 4.88	±	2.23	 51.75	±	6.05	 49.67	±	9.66	 251.43	±	59.18	 317.01	±	51.14	

CASS4	 A/A	 1940	 29.17	±	1.36	 7.14	±	2.24	 6.19	±	2.5	 4.92	±	2.22	 51.99	±	5.83	 50.09	±	9.43	 250.54	±	57.72	 316.57	±	49.98	

rs927174	 A/C	 333	 29.11	±	1.35	 7.23	±	2.35	 6.23	±	2.45	 4.85	±	2.33	 51.81	±	5.5	 49.44	±	9.4	 244.25	±	46.52	 314.16	±	45.88	

	 C/C	 18	 29.17	±	2.09	 7	±	1.88	 6.06	±	2.18	 4.61	±	1.94	 53.76	±	4.72	 49.94	±	13.92	 276.53	±	64.32	 341.67	±	77.23	
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amnestic	 disorder	 not	 otherwise	 specified;	DSM-IV	mild	NCD;	 and	DSM-IV	 other	

cognitive	 disorder.	 Major	 criteria	 for	 meeting	 most	 of	 these	 diagnoses	 were	

operationalised	 as	 any	 of	 the	 following:	 (1)	 concern	 of	 self	 or	 informant	 of	

significant	cognitive	decline	(MACQ	≥25	or	Informant	Questionnaire	on	Cognitive	

Decline	 in	 the	 Elderly	 >3.31	 or	 history	 of	 dementia	 diagnosis);	 (2)	 substantial	

impairment	 on	 at	 least	 one	 cognitive	 domain	 relative	 to	wave	 4	 normative	 data	

(cut-offs	 less	 than	 −2	 SD	 for	 dementias,	 less	 than	 −1.5	 SD	 for	 mild	 cognitive	

disorders);	(3)	interference	with	independence	and	instrumental	activities	of	daily	

living	 (IADL;	 self-reported	 IADL	 impairment	 or	 Bayer	 IADL	 scale	 score	 >3.11	 or	

informant-reported	 everyday	 cognitive	 difficulties);	 (4)	 not	 exclusively	 during	

delirium	 (cognitive	 changes	 of	 >6	 months’	 duration,	 onset	 of	 cognitive	 changes	

preceding	informant	report	of	onset	of	delirium	like	symptoms);	and	(5)	not	due	to	

another	co-existing	disorder	(PHQ9	<	9	and	no	reported	history	of	schizophrenia	

or	 other	 psychosis).	 Those	 meeting	 criteria	 for	 one	 or	 more	 diagnoses	 were	

screened	for	case	file	review	by	a	research	neurologist	and	a	diagnoses	was	made.	

For	complex	cases,	two	physicians	formulated	a	consensus	diagnosis.	based	on	the	

following	 criteria:	 (1)	 comorbid	 depression,	 (2)	 other	 comorbid	 psychiatric	

conditions,	(3)	stroke	and	(4)	DSM-5	major	NCD	without	memory	impairment.		

Clinically	diagnosed	MCI	was	based	on	the	Petersen	criteria	at	waves	1	and	

2	 [13],	whereas	 the	Winblad	 criteria	 [14]	were	 used	 at	wave	 3	 and	 4.	 Clinically	

diagnosed	dementia	was	based	on	the	DSM	IV	criteria	[374]	at	all	waves.	At	wave	

4,	there	were	14	participants	who	were	not	interviewed,	but	were	known	to	have	

dementia	from	informant	reports	and	medical	records.	As	expected,	the	prevalence	

of	MCI	and	dementia	 increased	over	the	course	of	 the	study	with	37	(1.45%),	42	

(1.8%),	51	(2.60%)	and	144	(8.9%)	of	participants	diagnosed	with	MCI	at	waves	1,	

2,	 3,	 and	 4	 respectably.	 MCI	 diagnosis	 were	 unstable,	 with	 49%	 of	 participants	

between	 any	 two	 waves	 transitioning	 from	 MCI	 –	 CN	 in	 contrast	 to	 3.07%	 of	

participants	transitioning	from	CN	–	MCI	(Table	2.5).		

	

Table	 2.5:	 Number	 of	 transitions	 between	 cognitively	 normal,	 mild	 cognitive	
impairment	and	dementia	during	the	length	of	the	study	

From	

To	

CN	 MCI	 Dementia	 Death	 Censored	

CN	 5461	

(85.57%)	

196	(3.07%)	 37	(0.58%)	 240	(3.76%)	 448	(7.02%)	

MCI	 63	(49.61%)	 38	(29.92%)	 8	(6.3%)	 10	(7.87%)	 8	(6.3%)	

Dementia		 0	(0%)	 0	(0%)	 6	(75%)	 2	(25%)	 0	(0%)	

Censored	 41	(18.39%)	 3	(1.35%)	 0	(0%)	 10	(4.48%)	 169	(75.78%)	
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2.6	 Power	Analysis		

Power	 curves	 were	 calculated	 to	 assess	 the	 effect	 size	 that	 could	 be	

detected	at	a	given	power	for	our	sample	size	using	the	R	package	‘simr’	[375].	The	

power	 calculations	 are	 based	 on	 Monte	 Carlo	 simulations	 (n	 =	 1000)	 of	 linear	

mixed	 effects	 models	 constructed	 from	 the	 observed	 interview	 times	 of	

participants	 in	 the	 PATH	 60+	 cohort	 for	 a	 total	 of	 2551	 participants	 with	 8386	

observations.	The	observed	variance-covariance	matrix	in	PATH	was	used	to	fit	the	

Monte	 Carlo	 simulated	 linear	 mixed	 models.	 Simulated	 independent	 variables	

were	 constructed	 for	 a	 normal	 and	 positivity	 skewed	 distributed	 continuous	

variable	 (mean	 =	 0;	 SD	 =	 1)	 and	 a	 binary	 categorical	 independent	 variable	with	

50:50,	40:60,	30:70,	20:80,	10:90	and	5:95	split.	The	effect	 sizes	 for	 the	baseline	

and	linear	rate	of	change	coefficients	were	altered	in	the	base	model	in	increments	

to	determine	the	detectable	effect	size	at	80%	power	(Table	2.6).		

	

Table	2.6:	Detectable	effect	size	at	80%	power	that	can	be	observed	in	the	PATH	60’s	

cohort			

	 Baseline		 Linear	Change		

Continuous	Independent	Variable	

				Normal	Distribution	 -0.005	(-0.005	-	-0.004)	 -0.0046	(-0.0051	-	-0.004)	

				Positive	Skewed	Distribution	 -0.044	(-0.052	-	-0.036)	 -0.0047	(-0.0052	-	-0.0042)	

Categorical	Independent	Variable	

				50%	 -0.087	(-0.093	-	-0.08)	 -0.0095	(-0.01	-	-0.0088)	

				40%	 -0.0891	(-0.0957	-	-0.0825)	 -0.0094	(-0.01	-	-0.0089)	

				30%	 -0.0942	(-0.0996	-	-0.0888)	 -0.0102	(-0.0107	-	-0.0097)	

				20%	 -0.1083	(-0.1122	-	-0.1044)	 -0.0118	(-0.0122	-	-0.0114)	

				10%	 -0.1391	(-0.1437	-	-0.1346)	 -0.0155	(-0.0158	-	-0.0151)	

				5%	 -0.1794	(-0.2592	-	-0.0996)	 -0.0204	(-0.0249	-	-0.016)	
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Chapter	3:	 Interactive	Effect	of	APOE	Genotype	and	Blood	Pressure	on	

Cognitive	Decline:	The	PATH	Through	Life	Study	

	

Andrews,	 S.,	 Das,	 D.,	 Anstey,	 K.J.,	 Easteal,	 S.,	 2015.	 Interactive	 effect	 of	 APOE	

genotype	 and	 blood	 pressure	 on	 cognitive	 decline:	 the	 PATH	 through	 life	

study.	Journal	of	Alzheimer’s	disease.	44,	1087–1098.	

	

The	final	publication	is	available	at	IOS	Press	through:			

http://dx.doi.org/10.3233/JAD-140630
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Abstract	

The	 apolipoprotein	 E	 (APOE)	 *e4	 allele
	
and	 hypertension

	
are	 two	 of	 the	 most	

prevalent	 risk	 factors	 for	 cognitive	 decline	 in	 later	 life.	 Here	 we	 investigate	

whether	cognitive	decline	is	affected	by	interaction	between	these	two	risk	factors.	

Specifically,	 we	 examine	 whether	 APOE*e4	moderates	 the	 association	 between	

high	blood	pressure	and	cognition	in	later	life.	Cognitive	function	was	assessed	at	

three	time	points	over	a	period	of	8	years	in	1,474	cognitively	normal,	community-

dwelling	adults	aged	60-64	years	at	baseline.	Blood	pressure	and	APOE	genotype	

were	 assessed	 at	 baseline.	 Blood	 pressure	 was	 measured	 categorically	 as	

‘Hypertension’	 and	 continuously	 as	 ‘Mean	 Arterial	 Pressure’	 (MAP).	 Multilevel	

models	were	used	to	investigate	main	and	interactive	effects	of	APOE	genotype	and	

both	 hypertension	 and	MAP	on	 the	 rate	 of	 change	 of	 episodic	memory,	working	

memory,	 verbal	 ability,	 perceptual	 speed	 and	 global	 cognition.	 The	 APOE–

hypertension	 interaction	was	 associated	with	 a	 small	 but	 statistically	 significant	

increase	 in	 the	 rate	 of	 decline	 of	 episodic	 memory,	 verbal	 ability	 and	 global	

cognition.	 However,	 its	 inclusion	 in	 the	 model	 did	 not	 increase	 the	 amount	 of	

outcome	variation	explained	beyond	that	already	explained	by	the	effect	of	time.	In	

contrast,	 the	APOE-MAP	 interaction	had	no	effect	on	 the	rate	of	decline	 in	any	of	

these	domains	of	cognitive	performance.	These	results	provide	tentative	evidence	

that	APOE	genotype	moderates	 the	association	between	high	blood	pressure	and	

cognitive	decline	in	later	life.	

	

Keywords:	Apolipoprotein	E;	blood	pressure;	hypertension;	cognitive	decline;	

aging;	gene-environment	interaction	
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3.1	 Introduction		

The	apolipoprotein	E	(APOE)	epsilon	4	(*e4)	allele	is	well-established	as	the	

strongest	 common	 genetic	 risk	 factor	 for	 Alzheimer’s	 disease	 [107,376],	 with	

heterozygous	 and	 homozygous	 individuals	 having	 approximately	 2-3	 times	 and	

10-12	times	greater	risk	of	developing	Alzheimer’s	disease,	respectively	[134].	The	

APOE	 genomic	 region	 has	 also	 been	 associated	 with	 non-pathological	 cognitive	

aging	[121],	although	findings	for	a	role	of	APOE*e4	 in	cognitive	decline	is	mixed.	

Two	meta-analyses	 [136,377]	 concluded	 that	 the	APOE*e4	allele	 has	 a	 relatively	

small	 and	 specific	 influence	 on	 cognitive	 domains	 associated	 with	 episodic	

memory,	 executive	 functioning,	 perceptual	 speed	 and	 overall	 global	 cognitive	

ability,	 but	 that	 it	 does	 not	 affect	 attention,	 verbal	 ability,	 visuospatial	 skill	 or	

primary	memory.	 In	contrast,	possession	of	 the	APOE	epsilon	2	(*e2)	allele,	which	

has	been	associated	with	reduced	risk	of	Alzheimer’s	Disease	 [378],	may	protect	

against	cognitive	decline	[379,380].	These	effects	have	not	been	observed	in	cross-

sectional	and	longitudinal	studies	of	the	PATH	Cohort	used	in	this	study	[333,381-

383].		

The	 mechanism	 underlying	 the	 association	 between	 APOE	 genotype	 and	

cognition	is	not	well	understood.	The	predominant	theory	is	that	APOE	alleles	bind	

differentially	to	amyloid-b	 (Ab) peptides	resulting	 in	differential	regulation	of	 the	

Ab	 aggregation	 and	 clearance	 in	 the	 brain,	 which	 in	 turn	 leads	 to	 synaptic	

dysfunction	 and	 neurodegeneration,	 inducing	 cognitive	 decline	 [135].	 However,	

Ab-independent	pathways	have	also	been	proposed,	including	regulation	of	brain	

lipid	 transport,	 glucose	 metabolism,	 neuro-inflammation	 and	 vascular	 health	

[135].		

High	blood	pressure	has	also	been	linked	to	dementia	and	is	one	of	the	most	

important	modifiable	 risk	 factors	 for	 cognitive	 decline.	 Hypertension	 in	mid-life	

has	 been	 consistently	 associated	 with	 greater	 late-life	 cognitive	 decline,	

particularly	 in	 executive	 functioning	 and	 attention,	 and	with	 the	development	 of	

dementia	(reviewed	in	[384,385]).	Evidence	for	an	association	between	late	life	(as	

distinct	 from	 mid-life)	 hypertension	 and	 cognition	 has	 been	 mixed.	 Significant	

positive	 [386,387]	and	negative	 [388,389]	effects,	 a	U-shaped	relationship	 [390],	

and	 no	 effect	 [391,392]	 have	 all	 been	 reported.	 The	 following	 mechanistic	 link	

between	 blood	 pressure	 and	 cognition	 has	 been	 suggested:	 high	 blood	 pressure	

induces	atherosclerotic	conditions	and	alters	the	autoregulation	of	cerebral	blood	
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flow,	which	 in	 turn	 promotes	 incidents	 of	 clinical	 and	 subclinical	 brain	 damage.	

These	 incidents	 cause	 brain	 atrophy	 and	 reduce	 white	 matter	 integrity,	 which	

affects	cognitive	functioning	[385].	

In	 addition	 to	 their	direct	 effects,	 the	 interaction	between	APOE	 genotype	

and	hypertension	may	also	modify	 the	 rate	of	 cognitive	decline	 [104].	The	APOE	

*e4	 allele	 is	 associated	 with	 an	 increased	 risk	 of	 hypertension	 [393],	

cerebrovascular	 [394,395]	 and	 coronary	 heart	 disease	 [396],	 and	 therefore	may	

moderate	 the	 association	 between	 hypertension	 and	 cognitive	 decline.	 There	 is	

also	 evidence	 that	 the	 APOE	 *e2	 allele	 is	 associated	 with	 increased	 risk	 of	

cardiovascular	disease	[397,398],	in	an	age-	and	sex-dependent	manner	[399,400].		

	 Longitudinal	 studies	 of	 the	 effect	 of	 this	 interaction	 on	 cognition	 have	

produced	 mixed	 results	 (Table	 3.1).	 An	 initial	 study	 found	 that	 a	 late-life	

hypertension–APOE*e4	 interaction	 lowered	 the	 risk	 of	 cognitive	 decline	 [401].	

However,	 several	 more	 recent	 studies	 have	 found	 the	 opposite	 effect,	 both	 for	

midlife	 and	 late-life	 hypertension	 [402-405]	 and	 other	 studies	 found	 no	 such	

interaction	 [235,383,406-408].	 These	 divergent	 results	 may	 be	 due	 to	 different	

participant	 characteristics	 (e.g.	 baseline	 education,	 mean	 age,	 gender	 and	

ethnicity)	 and	methodologies	 (e.g.	 sample	 size,	 duration	 of	 the	 study,	 number	 of	

follow	ups,	inclusion	of	the	protective	*e2	allele,	definition	of	high	blood	pressure	

and	cognitive	measures).		

	 To	 further	 elucidate	 whether	 the	APOE	 genotype	moderates	 the	 effect	 of	

late-life	hypertension	and	cognition,	we	performed	a	 longitudinal	analysis	of	a	

community-based	sample	of	older	adults.		

3.2	 Methods		

3.2.1	 Participants		

The	 sample	 used	 in	 this	 study	 is	 from	 the	 Personality	 and	 Total	 Health	

(PATH)	Through	Life	project,	a	large	community	survey	of	health	and	wellbeing	in	

adults	 sampled	 from	 the	 electoral	 rolls	 of	 Canberra	 and	 Queanbeyan,	 Australia	

(which	provide	a	representative	population	sample	because	enrolment	to	vote	is	a	

legal	 requirement	 for	 adult	 Australian	 citizens).	 Written	 informed	 consent	 for	

participation	in	the	PATH	project	was	obtained	from	all	participants	according	to	

the	 ‘National	 Statement’	 guidelines	 of	 the	National	Health	 and	Medical	 Research	

Council	 of	 Australia	 and	 following	 a	 protocol	 approved	by	 the	 Human	 Research
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Table	3.1:	Previous	investigations	of	the	effect	of	APOE-blood	pressure	interaction	on	cognitive	decline	

Study	
Population	

sample	(n)	

Age	at	

baseline	

years/SD	

Education,	

level/mean	

years/SD	

Study	time-frame		

(#	time	points)	
Hypertension	 Response	Variables	

Statistical	

Models	
Effect	

Bangen	et	al	2013	

[402]	

Caucasian		

(1,436)	

	

54	(9)	

40%		

College	

degree	

N:	8	(2)	

C:	8	yr	previous	

		

>140/90	mmHG	

or	hypertensive	

medication	

	

	

Verbal	memory	

Visual	memory	

Attention	

Executive	functioning	

Visuospatial	skills	

Language	

Multivariate	

linear	

regression	

Reduced	

language	

ability	

de	Frias	&	Willis	2014	

[405]	
(563)	 51	(12)	 15	(2.7)	 21	(4)	

Physician	

Diagnosis	

	

(Latent	Constructs)	

Verbal	comprehension	

Episodic	memory	

Numeric	facility	

Inductive	reasoning	

Spatial	orientation	

Perceptual	speed	

Cognitive	flexibility		

Multilevel	

modeling	

Reduced	

cognitive	

flexibility			

Kalmijn	et	al	1996	

[401]	

Caucasian	

males		

(353)	

74.6	(6)	 23%	>12	yr	
3	yr	(2)	

	

Baseline		

>160/95	mmHG	

or	hypertensive	

medication	

MMSE	

Multiple	

logistic	

regression	

Protective	

Kang	et	al	2005	[403]	

Caucasian	

females	

(4,155)	

74	(-)	

5.7%		

Masters	or	

Doctorate	

degree	

N:	2/4	yr	(2/3)	

C:	24	yr	previous	

Physician	

Diagnosis	

	

Global	cognition		

Short-term	memory	

Episodic	memory	

Working	Memory	

Multivariate	

linear	&	logistic	

regression		

General	

estimating	

equations	

Reduced	

working	

memory	
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Table	3.1	(Continued)	

Yasuno	et	al	2012	

[404]	

Japanese	

(622)	
72	(5.1)	 10yr	(2.7)	 3	yr	(2)		

Baseline	

>160/100	

mmHG	or	

hypertensive	

medication	

Composite	cognitive	

score		

Attention	

Memory	

Verbal	Fluency	

Abstract	reasoning	

Repeated	

Measures	

ANCOVA	

Reduced	

composite	

cognitive	

score	

Caselli	et	al	2011	

[407]	

Caucasian	&	

Latino		

(808)	

60	(13)	 15yr	(2.7)	
11	yr	(1	≤)		

	
>140/90	mmHG	 Long-term	memory	 Mixed	models	 None	

Carmelli	et	al	1998	

[406]	

Caucasian	

Male	Twins	

(410)		

63	(3)	 13yr	(3)	
N:	10	yr	(2)		

C:	6	yr	previous	

>140/90	mmHG	

or	hypertensive	

medication	

Perceptual	speed	

Attention	

Short-term	memory	

General	linear	

ANCOVA	
None	

Christensen	et	al	2008	

[383]	

Caucasian		

(2,021)	
63	(-)	 14yr	(-)	 4	yr	(2)		

Baseline	

>140/90	mmHG	

or	hypertensive	

medication	

Short-term	memory	

Episodic	memory	

Perceptual	speed	

Working	memory	

Reaction	time	

MMSE	

Bivariate	

ANOVA	
None	

Debette	et	al	2011	

[235]	

Caucasian		

(1352)		
54	(9)	 -	

N:	8	yr	(2)	

C:	8	yr	previous	

	>140/90	mmHG	

or	hypertensive	

medication	

Verbal	memory	

Visual	memory	

Executive	functioning		

Multivariate	

linear	&	logistic	

regression	

None	

Knopman	et	al	2009	

[408]	

Caucasian	&	

African-

American	

(1,130)	

59	(4.3)	 -	 14	yr	(4)	

>140/90	mmHG	

or	hypertensive	

medication	

Episodic	memory	

Perceptual	speed	

Verbal	fluency	

Mixed	effects	

models	
None	

MMSE:	Mini	Mental	State	Exam	

N:	Neuropsycholgical	

C:	Cardiovascular	
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Ethics	Committee	of	The	Australian	National	University.	Participants	were	drawn	

from	three	cohorts;	those	aged	20-24	(20+),	40-44	(40+)	and	60-64	(60+)	years	at	

baseline,	which	were	assessed	at	4-year	intervals	for	a	total	of	12	years	(testing	for	

the	 4th	wave	 is	 currently	 in	 progress).	 Each	 assessment	 point	 is	 referred	 to	 as	 a	

wave.		

The	testing	procedures	in	the	PATH	study	have	been	previously	described	

in	 detail	 [322].	 Results	 presented	 here	 are	 for	 the	 first	 three	waves	 (8	 years	 of	

follow-up)	of	the	60+	cohort,	conducted	in	2001-2002	(n	=	2,551),	2005-2006	(n	=	

2,222)	 and	 2009-2010	 (n	 =	 1,973).	 Individuals	 were	 excluded	 from	 further	

analysis	if	they	had	only	attended	one	interview	(n	=	309),	were	of	non-European	

ancestry		(n	=	110),	had	probable	dementia	(Mini	Mental	State	Examination	score	

<	 24;	 [409]	 (n	 =	 63)	 or	 had	 a	 self-reported	medical	 history	 of	 epilepsy,	 stroke,	

transient	ischaemic	attack,	brain	tumours	or	brain	infections	(n	=	363).	There	were	

no	group	differences	between	individuals	who	attended	only	one	wave	compared	

to	 those	 who	 attended	 more	 than	 one	 assessment,	 for	 the	 variables;	 APOE*e4	

genotype,	hypertension	and	MAP	(Supplementary	Table	1).	As	missing	values	can	

reduce	power	and	introduce	bias	in	the	resulting	estimate	[410],	missing	values	for	

the	 continuous	 variables	 education,	 depression	 and	 mean	 systolic	 and	 diastolic	

blood	pressure	were	imputed	using	expectation-maximization	(EM;	n	=	195).	The	

EM	algorithm	in	SPSS	does	not	impute	missing	values	for	categorical	variables,	so	

participants	 with	 missing	 values	 for	 APOE	 genotype,	 smoking	 status,	 diabetes	

mellitus	or	heart	trouble	were	excluded	(n	=	181).	This	left	a	final	sample	of	1,741	

individuals.		

	

3.2.2	 Genotyping			

Genotyping	 of	 the	 PATH	 sample	 for	 APOE	 variants	 has	 been	 described	

previously	 [382].	 Briefly,	 genomic	 DNA	 was	 extracted	 from	 cheek	 swabs	 using	

Qiagen	DNA	Blood	kits.	TaqMan	Assays	(Applied	Biosystmes	Inc.,	Foster	City,	CA,	

USA)	 were	 used	 to	 genotype	 two	 SNPs	 -	 rs429358	 and	 rs7412	 within	 APOE	 to	

identify	the	six	APOE	genotypes	comprising	the	*e2,	*e3	and	*e4	alleles.	Genotype	

frequencies	were	*e2/*e2:	n	=	19	(0.8%),	*e3/*e3:	n	=	1444	(60.7%),	*e4/*e4:	n	=	

49	 (2.1%),	 *e2/*e3:	n	=	274	(11.5%),	 *e2/*e4:	n	=	60	 (2.5%)	and	e3/e4:	n	=	532	

(22.4%).	 Allele	 frequencies	 did	 not	 deviate	 from	 Hardy-Weinberg	 equilibrium	

[383].		
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The	 APOE	 *e2	 allele	 has	 been	 associated	 with	 both	 protective	 effects	 for	

cognitive	decline	and	increased	risk	for	cardiovascular	disease.	To	avoid	potential	

confounding	 effects	 due	 to	 these	 known	 associations,	 APOE	 *e2	 carriers	 were	

excluded	from	the	analysis.	Participants	were	classified	as	either	APOE*e4	negative	

(*e4-;	n=	1,444;	72%,	 including	 the	*e3/*e3	 genotype)	and	*e4	positive	 (*e4+;	n=	

581;	 28%,	 including	 *e4/*e4	 and	 *e3/*e4	 genotypes).	 This	 left	 a	 final	 sample	 of	

1,474	 individuals.	 A	 secondary	 analysis	 was	 conducted	 in	 which	 APOE*e2	

individuals	were	retained,	with	participants	also	classified	 into	APOE*e4	negative	

(*e4-;	n=	1,737;	73%	 including	*e2/*e2,	 *e3/*e3,	 *e2/*e3)	and	*e4	positive	 (*e4+;	

n=	641;	27%,	including	*e4/*e4,	*e2/*e4,	*e3/*e4)	groups.		

	

3.2.3	 Cardiovascular	Risk	Factors		

Measures	 of	 hypertension	 and	MAP	were	 based	 on	 assessments	 taken	 at	

baseline.	Resting	blood	pressure	was	measured	twice	during	the	interviews	while	

participants	 were	 seated.	 Participants	 were	 asked	 if	 they	 were	 currently	 taking	

medication	for	high	blood	pressure.	Participants	were	classified	as	hypertensive	if	

they	met	any	of	 the	 following	criteria:	 i)	mean	systolic	blood	pressure	≥140	mm	

Hg;	 ii)	 mean	 diastolic	 blood	 pressure	 ≥90	 mm	 Hg;	 iii)	 taking	 hypertensive	

medication	at	baseline.	MAP	was	calculated	as	[(2	x	diastolic)+systolic]	/	3	[411].		

	

3.2.4	 Demographic	and	General	Health	Variables		

Baseline	 data	 on	 gender,	 smoking	 status	 (current	 or	 past	 smoking),	

education	 (total	 years	 spent	 studying),	 history	 of	 heart	 trouble	 and	 diabetes	

mellitus	were	included	in	the	analysis.	Depression	symptoms	were	assessed	using	

the	 Patient	 Health	 Questionnaire	 (PHQ),	 which	 is	 a	 short	 version	 of	 the	 patient	

questionnaire	 component	 of	 the	 Primary	 Care	 Evaluation	 of	 Mental	 Disorders	

(PRIME-MD)	 instrument	 [323].	We	generated	measures	of	depression	 symptoms	

from	the	nine	items	related	to	depression	[rated	on	a	4-point	scale	from	“not	at	all”	

(1)	to	“nearly	every	day”	(4)],	following	the	coding	algorithm	provided	in	the	PHQ	

instruction	 manual	 (available	 from	 Patient	 Health	 Questionnaire	 Screeners;	

http://www.phqscreeners.com/overview.aspx).			
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3.2.5	 Cognitive	Assessment		

All	participants	were	assessed	at	baseline	and	at	each	subsequent	interview	

for	 the	 following	 six	 cognitive	 measures:	 perceptual	 speed,	 measured	 using	 the	

Symbol	 Digit	 Modalities	 Test	 [371];	 episodic	 memory,	 assessed	 using	 the	

immediate	 recall	 and	 delayed	 recall	 of	 the	 first	 trial	 of	 the	 California	 Verbal	

Learning	 Test	 (Recall-immediate	 &	 Recall-delayed)	 [327];	 working	 memory,	

measured	using	the	Digit	Span	Backward	from	the	Wechsler	Memory	Scale	[328];	

and	 vocabulary,	 assessed	 by	 the	 Spot-the-Word	 Test	 [329].	 A	 global	 cognition	

score	was	 computed	 as	 the	unweighted	mean	of	 the	 standardized	 scores	 for	 the	

Symbol	 Digits	 Modalities	 Test,	 Recall-immediate,	 Digit	 Span	 Backwards,	 Recall-

delayed	and	the	Spot-the-Word	Test.		

	

3.2.6	 Data	Preparation	and	Statistical	Analysis		

Data	 were	 analysed	 in	 SPSS	 Statistics	 version	 21	 (IBM	 SPSS	 statistics).	

Group	 differences	 in	 demographic	 and	 general	 health	 characteristics	 were	

examined	 by	 unpaired	 t	 tests	 and	 Chi-	 squared	 tests.	 To	 allow	 for	 comparison	

across	 all	 cognitive	 tasks,	 the	 test	 scores	 for	 all	 cognitive	 task	at	 all	 three	waves	

were	 transformed	 into	T	scores	 (M	=	50,	SD	=	10)	using	 the	baseline	means	and	

standard	deviations.	Higher	 scores	 on	 all	 tests	 indicate	better	 cognitive	 function.	

Pearson	correlations	were	computed	for	the	cognitive	test	scores	(Supplementary	

Table	2).		

The	 variables	 smoking,	 diabetes	mellitus,	 heart	 trouble,	 hypertension	 and	

APOE	 genotype	 were	 coded	 as	 categorical	 variables,	 with	 non-smokers,	 non-

diabetics,	 no	 reported	 heart	 trouble,	 non-hypertensive	 and	 APOE	 e4-	 groups	

treated	as	the	reference	group.		

Multilevel	modelling	[412],	with	maximum	likelihood	estimation,	was	used	

to	 assess	 the	 effect	 of	 predictors	 on	 change	 in	 cognition	 over	 time	 (indicated	by	

age,	 centred	 on	mean	 age	 at	 baseline).	 Predictor	 variables	 were	APOE	genotype	

(*e4-	 and	 *e4+)	 and	 the	 blood	 pressure	 (BP)	 variables:	 Hypertension	 and	 MAP.	

Covariates	 used	 in	 the	models	were	 gender,	 total	 years	 of	 education,	 depression	

score,	smoking	status,	diabetes	and	heart	trouble.		

	 In	 Model	 1	 (Unconditional	 Means	 Model)	 no	 predictors	 were	

entered.	 This	 intercept-only	model	 was	 used	 as	 a	 baseline	 index	 of	 within-	 and	

between-person	 variation	 and	 to	 estimate	 the	 intra-class	 correlation	 coefficients	
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(ICC).	In	Model	2	(Unconditional	Growth	Model)	time	was	introduced	and	used	to	

estimate	 the	average	rate	of	change	within	 the	population.	 In	Model	3	covariates	

were	introduced	into	the	Unconditional	Growth	Model.	In	Model	4	APOE	genotype	

and	BP	variables	were	entered	as	additive	terms.	Separate	models	were	generated	

for	hypertension	and	MAP.	In	Model	5	 interaction	terms	between	APOE	genotype	

and	the	BP	variables	were	introduced	to	determine	whether	these	interactions	had	

effects	on	the	intercept	and	the	rate	of	change	of	cognitive	test	scores.		

Due	 to	 the	disputed	 effectiveness	 of	 assessing	 single	 parameter	 estimates	

via	 t-statistics	 or	 z-statistics,	 log-likelihood	 ratio	 tests	 were	 first	 used	 to	 assess	

model	fit	for	nested	models	as	compared	to	their	reference	model.	The	parameter	

estimates	 for	models	 in	which	 the	 change	 in	model	 fit	was	 significant	were	 then	

assessed	 to	 determine	 significance.	 Pseudo	 R-squared	 statistics	 were	 used	 to	

quantify	 the	 proportion	 of	 outcome	 variation	 that	 the	models	 predictors	 explain	

[412].	In	the	final	model	this	approach	was	used	to	determine	whether	inclusion	of	

the	interaction	terms	significantly	improved	the	variance	explained.		

A	power	analysis	was	performed	in	the	R	statistical	programming	language,	

using	the	package	Longpower	[413]	for	Model	5	of	the	Global	Cognition	test	score,	

indicating	 that	 this	 study	could	detect	an	effect	 size	of	0.31	SD	at	80%	power.	 It	

should	 be	 noted,	 however,	 that	 due	 to	 their	 complexity,	 power	 calculations	 for	

multilevel	models	are	approximate		[414].	

3.3	 Results	

3.3.1	 Demographic	and	General	Health	Characteristics		

There	were	no	group	differences	in	any	covariates	at	baseline	between	the	

APOE*e4-	 and	 *e4+	 groups	 (Table	 3.2).	 Means	 and	 standard	 deviations	 of	 the	

cognitive	test	scores	at	each	wave	are	presented	in	Table	3.3.	

	

3.3.2	 Multilevel	models	

Each	 cognitive	 measure	 was	 first	 evaluated	 using	 unconditional	 means,	

unconditional	 growth	 and	 covariate	models	 to	 provide	 a	 baseline	 for	 comparing	

the	 effects	 of	 APOE	 genotype	 and	 blood	 pressure	 variables	 (Model	 1,	 2,	 and	 3;	

Table	 3.4).	 Significant	 change	 in	 performance	 across	 time	 was	 observed	 for	 all	

cognitive	 tests	 except	 for	 Digit	 Span	 Backwards	 test	 (Model	 2;	 Table	 3.4).	 On	

average,	participants	experience	significant	decline	in	Recall-immediate,	Recall-	
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Table	3.2:	Demographic	and	general	health	characteristics	of	sample.	

	
APOE*e4-	

(n=1,049)	

APOE*e4+	

(n=425)	

Degrees	of	

freedom	
t/c2	 p	

Agea	 62.5	±	1.5	 62.4	±	1.5	 1,472	 1.33	 0.18	

Male,	n	(%)b	 538	(51.3	%)	 220	(51.8	%)	 1	 0.03	 0.87	

Years	of	educationa	 14	±	2.6	 14	±	2.6	 1,472	 -0.03	 0.98	

Depression	scorec	 2.1	±	2.8	 2.4	±	3.1	 1,472	 -1.51	 0.13	

Cigarette	smoking,	n	(%)b	 490	(46.7	%)	 202	(47.5	%)	 1	 0.81	 0.78	

Diabetes,	n	(%)b	 78	(7.4	%)	 31	(7.3	%)	 1	 0.01	 0.93	

Hypertension,	n	(%)b	 656	(62.5	%)	 267	(62.8	%)	 1	 0.01	 0.92	

Heart	Trouble,	n	(%)b	 138	(13.2	%)	 54	(12.7	%)	 1	 0.05	 0.82	

Systolic	blood	pressurea	 139.3	±	18.5	 139.4	±	19.2	 1,472	 -0.06	 0.95	

Diastolic	blood	pressurea	 82.9	±	10.6	 82.6	±	10.1	 1,472	 0.47	 0.64	

Mean	arterial		blood	

pressurea	 101.7	±	12.2	 101.5	±	12.1	 1,472	 0.24	 0.81	

	Cognitive	Tests	 	 	 	 	 	

				Immediate	Recall	 7.33	±	2.17	 7.47	±	2.14	 794.79	 -1.17	 0.24	

				Delayed	Recall	 6.41	±	2.43	 6.46	±	2.45	 780.04	 -0.32	 0.74	

				Symbol	Digits	Modalities							

				test	 51.15	±	8.75	 51.06	±	8.55	 803.47	 0.17	 0.87	

				Digit	span	Backwards		 5.04	±	2.19	 5.05	±	2.17	 786.46	 -0.03	 0.98	

				Spot-the-Word	 52.94	±	7.01	 52.94	±	6.59	 831.01	 -0.009	 0.99	

a	Unpaired	2-tailed	t-test	
b	Pearson’s	χ2	2-tailed	test	
c	Brief	Patient	Health	Questionnaire	

	

Table	3.3:	Raw	cognitive	test	scores	(mean	±	standard	deviation)	

	
Immediate	

recall	

Delayed		

recall	

Symbol	digit	

modalities	test	

Digit	Span	

Backwards	

Spot-the-

Word	

Wave	1	 7.3	±	2.2	 6.4	±	2.4	 51	±	8.8	 5.0	±	2.2	 52	±	5.3	

Wave	2	 7.0	±	2.1	 6.2	±	2.4	 50	±	8.9	 5.2	±	2.2	 53	±	4.9	

Wave	3	 6.7	±	2.2	 5.9	±	2.3	 48	±	8.9	 5.2	±	2.16	 53	±	4.9	

Higher	scores	indicate	better	cognitive	function.		

	

delayed,	 Symbol	 Digit	 Modalities	 Test	 and	 Global	 Cognition.	 Inclusion	 of	 time	

explained	between	70-93%	of	the	variation	in	the	cognitive	measures.	Conversely,	

a	 significant	 increase	 in	 Spot-the-Word	 test	 scores	 was	 observed	 over	 time.	

Inclusion	of	 the	 covariates	 in	Model	 3	 (Table	3.4)	 improved	 the	model	 fit	 for	 all	

cognitive	 test	 scores	 and	explained	additional	 variation.	Parameter	 estimates	 for	
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covariates	 and	 random	 effects	 for	 all	 models	 can	 be	 found	 in	 Supplementary	

Tables	3	&	4.	

	

3.3.3	 Blood	Pressure	and	APOE	genotype	group	differences		

Statistics	 for	 hypertension	 and	 MAP	 models	 are	 presented	 in	 Table	 3.4.	

Introducing	 hypertension	 and	 APOE	 genotype	 as	 additive	 terms	 significantly	

improved	 model	 fit	 for	 the	 cognitive	 variables	 Recall-immediate	 and	 Recall-

delayed.	 Additionally,	 for	 these	 cognitive	 variables	 the	 APOE*e4+	 group	

experienced	 a	 greater	 rate	 of	 decline	 in	 test	 scores.	 However,	 these	 significant	

group	differences	did	not	explain	any	additional	variance.		

Introducing	 MAP	 and	 APOE	 genotype	 as	 additive	 terms	 significantly	

improved	model	 fit	 for	 the	 cognitive	 variables:	 Recall-immediate	 Recall-delayed	

and	 Global	 Cognition.	 Additionally,	 for	 these	 cognitive	 variables	 there	 were	

significant	MAP	and	APOE	genotype	group	differences	in	both	baseline	test	scores	

and	rate	of	change.	Increased	MAP	was	associated	with	lower	baseline	scores	for	

Global	Cognition,	while	the	APOE*e4+	group	experienced	a	greater	rate	of	decline	

in	 test	 scores	 for	 Recall-immediate,	 Recall-delayed	 and	 Global	 Cognition.	 These	

significant	group	differences	did	not	explain	any	additional	variance.	

	

3.3.4	 APOE–blood	Pressure	Interaction		

Statistics	 for	 the	 interaction	 between	 APOE	 genotype	 and	

hypertension/MAP	(Model	5)	are	presented	in	Table	3.4	and	fitted	trajectories	are	

displayed	 in	Figures	3.1	and	3.2.	 Introducing	 the	 interaction	 term	between	APOE	

genotype	 and	 hypertension	 significantly	 improved	 model	 fit	 for	 the	 cognitive	

variables	 Recall-immediate,	 Recall-delayed,	 Spot-the-Word	 and	 Global	 Cognition.	

Additionally,	the	interaction	term	was	associated	with	differences	in	baseline	test	

scores	and	rate	of	change.	In	individuals	who	were	both	hypertensive	and	APOE*e4	

carriers,	higher	baseline	test	scores	were	observed	for	both	Recall-immediate	and	

Recall-delayed	 while	 a	 greater	 rate	 of	 decline	 in	 test	 scores	 was	 observed	 for	

Recall-immediate,	Recall-delayed,	 Spot-the-Word,	Global	Cognition.	The	 inclusion	

of	 the	 interaction	 term,	 however,	 did	 not	 explain	 any	 additional	 variance.	

Conversely,	introducing	the	interaction	term	between	APOE	genotype	and	MAP	did	

not	significantly	improve	model	fit	for	any	of	the	cognitive	tests.	
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Table	3.4:	Fixed	effects	for	hypertension	and	Mean	Arterial	Pressure	models	1-5	

	 Recall-Immediate	 Recall-Delayed	 Digit	Span	Backwards	 Spot-the-Word	 Symbol	Digit	 Global	Cognition	

	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	

Model	1	(Unconditional	Means)	

				Intercept	 49	(0.22)***	 49	(0.21)***	 50	(0.22)***	 51	(0.24)***	 48	(0.24)***	 49	(0.24)***	

				Model	fit,	df	=	3	 30395	 29859	 29264	 26522	 28805	 28644	

				ICC	 0.52	 0.56	 0.64	 0.86	 0.75	 0.80	

Model	2	(Unconditional	Growth)	

				Intercept		 50	(0.25)***	 50	(0.25)***	 50	(0.25)***	 50	(0.26)***	 50	(0.26)***	 50	(0.25)***	

				Time		 -0.37	(0.03)***	 -0.23	(0.03)***	 0.01	(0.03)	 0.18	(0.02)***	 -0.44	(0.02)***	 -0.25	(0.02)***	

				Change	in	model	

fit	dfΔ	=	3	
135***	 68***	 5.3	 136***	 359***	 148***	

				R2yy	 0.73	 0.76	 0.80	 0.93	 0.87	 0.89	

Model	3	(Covariates)		

				Intercept		 41	(1.19)***	 423(1.18)***	 36	(1.25)***	 25	(1.24)***	 38	(1.36)***	 31	(1.24)***	

				Time		 -0.37	(0.03)***	 -0.23	(0.03)***	 0.01	(0.03)	 0.18	(0.02)***	 -0.44	(0.02)***	 -0.26	(0.02)***	

				Change	in	model	

fit	dfΔ	=	6	
253***	 216***	 157**	 413***	 139***	 374***	

				R2yyΔ	 -0.01	 0.00	 -0.01	 0.00	 0.00	 0.00	

Model	4	(APOE	+	Hypertension)	

Initial	status		

				Intercept		 41	(1.24)***	 43	(1.23)***	 36	(1.30)***	 25	(1.29)***	 38	(1.42)***	 30	(1.29)***	

				APOE	genotype	 0.73	(0.52)	 0.26	(0.52)	 0.16	(0.53)	 0.28	(0.50)	 -0.02	(0.54)	 0.43	(0.50)	

				Hypertension	 -0.22	(0.49)	 -0.34	(0.49)	 0.24	(0.50)	 0.64	(0.48)	 0.07	(0.52)	 0.08	(0.48)	

Rate	of	Change		

				Time		 -0.37	(0.06)***	 -0.24	(0.05)***	 -0.02	(0.05)	 0.17	(0.03)***	 -0.35	(0.04)***	 -0.24	(0.04)***	

				APOE	genotype	 -0.20	(0.07)**	 -0.20	(0.07)**	 0.10	(0.06)	 -0.02	(0.04)	 -0.07	(0.05)	 -0.13	(0.05)*	

				Hypertension	 0.10	(0.07)	 0.10	(0.06)	 0.01	(0.06)	 0.02	(0.04)	 -0.11	(0.05)*	 0.04	(0.05)	

				Change	in	model	

fit	dfΔ	=	4	
10*	 13*	 4.2	 3.7	 7.9	 6.8	
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	 Recall-Immediate	 Recall-Delayed	 Digit	Span	Backwards	 Spot-the-Word	 Symbol	Digit	 Global	Cognition	

	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	

				R2yyΔ	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

Model	5	(APOE	x	Hypertension)	

Initial	Status		

				Intercept		 42	(1.26)***	 43	(1.24)***	 36	(1.32)***	 25	(1.30)***	 38	(1.43)***	 31	(1.30)***	

				APOE	genotype	 -0.61	(0.84)	 -1.5	(0.84)	 0.53	(0.87)	 -0.28	(0.82)	 0.45	(0.89)	 -0.42	(0.82)	

				Hypertension	 -0.85	(0.58)	 -1.1	(0.58)*	 0.41	(0.59)	 0.37	(0.56)	 0.29	(0.61)	 -0.32	(0.56)	

				APOE	x	HT	 2.2	(1.06)*	 2.8	(1.07)**	 -0.59	(1.10)	 0.90	(1.04)	 -0.75	(1.12)	 1.4	(1.04)	

Rate	of	Change		

				Time		 -0.43	(0.06)***	 -0.31	(0.06)***	 -0.03	(0.05)	 0.13	(0.04)***	 -0.36	(0.04)***	 -0.30	(0.04)***	

				APOE	genotype	 0.01	(0.12)	 0.03	(0.11)	 0.12	(0.10)	 0.12	(0.06)	 -0.03	(0.08)	 0.07	(0.08)	

				Hypertension	 0.19	(0.08)*	 0.21	(0.07)**	 0.01	(0.07)	 0.09	(0.04)*	 -0.10	(0.06)	 0.13	(0.06)*	

				APOE	x	HT	 -0.34	(0.15)*	 -0.36	(0.14)**	 -0.03	(0.13)	 -0.24	(0.08)**	 -0.07	(0.11)	 -0.31	(0.11)**	

				Change	in	model	

fit	dfΔ	=	2	
6.3*	 8.9*	 0.58	 8.2*	 1.2	 8.5*	

	 R2yyΔ	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

Model	4	(APOE	+	MAP)	

Initial	status		 	 	 	 	 	 	

				Intercept		 38	(2.35)***	 40	(2.35)***	 37	(2.43)***	 20	(2.33)***	 34	(2.53)***	 26	(2.33)***	

				APOE	genotype	 0.74	(0.52)	 0.27	(0.52)	 0.16	(0.53)	 0.29	(0.50)	 -0.01	(0.54)	 0.44	(0.50)	

				MAP	 0.04	(0.02)	 0.03	(0.02)	 -0.00	(0.02)	 0.05	(0.02)*	 0.04	(0.02)	 0.04	(0.02)*	

Rate	of	Change		 	 	 	 	 	 	

				Time		 -0.13	(0.27)	 -0.21	(0.26)	 -0.38	(0.24)	 0.34	(0.15)*	 0.01	(0.20)	 -0.16	(0.20)	

				APOE	genotype	 -0.20	(0.07)**	 -0.20	(0.07)**	 0.10	(0.06)	 -0.02	(0.04)	 -0.07	(0.05)	 -0.13	(0.05)*	

				MAP	 -0.00	(0.00)	 0.00	(0.00)	 0.00	(0.00)	 -0.00	(0.00)	 -0.00	(0.00)	 -0.00	(0.00)	

				Change	in	model	

fit	dfΔ	=	4	
11*	 13**	 6.8	 6.2	 8.4	 11*	

				R2yyΔ	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

Model	5	(APOE	x	MAP)	

Initial	Status		 	 	 	 	 	 	

				Intercept		 39	(2.67)***	 43	(2.67)***	 35	(2.76)***	 21	(2.63)***	 33	(2.85)***	 27	(2.63)***	
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	 Recall-Immediate	 Recall-Delayed	 Digit	Span	Backwards	 Spot-the-Word	 Symbol	Digit	 Global	Cognition	

	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	

				APOE	genotype	 -4.5	(4.36)	 -9.7	(4.38)*	 4.8	(4.49)	 -1.8	(4.25)	 3.1	(4.58)	 -2.4	(4.26)	

				MAP	 0.02	(0.02)	 0.00	(0.02)	 0.01	(0.02)	 0.04	(0.02)	 0.05	(0.02)*	 0.03	(0.02)	

				APOE	x	MAP	 0.05	(0.04)	 0.10	(0.04)*	 -0.05	(0.04)	 0.02	(0.04)	 -0.03	(0.04)	 -0.03	(0.04)	

Rate	of	Change		 	 	 	 	 	 	

				Time		 -0.35	(0.32)	 -0.50	(0.30)	 -0.41	(0.28)	 0.16	(0.18)	 0.07	(0.23)	 -0.36	(0.23)	

				APOE	genotype	 0.56	(0.61)	 0.80	(0.57)	 0.23	(0.53)	 0.63	(0.34)	 -0.28	(0.44)	 0.60	(0.44)	

				MAP	 0.00	(0.00)	 0.00	(0.00)	 0.00	(0.00)	 0.00	(0.00)	 -0.00	(0.00)*	 0.00	(0.00)	

				APOE	x	MAP	 -0.01	(0.01)	 -0.01	(0.01)	 -0.00	(0.00)	 -0.01	(0.00)	 0.00	(0.00)	 -0.01	(0.00)	

				Change	in	model	

fit	dfΔ	=	2	
2.0	 5.7	 1.8	 3.7	 0.56	 2.7	

				R2yyΔ	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

ICC	=	Intraclass	correlation	coefficient;	R2yy		=	Pseudo	R2	statistic	for	total	variance	explained	

	*p	<	.05;	**p	<	.01;	***p	<	.001.	
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Figure	3.1:	Cognitive	trajectories	for	the	APOE	and	Hypertension	interaction.	
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Figure	3.2:	Cognitive	trajectories	for	the	APOE	and	MAP	interaction.	
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To	 examine	 the	 effect	 of	 untreated,	 in	 comparison	 to	 treated,	 hypertension	 on	

cognitive	 change	 we	 analysed	 a	 subsample	 of	 569	 individuals	 with	 a	 history	 of	

hypertension.	 445	 (78%)	 individuals	 in	 this	 group	 reported	 taking	 anti-

hypertensive	 medication	 at	 baseline	 (Med+)	 and	 287	 (64%)	 were	 classified	 as	

hypertensive	according	 to	blood	pressure	readings	at	baseline	 (HT+).	Of	 the	124	

individuals	 who	 reported	 not	 taking	 anti-hypertensive	 medication	 (Med-),	 87	

(70%)	 were	 in	 the	 HT+	 group.	 The	 interaction	 with	 APOE	 genotype	 and	 these	

groups	 (Med+/HT+,	Med+/HT-,	Med-/HT+	and	Med-/HT-)	were	analysed	and	no	

significant	association	with	any	of	the	cognitive	variables	was	observed	(data	not	

shown).	However,	given	the	small	size	of	the	groups	our	study	was	underpowered	

to	detect	an	effect	of	treated	vs.	untreated	hypertension.	

	

3.3.5	 Inclusion	of	APOE*e2	Carriers	

A	secondary	analysis	was	performed	in	which	carriers	of	the	AD-protective	

APOE*e2	allele	were	 included.	This	had	no	appreciable	effect	on	 fixed	or	random	

effects	 for	 Models	 1-3	 (Supplementary	 Table	 5),	 but	 it	 changed	 the	 effects	 of	

introducing	 APOE	 genotype	 and	 the	 blood	 pressure	 variables	 into	 the	 model	

(Model	 4;	 Supplementary	Tables	 5	&	6).	 Specifically,	model	 fit	 for	 Symbol	Digits	

Modalities	 Test	 becomes	 significant	 and	 for	 Recall-immediate	 it	 was	 no	 longer	

significant	 in	 hypertension	 models,	 and	 in	 MAP	 models,	 model	 fit	 for	 Recall-

immediate	and	Global	Cognition	were	no	longer	significant.	There	were	also	small	

changes	in	the	parameter	estimates.	No	additional	variance	was	explained	for	any	

cognitive	test.	

Inclusion	 of	APOE*e2	 carriers	 had	 a	 comparatively	 stronger	 effect	 on	 the	

APOE-hypertension	 interaction	 models	 (Model	 5;	 Supplementary	 Table	 5).	 A	

decrease	 in	 model	 fit	 was	 observed	 for	 Recall-Immediate,	 Recall-Delayed	 and	

Global	Cognition.	Change	 in	model	 fit	 only	 remained	 significant	 for	 the	Spot-the-

Word	 test.	 The	 reduction	 in	 model	 fit	 across	 all	 cognitive	 tests	 was	 also	

accompanied	 with	 attenuation	 in	 the	 coefficients	 for	 the	 APOE-hypertension	

interaction	 term	 for	 both	 baseline	 scores	 and	 rate	 of	 change	 in	 test	 scores.	 No	

changes	in	the	model	fit	or	the	interaction	parameter	estimates	were	observed	in	

the	APOE-MAP	interaction	models	(Model	5;	Supplementary	Table	6).	
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3.4	 Discussion		

We	 have	 found	 evidence	 that	 the	 APOE–hypertension	 interaction	 has	 a	

significant	 effect	 on	 the	 rate	 of	 decline	 of	 episodic	memory	 (Recall-immediate	&	

Recall-delayed),	 vocabulary	 (Spot-the-Word)	 and	 global	 cognition.	 However,	 the	

effect	 is	 small,	 with	 the	 interaction	 term	 accounting	 for	 a	 decline	 in	 cognitive	

abilities	ranging	from	-0.024	to	-0.038	SD	over	four	years.	This	is	reflected	in	the	

pseudo-R2	statistics,	 which	 indicate	 that	 the	 inclusion	 of	 the	 predictor	 variables	

does	 not	 increase	 the	 amount	 of	 total	 outcome	 variance	 explained	 beyond	 the	

effect	of	time.		

In	comparison,	the	APOE–MAP	interaction	did	not	affect	the	rate	of	decline	

in	 test	scores	 for	any	of	 the	cognitive	 tests.	The	difference	between	these	results	

could	reflect	 the	confounding	effect	of	hypertensive	medication	on	measurement	

of	MAP,	 since	 individuals	with	 controlled	 hypertension	 have	MAP	 in	 the	 normal	

range.	 This	 interpretation	 would	 imply	 that	 the	 effect	 of	 hypertension,	 in	

interaction	 with	 APOE	 genotype	 has	 an	 effect	 on	 cognitive	 decline,	 even	 if	

hypertension	is	medically	controlled.	

Consistent	 with	 previous	 findings	 [379,380],	 APOE*e2	 appears	 to	 have	 a	

protective	effect	on	cognitive	decline	since	its	inclusion	in	the	analysis	attenuates	

parameter	estimates	and	the	significance	of	the	APOE-blood	pressure	associations,	

despite	 the	 increase	 in	sample	size	and	hence	the	power	to	detect	an	effect.	This	

finding	underscores	the	limitation	of	investigating	effects	of	APOE	genotypes	based	

on	a	simple	binary	classification	of	alleles	as	e4+	and	e4-.	

There	 are	 limitations	 that	 need	 to	 be	 considered	 when	 interpreting	 our	

findings.	 Firstly,	 this	 sample	 is	 better	 educated	 than	 the	 general	 Australian	

population	[322]	and	the	populations	sampled	in	similar,	previous	studies	(Table	

3.1).	Higher	educational	attainment	is	linked	with	reduced	risk	of	cognitive	decline	

[415]	 and	development	 of	 dementia	 [276],	 consistent	with	 the	 cognitive	 reserve	

hypothesis	 [416].	 Additionally,	 the	 sample	 is	 relatively	 young.	 Studies	 that	 have	

identified	 a	 strong	 association	 between	 the	APOE*e4	allele	 and	 cognitive	 change	

have	generally	been	based	on	a	slightly	older	population	 then	those	 in	 the	PATH	

sample	 [417,418].	 The	 combination	 of	 a	 younger	 age	 and	 a	 higher	 potential	

cognitive	 reserve	 could	 have	 limited	 our	 ability	 to	 detect	 an	 effect	 of	 the	 APOE	

genotype–BP	 interaction	 on	 cognitive	 change,	 which	 may	 become	 apparent	 in	

follow-up	assessments.	Our	analysis	is	also	based	on	measures	of	hypertension	in	

early	 old	 age,	 whereas	 studies	 investigating	 the	 interaction	 between	 APOE	
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genotype	and	mid-life	hypertension,	which	has	been	consistently	associated	with	

cognitive	decline	in	later	life	[384,385],	may	observe	stronger	effects.		

This	 study	 had	 a	 number	 of	 strengths	 that	 allow	 for	 robust	 statistical	

inference	about	how	the	APOE-genotype	moderates	the	effect	of	hypertension	on	

non-pathological	aging.	Data	were	collected	from	three	assessments	over	a	period	

of	 8	 years	 in	 a	 representative	 community-based	 sample.	 This	 included	 a	

comprehensive	cognitive	assessment	using	a	number	of	different	cognitive	tests	to	

access	different	abilities,	 two	measures	of	blood	pressure	 including	a	continuous	

measure	 of	 mean	 arterial	 pressure	 (MAP)	 and	 a	 dichotomous	 hypertension	

measure.	 Furthermore,	 individuals	 with	 the	 protective	 APOE*e2	 allele	 were	

excluded.	

Our	 findings	 suggest	 an	 interaction	of	 the	 biological	 processes	 underlying	

the	 effects	 of	APOE	 genotype	 and	 of	 hypertension	 on	 cognitive	 aging.	 Caution	 is	

needed	 in	drawing	 inferences	 from	these	 findings	about	dementia.	Evidence	 that	

APOE	genotype	moderates	the	effect	of	hypertension	on	dementia	 is	 inconclusive	

[419]	 and	 the	 overlap	 between	 biological	 changes	 associated	 with	 normal	

cognitive	aging	and	dementia	 is	 limited	[91].	The	PATH	study	 is	ongoing	and	the	

number	 of	 incident	 cases	 of	 mild	 cognitive	 impairment	 and	 dementia	 among	

participants	 is	 increasing.	 The	 work	 presented	 here	 thus	 provides	 an	 excellent	

basis	 for	 investigating	 this	 overlap	 through	 longitudinal	 analysis	 incorporating	

future	waves	of	the	PATH	study.		

	

Supplementary	Data	
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Chapter	4:	 Association	 of	 genetic	 risk	 factors	 with	 cognitive	 decline:	 the	

PATH	through	life	project	
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Abstract	

We	 examined	 the	 association	 of	 28	 single	 nucleotide	 polymorphisms	 (SNPs),	

previously	 associated	 with	 dementia	 or	 cognitive	 performance,	 with	 tests	

assessing	episodic	memory,	working	memory,	vocabulary	and	perceptual	speed	in	

1,689	non-demented	older	Australians	of	European	ancestry.	In	addition	to	testing	

each	variant	individually,	we	assessed	the	collective	association	of	the	12	risk	SNPs	

for	Late-onset	Alzheimer's	disease	(LOAD)	using	weighted	and	unweighted	genetic	

risk	 scores	 (GRS).	 Significant	 associations	 with	 cognitive	 performance	 were	

observed	 for	 APOE	 e4	 allele,	 ABCA7-rs3764650,	 CR1-rs3818361,	 MS4A4E-

rs6109332,	 BDNF-rs6265,	 COMT-rs4680,	 CTNNBL-rs6125962,	 FRMD4A-

rs17314229,	 FRMD4A-rs17314229,	 intergenic	 SNP	 chrX-rs12007229,	 PDE7A-

rs10808746,	SORL1-rs668387	and	ZNF224-rs3746319.	Additionally,	the	weighted	

GRS	 was	 associated	 with	 worse	 performance	 on	 episodic	 memory.	 The	

identification	of	genetic	risk	factors,	that	act	individually	or	collectively,	may	help	

in	 screening	 for	 people	 with	 elevated	 risk	 of	 cognitive	 decline	 and	 for	

understanding	the	biological	pathways	that	underlie	cognitive	decline.		

	

Keywords:	 Alzheimer's	 Disease;	 Cognitive	 Decline;	 SNPs;	 Genetic	 Risk	 Scores,	

Population-Based	Study.	 	
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4.1	 Introduction	

Cognitive	differences	in	the	elderly	consist	of	differences	in	stable,	life-long	

cognitive	 traits	 and	 differences	 in	 age-associated	 cognitive	 change.	 For	 both	 of	

these	there	 is	significant	 inter-individual	variability	 in	 the	population	[420].	Loss	

of	 cognitive	 function	 due	 to	 age-associated	 cognitive	 decline	 is	 associated	 with	

increased	difficulties	 in	performing	 tasks	 involving	memory	or	rapid	 information	

processing	and	can	have	a	major	 impact	on	an	individual's	quality	of	 life,	even	in	

the	 absence	 of	 dementia	 [5-8,10,421].	 Identifying	 factors	 that	 predispose	

individuals	to	a	faster	rate	of	cognitive	decline	is	an	important	step	for	developing	

intervention	and	treatment	strategies	aimed	at	maintaining	cognitive	health.			

Genetic	factors	likely	contribute	to	the	inter-individual	variability	observed	

in	 cognitive	 decline,	 with	 common	 genetic	 variants	 estimated	 to	 account	 for	

between	40-50%	of	the	variability	associated	with	general	cognitive	functioning	in	

later	life	and	24%	of	the	variability	in	lifetime	cognitive	change	[102,103].	To	date	

the	 majority	 of	 genetic	 research	 on	 cognitive	 decline	 has	 focused	 on	 candidate	

genes	 that	 have	 been	 previously	 associated	 with	 age-related	 disease,	 traits	 or	

mechanisms	[104,105],	and	particularly	with	genes	related	 to	neurotransmitters,	

neurotrophins,	cognitive	function	and	neurodegenerative	disease.	Two	of	the	most	

widely	studied	such	genes	are	COMT,	which	encodes	the	neurotransmiter	catechol-

O-methyl	 transferase,	 and	BDNF,	 which	 encodes	 the	 neurotrophin	 brain-derived	

neurotrophic	 factor.	 Functional	 variants	 in	 these	 genes	 have	 been	 primarily	

associated	 with	 decline	 in	 executive	 functioning	 and	 memory,	 respectively,	

although	 results	 are	 inconsistent	 [104].	 Late-onset	 Alzheimer's	 disease	 (LOAD)	

susceptibility	genes	are	also	good	candidates	for	association	with	cognitive	decline	

as	 the	 pathological	 features	 of	 LOAD	 progress	 to	 varying	 degrees	 in	 individuals	

without	 dementia	 or	 cognitive	 impairment	 and	 are	 associated	 with	 non-clinical	

cognitive	 decline	 [97,422].	 This	 cross-over	 effect	 is	 exemplified	 by	 the	APOE	 *e4	

allele,	which	confers	 the	 largest	known	genetic	risk	 for	LOAD,	approximately	2-3	

times	and	10-12	times	for	heterozygotes	and	homozygotes	respectively	[134].	The	

APOE	genotype	are	also	associated	with	specific	effects	on	the	cognitive	domains	of	

episodic	 memory,	 executive	 functioning,	 perceptual	 speed	 and	 global	 cognitive	

ability	[136].			

Despite	 the	 publication	 of	 numerous	 genetic	 associations	 with	 cognitive	

decline,	 the	 variants	 identified	 typically	 explain	 a	 very	 small	 fraction	 of	 the	
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phenotypic	variability	and	many	remain	 to	be	replicated.	Furthermore,	 failure	 to	

replicate	 an	 initial	 positive	 result	 is	 common	 due	 to	 differences	 in	 participant	

characteristics	 (e.g.	 baseline	 education,	 mean	 age,	 gender	 and	 ethnicity)	 and	

methodologies	 (e.g.	 sample	 size,	 duration	 of	 the	 study,	 number	 of	 follow-ups,	

population	stratification,	variation	in	classification	and	cognitive	measures)	[104].		

Here	we	 investigate	 the	 association	 between	 selected	 genetic	 risk	 factors	

with	 cognitive	 decline	 in	 a	 longitudinally	 followed	 community-based	 cohort	 of	

1,689	 older	 adults	 without	 dementia	 who	 have	 undergone	 comprehensive	

cognitive	 testing.	 First,	 we	 investigate	whether	 12	 SNPs	 from	 the	 top	 replicated	

LOAD	 associated	 genes	 [423]	 (Table	 4.1)	 are	 individually,	 or	 collectively	 as	 a	

genetic	risk	score	(GRS),	associated	with	cognitive	decline.	Second,	we	investigate	

whether	16	SNPs,	previously	associated	with	either	dementia	or	cognition	(Table	

4.1)	are	also	associated	with	cognitive	decline.			

	

4.2	 Methods	

4.2.1	 Participants	

Participants	were	recruited	randomly	from	the	electoral	rolls	(registration	

is	 a	 legal	 requirement	 for	Australian	Citizens)	 of	 Canberra	 and	Queanbeyan	 into	

the	 Personality	 and	Total	Health	 (PATH)	 Through	 Life	 Project.	 PATH	 consists	 of	

three	 cohorts	 20-24	 (20+),	 40-44	 (40+)	 and	 60-64	 (60+)	 years	 at	 baseline,	who	

have	participated	in	a	large	longitudinal	community	survey	of	health	and	wellbeing	

in	adults,	the	background	and	procedures	for	which	have	been	described	in	detail	

elsewhere	[322].	Written	informed	consent	was	obtained	from	all	participants	and	

approval	for	the	study	was	obtained	from	the	Human	Research	Ethics	Committee	

of	The	Australian	National	University.		

The	60+	 cohort	 is	 the	 focus	of	 this	 study.	 Individuals	were	 assessed	 at	 4-

year	intervals	for	a	period	of	8	years	with	interviews	conducted	in	2001-2002	(n	=	

2,551),	 2005-2006	 (n	 =	 2,222)	 and	 2009-2010	 (n	 =	 1,973).	 Individuals	 were	

excluded	from	further	analysis	based	on	the	following	criteria:	attendance	at	only	

one	interview	(n	=	309),	no	genomic	DNA	available	for	genotyping	(n	=	185),	APOE	

*e2/*e4	 genotype	 (n	 =	 60;	 to	 avoid	 the	 conflation	 of	 *e2	 protective	 and	 *e4	 risk	

effect),	 non-European	 ancestry	 (n	 =	 110),	 probable	 dementia	 at	 any	wave	 (Mini	

Mental	 State	 Examination	 score	 <	 24	 [370]),	 self-reported	 medical	 history	 of	
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Table	4.1:	SNPs	used	in	this	study	

Gene	 Protein	 SNP	 Chromosome	 Alleles†	 MAF‡	 Odds	Ratio§	
	

Top	Report	Alzheimer’s	disease	risk	SNPs	

APOE	 Apolipoprotein	E	 rs429358/rs7412	 19	 e2/e3/e4	 0.8/0.14	 0.54/3.81	

ABCA7	 ATP-binding	cassette	subfamily	A	member	7	 rs3764650	 19	 T/G	 0.11	 1.23	

BIN1	 Myc	box-dependent-interacting	protein	1	 rs744373	 2	 A/G	 0.31	 1.17	

CD2AP	 CD2-associated	protein	 rs9296559	 6	 T/C	 0.27	 1.11	

CD33	 Myeloid	cell	surface	antigen	CD33	 rs34813869	 19	 A/G	 0.29	 0.89	

CLU	 Clusterin	 rs11136000	 8	 C/T	 0.35	 0.88	

CR1	 Complement	receptor	type	1	 rs3818361	 1	 G/A	 0.26	 1.17	

EPHA1	 Ephrin	type-A	receptor	1	 rs11767557	 7	 T/C	 0.2	 0.89	

MS4A4A	 Membrane-spanning	4-domains	subfamily	A	member	4A	 rs4938933	 11	 T/C	 0.5	 0.88	

MS4A4E	 Membrane-spanning	4-domains	subfamily	A	member	4E	 rs670139	 11	 G/T	 0.34	 1.08	

MS4A6A	 Membrane-spanning	4-domains	subfamily	A	member	6A	 rs610932	 11	 T/G	 0.45	 0.9	

PICALM	 Phosphatidylinositol-binding	clathrin	assembly	protein	 rs3851179	 11	 C/T	 0.41	 0.88	
	

Additional	AD,	dementia	and	cognition	SNPs	

BDNF	 Brain-derived	neurotrophic	factor	 rs6265	 11	 C/T	 0.2	 	

CETP	 Cholesteryl	ester	transfer	protein	 rs5882	 16	 A/G	 0.36	 	

COMT	 Catechol	O-methyltransferase	 rs4680	 22	 G/A	 0.48	 	

CTNNBL1	 Beta-catenin-like	protein	1	 rs6125962	 20	 T/C	 0.6	 	

FRMD4A	 FERM	domain-containing	protein	4A	 rs17314229	 10	 C/T	 0.09	 	

FRMD4A	 FERM	domain-containing	protein	4A	 rs7081208	 10	 G/A	 0.29	 	

Intergenic	 -	 rs12007229	 X	 C/A	 0.12	 	

LGALS3	 Galectin-3	 rs4644	 14	 C/A	 0.49	 	

MMP12	 Macrophage	metalloelastase	 rs12808148	 11	 T/C	 0.2	 	

MTHFD1L	 Methylenetetrahydrofolate	dehydrogenase	(NADP+	dependent)	1-like	 rs11754661	 6	 G/A	 0.07	 	

PAICS	 Multifunctional	protein	ADE2	 rs11549976	 4	 A/C	 0.08	 	

PDE7A	 High	affinity	cAMP-specific	3’,5’-cyclic	phosphodiesterase		7A	 rs10808746	 8	 G/A	 0.48	 	

SNTG1	 Gamma-1-syntrophin	 rs16914781	 8	 A/G	 0.4	 	

SORL1	 Sortilin-related	receptor	 rs668387	 11	 C/T	 0.48	 	

SPON1	 Spondin-1	 rs11023139	 11	 G/A	 0.06	 	

ZNF224	 Zinc	finger	protein	224	 rs3746319	 19	 G/A	 0.19	 	
†Major/Minor	Allele;	‡Minor	Allele	Frequency:	HapMap-CEU;	§Alzegene	reported	OR	for	minor	allele	
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epilepsy,	 stroke,	 transient	 ischaemic	attack,	brain	 tumour	or	brain	 infection	 (n	=	

327).	Missing	values,	which	can	reduce	power	and	result	in	biased	estimates,	were	

imputed	 for	 the	 covariate	 'Education'	 (total	 years	 of	 education)	 using	 random	

forests	via	the	'missForest'	package	available	in	R	[424]	(n	=	139).	This	left	a	final	

sample	 of	 1,689	 individuals.	 At	 baseline,	 the	 individuals	 retained	 in	 the	 final	

sample	 had	 on	 average	 of	 0.69	more	 years	 of	 education	 and	 scored	 0.74	 points	

higher	on	the	MMSE	than	those	excluded	(Table	4.2).		

	

Table	4.2:		Sample	 Demographics	

Variable	 Excluded	

(n=861)	
Included	

(n=1,689)	
Degrees	of	

Freedom	
t	/χ2	 p	

Age†	 62.46	±	1.49	 62.54	±	1.51	 1,753	 -1.22	 0.21	

Education†	 3.31	±	3.09	 14	±	2.59	 1,488	 -5.62	 <0.001	

Cognitive	Tests†	

				Immediate		

				Recall	

6.61	±	2.42	 7.36	±	2.18	 1578.5	 7.57	 <0.001	

				Delayed		

				Recall	

5.61	±	2.55	 6.42	±	2.44	 1666.1	 7.67	 <0.001	

				Digits		

				Backwards	

4.56	±	2.31	 5.05	±	2.2	 1646.4	 5.15	 <0.001	

				Spot-the-	

				Word	

50.29	±	6.57	 52.57	±	5.3	 1333.7	 8.6326	 <0.001	

				SDMT	 46.76	±	11	 51.11	±	8.78	 1400.3	 9.99	 <0.001	

				MMSE	 28.6	±	2.13	 29.35	±	0.92	 1010	 -9.77	 <0.001	
Male	 n(%)‡	 443	(51.4%)	 873	(51.7%)	 1	 0.005	 0.94	

APOE	 Genotypes	n	(%)	

				*e2/*e2	 6	 (0.70%)	 13	(0.77%)	 	 	 	

				*e3/*e3	 395	(45.82%)	 1048	(62%)	 	 	 	

				*e4/*e4	 20	(2.32%)	 29	(1.71%)	 	 	 	

				*e2/*e3	 70	(8.12%)	 204	(12.07%)	 	 	 	

				*e2/*e4	 60	(6.96%)	 0	 (0%)	 	 	 	

				*e3/*e4	 137	(15.89%)	 395	(23.37%)	 	 	 	
†Unpaired	2-tailed	t-test.	 ‡Pearson’s	χ2	2-tailed	test.	

4.2.2	 Cognitive	Assessment	

All	participants	were	assessed	at	baseline	and	at	each	subsequent	interview	

for	the	following	five	cognitive	abilities:	perceptual	speed	was	assessed	using	the	

Symbol	 Digit	 Modalities	 Test,	 which	 asks	 the	 participant	 to	 substitute	 as	 many	

digits	 for	symbols	as	possible	 in	90s	 [371];	episodic	memory	was	assessed	using	

the	 immediate	 recall	 and	 delayed	 recall	 of	 the	 first	 trial	 of	 the	 California	 Verbal	

Learning	Test,	which	involves	recalling	a	list	of	16	nouns	[327];	working	memory	

was	 assessed	 using	 the	 Digit	 Span	 Backward	 from	 the	Wechsler	 Memory	 Scale,	

which	presents	participants	with	series	of	digits	increasing	in	length	at	the	rate	of	

one	 digit	 per	 second	 and	 asks	 them	 to	 repeat	 the	 digits	 backwards	 [328];	 and	
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vocabulary	was	assessed	with	the	Spot-the-Word	Test,	which	asks	participants	to	

choose	 the	 real	 words	 from	 60	 pairs	 of	 words	 and	 nonsense	 words	 [329]	

(Supplementary	Tables	5	&	6).		

	

4.2.3	 Genotyping	

Sixty-four	 single	 nucleotide	 polymorphisms	 (SNPs)	 were	 selected	 for	

genotyping	 based	 on	 previous	 associations	 with	 dementia,	 cognition,	

neuroanatomical	 differences	 and	 blood	 pressure	 (Table	 2.3).	 Genomic	 DNA	was	

extracted	 from	 cheek	 swabs	 (n	 =	 4,597)	 using	 Qiagen	 DNA	 blood	 kits	 or	 from	

peripheral	blood	leukocytes	(n	=	64)	using	QIAamp	DNA	96	DNA	blood	kits.		

Pre-amplification	 of	 the	 targeted	 loci	 was	 performed	 using	 the	 TaqMan	

PreAmp	Master	Mix	Kit	(Life	Technologies).	Each	reaction	included	2.5μl	TaqMan	

PreAmp	Master	Mix	(2x),	1.25μl	Pre-amplification	Assay	Pool,	0.5μl	H20	and	1.2μl	

genomic	DNA.	These	reactions	were	incubated	in	a	Biorad	thermocycler	for	10	min	

at	 95°C,	 followed	 by	 12	 cycles	 of	 95°C	 for	 15	 sec	 and	 60°C	 for	 4	min,	 and	 then	

incubated	at	99.9°C	for	10	minutes.	The	PreAmplified	products	were	then	held	at	

4°C	until	they	were	diluted	1:20	in	1x	TE	buffer	and	then	stored	at	-20°C	until	use.	

2.5μl	 diluted	 pre-amplified	 products	 was	 mixed	 with	 2.5μl	 TaqMan	 OpenArray	

Master	 Mix.	 The	 resulting	 samples	 were	 dispensed	 using	 the	 OpenArray®	

AccuFillTM	 System	onto	OpenArray	plates	with	 each	plate	 containing	 48	 samples	

and	64	SNP	assays	per	sample.	The	QuantStudioTM	12K	Flex	 instrument	(Applied	

Biosystems,	Carlsbad,	California)	was	used	to	perform	the	real	time	PCR	reactions	

on	 the	 loaded	 OpenArray	 plates.	 The	 fluorescence	 emission	 results	 were	 read	

using	the	OpenArray®	SNP	Genotyping	Analysis	software	v1	(Applied	Biosystems)	

and	the	genotyping	analysis	was	performed	using	TaqMan®	Genotyper	v1.3,	using	

the	 autocalling	 feature.	 Participant-specific	 quality	 controls	 included	 filters	 for	

genotype	 success	 rate	 (>	 90%),	 genotype-derived	 gender	 concordant	 with	

reported	gender	and	sample	provenance	error	assessed	via	pairwise	comparisons	

of	genotype	calls	between	all	 samples	 to	 identify	 samples	with	>	90%	similarity.	

Samples	that	were	flagged	in	the	initial	quality	control	checks	were	repeated,	and	

those	 that	 still	 failed	 quality	 control	were	 excluded.	 SNP-specific	 filters	 included	

genotype	call	rate	(>	90%)	and	Hardy-Weinberg	equilibrium	(p	>	0.001)	assessed	

using	an	exact	test	with	the	PLINK	toolkit	[425].		
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For	this	study,	data	for	28	of	the	64	genotyped	SNPs	was	extracted	based	on	

a	priori	 hypotheses	 (Table	 4.1).	 These	 SNPs	 have	 being	 previously	 identified	 as	

being	 associated	 with	 dementia	 or	 cognition	 through	 GWAS	 or	 candidate	 gene	

studies	 (Table	 2.3)	 and	 consist	 of	 12	 SNPs	 that	 have	 been	 highly	 replicated	 as	

being	 associated	 with	 LOAD	 and	 an	 additional	 16	 SNPs	 whose	 associations	 are	

ambiguous	and	are	in	need	of	further	replication.	Genotyping	of	the	PATH	sample	

for	APOE	 variants	was	 performed	 separately	 and	 has	 been	 described	 previously	

[382].	 The	 SNPs	were	 in	Hardy-Weinberg	 equilibrium	 and	 genotype	 frequencies	

are	presented	in	Supplementary	Tables	3	&	4.		

	

4.2.4	 Data	Preparation	and	Statistical	Analysis	

Data	were	analysed	 in	 the	R	Statistical	Computing	environment	 [426].	We	

created	an	 index	for	episodic	memory	using	the	average	scores	of	 the	 immediate	

and	 delayed	 recall	 tasks.	 To	 allow	 for	 comparison	 across	 all	 cognitive	 tasks,	 the	

tests	 scores	 for	 each	 cognitive	 task	 at	 all	 three	 waves	 were	 transformed	 into	 Z	

scores	(M	=	0,	SD	=	1),	using	the	baseline	means	and	standard	deviations.	Higher	

test	scores	indicate	better	cognitive	function.			

Genetic	dominance	was	assumed	for	previously	reported	risk	alleles	[427]	

for	LOAD	GWAS	SNPs,	and	for	minor	alleles	(alleles	with	the	 lowest	 frequency	 in	

the	 population)	 of	 the	 16	 additional	 SNPs.	 The	 APOE	 *e4	 and	 *e2	 alleles	 were	

assumed	to	be	dominant	to	the	*e3	allele.	For	APOE	participants	were	classified	as	

either	APOE	*e4+	(*e4/*e4	+	*e4/*e3),	*e2+	(*e2/*e2	+	*e2/*e3)	or	*e3	(*e3/*e3).	

Because	 we	 wanted	 to	 assess	 the	 independent	 contributions	 of	 *e4	 and	 *e2	 to	

cognitive	decline,	and	those	with	the	*e2/*e4	genotype	were	excluded.	

Three	 genetic	 risk	 scores	 [428]	 were	 calculated	 using	 the	 LOAD	 GWAS	

SNPs:	1)	a	simple	count	genetic	risk	(SC-GRS):	the	sum	of	all	risk	alleles	across	all	

loci;	 2)	 an	 odds-ratio	 weighted	 genetic	 risk	 score	 (OR-GRS):	 the	 sum	 of	 all	 risk	

alleles	across	all	loci,	weighted	by	effect	size	of	the	risk	allele	on	AD,	as	reported	in	

the	AlzGene	Database	[427];	3)	an	explained	variance-weighted	genetic	risk	score	

(EV-GRS):	 the	 sum	 of	 all	 risk	 alleles	 across	 all	 loci,	 weighted	 by	 minor	 allele	

frequency	 and	 effect	 size	 on	 AD,	 as	 reported	 in	 the	 AlzGene	 Database.	 For	 all	

genetic	risk	scores	a	higher	value	indicates	greater	risk.	The	MAF	and	OR	used	to	

derived	the	GRS	are	presented	in	Table	4.1.	Individuals	missing	any	genetic	data	(n	

=	69)	were	excluded	from	the	analysis.		
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Linear	 mixed	 effect	 models	 (LMM)	 with	 maximum	 likelihood	 estimation	

and	subject-specific	random	slopes	and	intercepts	were	used	to	assess	the	effect	of	

predictors	on	change	in	cognitive	test	scores	over	time.	Age,	centered	on	mean	age	

at	baseline,	was	used	as	an	indicator	of	time	in	the	study.	The	predictor	variables	

included	in	the	analysis	were	the	individual	SNPs	or	the	three	GRS's:	SC-GRS,	OR-

GRS	 and	 EV-GRS.	 Covariates	 used	 in	 the	models	 included	 sex,	 education	 and	 for	

individual	SNP	models	APOE	genotype.	LMM's	were	estimated	using	the	R	package	

'lme4'	 [429]	 and	 F	 and	 p	 values	 were	 estimated	 using	 Satterthwaite-type	

approximation	 to	 determine	 the	 statistical	 significance	 of	 the	 fixed	 effects.	 To	

evaluate	if	the	random	slopes	were	significantly	different	from	0	and	to	determine	

if	 there	was	 residual	 variability	 in	 the	 rate	of	 change	 that	 could	be	 explained	by	

predictor	variables,	LMM's	that	included	random	slopes	were	compared	to	models	

that	 did	 not	 include	 random	 slopes	 using	 parametric	 bootstrap	 methods	 where	

1000	 simulations	of	 the	 likelihood	 ratio	 test	 statistic	were	generated	 (R	package	

'pbkrtest',	 [430].	 For	 each	 SNP	 and	 GRS	 we	 compared	 the	 model	 fit	 of	 the	 full	

model	with	the	covariates-only	model	to	evaluate	if	there	was	an	overall	effect	of	

the	 SNP	 or	 GRS	 on	 cognitive	 decline.	 Model	 fit	 was	 assessed	 using	 a	 Kenward-

Rodger	 approximation	 for	 F-tests	 (R	 package	 'pbkrtest',	 [430].	 Two	R2	 statistics	

were	 calculated	 to	quantify	1)	 the	proportion	of	 outcome	variation	explained	by	

the	fixed	factors	(marginal	R2)	and	2)	the	amount	of	outcome	variation	explained	

by	 the	 fixed	 and	 random	 factors	 (conditional	 R2;	 [431,432];	 R	 package	 'MuMIn'	

[433].		

Additionally,	we	 performed	 a	 secondary	 analysis	 in	which	 changes	 in	 the	

rate	 of	 cognitive	 decline	 by	 genotype	were	 estimated	 separately	 for	 participants	

who	were	classified	as	cognitive	impaired	(CI)	at	wave	3	if	they	scored	<=27	on	the	

MMSE	(n	=	118)	and	those	classified	as	cognitively	normal	(CN,	n	=	1340).	For	the	

secondary	 analysis,	 LMM's	 were	 performed	 with	 the	 inclusion	 of	 the	 additional	

terms	for	a	time	by	cognitive	status	and	separate	time	by	genotype	interactions	for	

the	CI	and	CN	classifications.	

We	did	not	adjust	for	multiple	comparison	as	strong	a	priori	evidence	for	all	

our	 hypothesis	 based	 on	 previous	 findings	 for	 LOAD	 and	 cognitive	 decline	 was	

available;	a	p-value	<	0.05	was	considered	statistically	significant.		
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4.3	 Results	

4.3.1	 Population	Characteristics	of	the	PATH	Cohort	

General	 demographics	 of	 the	 PATH	 cohort	 are	 presented	 in	 Table	 4.2.	

Linear	Mixed	Models	 1-3	 in	 Supplementary	 Table	 7-9	 show	 the	 average	 rate	 of	

change	 for	each	cognitive	 test.	Random	slopes	 for	all	 cognitive	 tests	 scores	were	

significantly	different	from	0,	indicating	that	there	was	sufficient	variability	in	the	

rate	of	change	between	participants	 thus	allowing	potential	genetic	predictors	of	

this	 change	 to	 be	 tested	 (bootstrap	 p-value:	 Episodic	 Memory	 =	 0.04;	 Digits	

backwards	 =	 0.01;	 Spot-the-Word	 test	 =	 0.0001;	 Symbol	 digits	modalities	 test	 =	

0.01).	 Significant	 change	 in	 test	 scores	 over	 time	was	 observed	 for	 all	 cognitive	

tests	 except	 Digits	 Backwards.	 In	 model	 2,	 participants	 experienced	 an	 overall	

decline	in	test	scores	for	Episodic	memory	and	Symbol	digits	Modalities	Test,	and	

an	increase	in	test	scores	for	Spot-the-Word.	'Time'	explained	57-89%	of	outcome	

variation	 for	 the	entire	model.	The	covariates	 in	model	3	 improved	the	model	 fit	

for	 all	 cognitive	 tests	 and	explained	7-21%	of	 the	outcome	variation	 in	 the	 fixed	

effects,	although	they	did	not	explain	any	additional	random	effect	variation	for	the	

entire	model	(Supplementary	Table	9).		

	

4.3.2	 Main	Effects	of	LOAD	GWAS	SNPs	

There	was	a	significant	improvement	in	model	fit	for	various	cognitive	tests	

after	 the	 introduction	 of	 the	 APOE,	 ABCA7,	 CR1	 and	 MS4A4E	 SNPs	 into	 their	

respective	 models.	 APOE	 e4+	 was	 associated	 with	 a	 greater	 rate	 of	 decline	 in	

Episodic	 Memory	 and	 the	 association	 remained	 unchanged	 when	 APOE	 e3/e4	

heterozygotes	were	assessed	separately	from	APOE	e4	homozygotes	and	APOE	e2	

carriers;	ABCA7-rs3764650-G	was	associated	with	a	lower	initial	status	at	baseline	

in	Episodic	memory	 test	 scores;	CR1-rs3818361-A	was	associated	with	a	greater	

rate	of	decline	in	Episodic	memory	and;	MS4A4E-rs670139-T	was	associated	with	

a	 higher	 baseline	 Spot-the-Word	 Test	 score	 and	 a	 slower	 decline	 in	 Episodic	

Memory	 test	 scores.	 The	 group	 differences	 resulted	 in	 a	 small	 increase	 in	 the	

marginal	 R2	 ranging	 from	 0.001	 to	 0.002,	 though	 there	 was	 no	 increase	 in	 the	

conditional	R2	statistics.	Table	4.3,	Supplementary	Tables	10-21.	
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The	 remaining	 SNPs	 (BIN1,	 CD2AP,	 CD33,	 CLU,	 EPHA1,	MS4A4A,	MS4A6A	

and	 PICALM)	 were	 not	 significantly	 associated	 with	 baseline	 status	 or	 rate	 of	

change	for	any	of	cognitive	tests.			

In	the	secondary	analysis	assessing	the	rate	of	cognitive	decline	separately	

for	participants	who	were	classified	as	CI	(supplementary	Table	44),	the	APOE	e4+	

was	 associated	 with	 a	 faster	 rate	 of	 decline	 in	 Episodic	 memory	 for	 CI	 and	 CN	

participants,	with	a	steeper	decline	observed	in	CI	participants,	and	a	reduced	rate	

of	decline	in	Digits	Backwards	test	scores	in	CN	participants;	ABCA7-rs3764650-G	

was	associated	with	a	faster	rate	of	decline	in	Digits	backwards	tests	scores	in	CI	

participants	and;	EPHA1-rs11767557-T	was	associated	with	a	faster	rate	of	decline	

SDMT	tests	in	CI	participants.	

	

4.3.3	 Effect	of	Genetic	Risk	Scores	

The	equally	weighted	SC-GRS	has	an	approximately	normal	distribution	in	

the	 PATH	 Cohort	 (Figure	 4.1);	 mean	 =	 10.5;	 range	 =	 3-18).	 The	 bimodal	

distribution	and	long	upper	tails	of	the	weighted	OR-	and	EV-GRS	reflect	the	strong	

effect	of	APOE	 relative	to	other	 loci	(Figure	4.1);	mean	=	1.47;	range	=	-0.7-4.5	&	

mean	=	0.92;	range	=	-0.1-2.4	respectively).	

The	 SC-GRS	 was	 not	 significantly	 associated	 with	 either	 initial	 status	 at	

baseline	 or	 rate	 of	 change	 for	 any	 of	 the	 cognitive	 tests.	 There	was	 a	 significant	

improvement	in	model	fit	for	Episodic	memory	for	both	the	OR-	and	EV-GRS,	with	

	
Figure	4.1:	Distributions	of	the	three	genetic	risk	scores:	SC-GRS	(Mean	=	10.5;	sd	

=	2.58),	OR-GRS	(Mean	=	1.47;	sd	=	0.8)	and	EV-GRS	(Mean	=	0.92;	sd	=	0.4).	The	

variable	widths	of	each	violin	plot	indicate	the	probability	density	of	the	data	at	

each	score,	with	the	box	plots	indicating	the	first,	median	and	third	quartile.	
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higher	OR-	and	EV-GRS	being	associated	with	a	greater	rate	of	decline	in	cognitive	

performance.	 These	 associations	 resulted	 in	 a	 small	 increase	 in	 the	 amount	 of	

explained	 variation	 in	 the	 fixed	 effects,	 in	 comparison	 to	 that	 explained	 by	 time	

and	 the	 covariates,	 of	 0.001	 and	 0.002	 for	 the	 OR-GRS	 and	 EV-GRS	 respectively	

though	 there	 was	 no	 increase	 in	 the	 conditional	 R2	 statistics.	 (Table	 4.3,	

Supplementary	 Tables	 22-24).	 The	 OR-	 and	 EV-GRS	 were	 not	 associated	 with	

cognitive	performance	when	the	APOE	allele	was	excluded	(Supplementary	Tables	

25-27).	

In	 the	 secondary	 analysis	 (supplementary	Table	 44),	 the	OR-	 and	EV-GRS	

were	associated	with	a	faster	rate	of	decline	in	episodic	memory	in	both	CI	and	CN	

participants,	with	a	steeper	decline	observed	in	CI	participants.	

	

4.3.4	 Main	Effects	of	SNPs	Associated	with	Dementia	or	Cognition	

Statistics	for	the	models	introducing	the	additional	dementia	and	cognition	

SNPs	are	shown	in	Table	4.4.	See	Supplementary	Tables	28-43	for	full	models	with	

random	and	fixed	effects.	

A	 significant	 improvement	 in	model	 fit	 was	 observed	 for	 a	 number	 of	 cognitive	

tests	 after	 the	 introduction	 of	 the	 following	 SNPs:	 BDNF,	 COMT,	 FRMD4A-

rs7081208,	 Intergenic	 chrX,	PDE7A	 and	 ZNF224	 into	 their	 respective	models.	 In	

these	models	significant	parameter	estimates	were	observed.	BDNF-rs6265-T	was	

associated	with	lower	baseline	Digits	Backwards	test	scores	while	COMT-rs4680-A	

was	 associated	 with	 a	 greater	 rate	 of	 decline	 in	 Episodic	 memory	 test	 scores.	

FRMD4A-rs7081208-A	 was	 associated	 with	 a	 lower	 baseline	 score	 as	 well	 as	 a	

slower	 rate	 of	 decline	 in	 Digits	 Backwards	 test	 scores	 and	with	 higher	 baseline	

scores,	 but	 a	 greater	 rate	 of	 decline	 in	 Spot-the-Word	 test	 scores.	 Intergenic-

rs12007229-A	was	associated	with	a	greater	 rate	of	decline	 in	Episodic	memory	

test	scores.	PDE7A-rs10808746-A	was	associated	with	a	slower	rate	of	decline	 in	

Symbol	 Digits	 Modalities	 test	 scores;	 ZNF224-rs3746319-A	 was	 associated	 with	

higher	baseline	Spot-the-Word	Test	scores.		

Statistically	significant	parameter	estimates	in	the	absence	of	improvement	

in	 model	 fit	 were	 also	 observed,	 with	 CTNNBL1-rs6125962-C	 associated	 with	 a	

reduced	 rate	 of	 decline	 in	 Episodic	memory	 test	 scores;	 FRMD4A-rs17314229-T	

was	 associated	 with	 a	 greater	 rate	 of	 decline	 in	 digits	 backwards	 test	 scores;	

PDE7A-rs10808746-A	was	associated	with	lower	Digits	Backwards	test	baseline		
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Table	4.3:	 Top	LOAD	risk	SNPs	and	GRS:	Parameter	estimates	and	model	fit	statistics	for	SNP/GRS	main	effects	
 

	 	 Episodic	Memory	 Digits	Backwards	 Spot-the-Word	
Symbol	Digits	

Modalities	Test	

	 	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	

APOE	e2	 Intercept	 -0.02	(0.07)	 0.01	(0.07)	 0.06	(0.06)	 -0.04	(0.06)	

	 Slope	 -0.00	(0.01)	 0.01	(0.01)	 -0.00	(0.00)	 0.01	(0.01)	

APOE	e4	 Intercept	 0.03	(0.05)	 0.02	(0.05)	 0.02	(0.05)	 -0.01	(0.05)	

	 Slope	 -0.02	(0.01)**	 0.01	(0.01)	 -0.00	(0.00)	 -0.01	(0.00)	

	 F	-test	 2.61*	 1.78	 0.3	 0.8	

ABCA7-rs3764650	 Intercept	 -0.12	(0.06)*	 0.02	(0.06)	 -0.05	(0.05)	 -0.04	(0.06)	

	 Slope	 -0.0003	(0.007)	 0.004	(0.007)	 -0.0002	(0.004)	 0.01	(0.01)	

	 F-test	 2.93	 0.46	 0.59	 0.84	

BIN1-rs744373	 Intercept	 -0.03	(0.04)	 0.07	(0.04)	 -0.00	(0.04)	 0.04	(0.04)	

	 Slope	 -0.006	(0.005)	 0.0002	(0.005)	 -0.002	(0.003)	 -0.001	(0.004)	

	 F-test	 1.71	 1.78	 0.18	 0.49	

CD2AP-rs9296559	 Intercept	 0.02	(0.04)	 0.03	(0.05)	 -0.02	(0.04)	 0.004	(0.04)	

	 Slope	 -0.006	(0.006)	 -0.001	(0.005)	 -0.003	(0.003)	 -0.001	(0.004)	

	 F-test	 0.56	 0.27	 0.91	 0.03	

CD33	-rs34813869	 Intercept	 -0.02	(0.07)	 -0.05	(0.07)	 -0.07	(0.06)	 0.06	(0.07)	

	 Slope	 0.0004	(0.009)	 -0.009	(0.008)	 0.003	(0.005)	 -0.003	(0.006)	

	 F-test	 0.08	 1.51	 0.66	 0.48	

CLU-rs11136000	 Intercept	 0.03	(0.06)	 0.07	(0.06)	 -0.005	(0.05)	 0.05	(0.06)	

	 Slope	 0.0004	(0.007)	 -0.001	(0.007)	 0.003	(0.004)	 0.004	(0.005)	

	 F-test	 0.25	 0.75	 0.41	 0.89	

CR1-rs3818361	 Intercept	 -0.03	(0.05)	 0.01	(0.05)	 -0.06	(0.04)	 -0.05	(0.04)	

	 Slope	 -0.01	(0.01)	 -0.01	(0.01)	 0.001	(0.003)	 -0.0001	(0.004)	

	 F-test	 3.46*	 0.49	 1.22	 0.65	

EPHA1-rs11767557	 Intercept	 0.07	(0.12)	 0.08	(0.12)	 -0.13	(0.11)	 -0.20	(0.11)	

	 Slope	 -0.01	(0.01)	 -0.02	(0.01)	 0.01	(0.01)	 0.01	(0.01)	

	 F-test	 0.37	 0.57	 0.76	 1.54	

MS4A4A-rs4938933	 Intercept	 -0.06	(0.06)	 -0.04	(0.06)	 0.10	(0.05)	 0.06	(0.06)	

	 Slope	 0.01	(0.01)	 0.01	(0.01)	 0.002	(0.004)	 -0.004	(0.005)	

	 F-test	 1.2	 1.28	 2.9	 0.68	
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Table	4.3	(Continued)	

	 	 Episodic	Memory	 Digits	Backwards	 Spot-the-Word	
Symbol	Digits	

Modalities	Test	

	 	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	

MS4A4E-rs670139	 Intercept	 -0.06	(0.04)	 -0.04	(0.05)	 0.11	(0.04)**	 0.08	(0.04)	

	 Slope	 0.01	(0.01)*	 0.01	(0.01)	 0.0007	(0.003)	 -0.0002	(0.004)	

	 F-test	 3.10*	 0.73	 4.57*	 1.71	

MS4A6A-rs610932	 Intercept	 -0.09	(0.06)	 -0.03	(0.06)	 0.04	(0.05)	 0.03	(0.05)	

	 Slope	 0.01	(0.01)	 0.01	(0.01)	 0.006	(0.004)	 -0.002	(0.005)	

	 F-test	 1.64	 1.39	 2.12	 0.17	

PICALM-rs3851179	 Intercept	 0.01	(0.06)	 -0.03	(0.06)	 -0.02	(0.06)	 0.01	(0.06)	

	 Slope	 0.0001	(0.008)	 0.006	(0.007)	 0.003	(0.004)	 0.009	(0.006)	

	 F-test	 0.01	 0.35	 0.19	 1.41	

SC-GRS	 Intercept	 -0.01	(0.009)	 -0.001	(0.009)	 0.001	(0.008)	 0.008	(0.008)	

	 Slope	 -0.001	(0.001)	 0.0006	(0.001)	 -0.0005	(0.0006)	 0.0002	(0.0008)	

	 F-test	 1.95	 0.18	 0.35	 0.53	

OR-GRS	 Intercept	 -0.00001	(0.03)	 -0.003	(0.03)	 -0.001	(0.02)	 0.007	(0.03)	

	 Slope	 -0.009	(0.003)*	 0.002	(0.003)	 -0.002	(0.002)	 -0.004	(0.003)	

	 F-test	 4.20*	 0.13	 0.58	 1.01	

EV-GRS	 Intercept	 -0.007	(0.05)	 -0.007	(0.06)	 0.004	(0.05)	 0.02	(0.05)	

	 Slope	 -0.017	(0.007)*	 0.004	(0.007)	 -0.004	(0.004)	 -0.006	(0.005)	

	 F-test	 4.44*	 0.2	 0.64	 0.75	

*p	<	.05;	**p	<	.01.;	adjusted	for	Sex,	APOE	and	Education	
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Table	4.4:	Additional	SNPs:	Parameter	estimates	and	model	fit	statistics	for	SNP	main	effects	

	 	 Episodic	Memory	 Digits	Backwards	 Spot-the-Word	
Symbol	Digits	

Modalities	Test	

	 	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	

BDNF-rs6265	 Intercept	 0.002	(0.05)	 0.1	(0.05)*	 0.02	(0.04)	 0.05	(0.05)	

	 Slope	 0.008	(0.006)	 0.003	(0.006)	 0.005	(0.003)	 0.001	(0.004)	

	 F	-test	 1.31	 3.25*	 1.75	 0.64	

CETP	-rs5882	 Intercept	 0.005	(0.043)	 0.053	(0.045)	 0.007	(0.039)	 0.003	(0.042)	

	 Slope	 0.0002	(0.005)	 0.01	(0.005)	 0.005	(0.003)	 0.002	(0.004)	

	 F	-test	 0.01	 1.77	 1.77	 0.13	

COMT-rs4680	 Intercept	 0.078	(0.050)	 0.032	(0.052)	 0.033	(0.045)	 0.005	(0.049)	

	 Slope	 0.015	(0.006)*	 0.003	(0.006)	 0.004	(0.004)	 0.009	(0.005)	

	 F	-test	 3.09*	 0.22	 1.57	 2.09	

CTNNBL1-rs6125962	 Intercept	 0.054	(0.067)	 0.017	(0.07)	 0.024	(0.061)	 0.077	(0.065)	

	 Slope	 0.018	(0.008)*	 0.010	(0.008)	 0.002	(0.005)	 0.006	(0.006)	

	 F	-test	 2.27*	 0.89	 0.13	 0.9	

FRMD4A-rs17314229	 Intercept	 0.022	(0.043)	 0.04	(0.045)	 0.037	(0.039)	 0.006	(0.042)	

	 Slope	 0.007	(0.005)	 0.010	(0.005)*	 0.005	(0.003)	 0.001	(0.004)	

	 F	-test	 0.75	 1.96*	 1.33	 0.04	

FRMD4A-rs7081208	 Intercept	 0.001	(0.064)	 0.142	(0.067)*	 0.135	(0.058)*	 0.102	(0.062)	

	 Slope	 0.003	(0.008)	 0.022	(0.008)**	 0.01	(0.005)*	 0.001	(0.006)	

	 F	-test	 0.12	 4.29*	 3.63*	 1.39	

Intergenic-rs12007229	 Intercept	 0.031	(0.074)	 0.133	(0.079)	 0.055	(0.068)	 0.016	(0.073)	

	 Slope	 0.023	(0.009)*	 0.002	(0.009)	 0.004	(0.005)	 0.002	(0.007)	

	 F	-test	 3.56*	 1.64	 0.44	 0.13	

LGALS3-rs4644	 Intercept	 0.055	(0.045)	 0.007	(0.047)	 0.031	(0.041)	 0.069	(0.044)	

	 Slope	 0.0003	(0.006)	 0.007	(0.005)	 0.004	(0.003)	 0.004	(0.004)	

	 F	-test	 0.93	 1.08	 0.79	 1.38	

MMP12-rs12808148	 Intercept	 0.002	(0.048)	 0.012	(0.05)	 0.007	(0.043)	 0.063	(0.047)	

	 Slope	 0.006	(0.006)	 0.010	(0.006)	 0.001	(0.003)	 0.004	(0.004)	

	 F	-test	 0.67	 1.55	 0.03	 0.98	

MTHFD1L-rs11754661	 Intercept		 0.025	(0.058)	 0.043	(0.061)	 0.014	(0.053)	 0.033	(0.057)	

	 Slope	 0.001	(0.007)	 0.002	(0.007)	 0.005	(0.004)	 0.005	(0.005)	
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Table	4.4	(Continued)	

	 	 Episodic	Memory	 Digits	Backwards	 Spot-the-Word	
Symbol	Digits	

Modalities	Test	

	 	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	

	 F	-test	 0.1	 0.44	 0.63	 0.53	

PAICS-rs11549976	 Intercept	 0.029	(0.066)	 0.078	(0.069)	 0.070	(0.060)	 0.084	(0.064)	

	 Slope	 0.009	(0.008)	 0.006	(0.008)	 0.004	(0.005)	 0.0004	(0.006)	

	 F	-test	 0.54	 0.66	 0.75	 0.93	

PDE7A-rs10808746	 Intercept	 0.039	(0.046)	 0.103	(0.048)	 0.032	(0.042)	 0.077	(0.045)	

	 Slope	 0.006	(0.006)	 0.010	(0.006)	 0.000	(0.003)	 0.009	(0.004)*	

	 F	-test	 0.69	 2.6	 0.35	 2.76	

SNTG1-rs16914781	 Intercept	 0.086	(0.046)	 0.038	(0.048)	 0.048	(0.042)	 0.008	(0.045)	

	 Slope	 0.008	(0.006)	 0.002	(0.006)	 0.0002	(0.003)	 0.001	(0.004)	

	 F	-test	 1.94	 0.31	 0.74	 0.06	

SORL1-rs668387	 Intercept	 0.046	(0.047)	 0.006	(0.049)	 0.084	(0.043)*	 0.010	(0.046)	

	 Slope	 0.007	(0.006)	 0.007	(0.006)	 0.006	(0.003)	 0.005	(0.004)	

	 F	-test	 0.85	 0.94	 2.73	 0.92	

SPON1-rs11023139	 Intercept	 0.058	(0.069)	 0.093	(0.072)	 0.104	(0.063)	 0.009	(0.067)	

	 Slope	 0.009	(0.009)	 0.007	(0.008)	 0.007	(0.005)	 0.004	(0.006)	

	 F	-test	 0.62	 0.88	 1.69	 0.17	

ZNF224-rs3746319	 Intercept	 0.012	(0.046)	 0.071	(0.049)	 0.100	(0.042)*	 0.047	(0.045)	

	 Slope	 0.002	(0.006)	 0.007	(0.006)	 0.001	(0.003)	 0.005	(0.004)	

	 F	-test	 0.06	 3.43*	 3.04*	 1.81	

*p	<	.05;	**p	<	.01.;	adjusted	for	Sex,	APOE	and	Education	
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scores	and	a	slower	rate	of	decline	in	Symbol	Digits	Modalities	test	scores;	SORL1-

rs668387-T	 was	 associated	 with	 higher	 Spot-the-Word	 Test	 scores	 at	 baseline.	

These	 significant	 associations	 result	 in	 a	 small	 increase	 in	 explained	variation	 in	

the	 fixed	 effects	 ranging	 from	 0.0003	 to	 0.003,	 though	 no	 increase	 in	 the	

conditional	R2.		

Results	 of	 the	 secondary	 analysis	 assessing	 the	 rate	 of	 cognitive	 decline	

separately	 for	 participants	 who	 were	 classified	 as	 CI	 or	 CN	 are	 presented	 in	

supplementary	Table	45.	BDNF-rs6265-T,	CETP-rs5882-G,	MTHFD1L-rs11754661-

A,	 CTNNBL1-rs6125962-C,	 FRMD4A-rs17314229-T,	 PAICS-rs11549976-A	 and	

PED7A-rs10808746-A	 were	 associated	 with	 rate	 of	 change	 in	 participants	

classified	 as	 CI.	 COMT-rs4680-A,	 FRMD4A-rs7081208-A	 and	 Intergenic-

rs12007229-A	 were	 associated	 with	 rate	 of	 change	 in	 participants	 who	 were	

classified	as	CN.	

	

4.4	 Discussion	

In	 this	 study	 we	 investigated	 the	 association	 between	 common	 genetic	

variants	that	have	been	previously	reported	to	be	associated	with	LOAD,	dementia	

or	 cognition	with	 change	 in	 episodic	memory,	working	memory,	 vocabulary	 and	

perceptual	 speed.	 The	 top	 LOAD	 GWAS	 SNPs	 were	 primarily	 associated	 with	

cognitive	performance	in	episodic	memory.	This	is	likely	indicative	of	their	role	in	

Alzheimer's	disease,	as	progressive	deficits	in	episodic	memory	that	begin	early	on	

in	the	disease	course	are	one	of	its	defining	features	[434].	Associations	with	rate	

of	change	 in	cognitive	performance	were	observed	 for	APOE,	CR1,	MS4A4E,	while	

ABCA7	was	 associated	with	 baseline	 cognitive	 performance.	 The	 direction	 of	 the	

effect	for	APOE,	CR1,	and	ABCA7	was	as	expected,	however	for	the	MS4A4E	the	AD	

risk	 allele	 was	 associated	 with	 a	 protective	 effect	 on	 episodic	 memory,	 and	 the	

same	 trend	 was	 also	 observed	 for	 the	 SNPs	MS4A6A	 and	MS4A4A,	 though	 they	

were	not	significant.	However,	the	parameter	estimates	for	the	effect	of	these	SNPs	

on	change	in	cognitive	abilities	ranged	from	-0.9%	to	0.9%	over	four	years,	while	

the	 increase	 in	 the	marginal	R2	 statistics	after	 inclusion	of	 the	genetic	predictors	

ranged	 from	 0.001	 to	 0.002,	 emphasising	 that	 the	 effect	 of	 individual	 SNPs	 on	

cognition	are	extremely	small.			

Additionally,	 we	 constructed	 three	 genetic	 risk	 scores	 to	 investigate	 the	

combined	 effect	 of	 the	 LOAD	 risk	 SNPs	 on	 cognitive	 decline.	 An	 odds	 ratio	
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weighted	 GRS	 and	 a	 novel	 combined	 odds	 ratio	 and	 minor	 allele	 frequency	

weighted	GRS	were	significantly	associated	with	steeper	rate	of	cognitive	decline	

in	 episodic	 memory.	 The	 EV-GRS	 takes	 into	 account	 that	 within	 the	 same	 OR	

disease	risk	can	vary	depending	on	the	risk	allele	frequencies	and	has	been	shown	

to	 be	 a	 more	 robust	 approach	 for	 identifying	 associations	 in	 the	 presence	 of	

potential	genetic	interactions,	linkage	disequilibrium	and	false	positive	predictors	

[428].	 An	 unweighted	 GRS	was	 not	 associated	with	 cognitive	 performance.	 This	

latter	score	utilised	a	simple	count	of	the	number	of	risk	alleles	per	individual	and	

does	not	take	into	account	the	varying	effect	sizes	among	the	LOAD	risk	SNPs.	The	

lack	 of	 significant	 associations	 with	 the	 SC-GRS,	 in	 contrast	 to	 the	 weighted	

methods,	 indicates	 that	 the	significant	associations	observed	 for	 the	OR-	and	EV-

GRS	 can	 be	 attributed	 to	 the	 dominant	 role	 of	 the	 APOE	 *e4	 allele,	 which	 was	

further	confirmed	when	APOE	was	excluded	from	the	GRS.	

These	 results	 are	 similar	 to	 those	 of	 several	 comparable	 candidate	 gene	

[118,120]	 and	 GWAS	 based	 [115,121]	 studies,	 that	 reported	 a	 lack	 of	 robust	

associations	 between	 cognitive	 decline	 and	 non-APOE	 LOAD	 risk	 genes.	 These	

previous	 studies	have	only	 identified	 suggestive	evidence	 for	CR1	[116,124],	CLU	

[129],	 BIN1	 [124]	 and	 	 PICALM	 [115].	 However,	 when	 examining	 genetic	

associations	 with	 general	 cognitive	 function	 in	 middle	 and	 older	 age	 in	 a	 large	

meta-analysis	of	31	studies	(n	=	53,949)	no	associations	were	observed	with	any	of	

these	 LOAD	 risk	 genes,	 though	 two	 other	 AD	 related	 genes,	MEF2C	 and	ABCG1,	

were	 associated	 [122].	 Furthermore,	 when	 the	 non	 APOE	 LOAD	 GWAS	 risk	 loci	

were	 assessed	 collectively	 as	 a	 GRS	 weighted	 by	 their	 estimated	 OR's,	 no	

associations	were	observed	with	cognitive	decline	[120],	though	after	inclusion	of	

APOE	 the	 GRS	 did	 reach	 significance	 [120,124].	 An	 alternative	 approach	 using	 a	

polygenic	 risk	 score	 of	 all	 LOAD	 associated	 variants,	 not	 just	 the	 top	 associated	

loci,	 found	 no	 association	 with	 cognitive	 ability	 in	 later	 life	 or	 with	 age-related	

cognitive	 change	 [212].	 Investigating	 interactions	 between	 environmental	 and	

lifestyle	 factors	 and	 GRS	 may	 provide	 more	 promising	 results.	 A	 higher	 GRS	

composed	of	APOE,	CLU,	CR1	and	PICALM,	while	not	independently	associated	with	

cognitive	 decline	 was	 shown	 to	 exacerbate	 the	 deleterious	 effects	 of	 type	 2	

diabetes	on	cognitive	decline	[306].		

Alzheimer's	 related	 genes	 may	 be	 associated	 with	 cognitive	 decline	 in	

subjects	who	are	in	the	preclinical	stages	of	dementia	and	who,	if	followed	for	long	
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enough,	 might	 eventually	 develop	 dementia.	 We	 also	 assessed	 the	 effect	 of	 the	

LOAD	risk	SNPs	separately	 for	 those	who	were	classified	as	cognitively	 impaired	

according	to	MMSE	at	wave	3	and	observed	faster	rates	of	decline	associated	with	

the	ABCA7	risk	allele	and	reduced	rates	of	decline	associated	with	the	EPHA1	risk	

allele.	 In	 previous	 studies,	 variants	 in	 ABCA7,	EPHA1	 [120]	 and	 CLU	 [127]	 have	

been	observed	to	be	associated	with	cognitive	decline	in	subjects	who	eventually	

converted	 to	 dementia,	 but	 not	 in	 individuals	who	 remained	 cognitively	 normal	

throughout	the	study.	This	also	suggests	that	associations	observed	between	LOAD	

risk	 genes	 and	 cognitive	 decline	 could	 be	 due	 to	 individuals	 who	 are	 in	 the	

preclinical	 stages	 of	 Alzheimer's	 disease	 and	 that	 the	 retrospective	 removal	 of	

these	 individuals	 could	 attenuate	 the	 observed	 associations	 [122,309].	However,	

removing	 individuals	 who	 are	 in	 the	 preclinical	 stages	 of	 disease	 in	 the	 early	

analytic	stages	of	a	study	is	likely	to	be	difficult	due	to	the	long	and	asymptomatic	

nature	of	the	preclinical	stages	of	LOAD.			

The	above	 findings,	 and	 those	of	previous	 studies,	 suggest	 that	 the	 added	

predictive	 value	 of	 the	 top	 LOAD	 SNPs	 for	 cognitive	 decline	 in	 non-demented	

individuals	may	be	 limited.	This	 is	 consistent	with	polygenic	models	of	 cognitive	

decline	indicating	that	there	is	a	large	number	of	variants	with	modest	effects	sizes	

rather	than	a	few	variants	with	large	or	moderate	effect	sizes.	Additionally,	this	is	

consistent	with	indices	of	LOAD	pathology	amyloid	and	neurofibrillary	tangles	that	

only	explain	~30%	of	observed	variance	in	cognitive	decline,	and	cerebrovascular	

(macro	and	micro	infarcts)	and	Lewy	body	disease	neuropathologies	explaining	an	

additional	 ~10%	 of	 variation	 [91].	 This	 is	 consistent	with	 the	 notion	 that	while	

LOAD	pathology	is	important	in	the	development	of	cognitive	decline,	it	occurs	in	

conjunction	with	other	pathological	features	that	are	observed	in	brain	ageing.	As	

such,	 the	cognitive	deficits	observed	 in	brain	ageing	are	unlikely	 to	be	due	 to	an	

isolated	 pathological	 feature,	 but	 the	 interaction	 between	 multiple	

neuropathologies	[435].	This	highlights	the	need	to	 investigate	additional	genetic	

variants	in	addition	to	those	associated	with	AD.			

For	the	remaining	16	SNPs	investigated,	which	were	previously	associated	

with	 dementia	 or	 cognitive	 performance,	 we	 observed	 associations	 with	 an	

increased	 rate	of	decline	 in	 cognitive	performance	 for	 the	minor	 alleles	of	COMT	

and	 Intergenic	 chrX,	 while	 for	 CTNNBL1	 and	 PDE7A	 the	 minor	 alleles	 were	

associated	with	a	reduced	rate	of	cognitive	decline.	At	baseline,	BDNF	and	PDE7A	
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minor	alleles	were	associated	with	worse	cognitive	performance,	while	SORL1	and	

ZNF224	 minor	 alleles	 were	 associated	 with	 better	 cognitive	 performance.	

FRMD4A-rs7081208	was	associated	with	a	 reduced	and	a	greater	 rate	of	decline	

for	 working	 memory	 and	 vocabulary	 respectively,	 though	 at	 baseline	 working	

memory	was	associated	with	worse	performance	while	vocabulary	was	associated	

with	 better	 performance.	 Additionally,	 FRMD4A-rs17314229	 minor	 allele	 was	

associated	with	a	greater	rate	of	decline	in	working	memory.		

In	comparison	to	the	top	AD	related	SNPs,	the	additional	AD	related	genetic	

variants	 in	 FRMD4A,	 SORL1	 and	 ZNF224	 were	 associated	 with	 cognitive	

performance	 in	vocabulary	and	working	memory,	potentially	 indicating	that	they	

may	be	 involved	in	the	development	of	atypical	AD,	 in	which	the	development	of	

non-amnestic	 cognitive	deficits	occurs	 early	on	 in	 the	disease	process	 [434].	 For	

the	 cognition	 related	 genetic	 variants,	 SNPs	 in	 COMT	 and	 CTNNBL1	 have	 been	

associated	with	 differences	 in	 regional	 brain	 structures	 and	 activations	 that	 are	

involved	 in	 episodic	 memory	 processes,	 potentially	 explaining	 the	 differential	

associations	 of	 these	 variants	 with	 episodic	 memory	 [348,436].	 BDNF	 is	 widely	

expressed	 in	 the	prefrontal	 cortex,	which	 is	 associated,	 amongst	other	 functions,	

with	working	memory	[437].	As	with	the	LOAD	risk	loci,	the	additional	SNPs	were	

primarily	 associated	 with	 cognitive	 decline	 in	 participants	 who	 were	 classified	

cognitively	impaired.	However,	as	with	the	LOAD	risk	loci,	the	effect	sizes	for	these	

SNPs	were	 small	 and	 inclusion	 of	 the	 SNPs	 in	 the	model	 resulted	 in	 a	 negligible	

increase	in	the	amount	of	explained	variability	in	cognitive	performance.		

The	 presented	 findings	 should	 be	 interpreted	 in	 conjunction	 with	 some	

study	limitations.	The	sample	used	in	this	study	is	somewhat	better	educated	than	

the	 population	 from	which	 it	 was	 drawn.	 Higher	 education	 is	 associated	with	 a	

reduced	risk	of	cognitive	decline	and	incident	dementia.	Additionally,	the	sample	is	

relatively	young,	which	in	combination	with	a	higher	level	of	education	could	limit	

our	ability	 to	detect	 an	effect	of	 the	genetic	 factor	with	 cognitive	decline.	This	 is	

possibly	reflected	in	the	 limited	person	specific	variation	in	the	rate	of	decline	in	

the	 linear	mixed	models.	 Second,	 the	 subjects	 in	 this	 study	are	Caucasian	and	as	

such	 our	 findings	 need	 to	 be	 replicated	 in	 other	 ethnic	 groups.	 Third,	 despite	

excluding	individuals	with	probable	dementia	at	each	wave,	it	is	still	possible	that	

individuals	 in	 the	 preclinical	 phase	 of	 dementia	 were	 included	 in	 the	 analysis.	

Fourth,	 in	 concordance	with	 the	available	data,	we	have	 specified	 time	as	 linear,	
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however,	 cognitive	 decline	 may	 accelerate	 at	 older	 ages	 [293]	 highlighting	 the	

need	 to	 investigate	 nonlinear	 cognitive	 trajectories	 [438].	 Finally,	 although	 we	

have	 a	 strong	 a	priori	 evidence	 for	 all	 our	 hypotheses,	 it	 should	 be	 noted	 that	

correcting	 for	multiple	 testing	using	Bonferroni	correction,	all	corrected	p-values	

would	have	yielded	non-significant	results.	

Despite	 these	 limitations	 however,	 this	 study	 investigated	 a	 large	

community	based	cohort	 followed	 longitudinally	 for	a	period	of	eight	years,	with	

three	waves	of	assessment	that	included	a	comprehensive	cognitive	assessment	of	

different	cognitive	abilities.	These	strengths	allow	for	a	robust	statistical	inference	

about	the	effect	the	selected	genetic	factors	have	on	non-clinical	cognitive	decline.	

The	 narrow	 age-cohort	 design	 also	 reduced	 the	 impact	 of	 age-differences	

influencing	results.			

To	conclude,	our	findings	suggest	that	the	majority	of	LOAD	risk	genes	are	

not	individually	associated	with	non-clinical	cognitive	decline	in	a	cohort	of	older	

adults	who	were	followed	for	a	period	of	8	years.	When	considered	collectively	as	

a	 genetic	 risk	 score,	 the	observed	associations	are	due	 to	 the	 significantly	 larger	

weight	 associated	 with	 APOE	 *e4	 allele.	 The	 PATH	 study	 is	 ongoing	 and	 the	

number	 of	 incident	 cases	 of	 mild	 cognitive	 impairment	 and	 dementia	 among	

participants	 is	 increasing.	 The	 work	 presented	 here	 thus	 provides	 an	 excellent	

basis	 for	 further	 investigating	 the	 effects	 of	AD	 risk	 variants	 in	 non-pathological	

versus	 pathological	 decline	 [309],	 gene-gene	 interactions	 [118,126]	 and	 gene-

environment	interactions	[307]	in	future	studies.		
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Abstract		

Recent	 genome	 wide	 association	 studies	 have	 identified	 a	 number	 of	 single	

nucleotide	 polymorphisms	 associated	 with	 late	 onset	 Alzheimer’s	 disease.	 We	

examined	 the	associations	of	24	LOAD	risk	 loci,	 individually	and	collectively	as	a	

genetic	risk	score,	with	cognitive	function.	We	used	data	from	1,626	non-demented	

older	Australians	of	European	ancestry	who	were	examined	up	to	four	times	over	

12	 years	 on	 tests	 assessing	 episodic	memory,	working	memory,	 vocabulary	 and	

information	 processing	 speed.	 Linear	mixed	models	 were	 generated	 to	 examine	

associations	 between	 genetic	 factors	 and	 cognitive	 performance.	 Twelve	 SNPs	

were	 significantly	 associated	 with	 baseline	 cognitive	 performance	 (ABCA7,	

MS4A4E,	 SORL1),	 linear	 rate	 of	 change	 (APOE,	ABCA7,	 INPP5D,	 ZCWPW1,	 CELF1,	

EPHA1)	or	quadratic	rate	of	change	(APOE,	CLU,	FERMT2).	In	addition,	a	weighted	

GRS	was	associated	with	linear	rate	of	change	in	episodic	memory	and	information	

processing	speed.	Our	results	suggest	 that	a	minority	of	AD	related	SNPs	may	be	

associated	 with	 non-clinical	 cognitive	 decline.	 Further	 research	 is	 required	 to	

verify	 these	 results	 and	 to	 examine	 the	 effect	 of	 preclinical	 AD	 in	 genetic	

association	 studies	 of	 cognitive	 decline.	 The	 identification	 of	 LOAD	 risk	 loci	

associated	 with	 non-clinical	 cognitive	 performance	 may	 help	 in	 screening	 for	

individuals	at	greater	risk	of	cognitive	decline.	

	

Keywords:	 Alzheimer's	 disease;	 Cognitive	 aging;	 SNPs;	 Genetic	 risk	 scores;	

Genetic	Epidemiology;	Longitudinal	Studies	
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5.1	 Introduction	

Late	 onset	 Alzheimer’s	 disease	 (LOAD),	 in	 which	 patients	 show	 clinical	

symptoms	>65	years	of	age,	is	the	most	common	form	of	dementia	and	the	number	

of	 individuals	 with	 LOAD	 is	 expected	 to	 triple	 by	 2050	 [25].	 LOAD	 has	 a	 long	

preclinical	phase	that	commences	decades	before	the	onset	of	clinical	symptoms,	

which	 are	 characterised	 by	 progressive	 degeneration	 of	 brain	 structure	 and	

chemistry	 resulting	 in	 gradual	 cognitive	 and	 functional	 decline	 [84].	 The	

neuropathological	 hallmarks	 of	 LOAD	 are	 aggregation	 and	 accumulation	 of	

extracellular	 Amyloid-b	 peptides	 into	 amyloid	 plaques	 and	 accumulation	 of	

intraneuronal	hyperphosphorylated	and	misfolded	tau	into	neurofibrillary	tangles.	

Accumulation	 of	 amyloid	 plaques	 and	 neurofibrillary	 tangles	 prompt	 the	

pathogenesis	 of	 AD	 by	 promoting	 alterations	 in	 lipid	 metabolism,	 neuro-

inflammation,	endocytosis	and	synaptic	dysfunction	and	loss	that	ultimately	leads	

to	neuronal	cell	death	[28,29].		

LOAD	has	a	 large	genetic	component,	with	the	heritability	estimated	to	be	

60-80%	[439].	Apolipoprotein	(APOE)	epsilon	4	(*e4)	was	the	first	common	genetic	

variant	to	be	identified	[107]	and	remains	the	strongest	genetic	predictor	of	LOAD.	

Beyond	 APOE,	 recent	 genome-wide	 association	 studies	 (GWAS)	 and	 a	 meta-

analysis	 by	 the	 International	 Genomics	 of	 Alzheimer’s	 Project	 (IGAP)	 have	

identified	single	nucleotide	polymorphisms	(SNPs)	at	23	loci	associated	with	LOAD	

(ABCA7,	BIN1,	CD2AP,	CD33,	CLU,	CR1,	EPHA1,	MS4A4A,	MS4A4E,	MS4A6A,	PICALM,	

HLA-DRB5,	PTK2B,	SORL1,	SLC24A4-RIN3,	DSG2,	INPP5D,	MEF2C,	NME8,	ZCWPW1,	

CELF1,	FERMT2	and	CASS4;	[108-113]).		

The	identified	LOAD	risk	loci	are	clustered	in	biological	pathways	that	play	

an	important	role	in	disease	onset	and	progression	[440]	and	are	involved	in	the	

accumulation	 of	 the	 pathological	 features	 of	 LOAD	 [441].	 Furthermore,	 post-

mortem	analysis	suggests	that	the	neuropathological	hallmarks	of	LOAD	progress	

to	 varying	 degrees	 in	 individuals	 without	 dementia	 and	 are	 associated	 with	

cognitive	 status	 and	 nonclinical	 cognitive	 decline	 [90,97].	 	 LOAD	 risk	 genes	 are,	

therefore,	 good	 candidates	 for	 investigating	 potential	 genetic	 associations	 with	

cognitive	performance	and	decline.	How	these	loci	affect	normal	cognitive	function	

may	inform	how	they	influence	LOAD	onset	and	progression.	

This	 cross-over	 effect	 is	 exemplified	 by	 APOE,	 which	 is	 associated	 with	

LOAD	and	has	effects	on	episodic	memory,	perceptual	speed,	executive	functioning	
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and	 global	 cognitive	 ability	 [145,377]	 mediated	 predominantly	 by	 amyloid-b	

plaques	 [92].	 Association	 with	 cognitive	 decline	 of	 the	 first	 11	 LOAD	 risk	 loci	

identified	 by	 genome-wide	 association	 studies	 (GWAS)	 are	 inconsistent	

[115,116,118,120,121,124,129,442].	Whether	the	new	risk	loci	identified	by	IGAP	are	

associated	 with	 cognitive	 decline	 has	 yet	 to	 be	 extensively	 investigated	

[117,122,123].	

Here,	we	report	associations	of	the	24	most	significant	LOAD	risk	loci	with	

longitudinal	 change	 in	 cognitive	 performance	 (based	 on	 four	 neuropsychological	

outcomes)	over	12	years	in	1,626	community	dwelling	older	adults.	We	investigate	

whether	these	loci	are	associated,	either	individually	or	collectively,	as	genetic	risk	

scores	(GRS),	with:	average	differences	in	cognitive	performance;	rate	of	cognitive	

decline;	and	acceleration	of	the	rate	of	decline	over	time.		

5.2	 Methods	

5.2.1	 Participants	

Participants	 of	 this	 study	 are	 community	 dwelling	 older	 adults	who	were	

recruited	 into	 the	 Personality	 and	 Total	 Health	 (PATH)	 Through	 Life	 Project,	 a	

longitudinal	 study	 of	 health	 and	 wellbeing.	 Participants	 in	 PATH	 were	 sampled	

randomly	 from	 the	 electoral	 rolls	 of	 Canberra	 and	 the	 neighbouring	 town	 of	

Queanbeyan	 into	one	of	 three	cohorts	based	on	age	at	baseline,	 the	20+	(20-24),	

40+	(40-44)	and	60+	(60-64)	cohorts.	Participants	are	assessed	at	4-year	intervals,	

and	 data	 from	 4	 waves	 of	 assessment	 are	 available.	 The	 background	 and	 test	

procedures	 for	 PATH	 have	 been	 described	 in	 detail	 elsewhere	 [322].	 Written	

informed	 consent	 for	 participation	 in	 the	 PATH	 project	 was	 obtained	 from	 all	

participants	according	to	the	‘National	Statement’	guidelines	of	the	National	Health	

and	Medical	Research	Council	 of	Australia	 and	 following	a	protocol	 approved	by	

the	Human	Research	Ethics	Committee	of	The	Australian	National	University.	

In	this	study,	data	for	the	60+	cohort	were	used,	with	interviews	conducted	

in	 2001-2002	 (n	 =	 2,551),	 2005-2006	 (n	 =	 2,222),	 2009-2010	 (n	 =	 1,973),	 and	

2014-2015	 (n	 =	 1645),	 for	 a	 total	 of	 12	 years	 of	 follow-up.	 Individuals	 were	

excluded	from	analysis	based	on	the	following	criteria:	attendance	at	only	1	wave	

(n=309);	 no	 available	 genomic	 DNA	 (n	 =	 60);	APOE	e2/e4	 genotype	 (n	 =	 60,	 to	

avoid	conflation	of	the	e2	protective	and	e4	risk	affect);	non-European	ancestry	(n	

=	 110);	 probable	 dementia	 at	 any	 wave	 (MMSE	 <	 27	 was	 used	 due	 to	 the	 high	
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educational	level	in	PATH	[443];	n=269);	self-reported	medical	history	of	epilepsy,	

brain	 tumours	 or	 infections,	 stroke	 and	 transient	 ischemic	 attacks	 (n	 =	 450).	

Missing	values	in	“Education”	(total	number	of	years	of	education,	n	=	128)	were	

imputed	using	the	‘missForest’	package	in	R	[424].		This	left	a	final	sample	of	1,526	

individuals	at	baseline.		

	

5.2.2	 Cognitive	Assessment		

All	participants	were	assessed	at	baseline	and	at	each	subsequent	interview	

for	the following	four	cognitive	abilities:	perceptual	speed	was	assessed	using	the	

Symbol	 Digit	 Modalities	 Test,	 which	 asks	 the	 participant	 to	 substitute	 as	 many	

digits	for	symbols	as	possible	in	90	seconds	[371];	episodic	memory	was	assessed	

using	the	Immediate	Recall	of	the	first	trial	of	the	California	Verbal	Learning	Test,	

which	 involves	recalling	a	 list	of	16	nouns	 [327];	working	memory	was	assessed	

using	the	Digit	Span	Backward	 from	the	Wechsler	Memory	Scale,	which	presents	

participants	with	 series	of	 digits	 increasing	 in	 length	 at	 the	 rate	of	 one	digit	 per	

second	and	asks	 them	to	 repeat	 the	digits	backwards	 [328];	and	vocabulary	was	

assessed	with	the	Spot-the-Word	Test,	which	asks	participants	to	choose	the	real	

words	from	60	pairs	of	words	and	nonsense	words	[329]	Raw	cognitive	test	scores	

at	 each	 wave	 and	 Pearson’s	 correlation	 between	 test	 scores	 are	 presented	 in	

Supplementary	Tables	1	&	2.		

	

5.2.3	 Genotyping		

For	 this	 study,	 we	 used	 genotype	 data	 for	 25	 SNPs	 that	 have	 been	

associated	with	LOAD	(Table	5.1).	Genotyping	of	11	GWAS	LOAD	risk	SNPs	(in	the	

following	 loci:	 ABCA7,	 BIN1,	 CD2AP,	 CD33,	 CLU,	 CR1,	 EPHA1,	 MS4A4A,	 MS4A4E,	

MS4A6A	 and	 PICALM)	 using	 TaqMan	 OpenArray	 assays	 has	 been	 reported	

previously	 [442].	 In	 this	 study	 16	 SNPs	 were	 selected	 for	 genotyping.	 These	

included	the	12	LOAD	GWAS	SNPs,	which	were	identified	in	a	meta-analysis	of	the	

previous	 GWAS	 studies	 performed	 by	 IGAP	 (in	 the	 following	 loci:	 HLA-DRB5,	

PTK2B,	 SORL1,	 SLC24A4-RIN3,	 DSG2,	 INPP5D,	 MEF2C,	 NME8,	 ZCWPW1,	 CELF1,	

FERMT2	and	CASS4;	[113]).	Three	were	associated	with	general	cognitive	function	

(MIR2113-rs10457441,	 AKAP6-rs17522122,	 TOMM40-rs10119;	 [122].	 One	 was	

associated	as	a	haplotype	with	LOAD	(FRMD4A-rs2446581;	[350]).	We	used	proxy	
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SNPs	that	were	in	LD	with	four	(HLA-DRB5/HLA-DRB1-rs9271192	[r2	=	1],	MEF2C-

rs190982	 [r2	 =	 0.89],	CELF1-rs10838725	 [r2	 =	 0.99]	 and	CASS4-rs7274581	 [r2	 =	

0.99])	of	the	SNPs	reported	by	IGAP,	as	Taqman	assays	were	unavailable	[113].		

	

Table	5.1:	LOAD	risk	SNPs	used	in	this	study	

Gene	 SNP	 Chromosome	 Alleles
*
	 MAF

†
	 OR

‡
	

APOE	e4	 rs429358/rs7412	 19	 e2/e3/e4	 0.8/0.14	 0.54/3.81	

ABCA7	 rs3764650	 19	 T/G	 0.11	 1.23	

BIN1	 rs744373	 2	 A/G	 0.31	 1.17	

CD2AP	 rs9296559	 6	 T/C	 0.27	 1.11	

CD33	 rs34813869	 19	 A/G	 0.3	 0.89	

CLU	 rs11136000	 8	 C/T	 0.35	 0.88	

CR1	 rs3818361	 1	 G/A	 0.26	 1.17	

EPHA1	 rs11767557	 7	 T/C	 0.2	 0.89	

MS4A4A	 rs4938933	 11	 T/C	 0.5	 0.88	

MS4A4E	 rs670139	 11	 G/T	 0.34	 1.08	

MS4A6A	 rs610932	 11	 T/G	 0.45	 0.90	

PICALM	 rs3851179	 11	 C/T	 0.41	 0.88	

HLA-DRB5		 rs9271100	 6	 C/T	 0.31	 1.11	

PTK2B	 rs28834970	 8	 T/C	 0.32	 1.10	

SORL1	 rs11218343	 11	 T/C	 0.03	 0.77	

SLC24A4-

RIN3	
rs10498633	 14	 G/T	 0.19	 0.91	

DSG2	 rs8093731	 18	 C/T	 0.01	 0.73	

INPP5D	 rs35349669	 2	 C/T	 0.44	 1.08	

MEF2C	 rs304132		 5	 G/A	 0.46	 0.93	

NME8	 rs2718058	 7	 A/G	 0.36	 0.93	

ZCWPW1	 rs1476679	 7	 T/C	 0.32	 0.91	

CELF1	 rs7933019	 11	 G/C	 0.34	 1.08	

FERMT2	 rs17125944	 14	 T/C	 0.08	 1.14	

CASS4	 rs7274581	 20	 T/C	 0.11	 0.88	
*
Major/Minor	Allele;	

†
Minor	Allele	Frequency:	HapMap-CEU;	

‡
OR	for	minor	allele	reported	by	

Alzegene	or	IGAP	[113] 

	

Genomic	 DNA	was	 extracted	 from	 cheek	 swabs	 (n	 =	 2,192)	 using	 Qiagen	

DNA	 kits	 or	 from	 peripheral	 blood	 leukocytes	 (n	 =	 101)	 using	 QIAamp	 96	 DNA	

blood	kits.	Pre-amplification	of	the	targeted	loci	was	performed	using	the	TaqMan	

PreAmp	Master	Mix	Kit	(Life	Technologies).	Each	reaction	 included	2.5µl TaqMan	

PreAmp	Master	Mix	(2x),	1.25µl Pre-amplification	Assay	Pool,	0.5µl H20	and	1.2µl 

genomic	DNA.	These	reactions	were	incubated	in	a	Biorad	thermocycler	for	10	min	

at	 95°C,	 followed	 by	 12	 cycles	 of	 95°C	 for	 15	 sec	 and	 60°C	 for	 4	min,	 and	 then	

incubated	at	99.9°C	for	10	minutes.	The	PreAmplified	products	were	then	held	at	

4°C	until	they	were	diluted	1:20	in	1x	TE	buffer	and	then	stored	at	-20°C	until	use.		

Post-PreAmplification,	 samples	 were	 genotyped	 using	 the	 TaqMan	 OpenArray	

System.	2μl diluted	pre-amplified	product	was	mixed	with	2µl TaqMan	OpenArray	

Master	 Mix.	 The	 resulting	 samples	 were	 dispensed	 using	 the	 OpenArray®
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AccuFillTM
 System	onto	Format	32	OpenArray	plates	with	each	plate	containing	96	

samples	 and	16	 SNP	 assays	per	 sample.	 The	QuantStudioTM
 12K	Flex	 instrument	

(Applied	Biosystems,	Carlsbad,	California)	was	used	to	perform	the	real-time	PCR	

reactions	on	the	loaded	OpenArray	plates.	The	fluorescence	emission	results	were	

read	 using	 the	 OpenArray®	 SNP	 Genotyping	 Analysis	 software	 v1	 (Applied	

Biosystems)	 and	 the	 genotyping	 analysis	 was	 performed	 using	 TaqMan®	

Genotyper	v1.3,	using	the	autocalling	feature.	Manual	calls	were	made	on	selected	

genotype	calls	based	on	the	proximity	to	the	nearest	cluster	and	HapMap	positive	

controls.	

Participant-specific	 quality	 controls	 included	 filters	 for	 genotype	 success	

rate	(>	90%)	and	sample	provenance	error	assessed	via	pairwise	comparisons	of	

genotype	 calls	 between	 all	 samples	 to	 identify	 samples	 with	 >	 90%	 similarity.	

Analysis	 of	 samples	 that	 were	 flagged	 in	 the	 initial	 quality	 control	 checks	 were	

repeated.	 Those	 samples	 that	 still	 failed	 quality	 control	 were	 excluded.	 SNP-

specific	 filters	 included	 genotype	 call	 rate	 (>	 90%)	 and	 Hardy-Weinberg	

equilibrium	(p	>	0.05)	assessed	using	an	exact	test.	

The	 two	 SNPs	 defining	 the	APOE	 alleles	were	 genotyped	 separately	 using	

TaqMan	assays	as	previously	described	 [382].	All	 SNPs	were	 in	Hardy-Weinberg	

equilibrium	and	genotype	frequencies	are	reported	in	Supplementary	Table	3.	

	

5.2.4	 Data	Preparation	and	Statistical	Analysis		

All	 analyses	 were	 performed	 in	 the	 R	 3.2.3	 Statistical	 computing	

environment	[426].	Cognitive	tests	at	all	4	waves	were	transformed	into	z-scores	

(Mean	=	0,	SD	=	1)	using	 the	means	and	SD	at	baseline	 to	 facilitate	 comparisons	

between	 cognitive	 tests.	 A	 higher	 score	 on	 all	 tests	 indicates	 better	 cognitive	

performance.		

	

Genetic	dominance	was	assumed	for	the	previously	reported	risk	allele	for	

all	 SNPs,	 except	SORL1,	DSG2	and	CASS4	where	 a	 recessive	model	 of	 inheritance	

was	assumed	due	to	the	 low	frequencies	of	 the	non-risk	allele.	APOE	alleles	were	

coded	as	the	number	of	APOE	*e4	alleles	(0,1,2).	Participants	with	the	APOE	*e2/e4	

allele	 were	 excluded	 to	 avoid	 conflation	 between	 the	 APOE	 *e2	 protective	 and	

APOE	*e4	risk	effects.	
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Three	 genetic	 risk	 scores	 were	 constructed	 [428]:	 (1)	 a	 simple	 count	

genetic	risk	score	(SC-GRS)	of	the	number	of	risk	alleles	where	SC_GRS = '()
*
(+, ;	

(2)	 an	 odds	 ratio	 weighted	 genetic	 risk	 score	 (OR-GRS)	 where	OR_GRS =

log(23())×	'()
*
(+, ;	 and	 (3)	 an	 explained	 variance	 genetic	 risk	 score	 (EV-GRS)		

weighted	 by	 minor	 allele	 frequency	 and	 odds	 ratios	 where	 EV_GRS =

log(23()) 2:;<()(1 − :;<()) 	×	'()
*
(+, .	 For	 the	 above	 formulae,	 risk	 scores	

are	calculated	for	the	 ith	patient,	where	log(23()	=	the	odds	ratio	for	the	jth	SNP;	

:;<() 	=	 the	minor	 allele	 frequency	 for	 the	 jth	 SNP;	 and	'() 	=	 the	number	of	 risk	

alleles	for	jth	SNP.	SNPs	were	weighted	by	their	previously	reported	OR	for	LOAD	

and	 by	 the	minor	 allele	 frequency	 (MAF)	 reported	 by	 the	 International	HapMap	

project	for	the	CEU	reference	population	(Table	5.1).	Participants	missing	genetic	

data	for	any	SNP	were	excluded	from	GRS	analysis	(n	=	121).	All	 three	GRS	were	

transformed	 into	 z-scores	 to	 facilitate	 comparison	between	 them.	A	higher	 score	

indicates	greater	genetic	risk.	

	

Linear	mixed	effects	models	 (LMMs)	with	maximum	 likelihood	estimation	

and	subject-specific	random	intercepts	and	slopes	were	used	to	evaluate	the	effect	

of	 individual	 SNPs	 or	 GRS	 on	 longitudinal	 cognitive	 performance.	 Longitudinal	

change	was	modelled	as	a	quadratic	growth	curve,	where	age	centred	on	baseline	

was	used	as	an	indicator	of	time;	linear	rate	of	change	(age)	is	estimated	from	the	

slope	 of	 the	 line	 tangential	 to	 the	 curve	 at	 the	 intercept	 and	 quadratic	 rate	 of	

change	 (age2)	 is	 estimated	 from	 the	 acceleration/deceleration	 in	 the	 curve	 over	

time.	 Quadratic	 growth	 curves	 were	 represented	 as	 orthogonal	 polynomials	 to	

avoid	 collinearity	 problems	 and	 facilitate	 estimation	 of	 the	 models	 [444].	

Covariates	 included	 in	 the	 models	 were	 sex,	 total	 years	 of	 education	 and,	 for	

individual	SNP	models,	APOE	genotype.	LMMs	were	estimated	using	the	R	package	

‘lme4’	 [445].	 Statistical	 significance	 of	 the	 fixed	 effects	 was	 determined	 using	 a	

Kenward-Roger	approximation	for	F-tests,	where	a	full	model,	containing	all	fixed	

effects,	is	compared	to	a	reduced	model	that	excludes	an	individual	fixed	effect	(R	

package	 ‘afex’	 [446]).	 Because	 24	 loci	 (APOE	 +	 23	 LOAD	GWAS	 SNPs)	 and	 three	

GRS	were	 tested,	 P	 <	 0.0017	were	 considered	 to	 be	 study-wide	 significant	 after	

Bonferroni	 correction.	 P	 <	 0.05	 and	 >	 0.	 0017	 were	 nominally	 significant. 

Conditional	 R2	 (3?
@),	 the	 variance	 explained	 by	 fixed	 and	 random	effects	 (i.e.	 the	

entire	model),	 and	marginal	 R2	 (3A
@ ),	 the	 variance	 explained	 by	 the	 fixed	 effects	
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were	calculated	using	the	R	package	‘MuMIn’	[431-433]	by	comparing	a	full	model	

containing	the	predictor	of	interest	to	a	reduced	model	excluding	the	predictor.		

Power	 curves	 were	 calculated	 to	 assess	 the	 effect	 size	 that	 could	 be	

detected	at	a	given	power	for	our	sample	size	using	the	R	package	‘simr’	[375].	The	

power	 calculations	 are	 based	 on	 Monte	 Carlo	 simulations	 (n	 =	 1000)	 of	 linear	

mixed	 effects	 models	 for	 each	 of	 the	 cognitive	 outcomes	 considered,	 where	 the	

effect	 sizes	 for	 the	baseline,	 linear	and	quadratic	 coefficients	were	altered	 in	 the	

base	 model	 in	 increments	 of	 0.2	 and	 0.5	 for	 baseline	 coefficients	 and	

linear/quadratic	coefficients	respectively.	Supplemental	Figure	1	shows	the	results	

of	the	power	calculations.	

	

5.3	 Results		

5.3.1	 Population	Characteristics	of	the	PATH	Cohort	

Demographic	characteristics	of	the	PATH	cohort	are	presented	in	Table	5.2.	

LMMs	(Supplementary	Table	4)	showed	that	all	the	cognitive	tests	were	associated	

with	 significant	 linear	 and	 quadratic	 rates	 of	 change	 except	 for	 the	 Digits	 Span	

Backwards	 test.	 Immediate	 Recall	 was	 associated	 with	 linear	 (b =	 -22.31;	 SE	 =	

0.71;	P	=	<0.0001)	and	quadratic	rate	of	change	(b =	-7.68;	SE	=	0.69;	P	=	<0.0001),	

with	Immediate	Recall	scores	declining	with	age,	and	with	the	decline	accelerating	

over	time.	Digits	Span	Backwards	Test	was	associated	with	 linear	(b =	1.64;	SE	=	

0.71;	P	=	.02)	but	not	quadratic	(b =	-0.31;	SE	=	0.66;	P	=	.64)	rate	of	change,	with	

Digits	 Span	 Backwards	 test	 scores	 increasing	 with	 age.	 Spot-the-Word	 was	

associated	with	linear	(b =	4.35;	SE	=	0.36;	P	=	<0.0001)	and	quadratic	(b =	-1.58;	

SE	=	0.32;	P	=	<0.0001)	rate	of	change,	with	Spot-the-Word	scores	increasing	with	

age,	and	with	the	rate	of	change	decelerating	over	time.	Symbol	Digits	Modalities	

Test	was	associated	with	linear	(b =	-14.56;	SE	=	0.57;	P	=	<0.0001)	and	quadratic	

(b =	 -1.88;	 SE	 =	 0.5;	P	=	 <0.0001)	 rate	 of	 change,	with	 Symbol	 Digits	Modalities	

Test	scores	declining	with	age,	and	with	the	decline	accelerating	over	time.		

Linear	 rate	 of	 change	 explained	 53%	 -	 78%	 of	 outcome	 variation	 for	 the	

entire	model,	with	quadratic	rate	of	change	explaining	an	additional	1.2%	-	4%	of	

outcome	 variation.	 Introducing	 the	 covariates	 into	 the	 models	 explained	 an	

additional	3.7%	-	19.1%	of	the	variation	in	the	fixed	effects	(Supplementary	Table	

5).	
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Table	5.2:	PATH	cohort	demographics	

Variable	 Excluded	

(n	=	1,024)	

Included	

(n	=	1,526)	

t/c
2
	 Degrees	of	

Freedom	

P	

Age†	 62.51	±	1.51	 62.51	±	1.5	 0.11	 2206.27	 0.92	

Male‡	 770	(50.46)	 546	(53.32)	 1.9	 1	 0.17	

Education†	 14.15	±	2.51	 13.21	±	3.07	 8.11	 1890.2	 <0.001	

MMSE†	 29.45	±	0.75	 28.57	±	2.05	 13.12	 1191.87	 <0.001	

SC-GRS†	 24.67	±	3.23	 24.63	±	3.18	 0.32	 1623.27	 0.75	

OR-GRS†	 3.45	±	0.81	 3.45	±	0.84	 0.09	 1548.41	 0.92	

EV-GRS†	 1.63	±	0.41	 1.63	±	0.43	 0.03	 1554.16	 0.97	
†
unpaired	2-tailed	t-test;	

‡
Pearson’s	c

2
	2-tailed	test	

	

5.3.2	 Main	Effects	of	LOAD	GWAS	SNPs	

Associations	 between	 single	 SNPs	 and	 cognitive	 outcomes	 did	 not	

withstand	 corrections	 for	 multiple	 testing	 and	 we	 report	 the	 results	 that	 were	

nominally	significant.	Introduction	of	the	24	LOAD	GWAS	risk	loci	individually	into	

the	 LMMs	 (Table	 5.3;	 for	 full	 models	 including	 fixed	 and	 random	 effects	 see	

Supplementary	 Tables	 6-29)	 identified	 12	 loci	 (APOE,	ABCA7,	BIN1,	CLU,	EPHA1,	

MS4A4E,	 SORL1,	 DSG2,	 INPP5D,	 ZCWPW1,	 CELF1	 and	 FERMT2)	 that	 were	

significantly	associated	with	cognitive	performance.	The	remaining	12	loci	(CD2AP,	

CD33,	 CR1,	MS4A4A,	MS4A6A,	 PICALM,	 HLA-DRB5,	 PTK2B,	 SLC24A4-RIN3,	MEF2C,	

NME8	and	CASS4)	were	not	significantly	associated	with	cognitive	performance.			

APOE	e4	allele	was	associated	with	a	greater	 rate	of	decline	 in	 Immediate	

Recall	 and	 Symbol	 Digit	 Modalities	 Tests	 scores.	 ABCA7-rs3764650-G	 was	

associated	with	a	 lower	 initial	 status	at	baseline	 in	 Immediate	Recall	Test	 scores	

and	 a	 reduced	 rate	 of	 decline	 in	 Symbol	 Digit	 Modalities	 Test	 scores.	 BIN1-

rs744373-G	was	 associated	 with	 a	 lower	 initial	 status	 at	 baseline	 in	 Immediate	

Recall	 Test	 scores.	 CLU-rs11136000-C	 was	 associated	 with	 quadratic	 rate	 of	

change	 in	 Digits	 Span	 Backwards	 test	 scores	 showing	 an	 accelerating	 positive	

slope.	EPHA1-rs11767557-T	was	associated	with	a	 faster	rate	of	decline	 in	Digits	

Span	Backwards	 test	 scores.	MS4A4E-rs670139-T	was	 associated	with	 increased	

initial	 status	 at	 baseline	 in	 Spot-the-word	 test	 scores.	 SORL1-rs11218343-T	was	

associated	with	a	 lower	 initial	status	at	baseline	 in	Symbol	Digits	Modalities	Test	

scores.	DSG2-rs8093731-C	was	associated	with	an	improvement	in	Spot-the-Word	

test	scores.	INPP5D-rs35349669-T	was	associated	with	a	reduced	rate	of	decline	in	

Immediate	 Recall	 Test	 scores	 and	 a	 greater	 rate	 of	 decline	 Symbol	 Digits	

Modalities	 Test	 scores.	ZCWPW1-rs1476679-T	was	 associated	with	 an	 increased	

rate	of	growth	in	Spot-the-word	test	scores.	CELF1-rs7933019-C	was	associated		
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Table	5.3:	Parameter	estimates	for	the	association	of	LOAD	GWAS	risk	loci	with	cognitive	performance	

SNP	 Coefficient	
Immediate	Recall	

Estimate	(SE)	

Digits	Backwards	

Estimate	(SE)	

Spot-the-Word	

Estimate	(SE)	

SDMT	

Estimate	(SE)	

SC-GRS	 Intercept	 -0.018	(0.018)	 -0.0043	(0.021)	 -0.013	(0.018)	 0.008	(0.02)	

	 Age	 -0.46	(0.69)	 -0.028	(0.71)	 0.11	(0.32)	 -0.68	(0.56)	

	 Age2	 0.34	(0.68)	 -0.75	(0.65)	 -0.18	(0.29)	 -0.16	(0.5)	

OR-GRS	 Intercept	 -0.033	(0.018)	 -0.013	(0.021)	 -0.026	(0.018)	 -0.026	(0.02)	

	 Age	 -1.5	(0.69)*	 0.041	(0.71)	 -0.18	(0.32)	 -1.1	(0.56)	

	 Age2	 0.62	(0.67)	 -0.87	(0.64)	 -0.014	(0.29)	 -0.35	(0.5)	

EV-GRS	 Intercept	 -0.033	(0.018)	 -0.012	(0.021)	 -0.023	(0.018)	 -0.021	(0.02)	

	 Age	 -1.5	(0.69)*	 0.044	(0.71)	 -0.19	(0.32)	 -1.2	(0.56)*	

	 Age2	 0.58	(0.67)	 -0.9	(0.64)	 0.016	(0.29)	 -0.4	(0.5)	

APOE	e4	 Intercept	 -0.058	(0.036)	 -0.014	(0.042)	 -0.02	(0.037)	 -0.071	(0.041)	

	 Age	 -3.6	(1.5)*	 0.44	(1.5)	 -0.13	(0.75)	 -2.7	(1.2)*	

	 Age2	 0.74	(1.4)	 -1.9	(1.4)	 -0.032	(0.66)	 -1.4	(1)	

ABCA7	 Intercept	 -0.1	(0.05)*	 0.03	(0.05)	 -0.05	(0.05)	 0.01	(0.05)	

	 Age	 -2.49	(1.84)	 -0.55	(1.87)	 0.3	(0.93)	 4.0	(1.45)**	

	 Age2	 -1.91	(1.76)	 -2.56	(1.69)	 0.83	(0.81)	 0.95	(1.28)	

BIN1	 Intercept	 -0.07	(0.035)*	 0.057	(0.04)	 -0.016	(0.036)	 0.023	(0.039)	

	 Age	 -1.0	(1.4)	 -0.8	(1.4)	 -0.5	(0.71)	 -1.6	(1.1)	

	 Age2	 1.2	(1.4)	 0.48	(1.3)	 0.63	(0.63)	 -0.64	(1)	

CD2AP	 Intercept	 0.016	(0.035)	 0.0064	(0.04)	 -0.029	(0.036)	 0.00075	(0.04)	

	 Age	 -1.3	(1.4)	 -2.5	(1.4)	 -1.0	(0.72)	 -0.15	(1.1)	

	 Age2	 1.2	(1.4)	 -0.86	(1.3)	 0.24	(0.64)	 -0.16	(1)	

CD33	 Intercept	 0.0091	(0.055)	 -0.066	(0.064)	 -0.084	(0.057)	 0.023	(0.062)	

	 Age	 1.1	(2.2)	 2.2	(2.3)	 -0.68	(1.1)	 -0.76	(1.8)	

	 Age2	 0.98	(2.2)	 3.1	(2.1)	 -1.3	(1.0)	 0.16	(1.6)	

CLU	 Intercept	 0.046	(0.047)	 0.096	(0.055)	 0.00095	(0.049)	 0.065	(0.054)	

	 Age	 -1.1	(1.9)	 0.95	(1.9)	 0.14	(0.86)	 0.15	(1.5)	

	 Age2	 0.95	(1.9)	 3.7	(1.8)*	 -1.5	(0.79)	 0.86	(1.4)	

CR1	 Intercept	 -0.044	(0.037)	 0.0085	(0.043)	 -0.05	(0.039)	 -0.021	(0.042)	

	 Age	 -1.8	(1.5)	 -0.2	(1.5)	 0.6	(0.77)	 -1.6	(1.2)	

	 Age2	 1.5	(1.5)	 -0.66	(1.4)	 0.12	(0.69)	 0.26	(1.1)	
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Table	5.3	(Continued)	

SNP	 Coefficient	
Immediate	Recall	

Estimate	(SE)	

Digits	Backwards	

Estimate	(SE)	

Spot-the-Word	

Estimate	(SE)	

SDMT	

Estimate	(SE)	

EPHA1	 Intercept	 -0.0059	(0.094)	 -0.035	(0.11)	 -0.091	(0.097)	 -0.15	(0.11)	

	 Age	 -3.8	(3.8)	 -10	(3.8)**	 0.34	(2.0)	 1.6	(3.1)	

	 Age2	 2.7	(3.7)	 2	(3.5)	 -0.16	(1.8)	 -1.1	(2.8)	

MS4A4A	 Intercept	 -0.013	(0.047)	 -0.024	(0.054)	 0.083	(0.048)	 0.057	(0.053)	

	 Age	 1	(1.9)	 1.8	(1.9)	 0.95	(0.95)	 0.54	(1.5)	

	 Age2	 -1.3	(1.8)	 -1.9	(1.8)	 0.28	(0.85)	 0.48	(1.3)	

MS4A4E	 Intercept	 -0.0034	(0.037)	 -0.021	(0.042)	 0.1	(0.038)**	 0.067	(0.041)	

	 Age	 2.8	(1.5)	 2	(1.5)	 0.4	(0.75)	 0.56	(1.0)	

	 Age2	 -0.09	(1.4)	 -0.53	(1.4)	 -0.28	(0.67)	 1.2	(1.1)	

MS4A6A	 Intercept	 -0.041	(0.045)	 -0.025	(0.052)	 0.033	(0.047)	 0.012	(0.051)	

	 Age	 1.4	(1.8)	 1.7	(1.8)	 1.5	(0.92)	 0.38	(1.4)	

	 Age2	 -0.38	(1.8)	 -1.9	(1.7)	 -0.057	(0.82)	 -0.17	(1.3)	

PICALM	 Intercept	 -0.017	(0.05)	 -0.0011	(0.057)	 0.017	(0.051)	 0.031	(0.056)	

	 Age	 0.84	(2.0)	 2.3	(2.0)	 0.87	(1.0)	 -0.31	(1.6)	

	 Age2	 -0.62	(1.9)	 -0.73	(1.9)	 -0.15	(0.9)	 -1.7	(1.4)	

HLA-DRB5	 Intercept	 -0.016	(0.035)	 -0.045	(0.041)	 -0.031	(0.036)	 0.005	(0.04)	

	 Age	 -0.1	(1.4)	 -2.6	(1.4)	 -0.78	(0.72)	 -0.6	(1.1)	

	 Age2	 0.43	(1.4)	 -0.97	(1.3)	 -0.67	(0.64)	 -0.16	(1)	

PTK2B	 Intercept	 0.0039	(0.036)	 -0.00036	(0.042)	 0.02	(0.037)	 -0.062	(0.041)	

	 Age	 0.13	(1.5)	 -0.48	(1.5)	 0.077	(0.75)	 0.92	(1.2)	

	 Age2	 0.38	(1.4)	 0.84	(1.4)	 -0.17	(0.66)	 -1.2	(1.0)	

SORL1	 Intercept	 -0.04	(0.066)	 0.018	(0.076)	 -0.023	(0.068)	 -0.15	(0.074)*	

	 Age	 2.4	(2.6)	 0.14	(2.6)	 -0.006	(1.3)	 -0.9	(2.0)	

	 Age2	 3.2	(2.5)	 -1.8	(2.4)	 -0.75	(1.2)	 -0.52	(1.8)	

SLC24A4-RIN3	 Intercept	 0.022	(0.081)	 0.06	(0.094)	 -0.06	(0.084)	 -0.074	(0.092)	

	 Age	 -3.9	(3.2)	 3.0	(3.3)	 -0.97	(1.7)	 0.99	(2.6)	

	 Age2	 0.13	(3.3)	 -1.2	(3.2)	 -1.7	(1.5)	 2.9	(2.4)	

DSG2	 Intercept	 0.023	(0.12)	 -0.072	(0.14)	 -0.17	(0.12)	 -0.14	(0.13)	

	 Age	 1.2	(5.0)	 -3.0	(5.1)	 5.9	(2.6)*	 3.1	(4.2)	

	 Age2	 -0.44	(4.9)	 -4.2	(4.8)	 -2.5	(2.3)	 2.4	(3.7)	
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Table	5.3	(Continued)	

SNP	 Coefficient	
Immediate	Recall	

Estimate	(SE)	

Digits	Backwards	

Estimate	(SE)	

Spot-the-Word	

Estimate	(SE)	

SDMT	

Estimate	(SE)	

INPP5D	 Intercept	 -0.032	(0.039)	 0.065	(0.045)	 0.018	(0.04)	 -0.017	(0.044)	

	 Age	 3.3	(1.6)*	 0.63	(1.6)	 -1.3	(0.8)	 -3.2	(1.3)**	

	 Age2	 0.71	(1.5)	 -2.3	(1.5)	 -0.17	(0.7)	 -1.2	(1.1)	

MEF2C	 Intercept	 -0.00085	(0.047)	 0.022	(0.054)	 -0.056	(0.048)	 -0.016	(0.052)	

	 Age	 1.1	(1.8)	 1.8	(1.9)	 -0.34	(0.94)	 1.2	(1.5)	

	 Age2	 -2.5	(1.8)	 1.3	(1.7)	 1.2	(0.83)	 1.5	(1.3)	

NME8	 Intercept	 0.048	(0.051)	 -0.0035	(0.059)	 0.0091	(0.053)	 0.0054	(0.058)	

	 Age	 2.8	(2.1)	 3.6	(2.1)	 0.26	(1.1)	 0.25	(1.7)	

	 Age2	 -2.9	(2.0)	 0.03	(1.9)	 -0.13	(0.94)	 -2.2	(1.5)	

ZCWPW1	 Intercept	 0.012	(0.059)	 -0.0086	(0.068)	 0.062	(0.06)	 -0.043	(0.066)	

	 Age	 -1.4	(2.3)	 0.21	(2.4)	 3.0	(1.2)**	 0.41	(1.9)	

	 Age2	 3.5	(2.2)	 3.3	(2.2)	 -1.4	(1.0)	 0.86	(1.7)	

CELF1	 Intercept	 0.0053	(0.035)	 -0.021	(0.041)	 -0.0033	(0.036)	 -0.0097	(0.04)	

	 Age	 3.1	(1.4)*	 -0.14	(1.4)	 1.3	(0.72)	 0.28	(1.1)	

	 Age2	 -0.84	(1.4)	 0.71	(1.3)	 0.0058	(0.64)	 1.4	(1)	

FERMT2	 Intercept	 0.014	(0.047)	 -0.1	(0.054)	 -0.028	(0.048)	 0.077	(0.052)	

	 Age	 -1.9	(1.9)	 1.9	(1.9)	 0.53	(0.95)	 1.6	(1.5)	

	 Age2	 -0.098	(1.8)	 -1.9	(1.8)	 -0.3	(0.86)	 2.9	(1.4)*	

CASS4	 Intercept	 -0.00083	(0.049)	 0.013	(0.056)	 0.018	(0.05)	 0.029	(0.055)	

	 Age	 0.82	(1.9)	 0.03	(1.9)	 0.16	(0.98)	 -2.2	(1.5)	

	 Age2	 0.5	(1.9)	 1.1	(1.8)	 -0.23	(0.87)	 -0.046	(1.4)	

p	<0.001,	 p	<0.01,	 p	<0.05;	Intercept:	baseline	cognitive	function,	Age:	linear	rate	of	change,	

	Age2:	quadratic	rate	of	change;	GRS	include	APOE;	negative	estimates	indicate	lower	cognitive		

function	and	accelerated	rates	of	decline.	
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with	reduced	rate	of	decline	in	Immediate	Recall	test	scores.	FERMT2-rs17125944-

C	was	associated	with	a	quadratic	rate	of	change	in	Symbol	Digits	Modalities	Test	

scores.		

Comparisons	in	the	R2	statistics	between	covariate	only	models	and	the	

SNPs	showed	that	there	was	a	negligible	increase	in	marginal	R2	statistics	and	no	

increase	in	conditional	R2	statistics	(Supplementary	Tables	6-29).		

5.3.3	 Main	Effects	of	LOAD	GRS		

We	 evaluated	 the	 association	 of	 three	 genetic	 risk	 scores	 with	 cognitive	

performance	 (Table	5.3;	Supplementary	Tables	30-32).	Mean	and	SD	 for	 the	raw	

GRS	 at	 baseline	 are	presented	 in	Table	5.2.	 The	 SC-GRS	was	not	 associated	with	

cognitive	performance.	Higher	OR-	and	EV-GRS	were	associated	with	a	greater	rate	

of	 decline	 in	 Immediate	 Recall	 and	 for	 the	 EV-GRS,	 a	 greater	 rate	 of	 decline	 in	

Symbol	Digit	Modalities	Test	scores.		

Comparisons	 in	 the	 R2	 statistics	 between	 covariates-only	models	 and	 the	

GRS	models	showed	that	 there	was	a	negligible	 increase	 in	marginal	R2	 statistics	

and	no	increase	in	conditional	R2	statistics	(Supplementary	Tables	30-32).	OR-	and	

EV-GRS	were	not	associated	with	cognitive	performance	when	APOE	was	excluded	

from	the	GRS	(Supplementary	Tables	33-35).	

	

5.4	 Discussion		

In	 this	 study	 we	 investigated	 the	 association	 of	 the	 23	 most	 significant	

LOAD	GWAS	risk	loci	with	cognitive	performance	in	episodic	memory,	vocabulary,	

working	memory	and	processing	speed.	We	identified	11	SNPs	as	associated	with	

baseline	 cognitive	 performance	 (ABCA7,	 BIN1,	 MS4A4E,	 SORL1),	 linear	 rate	 of	

change	(APOE,	ABCA7,	EPHA1,	DSG2,	INPP5D,	ZCWPW1,	CELF1)	or	quadratic	rate	of	

change	(CLU,	FERMT2).	GRS,	weighted	by	odds	ratio	and	by	odds	ratio	plus	minor	

allele	 frequency	 were	 both	 associated	 with	 a	 linear	 rate	 of	 change	 in	 episodic	

memory	 and	 processing	 speed.	 When	 APOE	 was	 excluded	 from	 these	 scores	

neither	 GRS	were	 significantly	 associated	with	 cognitive	 performance	 indicating	

that	 the	 association	was	 driven	 by	 the	 dominant	 effect	 of	 the	APOE	*e4	 allele.	 It	

should	be	noted,	however,	 that	 the	effect	 sizes	 for	 the	observed	associations	are	

small,	 with	 an	 increase	 in	 marginal	 R2	 statistics	 ranging	 from	 0.1-0.2%	 after	
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inclusion	 of	 the	 genetic	 predictors.	 In	 comparison,	 inclusion	 of	 the	 covariate	

education	in	the	model	increases	the	marginal	R2	statistic	around	4.3-19.8%.	

	

Previous	 studies	 of	 associations	 between	 the	 initial	 GWAS	 LOAD	 risk	 loci	

and	the	limited	number	of	studies	that	have	examined	the	role	of	the	IGAP	LOAD	

risk	 loci	 and	 cognitive	 performance	 are	 characterized	 by	 a	 lack	 of	 consistent	

findings	[114-132].		

In	 univariate	 analysis,	 SNPs	 from	 7	 of	 the	 23	 non-APOE	 GWAS	 loci	 have	

been	 associated	 with	 cognitive	 performance.	 ABCA7	 with	 declines	 in	 the	 MMSE	

score	 in	 women	 [123];	 BIN1	 with	 decline	 in	 MMSE	 score	 [124];	 CD2AP	 with	 a	

composite	 episodic	 memory	 [119];	 CD33	 with	 a	 composite	 executive	 function	

score	[119]	and	decline	in	MMSE	in	women	[123];	CLU	with	with	baseline	episodic	

memory	[120],	baseline	and	decline	in	a	composite	cognitive	score	[129,130]	and	

decline	 in	3MS	 [144];	CR1	with	declines	 in	verbal	 fluency	 [124],	 global	 cognition	

[116,128],	 episodic	 memory,	 perceptual	 speed,	 semantic	 memory	 [131]	 and	

attention	 [144];	 PICALM	 with	 a	 composite	 cognitive	 score	 [130]	 and	 decline	 in	

global	cognition	[115];	and	NME8	with	declines	 in	Clinical	Dementia	Rating	Scale	

Sum	of	Boxes	Scores	[132].		

Aggregating	 SNP	 variation	 across	 genomic	 regions	 in	 a	 ‘gene	 based’	

approach,	 has	 identified	 additional	 AD	 risk	 loci	 as	 associated	 with	 cognitive	

performance.	 In	 a	meta-analysis	 of	 31	 studies	 (n	 =	 53,949),	PICALM,	MEF2C	and	

SLC24A4-RIN3	 gene	 regions	 were	 associated	 with	 general	 cognitive	 function	 (p	

≤0.05).	In	single	sex	cohorts,	BIN1,	CD33,	CELF1,	CR1,	HLA	cluster,	and	MEF2C	gene	

regions	were	associated	with	decline	in	MMSE	in	an	all	female	cohort	and	ABCA7,	

HLA	 cluster,	MS4A6E,	 PICALM,	 PTK2B,	 SLC24A4,	 and	 SORL1	 gene	 regions	 were	

associated	with	decline	in	3MS	in	an	all-male	cohort.		

	

Genetic	 risk	 scores	 can	 have	 greater	 predictive	 power	 than	 individual	

variants	 as	 they	 are	 based	 on	 the	 cumulative	 effect	 of	 many	 variants	 that	

individually	 may	 have	 effects	 that	 are	 too	 small	 to	 be	 reliably	 detected	 in	 a	

univariate	analysis.	GRS	composed	of	LOAD	risk	SNPs	identified	in	the	initial	LOAD	

GWAS	 have	 been	 associated	 with	 baseline	 general	 cognition	 [119],	 episodic	

memory	 [120],	 visual	 memory	 and	 MMSE	 [124]	 and	 with	 decline	 in	 episodic	

memory	 [120],	 verbal	 fluency,	 visual	memory	 and	MMSE	 [124].	 However,	 these	
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associations	were	no	longer	statistically	significant	when	APOE	was	excluded	from	

the	GRS.	GRS	that	include	the	IGAP	risk	loci	have	been	associated	with	a	decline	in	

MMSE	in	participants	with	MCI	when	APOE	was	excluded		[117],	and	with	memory	

performance	 at	 baseline	 and	 a	 faster	 rate	 of	 decline	 that	 accelerated	 with	 age,	

though	 only	 linear	 rate	 of	 change	 remained	 significant	 after	APOE	was	 excluded	

[211].		

Genome-wide	significant	 IGAP	LOAD	risk	 loci	only	explain	only	30.62%	of	

the	genetic	variance	of	LOAD	[106].	Thus,	an	alternative	approach	is	to	construct	a	

genome-wide	polygenic	score	(GPS)	composed	of	all	nominally	associated	variants	

at	 a	 given	 significance	 level.	 The	 first	 study	 to	 use	 this	 method	 did	 not	 find	 an	

association	with	cognitive	ability	or	cognitive	change	 [212].	A	more	recent	study	

using	 data	 collected	 from	 the	 UK	 Biobank	 (n	 =	 112	 151)	 found	 that	 an	 AD	 GRS	

constructed	from	20,437	SNPs	that	were	associated	with	AD	at	a	threshold	of	p	<	

0.05	 in	 the	 IGAP	 study	was	 significantly	 associated	with	 lower	 verbal-numerical	

reasoning,	memory	and	educational	attainment	[213].		

	

Several	 factors	may	 explain	 the	 lack	 of	 consistent	 findings	 across	 studies.	

First,	 the	 failure	 to	 replicate	 positive	 results	 between	 studies	 could	 result	 from	

differences	 in	 participant	 characteristics	 (e.g.,	 baseline	 education,	 mean	 age,	

gender,	and	ethnicity)	and	methodologies	(e.g.,	sample	size,	duration	of	the	study,	

number	 of	 follow-ups,	 non-linear	 time,	 population	 stratification,	 variation	 in	

classification,	 and	 cognitive	 measures)	 [104].	 In	 particular,	 studies	 that	 did	 not	

exclude	cognitively	impaired	individuals	from	the	analysis	could	bias	the	observed	

results	in	favour	of	a	positive	association	[122,309].		

	

Selectively	removing	individuals	who	develop	cognitive	impairment	during	

the	study	 from	the	analysis,	as	was	done	 in	 this	study,	may	not	resolve	 the	 issue	

because	 of	 inadvertent	 inclusion	 of	 participants	 with	 preclinical	 dementia.	

Inclusion	 of	 individuals	 who	 are	 cognitively	 normal	 but	 have	 biomarker	 and	

neuroimaging	evidence	of	preclinical	AD	greatly	exaggerates	age-related	cognitive	

decline	 across	 multiple	 cognitive	 domains	 [93].	 This	 suggests	 that	 AD-related	

genes	 may	 be	 associated	 with	 cognitive	 decline	 in	 participants	 who	 are	 in	 the	

preclinical	 stages	 of	AD.	 This	 has	 been	 observed	 in	 cognitively	 normal	APOE	*e4	

carriers	 who	 had	 low	 levels	 of	 PET	 Ab	 who	 remained	 cognitively	 stable,	 in	
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comparison	to	an	APOE	*e4	carriers	with	high	PET	Ab	who	experienced	faster	rates	

of	cognitive	decline.	This	suggests	 that	declines	 in	cognitive	 function	observed	 in	

APOE	 *e4	 carriers	 reflects	 the	 effect	 of	 APOE	 exacerbating	 Ab	 related	 cognitive	

decline	 rather	 than	 an	 independent	 APOE	 effect	 [447].	 This	 effect	 is	 further	

indicated	 by	 previous	 studies	 showing	 that	 ABCA7,	 EPAH1	 and	 CLU	 were	

associated	with	cognitive	decline	in	participants	classified	as	cognitively	impaired	

or	demented,	but	not	in	those	who	remained	cognitively	normal	[120,127,442].	

	

Second,	the	rationale	for	including	LOAD	risk	loci	in	the	analysis	is	that	they	

may	 be	 associated	 with	 biological	 processes,	 such	 as	 neuritic	 plaque	 or	

neurofibrillary	 tangle	 burden,	 that	 affect	 both	 LOAD	 and	 general	 cognitive	

performance.	However,	 of	 the	 23	 loci	 identified	 in	 the	 IGAP	 study,	 only	 11	 have	

been	 associated	 with	 neuritic	 plaque	 (ABCA7,	 BIN1,	 CASS4,	 MEF2C,	 PICALM,	

MS4A6A,	 CD33	 and	 CR1)	 or	 neurofibrillary	 tangle	 (ABCA7,	 BIN1,	 CASS4,	 MEF2C,	

PICALM,	 CLU,	 SORL1	 and	 ZCWPW1)	 burdens	 in	 AD	 case/control	 autopsies	

[128,142].	 In	 a	 longitudinal	 study,	 only	 BIN1	 and	 CASS4	 were	 associated	 with	

amyloid	accumulation	 [210].	 In	contrast,	 in	 subjects	with	MCI,	none	of	 the	LOAD	

risk	 loci	were	 associated	with	 levels	 of	 Ab in	 cerebrospinal	 fluid	 (CSF)	 and	 only	

SORL1	was	associated	with	levels	of	CSF	tau	and	phosphorylated	tau	(components	

of	 neurofibrillary	 tangles).	 Furthermore,	 neuritic	 plaques	 and	 neurofibrillary	

tangles	 only	 explain	 30%	 of	 the	 variation	 in	 cognitive	 decline,	 with	

cerebrovascular	and	Lewy	body	disease	neuropatholgies	explaining	an	additional	

10%	of	variation	[91].	This	highlights	that	while	LOAD	pathology	is	an	important	

factor	 in	 cognitive	 decline,	 it	 occurs	 in	 conjunction	 with	 other	 pathological	

features.		

	

Finally,	 the	 pathogenesis	 of	 LOAD	 spans	 decades,	 clinically	 progressing	

through	the	preclinical,	MCI	and	dementia	stages.	As	such,	where	and	when	a	risk	

locus	 is	 involved	 in	 the	 LOAD	 pathogenesis	 cascade	may	 influence	whether	 it	 is	

associated	with	processes	that	predispose,	initiate	or	propagate	cognitive	decline.	

Associations	have	been	 reported	between	CD2AP,	CLU,	MS4A6A	 and	 INPP5D	 and	

progression	 from	 normal	 cognition	 to	 dementia	 [448];	CLU,	CR1,	 and	NME8	 and	

progression	 from	 MCI	 to	 dementia	 [448-450];	 INPP5D,	 MEFC2,	 EPHA1,	 PT2KB,	



	

114	

FERMT2,	CASS4	and	rate	of	progression	in	AD	[163];	and	PICALM	and	MS4A6A	and	

progression	to	MCI/Dementia	from	normal	cognition	normal	[120]	

	

The	present	findings	need	to	be	interpreted	with	an	understanding	of	their	

limitations.	 First,	 the	PATH	 cohort	 is	 better	 educated	 then	 the	population	 it	was	

drawn	 from.	 As	 higher	 education	 is	 associated	 with	 a	 reduced	 risk	 of	 cognitive	

decline	and	 incident	dementia,	 this	may	 limit	our	ability	 to	detect	an	association	

between	 genetic	 factors	 and	 cognitive	 performance.	 Second,	 the	 subjects	 in	 this	

study	 were	 of	 European	 ancestry,	 and	 thus	 the	 results	 presented	 may	 not	 be	

generalizable	 to	 other	 populations.	 Finally,	 there	 may	 have	 been	 differential	

attrition	from	the	PATH	study	of	individuals	who	later	became	severely	impaired	

and	demented,	which	may	have	biased	results	because	these	individuals	would	not	

be	 excluded	 from	 our	 analysis	 and	 are	more	 likely	 to	 experience	 faster	 rates	 of	

cognitive	decline	[451].		

Despite	 these	 limitations,	 this	 study	 has	 a	 number	 of	 strengths.	 It	 was	

performed	in	a	large	community-based	cohort	that	has	been	followed	for	a	period	

of	12	years	with	four	waves	of	data	assessing	four	separate	cognitive	domains.	This	

allows	 for	 robust	 statistical	 modelling	 of	 the	 association	 of	 genetic	 factors	 with	

non-linear	declines	 across	 a	broad	 spectrum	of	 cognition	 functions.	Additionally,	

the	narrow	age	range	of	this	cohort	reduces	the	influence	of	age	differences	on	the	

results.	

	

In	 conclusion,	 our	 results	 suggest	 that	 a	 subset	 of	 AD-risk	 loci	 are	

associated	with	non-clinical	cognitive	decline,	although	the	effect	size	of	each	locus	

is	 small.	 Further,	when	demographic	and	 lifestyle	 factors	are	 taken	 into	account,	

neither	individual	SNPs	nor	GRS	explain	a	significant	proportion	of	the	variance	in	

cognitive	decline	 in	our	sample.	Further	 investigation	of	 the	association	of	LOAD	

risk	loci	with	cognitive	function	needs	to	account	for	the	inclusion	of	participants	

with	preclinical	AD.	The	use	of	neuroimaging	and	cerebrospinal	 fluid	biomarkers	

to	determine	preclinical	AD	status	will	allow	for	a	more	robust	analysis	of	the	role	

of	LOAD	risk	loci	in	cognitive	aging.	
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Supplementary	Data	

Supplementary	data	for	this	study	is	available	here:	

http://dx.doi.org/10.3233/JAD-160774	
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Abstract	

Genetic	 factors	make	 a	 substantial	 contribution	 to	 inter-individual	 variability	 in	

cognitive	 function.	 A	 recent	 meta-analysis	 of	 genome-wide	 association	 studies	

identified	two	loci,	AKAP6	and	MIR2113,	that	are	associated	with	general	cognitive	

function.	Here,	we	extend	this	previous	research	by	investigating	the	association	of	

MIR2113	 and	 AKAP6	with	 baseline	 and	 longitudinal	 nonlinear	 change	 across	 a	

broad	spectrum	of	 cognitive	domains	 in	community-based	cohort	of	older	adults	

without	 dementia.	 Two	 SNPs,	MIR211-rs10457441	 and	AKAP6-rs17522122	were	

genotyped	 in	 1,570	 non-demented	 older	 Australians	 of	 European	 ancestry,	 who	

were	examined	up	to	4	times	over	12	years.	Linear	mixed	effects	models	were	used	

to	 examine	 the	 association	 between	 AKAP6	 and	 MIR2113	 with	 cognitive	

performance	in	episodic	memory,	working	memory,	vocabulary,	perceptual	speed	

and	 reaction	 time	 at	 baseline	 and	 with	 linear	 and	 quadratic	 rates	 of	 change.	

AKAP6-rs17522122*T	 was	 associated	 with	 worse	 baseline	 performance	 in	

episodic	memory,	working	memory,	vocabulary	and	perceptual	speed,	but	 it	was	

not	associated	with	cognitive	change	in	any	domain.	MIR2113-rs10457441*T	was	

associated	 with	 accelerated	 decline	 in	 episodic	 memory.	 No	 other	 associations	

with	baseline	cognitive	performance	or	with	 linear	or	quadratic	rate	or	cognitive	

changes	was	observed	for	this	SNP.	These	results	confirm	the	previous	finding	that	

AKAP6	 is	 associated	 with	 performance	 across	 multiple	 cognitive	 domains	 at	

baseline	but	not	with	cognitive	decline,	while	MIR2113	primarily	affects	the	rate	at	

which	memory	declines	over	time.	
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6.1	 Introduction	

Age-associated	 decline	 is	 a	 general	 process	 that	 affects	 all	 cognitive	

domains,	 although	 it	 is	 more	 pronounced	 in	 domains	 associated	 with	 fluid	

cognition	 (i.e.,	 that	 involve	 novel	 problem	 solving	 and	 speeded	 information	

processing)	than	domains	associated	with	crystalized	cognition	(i.e.,	that	requires	

stored	knowledge	such	as	vocabulary	and	general	knowledge	[4,452].	

There	 is,	 however,	 great	 heterogeneity	 in	 the	 rate	 of	 decline	 between	

individuels,	 with	 some	 individuals	 remaining	 relatively	 unimpaired	 across	 their	

lifecourse,	while	others	experience	a	much	 faster	rate	of	deterioration	which	can	

lead	 to	 cognitive	 impairment	 or	 dementia	 [9,10].	 Even	 in	 the	 absence	 of	

dementia,	 age-associated	 cognitive	decline	may	 results	 in	 increased	difficulty	

performing	tasks	 involving	memory	and	rapid	information	processing.	Decline	

in	cognitive	performance	is	associated	with	poor	decision-making	[5],	difficulty	

with	 instrumental	 activities	 of	 daily	 living	 [6,7]	 and,	 poor	 health	 literacy	 [8].	

Even	when	no	single	aspect	of	daily	living	is	critically	impaired,	the	cumulative	

effect	of	small	effects	in	multiple	domains	can	have	a	major	 impact	on	 quality	

of	life.	Furthermore,	a	faster	rate	of	decline	is	associated	with	dementia	[9,10]	

and	mortality	[11,12].	 Identifying	factors	that	predispose	individuals	to	faster	

cognitive	 decline	 is	 an	 important	 step	 in	 developing	 intervention	 and	

treatment	strategies	for	maintaining	cognitive	health.	

	

Genetic	 factors	 contribute	 to	 the	 inter-individual	 variability	 observed	 in	

cognitive	decline,	with	common	genetic	variants	estimated	to	account	for	between	

40-50%	of	the	variability	associated	with	general	cognitive	functioning	in	later	life,	

and	24%	of	 the	variability	 in	 lifetime	cognitive	change	[102,103].	A	recent	meta-

analysis	 of	 genome-wide	 association	 studies	 (GWAS)	 performed	 by	 the	 CHARGE	

consortium	(n	=	53,949)	identified	13	SNPs	in	three	genomic	regions,	MIR2113	(n	

=	11),	AKAP6	(n	=	1)	and	APOE/TOMM40		(n	=	1)	associated	with	general	cognitive	

function	[122].	In	a	follow-up	study	of	the	UK	Biobank	(n	=	112,151)	MIR2113	was	

associated	 with	 educational	 attainment	 and	 verbal-numerical	 reasoning,	 AKAP6	

was	associated	with	verbal-numerical	reasoning,	reaction	time	and	memory,	while	

conversely	 APOE/TOMM40	was	 not	 associated	 with	 any	 measure	 of	 cognitive	

function	[133].		
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The	 APOE/TOMM40	 region	 has	 been	 consistently	 associated	 with	

Alzheimer’s	 disease	 [134,453],	 and	 in	 particular	 for	 APOE,	 with	 cognitive	

performance	 in	 episodic	 memory,	 executive	 functioning,	 perceptual	 speed,	 and	

global	 cognitive	 ability	 [145].	 In	 contrast,	 the	 role	 of	 AKAP6	 and	 MIR2113	 in	

cognitive	 function	 is	 not	 well	 understood.	 The	 genome-wide	 significant	 SNPs	

identified	 by	 Davies	 et	 al	 2015	 in	 the	 MIR2113	 region	 are	 located	 ~100kb	

downstream	of	MIR2113	 and	are	 associated	with	 regulatory	 elements	 such	open	

chromatin,	histone	modifications,	DNase	hypersensitive	sites	and	position	weight	

matrix	 sites,	 suggesting	 that	 the	associated	SNPs	associated	are	 in	 sites	of	 active	

transcription	 and	 may	 play	 a	 regulatory	 role	 in	 transcription	 [122].	 AKAP6	 is	

highly	expressed	in	various	brain	regions	and	cardiac	and	skeletal	muscle	where	it	

binds	to	the	regulatory	subunit	of	protein	kinase	A	(PKA)	and	anchors	PKA	to	the	

nuclear	 membrane	 or	 sarcoplasmic	 reticulum.	 The	 cAMP-dependent	 PKA	

signalling	pathway,	in	turn	has	been	shown	to	be	involved	in	short	and	long	term	

memory	and	working	memory	[454,455].	

	 Here,	we	extend	 this	previous	research	by	 investigating	 the	association	of	

MIR2113	and	AKAP6	with	baseline	and	longitudinal	nonlinear	change	in	cognitive	

performance	in	a	community-based	cohort	of	1,570	older	adults	without	dementia	

who	 have	 undergone	 cognitive	 testing	 in	 the	 domains	 of	 episodic	 memory,	

working	memory,	verbal	ability,	processing	speed	and	reaction	time.	

	

	

6.2	 Methods	

6.2.1	 Participants	

Participants	were	 from	 the	Personality	 and	Total	Health	 (PATH)	Through	

Life	 Project,	 a	 large	 community	 survey	 of	 health	 and	 wellbeing	 in	 adults.	

Participants	were	randomly	recruited	from	the	electoral	rolls	of	Canberra	and	the	

neighbouring	town	of	Queanbeyan	into	one	of	three	cohorts	based	on	age;	the	20+	

(20-24	years),	 the	40+	(40-44	years)	and	the	60+	(60-64	years),	with	individuals	

assessed	 at	 4	 year	 intervals	 over	 a	 period	 of	 12	 years.	 The	 background	 and	

procedures	 of	 the	 PATH	 cohort	 have	 been	 described	 in	 detail	 elsewhere	 [322].	

Written	informed	consent	was	obtained	from	all	participants	and	approval	for	the	
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study	was	obtained	from	the	Human	Research	Ethics	Committee	of	the	Australian	

National	University.	

Data	collected	from	the	60+	cohort	was	used	in	this	study,	with	interviews	

conducted	in	2001-2002	(n	=	2551),	2005-2006	(n	=	2222),	2009-2010	(n	=	1973)	

and	2014-2015	(n	=	1645).	Individuals	were	excluded	from	analysis	based	on	the	

following	criteria:	attendance	at	only	1	wave	(n=	309);	no	genomic	DNA	available	

or	 missing	 genotype	 data	 (n	 =	 264);	 APOE	 e2/e4	 carriers	 (n	 =	 60,	 to	 avoid	

conflation	 of	 the	 e2	 protective	 and	 e4	 risk	 affect);	 non-European	 ancestry	 (n	 =	

107);	probable	dementia	at	any	wave	(MMSE	<	24;	n	=	82);	self-reported	medical	

history	 of	 epilepsy,	 brain	 tumours	 or	 infections,	 stroke	 and	 transient	 ischemic	

attacks	 (n	 =	 381).	 Missing	 values	 in	 “Education”	 (total	 number	 of	 years	 of	

education,	n	=	129)	were	imputed	using	the	‘missForest’	package	in	R	[424].		These	

exclusions	left	a	final	dataset	of	1,570	individuals	at	baseline.	

	

6.2.2	 Cognitive	Assessment	

All	participants	were	assessed	at	baseline	and	at	each	subsequent	interview	

for	 the	 following	 four	 cognitive	 abilities:	 perceptual	 speed,	 assessed	 using	 the	

Symbol	 Digit	 Modalities	 Test,	 which	 asks	 the	 participant	 to	 substitute	 as	 many	

digits	 for	 symbols	as	possible	 in	90s	 [371];	episodic	memory,	assessed	using	 the	

Immediate	 Recall	 of	 the	 first	 trial	 of	 the	 California	 Verbal	 Learning	 Test,	 which	

involves	 recalling	 a	 list	 of	 16	 nouns	 [327];	working	memory,	 assessed	 using	 the	

Digit	 Span	 Backward	 from	 the	 Wechsler	 Memory	 Scale,	 which	 presents	

participants	with	 series	of	 digits	 increasing	 in	 length	 at	 the	 rate	of	 one	digit	 per	

second	 and	 asks	 them	 to	 repeat	 the	 Digits	 Backwards	 [328];	 and	 vocabulary,	

assessed	with	the	Spot-the-Word	Test,	which	asks	participants	to	choose	the	real	

words	 from	 60	 pairs	 of	 words	 and	 nonsense	 words	 [329].	 Simple	 and	 choice	

reaction	time	(SRT	and	CRT)	tasks	were	administrated	using	a	hand	held	box	with	

two	depressible	 buttons,	 two	 red	 stimulus	 lights	 and	one	 green	 ‘get	 ready’	 light.	

SRT	 was	 measured	 using	 four	 blocks	 of	 20	 trials,	 in	 which	 the	 participant	 was	

instructed	to	press	the	right	hand	button	(regardless	of	dominance)	in	response	to	

the	activation	of	one	of	the	stimulus	lights.	CRT	was	measured	using	two	blocks	of	

20	trials,	in	which	participants	were	instructed	to	press	the	button	corresponding	

to	the	left	or	right	stimulus	light.	Mean	reaction	times	were	calculated	as	described	
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previously	[331].	Raw	cognitive	test	scores	at	each	wave	and	Pearson	correlations	

between	test	scores	are	presented	in	Supplementary	Tables	1	&	2.	

	

6.2.3	 Genotyping		

The	most	 strongly	 associated	SNPs	 identified	by	 the	CHARGE	 consortium,	

MIR211-rs10457441,	AKAP6-rs17522122	and	TOMM40-rs10119,	were	 genotyped	

using	 TaqMan	 OpenArray	 Assays	 as	 previously	 described	 [456].	 For	AKAP6	and	

MIR2113	an	 additive	 model	 was	 used	 which	 examines	 the	 effect	 of	 each	 minor	

allele.		

TOMM40-rs10119	did	 not	 pass	 quality	 control	 in	 our	 dataset	 and	 as	 such	

was	excluded	 from	analysis.	TOMM40-rs10119	 is	 located	 in	 the	19q13.32	region,	

which	 is	a	gene-dense	region	of	strong	 linkage	disequilibrium	and	includes	APOE	

and	TOMM40.	Fine	mapping	of	the	region	indicates	that	APOE	variation	is	driving	

observed	associations	with	cognitive	aging	 [121].	As	such,	we	 included	 the	APOE	

e2/e3/e4	 haplotypes	 in	 our	 analysis	 as	 covariates.	 SNP	 data	 for	 rs429358	 and	

rs7412	which	 define	 the	APOE	e2/e3/e4	 haplotypes,	 were	 genotyped	 separately	

using	 TaqMan	 assays	 as	 previously	 described	 [382].	APOE	alleles	were	 coded	 as	

the	 number	 of	APOE	*e4	 alleles	 (0,1,2).	 Participants	with	 the	APOE	*e2/e4	 allele	

were	excluded	to	avoid	conflation	between	the	APOE	*e2	protective	and	APOE	*e4	

risk	affect.	

All	 SNPs	 were	 in	 Hardy-Weinberg	 equilibrium	 (p	 <	 0.05).	 Genotype	

frequencies	are	presented	in	Table	6.1.	

	

6.2.4	 Statistical	Analysis	

Statistical	 analysis	was	 performed	 in	 the	 R	 3.2.3	 Computing	 environment	

[426].	To	facilitate	comparisons	across	cognitive	tests,	all	cognitive	test	results	at	

all	 four	 waves	 were	 transformed	 into	 z-scores	 using	 the	 means	 and	 standard	

deviations	at	baseline.	Higher	scores	indicate	better	cognitive	performance.	

Demographic	characteristics	of	participants	excluded	or	included	from	analysis	are	

described	 using	 means	 and	 standard	 deviations	 for	 continuous	 variables	 and	

frequency	 and	 proportions	 for	 categorical	 variables	 (Table	 6.1).	 Demographic	

variables	were	compared	using	independent	sample	t-tests	and	χ2	tests.	
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Table	6.1:	PATH	cohort	demographics 

Variable	 Excluded	

(n	=	981)	

Included	

(n	=	1,570)	

t/c
2
	 Degrees	of	

Freedom	

P	

Age
1
	 62.47	±	1.48	 62.54	±	1.52	 1.1	 2111.22	 0.27	

Education
1
	 13.35	±	3.06	 14.03	±	2.56	 5.81	 1807.7	 <0.001	

MMSE
1
	 28.67	±	2.04	 29.37	±	0.91	 10.07	 1206.95	 <0.001	

Male
2
	 513	(52.35)	 803	(51.15)	 0.4	 1	 0.53	

MIR2113,	n	(%)	 	 	 	 	 	

				T/T	 188	(26.1)	 351	(22.4)	 	 	 	

				C/T	 343	(47.6)	 805	(51.3)	 	 	 	

				C/C	 189	(26.2)	 414	(26.4)	 	 	 	

				NA3	 260	(10.2)	 -	 	 	 	

AKAP6,	n	(%)	 	 	 	 	 	

				T/T	 154	(21.5)	 342	(21.8)	 	 	 	

				G/T	 361	(50.4)	 811	(51.7)	 	 	 	

				G/G	 201	(28.1)	 417	(26.6)	 	 	 	

				NA3	 263	(10.3)	 -	 	 	 	

APOE	e4	alleles,	n	(%)	
    0 613	(76.1)	 1183	(75.4)	 	 	 	

    1	 170	(21.1)	 361	(23)	 	 	 	

    2	 23	(2.9)	 26	(1.7)	 	 	 	

				NA3	 173	(6.7)	 -	 	 	 	
1
unpaired	2-tailed	t-test;	

2
Pearson’s	c

2
	2-tailed	test;		

3percentage	of	total	sample	(excluded	+	included)	with	missing	genotype	data.	

	

	

Linear	Mixed	Effects	models	(LMMs)	adjusting	for	sex	and	APOE	genotype,	

with	 maximum	 likelihood	 estimation,	 subject	 specific	 random	 slopes	 and	

intercepts	 were	 used	 to	 compare	 cognitive	 performance	 between	 genotypes.	

Longitudinal	change	in	cognitive	performance	was	modelled	as	a	quadratic	growth	

curve,	where	 age	was	 centred	 on	 baseline,	 linear	 rate	 of	 change	 (Time)	was	 the	

slope	 at	 intercept,	 and	 quadratic	 rate	 of	 change	 (Time2)	was	 acceleration	 of	 the	

curve	 over	 time.	 Quadratic	 growth	 curves	 were	 represented	 as	 orthogonal	

polynomials	to	avoid	colinearity	problems	and	facilitate	estimation	of	the	models	

[444].	LMMs	were	estimated	using	the	R	package	‘lme4’	[429].	

Statistical	 significance	 of	 the	 fixed	 effects	 were	 determined	 using	 a	

Kenward-Roger	approximation	for	F-tests,	where	a	full	model,	containing	all	fixed	

effects,	 is	 compared	 to	 a	 reduced	model	 that	 excludes	 an	 individual	 fixed	 effect	

[446].	As	this	is	a	follow-up	study	to	replicate	the	previous	findings	in	the	CHARGE	

consortium	and	UK	biobank	studies,	a	P-value	<	0.05	was	considered	statistically	

significant. To	 evaluate	 whether	 the	 random	 slopes	 were	 significantly	 different	

from	0,	and	to	determine	if	there	was	residual	variability	in	the	rate	of	change	that	

could	 be	 explained	 by	 predictor	 variables,	 LMMs	 that	 included	 random	 slopes	
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were	compared	with	models	that	did	not	include	random	slopes	using	parametric	

bootstrap	 methods	 where	 1000	 simulations	 of	 the	 likelihood	 ratio	 test	 statistic	

were	generated.	Conditional	R2	(!"
#),	the	variance	explained	by	fixed	and	random	

effects	(i.e.	the	entire	model),	and	marginal	R2	(!$
# ),	the	variance	explained	by	the	

fixed	effects	were	calculated	using	the	R	package	‘MuMIn’	[431-433].	Power	curves	

were	calculated	to	assess	the	effect	size	that	could	be	detected	at	a	given	power	for	

our	 sample	 size	 using	 the	 R	 package	 ‘simr’	 [375].	 The	 power	 calculations	 were	

based	 on	Monte	Carlo	 simulations	 (n	 =	 1000)	 of	 linear	mixed	 effects	models	 for	

each	 of	 the	 cognitive	 outcomes	 considered,	where	 the	 effect	 size	 for	AKAP6	 and	

MIR2113	baseline,	linear	and	quadratic	coefficients	were	altered	in	the	base	model	

in	increments	of	0.5	for	the	linear	and	quadratic	coefficients	and	0.02	for	baseline	

coefficients.	 The	 power	 curves	 are	 shown	 in	 Supplementary	 Figure	 1	 and	 the	

detectable	effect	sizes	at	80%	power	is	shown	in	Supplementary	Tables	3	&	4.	

	

6.3	 Results	

6.3.1	 Population	Characteristics	of	the	PATH	cohort	

Demographic	 information	on	PATH	participants	 is	presented	 in	Table	6.1.	

Individuals	 retained	 in	 the	 final	 sample	had	on	average	higher	MMSE	scores	and	

more	years	of	education	than	those	excluded.	Unconditional	growth	LMMs	showed	

that	 all	 cognitive	 tests	were	 associated	with	 linear	 rate	 of	 change	 and,	 with	 the	

exception	 for	 Digits	 Backwards	 test,	 quadratic	 rate	 of	 change	 (Supplementary	

Table	5).	Random	slopes	 for	all	cognitive	 tests	scores	were	significantly	different	

from	 0,	 indicating	 that	 there	 was	 sufficient	 variability	 in	 the	 rate	 of	 change	

between	participants,	thus,	allowing	potential	genetic	predictors	of	this	change	to	

be	tested	(linear	random	effect	boostrap	p	values:	Immediate	recall	=	0.001;	Digits	

Backwards	 =	 0.001;	 Spot-the-Word	 =	 0.001;	 SDMT	=	 0.001;	 SRT	 =	 0.001;	 CRT	 =	

0.001.	 Quadratic	 random	 effects	 bootstrap	 p	values:	 	 Immediate	 recall	 =	 0.001;	

Digits	 Backwards	 =	 0.002;	 Spot-the-Word	 =	 0.001;	 SDMT	 =	 0.001;	 SRT	 =	 0.001;	

CRT	 =	 0.001).	 Supplementary	 Table	 6	 shows	 the	 results	 of	 the	 covariates	 only	

model.		
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6.3.2	 Main	Effects	of	AKAP6	and	MIR2113	

Parameter	 estimates	 for	 the	 associations	 of	 AKAP6	 and	 MIR2113	 with	

cognitive	 performance	 are	 presented	 in	 Table	 6.2.	 Figure	 6.1	 illustrates	 the	

differences	in	cognitive	trajectories	between	AKAP6	and	MIR2113	genotypes.	

AKAP6-rs17522122*T	 was	 significantly	 associated	 with	 a	 lower	 initial	

status	 at	 baseline	 in	 Immediate	 Recall	 (F(1,	 1571.13)	 =	 4.09,	 p	 =	 0.04),	 Digits	

Backwards	(F(1,	1572.44)	=	5.61,	p	=	0.02),	Spot-the-Word	(F(1,	1581.06)	=	10.23,	

p	=	0.001)	and	Symbol	Digits	Modalities	(F(1,	1576.76)	=	6.11,	p	=	0.01)	test	scores.	

AKAP6-rs17522122*T	was	not	significantly	associated	with	baseline	SRT,	CRT,	or	

linear	or	quadratic	rate	of	change	on	any	of	the	cognitive	test	scores.		

MIR2113-rs10457441*T	was	significantly	associated	with	quadratic	rate	of	

change	 in	 Immediate	 Recall	 test	 scores	 showing	 an	 accelerating	 negative	 slope	

(F(1,	 1219.93)	 =	 5.80,	 p	 =	 0.02).	 MIR2113,	was	 not	 associated	 with	 any	 other	

measure	of	cognitive	performance.	

	

6.4	 Discussion	

In	this	study,	we	investigated	whether	SNPs	in	MIR2113	and	AKAP6,	which	

were	previously	 found	 to	be	 associated	with	 cognitive	performance	 in	 two	 large	

GWAS	studies,	were	also	associated	with	cognitive	decline.			

	

AKAP6	 was	 not	 associated	 with	 decline	 in	 any	 of	 the	 cognitive	 abilities	

tested.	 However,	 we	 did	 replicate	 the	 previously	 observed	 association	 with	

baseline	 cognitive	 performance,	 with	 AKAP6-rs17522122*T	 observed	 to	 be	

associated	 with	 worse	 performance	 in	 episodic	 memory,	 working	 memory,	

vocabulary	and	perceptual	speed.	In	Davies	et	al	2015	&	Davies	et	al	2016	AKAP6-

rs17522122*T	 was	 associated	 with	 worse	 general	 fluid	 cognitive	 performance,	

verbal-numerical	 reasoning	 and	 improved	 performance	 in	 reaction	 time	 and	

memory.	The	observed	differences	 in	 the	direction	of	 the	 effect	 for	memory	and	

lack	of	replication	for	reaction	time	between	our	study	and	Davies	et	al	2016	could	

be	 attributed	 to	methodological	 differences	 in	 the	 cognitive	 tests.	 The	 cognitive	

tests	utilized	by	Davies	et	al	2016	were	brief	bespoke,	non-standard	tests,	with	the	

memory	test	involving	the	recall	of	a	single	12	item	matrix	that	contained	6	pairs	

of	matching	symbols,	with	participants	instructed	to	select	the	matching	pairs	after	

observing	the	matrix	for	5	seconds	in	the	fewest	number	of	attempts;	and	reaction	
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Table	6.2:	Effect	of	AKAP6	and	MIR2113	on	cognitive	performance	

		
Immediate	

Recall	

Digits	

Backwards	
Spot-the-Word	

Symbol	Digits	

Modalities	Test	

Simple	Reaction	

Time	

Choice	Reaction	

Time	

	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	

Initial	Status	 	 	

				Intercept	 	-0.27		(0.04)*			 	0.25		(0.05)***			 	0.37		(0.05)***		 	-0.03		(0.05)			 	0.08		(0.05)***			 	0.06		(0.05)***			

				Gender	 	0.37		(0.04)***	 	-0.14		(0.04)***		 	-0.11		(0.04)**		 	0.04		(0.04)	 	0.33		(0.04)***			 	0.26		(0.04)***			

				APOE	e4	 	-0.05		(0.03)*		 	-0.07		(0.03)*	 	-0.10		(0.03)**		 	-0.07		(0.03)*		 	0.02		(0.03)			 	0.04		(0.03)			

				AKAP6	 	-0.02		(0.03)			 	-0.00		(0.03)		 	-0.01		(0.03)	 	0.04		(0.03)	 	-0.01		(0.03)		 	-0.03		(0.03)		

				MIR2113	 	-0.27		(0.04)*			 	0.25		(0.05)***			 	0.37		(0.05)***		 	-0.03		(0.05)			 	0.08		(0.05)***			 	0.06		(0.05)***			

Linear	Rate	of	Change	 	 	

				Time	 	-19.90		(1.70)***		 	0.62		(1.73)			 	3.78		(0.90)***		 	-14.73		(1.38)***		 	11.08		(2.03)***		 	12.87		(1.85)***		

				Gender	 	-2.35		(1.41)			 	0.40		(1.43)			 	0.81		(0.74)		 	1.11		(1.14)	 	2.08		(1.67)			 	5.08		(1.52)***			

				APOE	e4	 	1.54		(1.02)	 	0.85		(1.04)			 	0.06		(0.54)		 	0.01		(0.82)	 	0.70		(1.21)			 	0.14		(1.10)			

				AKAP6	 	-1.50		(1.02)			 	0.28		(1.03)			 	-0.15		(0.54)	 	0.11		(0.83)	 	-0.64		(1.22)		 	-0.56		(1.11)		

				MIR2113	 	-19.90		(1.70)***		 	0.62		(1.73)			 	3.78		(0.90)***		 	-14.73		(1.38)***		 	11.08		(2.03)***		 	12.87		(1.85)***		

Quadratic	Rate	of	Change	 	 	

				Time2	 	-4.37		(1.65)***	 	0.78		(1.60)			 	-1.58		(0.79)			 	0.24		(1.23)	 	-5.83		(1.93)**			 	-2.16		(1.59)		

				Gender	 	-3.90		(1.36)**	 	1.14		(1.32)			 	0.44		(0.65)		 	0.65		(1.01)	 	1.24		(1.59)			 	0.79		(1.32)			

				APOE	e4	 	0.49		(0.99)	 	-0.28		(0.96)		 	-0.33		(0.47)	 	-1.24		(0.73)			 	-1.85		(1.16)		 	-0.24		(0.95)		

				AKAP6	 	-2.36		(0.98)*		 	-0.76		(0.95)		 	-0.01		(0.47)	 	-0.84		(0.74)			 	-0.45		(1.16)		 	-0.21		(0.96)		

				MIR2113	 	-4.37		(1.65)***	 	0.78		(1.60)			 	-1.58		(0.79)			 	0.24		(1.23)	 	-5.83		(1.93)**			 	-2.16		(1.59)		

Log	Likelihood	 -6671.44	 -6558.11	 -3777.88	 -5351.23	 -6991.59	 -6228.11	
R"
# 	 0.14	 0.01	 0.02	 0.05	 0.06	 0.07	

R$
#	 0.58	 0.66	 0.90	 0.80	 0.58	 0.70	

Individuals	 1570	 1570	 1567	 1569	 1569																		 1568															

Variance	 	 	

				Intercept	 0.39	 0.57	 0.67	 0.62	 0.51	 0.57	

				Time	 85.56	 166.34	 56.24	 133.42	 199.32	 259.29	

				Time2	 43.1	 63.45	 18.83	 42.58	 132.78	 75.41	
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Table	6.2	(Continued)	

		
Immediate	

Recall	

Digits	

Backwards	
Spot-the-Word	

Symbol	Digits	

Modalities	Test	

Simple	Reaction	

Time	

Choice	Reaction	

Time	

	
Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	 Estimate	(SE)	

				Residual	 0.40	 0.32	 0.08	 0.18	 0.46	 0.30	

Covariance	 	 	

				ID	x	Time	 -2.69	 -0.82	 -0.21	 0.62	 3.33	 6.02	

				ID	x	Time2	 -2.9	 -0.58	 0.72	 0.01	 -4.7	 -1.12	

				ID	x	Time	x	Time2	 17.8	 45.07	 -31.26	 66.41	 95.45	 107.81	

*p	<	0.05;	**p	<	0.01.;	***p	<	0.001	
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Figure	6.1:	Trajectories	of	cognitive	performance	for	AKAP6	and	MIR2113	genotype		
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time	assessed	using	8	trials	of	a	computerized	snap	game	where	participants	were	

directed	 to	push	 a	 button	 if	 two	matching	 symbols	were	 observed.	 The	memory	

test	has	been	shown	to	have	 low	reliability	across	time	[457].	Furthermore,	both	

tests	may	be	susceptible	to	floor/ceiling	effects,	where	at	the	upper	and	lower	limit	

the	 tests	may	 not	 be	 able	 to	 distinguish	 between	 true	 differences	 in	 participant	

abilities	 [457].	 Additionally,	 differences	 in	 participants	 demographics	 (i.e.	 age,	

education	 and	 comorbidities)	 and	 sample	 size	 may	 result	 in	 differential	 effects	

sizes,	with	participants	 in	 the	UK	Biobank	being	on	average	5	years	younger	and	

less	 educated	 (30.5%	 vs	 76.3%	 with	 post	 school	 qualifications)	 than	 those	 in	

PATH.	 Another	 possibility	 is	 that	 our	 study	 was	 insufficiently	 powered,	 with	 a	

dramatically	smaller	sample	size	than	the	UK	Biobank.		

	

MIR2113	was	 associated	 with	 an	 accelerated	 rate	 of	 decline	 in	 episodic	

memory.	We	 did	 not	 replicate	 the	 previous	 findings	 of	 the	 association	 between	

MIR2113-rs10457441*T	and	worse	general	fluid	cognitive	performance.	It	should	

be	 noted,	 however,	 that	 Davies	 et	al	 2015	 used	 principal	 component	 analysis	 to	

derive	a	measure	of	general	cognitive	function	from	cognitive	tasks	testing	at	least	

three	 different	 cognitive	 domains.	 When	 investigating	 individual	 cognitive	

domains,	 Davies	 et	 al	 2016	 found	 that	 MIR2113-rs10457441*T	 was	 associated	

with	verbal-numerical	reasoning,	but	not	with	reaction	time	and	memory.	Davies	

et	al	 2016	 suggested	 that	 the	 association	 with	 verbal-numerical	 reasoning	 may	

reflect	 the	 higher	 loading	 of	 verbal	 and	 reasoning	 abilities	 have	 on	 general	

cognitive	 function	 in	 comparison	 to	memory	 and	processing	 speed.	As	 such,	 our	

results	and	those	of	Davies	et	al	2015;	2016	[122,133]	suggest	that	MIR2113	may	

be	associated	with	general	cognition	rather	than	specific	cognitive	abilities.		

	

The	present	study	has	a	number	of	strengths	that	allow	for	robust	statistical	

modelling	 of	 the	 association	 of	 genetic	 risk	 factors	 with	 cognitive	 performance.	

First,	 this	study	 investigated	cognitive	change	 in	a	randomly	selected	community	

dwelling	cohort	of	older	adults,	and	as	such	the	results	are	likely	generalizable	to	

other	 populations	 of	 older	 adults.	 Second,	 the	 participants	were	 followed	 for	 12	

years	with	 four	 follow-up	 interviews	 assessing	 four	 separate	 cognitive	 domains,	

allowing	 for	 the	 examination	 of	 non-linear	 declines	 across	 a	 broad	 spectrum	 of	

cognitive	abilities.	Finally,	the	narrow	age	range	of	the	cohort	reduces	the	potential	
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impact	of	the	confounding	effects	of	age.	Despite	these	strengths,	the	results	from	

this	 study	 should	 be	 interpreted	 with	 consideration	 to	 some	 study	 limitations.	

First,	 the	 sample	 was	 better	 educated	 than	 the	 population	 from	 which	 it	 was	

drawn.	As	higher	education	 is	associated	with	a	reduced	rate	of	decline	 this	may	

limit	 our	 ability	 to	 observe	 an	 association	 with	 cognitive	 performance.	 Second,	

only	 the	most	 strongly	 associated	 SNP	 identified	 by	 the	 CHARGE	 consortium	 at	

each	 locus	was	genotyped.	These	SNPs	are	unlikely	to	be	the	causal	variants,	but	

are	 expected	 to	 be	 in	 linkage	 disequilibrium	 with	 other	 genetic	 variation	 that	

causes	 the	 observed	 associations	 with	 cognitive	 function.	 Further,	 ‘gene’	 based	

analyses	that	aggregate	the	effects	of	multiple	SNPs	may	further	elucidate	the	role	

of	these	loci	in	cognitive	performance.  

	

In	 conclusion,	 we	 have	 shown	 that	AKAP6	does	 not	 influence	 the	 rate	 of	

cognitive	 decline	 in	 a	 population	 of	 healthy	 older	 adults.	 However,	 AKAP6	 is	

associated	 with	 baseline	 cognitive	 performance	 across	 a	 broad	 spectrum	 of	

cognitive	 domains.	 In	 contrast,	 MIR2113	 was	 associated	 with	 an	 accelerated	

decline	 in	 episodic	 memory,	 however,	 we	 did	 not	 observe	 an	 association	 with	

baseline	 cognitive	 performance.	 These	 results	 extend	 upon	 those	 reported	 by	

Davies	 et	 al	 [122,133],	 further	 elucidating	 the	 role	 these	 of	 loci	 in	 cognitive	

performance.	
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Chapter	7:	 Validating	 the	 role	 of	 the	 Australian	 National	 University	

Alzheimer’s	 disease	 Risk	 Index	 (ANU-ADRI)	 and	 a	 Genetic	 Risk	 Score	 in	
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Abstract	

Background:	 The	 number	 of	 people	 living	with	 dementia	 is	 expected	 to	 exceed	

130	 million	 by	 2050,	 which	 will	 have	 serious	 personal,	 social	 and	 economic	

implications.	 Employing	 successful	 intervention	 and	 treatment	 strategies	 that	

focus	on	disease	prevention	is	currently	the	only	available	approach	that	can	have	

an	 impact	 on	 the	 projected	 rates	 of	 dementia,	with	 risk	 assessment	 being	 a	 key	

component	 in	 population-based	 risk	 reduction	 to	 identifying	 at	 risk	 individuals.	

Here	 we	 evaluate	 a	 risk	 index	 comprising	 lifestyle,	 medical	 and	 demographic	

factors	 (the	Australian	National	University	Alzheimer’s	Disease	Risk	 Index;	ANU-

ADRI),	and	a	genetic	risk	score	(GRS)	in	assessing	the	risk	of	progression	to	Mild	

Cognitive	Impairment	(MCI).		

Methods:	 The	 ANU-ADRI	 was	 computed	 for	 the	 baseline	 assessment	 of	 2,078	

participants	 from	 the	 Personality	 and	 Total	 Health	 (PATH)	 through	 life	 project.	

GRS	 were	 constructed	 from	 25	 single	 nucleotide	 polymorphisms	 previously	

associated	with	 AD.	 Participants	were	 assessed	 for	 clinically	 diagnosed	MCI	 and	

Dementia	 and	 psychometric	 test-based	 MCI	 (MCI-TB)	 at	 12	 years	 of	 follow-up.	

Multi-state	 models	 estimated	 the	 odds	 of	 transitioning	 from	 cognitively	 normal	

(CN)	to	MCI,	dementia	and	MCI-TB	over	12	years	according	to	baseline	ANU-ADRI	

and	GRS.		

Results:	 A	 higher	 ANU-ADRI	 score	 was	 associated	 with	 increased	 risk	 of	

progressing	from	CN	to	both	MCI	and	MCI-TB	(HR	=	1.07	[1.04-1.11];	1.07	[1.04-

1.09]).	The	GRS	was	associated	with	transitions	from	CN	to	Dementia	(HR	=	4.19	

[1.72	–	10.20),	but	no	to	MCI	or	MCI-TB	(HR	=	1.05	[0.86	-	1.29];	1.03	[0.87	-	1.21]).	

Limitations	 of	 our	 study	 include	 that	 the	 ethnicity	 in	 PATH	 is	 predominately	

Caucasian,	 potentially	 limiting	 the	 generalizability	 of	 the	 results	 in	 this	 study	 to	

other	ethnicities.	Biomarkers	of	AD	were	not	available	to	define	MCI	due	to	AD.	Not	

all	the	predictive	variables	for	the	ANU-ADRI	were	available	in	PATH.	

Conclusions:	 In	 the	 general	 population,	 the	 ANU-ADRI	 comprising	 lifestyle,	

medical	 and	demographic	 factors	 is	associated	with	 the	 risk	of	progression	 from	

normal	 cognition	 to	 MCI	 whereas	 a	 Genetic	 Risk	 Score	 comprising	 the	 main	

Alzheimer’s	 risk	 genes	 was	 not	 associated.	 The	 ANU-ADRI	 may	 be	 used	 for	

population-level	risk	assessment	and	screening.		

Keywords:	Alzheimer's	disease;	Cognitive	aging;	MCI	(mild	cognitive	impairment);	

Cohort	studies;	Risk	factors	in	epidemiology;	Multi-state	models	
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7.1	 Background	

Accurate	 risk	 assessment	 for	 cognitive	 impairment	 and	 dementia	 is	

increasingly	 important	 given	 the	 current	 lack	 of	 effective	 disease	 modifying	

treatments	 for	 Alzheimer’s	 disease	 and	 other	 dementias.	 Risk	 assessment	 tools	

may	be	used	in	both	pharmacological	and	non-pharmacological	trials,	clinics,	and	

for	 population-level	 screening	 to	 guide	 risk	 reduction	 strategies	 [290,291].		

Validated	risk	assessment	tools	that	can	be	administered	at	very	low	cost	provide	

methods	for	low-income	countries	and	regions	to	assess	dementia	risk	and	apply	

prevention	 strategies.	 	 Given	 current	 projections	 of	 increasing	 dementia	

prevalence,	 there	 is	an	urgent	need	 for	validated	risk	assessment	 tools	 that	have	

been	 evaluated	 on	 well	 characterized	 samples,	 over	 long	 time	 periods	 [458].	

However,	 to	our	knowledge	established	dementia	 risk	 tools	 [459]	have	not	been	

evaluated	 for	 assessing	 risk	 of	 Mild	 Cognitive	 Impairment	 (MCI)	 which	 is	 a	 key	

target	 group	 for	 secondary	 prevention	 and	 pharmaceutical	 trials.	 A	 recently	

developed	 risk	 tool	 for	MCI	 formulated	 in	 the	Mayo	 Clinic	 Study	 of	 Aging	 found	

that	 a	 basic	 risk	 score	 composed	 of	 general	 demographic	 (eg	 age,	 education,	

marital	status)	and	clinical	features	(eg	diabetes,	hypertension,	body	mass	index)	

had	 a	 C-statistics	 of	 0.60.	 An	 augmented	 version	 containing	 additional	 variables	

typically	 collected	 in	 clinical	 and	 neurological	 examinations	 (eg	 gain	 speed,	

anxiety,	CDR-Sum	of	Boxes)	had	a	 c-Statistic	of	0.70	 [460].	Further	evaluation	of	

this	model	in	an	independent	cohort	is	required.		

	

Recently	 there	 has	 also	 been	 an	 increasing	 interest	 in	 the	 evaluation	 of	

genetic	 risk	scores	 (GRS)	 for	AD	and	dementia,	which	have	been	associated	with	

the	 development	 of	 AD	 and	 incident	 MCI	 [119,440,448,461],	 though	 they	 have	

limited	 utility	 in	 predicting	 AD	 beyond	 that	 attained	 with	 basic	 demographic	

variables	such	as	age,	gender	and	education	[111,119,120].	The	number	of	studies	

investigating	the	association	of	AD	GRS	with	progression	between	cognitive	states	

is	limited,	and	the	findings	mixed.	These	include	reports	of	a	significant	association	

between	 GRS	 and	 progression	 from	 CN	 to	 either	MCI	 or	 Late-onset	 Alzheimer’s	

Disease	 (LOAD)	with	a	 c-statistic	of	0.684	 (HR	=	1.29	 [1.19-1.39])	 [120].	For	 the	

conversion	from	MCI	to	LOAD,	one	study	found	that	participants	harbouring	six	or	

more	 AD	 risk	 alleles	 progressed	 to	 AD	 twofold	 (HR	 =	 1.89	 [1.01-3.56])	 more	

rapidly	than	those	with	only	six	alleles	[449],	while	a	second	study	observed	that	
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an	AD	genetic	risk	score	composed	of	19	loci	was	associated	with	the	conversion	to	

dementia	(HR	=	1.59	[1.23	–	2.05]),	but	only	when	APOE	was	included	in	the	risk	

score	[448].	Conversely,	a	third	study	found	no	association	between	progression	to	

dementia	from	MCI	using	AD	GRS	composed	of	18	loci	[450].		

	

Our	 study	has	 two	aims	First,	 to	evaluate	 the	association	of	a	non-genetic	

risk	index	with	the	progression	from	cognitively	normal	to	cognitive	impairment.		

Our	measure	 [462]	 is	a	 self-report	 risk	 index	 (the	Australian	National	University	

Alzheimer's	Disease	Risk	Index	–	ANU-ADRI)	that	has	been	externally	validated	in	

three	 cohorts	 of	 older	 adults,	 in	 which	 it	 was	 found	 to	 be	 predictive	 of	 AD	 and	

dementia	 [463].	 The	 second	 aim	 is	 to	 compare	 the	 ANU-ADRI	 with	 a	 GRS.	 We	

examine	 the	association	between	cognitive	 impairment	and	 the	ANU-ADRI	and	a	

LOAD	 GRS,	 as	 assessed	 using	 a	 clinical	 criterion	 for	 MCI	 or	 dementia	 and	 a	

psychometric	test-based	criteria	for	MCI	(MCI-TB)	in	a	community-based	cohort	of	

older	 adults.	 We	 first	 use	 a	 Cox	 proportional	 hazard	 model	 to	 investigate	 the	

association	between	the	ANU-ADRI	and	a	LOAD	GRS	and	 incident	MCI/dementia,	

and	 then	 extend	 upon	 this	 model	 using	 multi-state	 models	 to	 account	 for	 back	

transitions	 between	 cognitive	 states	 (ie	 cognitive	 recovery)	 and	 competing	 risks	

(ie	dementia	and	death).	

	

7.2	 Methods	

7.2.1	 Participants	

Participants	 were	 community	 dwelling	 adults	 residing	 in	 the	 city	 of	

Canberra	or	 the	neighboring	 town	of	Queanbeyan,	 recruited	 into	 the	Personality	

and	 Total	 Health	 (PATH)	 Through	 Life	 Project,	 a	 longitudinal	 population-based	

study	of	health	and	wellbeing	in	adults.	Cohorts	aged	20-24	(20+),	40-44	(40+)	and	

60-64	(60+)	years	at	baseline	were	assessed	at	four-year	intervals	for	a	total	of	12	

years.	 The	background	 and	procedures	 for	 the	PATH	 study	have	been	described	

elsewhere	 [322].	 Written	 informed	 consent	 was	 obtained	 from	 all	 participants.	

This	 study	 was	 approved	 by	 the	 Human	 Research	 Ethics	 Committee	 of	 The	

Australian	National	University.	

This	 study	 used	 data	 from	 the	 60+	 cohort,	 with	 interviews	 conducted	 in	

2001-2002	(n	=	2,551),	2005-2006	(n	=	2,222),	2009-2010	(n	=	1,973),	and	2014-
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2015	(n	=	1645).	Individuals	were	excluded	if	they	were	not	Caucasian	(n	=	107),	

had	 a	 self-reported	 history	 of	 stroke,	 transient	 ischemic	 attack,	 epilepsy,	 brain	

tumours	or	brain	infection	(n	=	381).		

	

7.2.2	 ANU-ADRI	risk	assessment	based	on	demographic,	lifestyle	and	medical	risk	

factors	

The	 development	 of	 the	 ANU-ADRI	 and	 the	 methodology	 underlying	 its	

computation	 have	 been	 described	 previously	 [463].	 The	 ANU-ADRI	 can	 be	

computed	 based	 on	 up	 to	 15	 predictive	 variables,	 11	 of	 which	 are	 available	 in	

PATH,	 including	 age	 (self-report),	 gender	 (self-report),	 alcohol	 consumption	

(calculated	according	to	NHMRC	2001	guidelines	[464]	using	number	of	drinks	per	

week.	Light	to	moderate	intake,	Males:	0.25	–	20.5	per/week;		Females:	0.25	–	13.5	

per/week),	education	(self-reported	number	of	years	of	education),	diabetes	(self-

reported	 history	 of	 diabetes),	 depression	 (assessed	 using	 the	 Patient	 Health	

Questionnaire	(PHQ-9])	[323]	following	the	coding	algorithm	provided	in	the	PHQ-

9	instruction	manual	with	a	score	of	>10	used	as	the	cutoff	score),	traumatic	brain	

injury	 (self	 reported	 history	 of	 TBI	 with	 loss	 of	 consciousness),	 smoking	 (self	

reported	smoking	status	for	current	smoker,	past	smoker	or	never	smoked),	social	

engagement	(constructed	from	4	domains	for	marital	status,	size	of	social	network,	

quality	 of	 social	 network,	 level	 of	 social	 activities.	 A	 fifth	 domain	 for	 living	

arrangements	 was	 not	 available	 in	 PATH	 and	 thus	 computed	 pro	 rata	 as	 the	

average	 of	 the	 above	 social	 engagement	 variables),	 physical	 activity	 (combined	

self-reported	number	of	hours	performing	mild,	moderate	and	vigorous	activities,	

weighted	 by	 multiples	 of	 1,	 2	 and	 3	 respectively	 [465]),	 cognitively	 stimulating	

activities	(assessed	as	 the	number	of	cognitive	activities	undertaken	 in	 the	 last	6	

months	for	reading,	writing,	playing	games	or	attending	cultural	events),	and	body	

mass	 index	 (BMI	 equals	 weight/height2,	 in	 kilograms/meters2).	 No	 data	 were	

available	for	the	remaining	three	predictive	variables,	cholesterol,	 fish	intake	and	

pesticide	 exposure.	 The	 ANU-ADRI	 is	 still	 predictive	 of	 the	 development	 of	

dementia	 even	 when	 a	 subset	 of	 variables	 is	 used	 [463].	 Values	 for	 predictive	

variables	 included	 in	 the	 ANU-ADRI	 for	 PATH	 were	 selected	 from	 baseline	

measurements	 or	 the	 first	 occasion	 on	 which	 the	 variables	 were	 measured.	 A	

constant	of	+13	was	added	to	the	ANU-ADRI	to	change	range	to	(from	-13–19	to	0–

32)	to	facilitate	interpretation.	
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7.2.3	 Genotyping	and	Genetic	Risk	Score	

The	most	significant	LOAD	risk	SNPs	identified	via	genome	wide	association	

studies	 from	 23	 loci	 [108-113]	 (ABCA7,	 BIN1,	 CD2AP,	 CD33,	 CLU,	 CR1,	 EPHA1,	

MS4A4A,	 MS4A4E,	 MS4A6A,	 PICALM,	 HLA-DRB5,	 PTK2B,	 SORL1,	 SLC24A4-RIN3,	

DSG2,	 INPP5D,	 MEF2C,	 NME8,	 ZCWPW1,	 CELF1,	 FERMT2	 and	 CASS4)	 were	

genotyped	using	TaqMan	OpenArray	assays	as	previously	described	[442,456]	 in	

addition	 to	 the	 two	SNPs	defining	 the	APOE	alleles	which	were	genotyped	using	

TaqMan	 assays	 as	 previously	 described	 [382].	 Using	 these	 LOAD	 risk	 SNPs,	 an	

explained	 variance	weighted	 genetic	 risk	 score	 (EV-GRS)	 [428]	was	 constructed,	

which	 is	 the	 sum	of	 all	 the	 risk	 alleles	 across	 the	 individual,	weighted	 by	minor	

allele	 frequency	 (MAF)	and	 the	Odds	Ratio	associated	with	LOAD.	The	EV-GRS	 is	

calculated	 according	 to	 the	 following	 formula:	 EV_GRS =

log(,-./) 2234./(1 − 234./) ∗ 8./
9
.:; 	for	 the	 ith	 patient,	 where	log(,-.)	=	

the	odds	ratio	for	the	jth	SNP;	234./ 	=	the	minor	allele	frequency	for	the	jth	SNP;	

and	8./ 	=	 the	number	of	 risk	 alleles	 for	 jth	 SNP.	 Individuals	with	missing	genetic	

data	were	excluded	(n	=	240).	We	weighted	the	LOAD	SNPs	using	the	previously	

reported	 OR	 for	 LOAD	 and	 by	 the	 MAF	 for	 the	 CEU	 reference	 population	

(Supplementary	Table	1).	The	EV-GRS	was	transformed	into	a	z-score.	

	

7.2.4	 Screening	and	Clinical	Assessment	

The	 screening	 and	 clinical	 assessment	 methods	 at	 waves	 1-3	 have	 been	

described	elsewhere	[466,467]	and	are	briefly	summarised	here.	At	each	wave,	the	

same	 predetermined	 cut-off	 from	 a	 battery	 of	 cognitive	 tests	 were	 used	 for	

inclusion	of	participants	in	a	sub-study	on	mild	cognitive	disorders	and	dementia.	

Participants	from	the	full	cohort	were	selected	for	clinical	assessment	if	they	had	

any	of	the	following:	(i)	a	Mini	Mental	State	Examination	(MMSE)	[370]	score	<	25;	

(ii)	a	score	below	the	fifth	percentile	score	on	immediate	or	delayed	recall	of	the	

first	list	of	the	California	Verbal	Learning	Test	[327];	or	(iii)	a	score	below	the	fifth	

percentile	on	two	or	more	of	either	the	Symbol-Digit	Modalities	Test	[371];	Purdue	

Pegboard	 with	 both	 hands	 [372];	 or	 Simple	 Reaction	 Time	 [331].	 	 At	 wave	 4,	

participants	were	selected	for	review	if	(1)	MMSE	score	<25	or	<2.5	percentile	on	

one	 or	 more	 cognitive	 test;	 or	 (2)	 previous	 diagnosis	 at	 waves	 1-3;	 or	 (3)	



	

136	

subjective	 decline	 >25	 on	 Memory	 and	 Cognition	 Questionnaire	 (MACQ)	 or	 (4)	

Decline	in	MMSE	score	>	3	points.	

	

The	criteria	for	the	clinical	assessment	for	cognitive	impairment	at	waves	1-

3	 has	 been	 published	 by	 our	 group	 elsewhere	 [467].	 It	 involved	 a	 Structured	

Clinical	Assessment	 for	Dementia	by	one	of	 two	physicians,	a	neuropsychological	

assessment,	 and	 the	 Clinical	 Dementia	 Rating	 Scale	 [373],	 which	 were	 used	 to	

formulate	a	consensus	diagnosis.		

	

Due	 to	 the	 large	 number	 of	 participants	 screened	 for	 review	 at	 wave	 4,	

diagnosis	was	based	on	neurologist	review	of	interview	data	as	outlined	below	and	

in	 Figure	 7.1.	 For	 each	 of	 the	 1644	 participants	with	 interview	 data	 at	Wave	 4,	

assessment	data	were	screened	for	signs	of	decline	based	on	the	following	criteria	

(screen	1):	a	previous	diagnosis	of	a	cognitive	disorder	at	Waves	1,	2	or	3	OR	either	

evidence	of	cognitive	 impairment	on	the	MMSE	(≤	24)	or	performance	on	one	or	

more	cognitive	tests	≤	6.7th	percentile	at	wave	4	(Immediate	recall,	Delayed	recall,	

SDMT,	 F	words,	 A	words,	 Boston	 Naming	 Test,	 Simple	 RT,	 Choice	 RT,	 Pegboard	

dominant,	 Pegboard	 non-dominant,	 Pegboard	 both,	 Digits	 Back,	 Trails	 B,	 Stroop	

Words,	 Stroop	 Colour-Word).	 Additionally,	 participants	 had	 to	 show	 evidence	 of	

either	subjective	decline	(scores	≥	25	on	the	Memory	and	Cognition	Questionnaire	

(MAC-Q)	(32))	or	evidence	of	decline	(>3	point	decline	in	MMSE	score	since	wave	

3)	 or	 evidence	 of	 consistent	 cognitive	 impairment	 across	 time	 (MMSE	 ≤	 24	 at	

Waves	3	and	4).	All	data	 from	 the	health	 survey	and	 cognitive	 testing	as	well	 as	

informant	interview	were	collated	into	a	spreadsheet	casefile	for	each	participant.	

This	 casefile	 (Screen	 2)	 automatically	 screened	 each	 participant	 for	 meeting	

criteria	 for	 any	 one	 of	 the	 following	 diagnoses:	 DSM	 5	 Major	 Neurocognitive	

Disorder,	 DSMIV	Dementia,	 DSM	5	Mild	Neurocognitive	Disorder,	Mild	 Cognitive	

Impairment,	 Age	 Associated	 Cognitive	 Decline,	 Age	 Associated	 Memory	

Impairment,	 DSMIV	 Amnestic	 Disorder	 not	 otherwise	 specified,	 DSMIV	 Mild	

Neurocognitive	 Disorder,	 DSMIV	 Other	 cognitive	 disorder.	 Major	 criteria	 for	

meeting	most	of	the	above	diagnoses	were	operationalised	as	either:	1)	Concern	of	

self	or	 informant	of	 significant	cognitive	decline	 (MACQ>25	OR	 IQCODE>3.31	OR	

history	of	dementia	diagnosis);	2)	Substantial	impairment	on	at	least	one	cognitive	

domain	relative	to	Wave	4	normative	data	(cut-offs:	<	-2SD	for	dementias,	<	-1.5SD		
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	Figure	 7.1:	 Flowchart	 depicting	 the	 process	 of	 screening	 participants	 for	 mild	

cognitive	disorders.	DSM-IV	Diagnostic	 and	Statistical	Manual	 of	Mental	Disorders,	

Fourth	Edition;	DSM-5	Diagnostic	and	Statistical	Manual	of	Mental	Disorders,	Fifth	

Edition;	 MCI	 Mild	 cognitive	 impairment;	 NCD	 Neurocognitive	 disorder;	 PATH	

Personality	and	Total	Health	Through	Life	project	
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for	mild	cognitive	disorders);	3)	Interference	with	independence	and	instrumental	

activities	of	daily	living	(Self-reported	IADL	impairment	OR	Bayer	IADLs>3.11	OR	

Informant	 reported	 everyday	 cognitive	 difficulties);	 4)	 Not	 exclusively	 during	

delirium	(Cognitive	changes	since	>	6	months,	Onset	of	cognitive	changes	precede	

Informant	report	of	onset	of	delirium-like	symptoms);	and	5)	Not	due	to	another	

co-existing	disorder	(PHQ9	<	9	AND	No	reported	history	of	Schizophrenia	or	other	

psychosis).	 Those	 meeting	 criteria	 for	 one	 or	 more	 diagnoses	 (N=368)	 were	

screened	for	case	file	review	by	a	research	neurologist.	Diagnoses	were	made	for	

N=	301	of	these	cases,	of	which	N=60	complex	cases	were	selected	for	Diagnostic	

Consensus	 based	 on	 the	 following	 criteria:	 1)	 comorbid	 depression;	 2)	 other	

comorbid	 psychiatric	 conditions;	 3)	 stroke;	 and	 4)	 DSM	 5	Major	 Neurocognitive	

Disorder	 without	 memory	 impairment.	 Following	 consensus	 diagnosis	 with	 a	

clinician	 specializing	 in	 Psychiatry,	 the	 final	 diagnoses	 included	 85	

dementia/major	NCD,	196	mild	cognitive	disorders	(MCI/mild	NCD)	and	34	other	

mild	or	medical	related	cognitive	disorders.	

	

Clinically	diagnosed	MCI	was	based	on	the	Petersen	criteria	at	waves	1	and	

2	 [13],	whereas	 the	Winblad	 criteria	 [14]	were	 used	 at	wave	 3	 and	 4.	 Clinically	

diagnosed	dementia	was	based	on	the	DSM	IV	criteria	[374]	at	all	waves.	At	wave	

4,	there	were	14	participants	who	were	not	interviewed,	but	were	known	to	have	

dementia	from	informant	reports	and	medical	records.	Due	to	the	small	number	of	

individuals	 classified	 with	 dementia,	 participants	 with	 either	 MCI	 or	 Dementia	

were	grouped	into	a	single	MCI/Dementia	category.	

	

7.2.5	 Test	Based	MCI	

To	complement	the	clinical	diagnosis	of	MCI,	a	broader	psychometric	Test-

based	MCI	(MCI-TB)	classification	was	applied	to	the	entire	PATH	sample	[468]	at	

each	 wave	 based	 on	 education-adjusted	 cognitive	 performance	 (Table	 7.1).	 The	

PATH	sample	was	first	stratified	by	education	(0-12	or	13+	years).	Within	each	of	

these	 strata,	 individuals	 were	 classified	 as	 MCI-TB	 if	 they	 scored	 1.5	 standard	

deviations	below	the	mean	on	one	or	more	of	the	psychometric	tests	used	to	assess	

the	 following	 cognitive	 domains:	 Perceptual	 speed,	 measured	 using	 the	 Symbol	

Digit	Modalities	Test	[371];	episodic	memory,	assessed	using	the	immediate	recall	
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of	 the	 first	 trial	 of	 the	 California	Verbal	 Learning	Test	 (Recall-immediate)	 [327];	

working	 memory,	 measured	 using	 the	 Digit	 Span	 Backward	 from	 the	 Wechsler	

Memory	Scale	[328];	and	vocabulary,	assessed	by	the	Spot-the-Word	Test	[329].	

	

7.2.6	 Data	analysis	

All	statistical	analyses	were	performed	in	R	version	3.1.2	[426].	As	missing	

values	 can	 reduce	 power	 and	 introduce	 bias	 in	 the	 resulting	 estimates,	 missing	

values	that	were	not	attributable	to	attrition	for	the	predictive	variables	utilised	in	

the	 construction	 of	 the	 ANU-ADRI	 and	 the	 test-based	 MCI	 (see	 above)	 were	

imputed	 using	 an	 implementation	 of	 the	 Random	 Forests	 algorithm	 available	 in	

the	 ‘missForest’	 package	 in	 R	 [424,469].	 This	 left	 2,078	 individuals	 available	 for	

analysis.	 Supplementary	 Table	 2	 shows	 the	 proportion	 of	 missing	 variables	 for	

each	variable.	

	

We	 first	 evaluated	 the	 risk	 of	 progression	 from	 normal	 cognition	 to	

MCI/dementia	 using	 Cox	 proportional	 hazard	models	with	 age	 as	 the	 time	 scale	

the	ANU-ADRI	and	EV-GRS	included	as	predictor	variables	in	the	same	model.	The	

outcome	 of	 interest	 in	 these	 models	 was	 the	 time	 to	 first	 diagnosis	 of	

MCI/dementia,	with	those	subjects	who	did	not	develop	MCI/dementia	at	their	last	

assessment	right	censored.	Hazard	ratios	(HR)	and	95%	CI	were	given	for	the	time	

to	 MCI/dementia	 analysis.	 Concordance	 index	 (c-index)	 for	 the	 prediction	 of	

conversion	 from	 NC	 to	 MCI/dementia	 were	 calculated.	 Cox	 proportional	 hazard	

models	were	estimated	using	the	‘survival’	package	in	R.		

	

To	 evaluate	 a	 more	 complex	 model	 of	 disease	 progression,	 multi-state	

models	(MSMs)	were	used	to	examine	the	association	between	the	ANU-ADRI	and	

EV-GRS	 and	 transitions	 between	 cognitive	 states.	 MSMs	 allow	 the	 modelling	 of	

competing	 risks	 and	 back	 transitions	 between	 states	 (i.e.,	 recovery).	 Hidden	

Markov	models	can	be	used	 to	estimate	misclassification	error	and	 the	effects	of	

covariates	 can	 be	 allowed	 to	 vary	 by	 transition	 [470].	 The	MSMs	 utilised	 in	 this	

analysis	 modelled	 cognitive	 deterioration	 and	 cognitive	 recovery	 by	 allowing	

transitions	and	back	transitions	between	cognitively	normal	(CN),	MCI	or	MCI-TB	

states,	back	transitions	from	dementia	were	not	allowed,	while	death	was	used	as	a	

fourth	absorbing	state	(Figure	7.2).	Individuals	with	only	a	single	observation	(i.e.,	
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no	 recorded	 transitions)	were	 excluded	 from	 the	 analysis	 (n	 =	 204).	 Individuals	

lost	 to	 attrition	were	 considered	 right	 censored.	 The	ANU-ADRI	 and	 the	 EV-GRS	

were	included	as	covariates	in	the	same	model.	Maximum	likelihood	estimates	of	

parameters	 in	 the	 MSMs	 were	 obtained	 with	 the	 Broyden-Fletcher-Goldfarb-

Shanno	(BFGS)	optimisation	method.	Normalisation	was	applied	to	the	likelihood	

function	 to	 improve	 numerical	 stability.	 As	 the	 likelihood	 is	 maximised	 using	

numerical	methods,	an	 input	of	 initial	values	 is	required	to	start	 the	search	 for	a	

maximum.	MSMs	were	fitted	using	‘msm’	[470]	in	R	and	multiple	models	were	run	

using	 different	 sets	 of	 initial	 values	 to	 ensure	 the	 robustness	 of	 the	 parameter	

estimates.	See	Supplementary	Methods	for	more	detail	on	the	structure	of	MSMs.	

	

	As	 a	 sensitivity	 analysis	 for	 the	 MCI-TB	 analysis,	 a	 more	 stringent	 criteria	 was	

investigated	with	MCI-TB	based	on	 a	 score	 of	 1.5	 SD	below	 the	mean	on	 two	or	

more	of	the	above	psychometric	tests.	Additionally,	we	performed	a	complete	case	

analysis	 to	 ensure	 that	 our	 imputation	 method	 was	 not	 biasing	 the	 observed	

results.	

	

	

	
Figure	7.2:	A	four	state	model	for	possible	transitions	between	cognitive	states	and	

death.	Hazard	ratios	(95%	confidence	intervals)	for	the	effect	of	the	ANU-ADRI	on	

transitions	between	Cognitively	Normal	(CN),	MCI/Dementia	and	death	are	shown.	

All	estimates	are	from	models	adjusting	for	the	EV-GRS.	
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7.3	 Results		

7.3.1	 Demographics	and	Other	Characteristics	of	the	Sample	

Baseline	 distributions	 of	 education,	 depression,	 sex,	 the	 ANU-ADRI,	 raw	

cognitive	 tests	 scores	and	cognitive	 states	at	each	wave	 for	 the	PATH	cohort	are	

described	in	Table	7.1.	Participants	who	completed	all	4	waves	of	interviews	had	a	

higher	 level	 of	 education	 in	 comparison	 to	 participants	who	 only	 completed	 the	

wave	 1	 interview	 (t	 =	 -6.8,	 df	 =	 331.3,	 p-value	 =	 <0.001).	 Participants	 were	

followed	for	an	average	of	9.6	years	(after	accounting	for	loss	due	to	attrition)	and	

a	 total	 of	 13.9	 years.	 Group	 differences	 in	 the	 sub-indices	 of	 the	 ANU-ADRI	

between	CN	and	either	MCI/Dementia	or	MCI-TB	can	be	found	in	Supplementary	

Table	3.	The	distribution	of	the	ANU-ADRI	and	EV-GRS	scores	 is	shown	in	Figure	

7.3.	 As	 expected,	 the	 proportion	 of	 individuals	 classified	 as	 MCI/Dementia	

increased	 over	 the	 course	 of	 the	 study,	 while	 the	 proportion	 of	 individuals	

classified	as	MCI-TB	remained	stable	(Table	7.1).	By	wave	4,	36%	of	the	cohort	had	

been	lost	to	follow-up,	with	57,	54	and	94	individuals	deceased	by	waves	2,	3	and	4	

respectively,	and	an	additional	280,	267	and	329	individuals	being	lost	to	follow-

up	 for	 other	 reasons	 (refusal,	 left	 catchment	 area,	 etc)	 at	 waves	 2,	 3	 and	 4	

respectively.	

	

Table	7.1:	Characteristics	for	the	PATH	cohort	for	Waves	1	to	4	

	 Wave	1	 Wave	2	 Wave	3	 Wave	4	
	 Estimate	±	SD	 Estimate	±	SD	 Estimate	±	SD	 Estimate	±	SD	
n	 2078	 1798	 1596	 1337	
Age	 63	±	1.5	 67	±	1.5	 71	±	1.5	 75	±	1.5	
Female	–	n	(%)	 1009	(49)	 -	 -	 -	
Education	 14	±	2.7	 -	 -	 -	
				Wave	1	completers	 12.7	±	(3.0)	 -	 -	 -	
				Wave	2	completers	 13.1	±	(2.7)	 -	 -	 -	
				Wave	3	completers	 13.5	±	(2.7)	 -	 -	 -	
				Wave	4	completers	 14.2	±	(2.6)	 -	 -	 -	
Immediate	Recall	 7.2	±	2.3	 7	±	2.2	 6.7	±	2.2	 5.4	±	1.9	
Digits	Backwards	 4.9	±	2.2	 5.1	±	2.2	 5.1	±	2.2	 5.3	±	2.2	
Spot-the-Word	 52	±	6	 53	±	5.3	 53	±	5.1	 54	±	5	
SDMT	 50	±	9.7	 50	±	9.2	 48	±	9.2	 46	±	9.5	
ANU-ADRI	 9.4	±	5.9	 -	 -	 -	
EV-GRS	 1.6	±	0.42	 -	 -	 -	
Cognitive	Status	-	n	(%)	

				MCI	 23	(1.1)	 28	(1.6)	 35	(2.2)	 103	(7.7)	
				Dementia	 0	(0)	 0	(0)	 7	(0.44)	 37	(2.7)	
				MCI-TB	 384	(18)	 373	(21)	 347	(22)	 261	(19)	
Attrition	-	n	(%)	

				Death	 -	 57	(2.7)	 54	(3)	 94	(5.8)	
				Dropout	 -	 280	(13)	 167	(9.3)	 329	(20.6)	
SDMT:	Symbol	digits	modalities	test;	MCI:	Mild	cognitive	impairment;		
MCI-TB:	Test-based	mild	cognitive	impairment 
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 Between	any	two	waves,	a	greater	proportion	of	people	transitioned	from	

CN	to	MCI-TB	(10.5%)	than	from	unimpaired	to	MCI	(2.6%),	 indicating	that	MCI-

TB	is	a	more	broad	categorization	of	cognitive	impairment.	A	smaller	proportion	of	

individuals	 transitioned	 in	 the	 opposite	 direction	 -	 from	MCI-TB	 to	 CN	 (31.3%)	

than	 from	 either	MCI	 to	 CN	 (44%),	 indicating	 that	MCI-TB	 is	 also	 a	more	 stable	

category	(Table	7.2).	

	

Table	7.2:	Number	of	transitions	between	CN,	MCI,	Dementia	and	MCI-TB	during	
the	length	of	the	study.	

To	

From	 CN	 MCI	 Dementia	 Death	 Censored	
MCI	and	Dementia	

CN	 4459	(86.1%)	 137	(2.6%)	 32	(0.6%)	 189	(3.7%)	 359	(6.9%)	
MCI	 40	(48.2%)	 26	(31.3%)	 6	(7.2%)	 5	(6%)	 6	(7.2%)	
Dementia	 0	(0%)	 0	(0%)	 5	(71.4%)	 2	(28.6%)	 0	(0%)	
Censored	 36	(19.5%)	 3	(1.6%)	 0	(0%)	 8	(4.3%)	 138	(74.6%)	
	 	 	 	 	 	
MCI-TB	

CN	 3403	(80.2%)	 446	(10.5%)	 	 144	(3.4%)	 249	(5.9%)	
MCI	 321	(31.3%)	 524	(51.2%)	 	 52	(5.1%)	 127	(12.4%)	
Censored		 28	(15.1%)	 11	(5.9%)	 	 8	(4.3%)	 138	(74.6%)	

CN:	Cognitively	normal;	MCI:	Mild	cognitive	impairment;	MCI-TB:	Test-based	mild	cognitive	
impairment	

	

	

	
Figure	 7.3:	 Distribution	 of	 the	 ANU-ADRI	 and	 EV-GRS	 scores	 within	 the	 PATH	

cohort.	The	variable	width	of	the	violin	plot	indicates	the	probability	density	and	

the	box	plot	indicates	the	first,	median	and	third	quartile	of	the	ANU-ADRI	and	EV-

GRS	scores.	
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7.3.2	 Cox proportional hazards models for incident MCI	

A	higher	ANU-ADRI	(indicating	greater	risk)	score	was	associated	with	an	

increased	risk	of	progression	to	both	MCI/Dementia	and	MCI-TB	(Table	7.3).	The	

EV-GRS	was	not	associated	with	progression	from	to	either	MCI/Dementia	or	MCI-

TB.	The	interaction	between	the	ANU-ADRI	and	the	EV-GRS	was	non-significant	for	

the	MCI/Dementia	(HR	=	0.99	[0.96-1.01],	p	=	0.33)	and	MCI-TB	(HR	=	0.99	[0.98-

1.01],	p	=	0.11).	

In	the	sensitivity	analysis,	using	a	more	stringent	MCI-TB	criterion	(scoring	

1.5	 SD	below	 the	mean	on	 two	or	more	 test)	 confirmed	 that	 the	ANU-ADRI	was	

associated	an	 increased	 risk	of	progression	 from	CN	–	MCI-TB	 (HR	=	1.08	 [1.05-

1.10],	 p	 =	 <	 0.0001).	 In	 the	 complete	 case	 analysis,	 the	 ANU-ADRI	 remained	

significant	for	both	the	MCI/Dementia	(HR	=	1.06	[1.02-1.09],	p	=	0.001)	and	MCI-

TB	(HR	=	1.036	[1.01-1.04],	p	=	0.007)	models.	

	

Table	7.3:	Associations	between	the	ANU-ADRI	and	EV-GRS	risk	scores	and	
cognitive	impairment	at	waves,	1,	2,	3	and	4.	

	 MCI/Dementia	 MCI-TB	
ANU-ADRI†,	HR	(95%	CI)	 1.06	(1.03-1.09)***	 1.04	(1.02-1.50)***	
EV-GRS‡,	HR	(95%	CI)	 1.14	(0.98-1.33)	 1.04	(0.96-1.12)	
C-Index	(SE)	 0.61	(0.03)	 0.56	(0.01)	
				ANU-ADRI	 0.60	(0.05)	 0.56	(0.02)	
				EV-GRS	 0.53	(0.05)	 0.51	(0.02)	
*p	<	 .05;	 **p	<	 .01;	 ***p	<	 .001;	MCI/Dementia:	Mild	 cognitive	 impairment	or	Dementia;	MCI-TB:	
Test-based	mild	cognitive	impairment;	†per	unitary	increase	in	the	ANU-ADRI;	‡per	SD	increase	in	
EV-GRS;	all	estimates	are	from	models	adjusting	for	the	ANU-ADRI	and	EV-GRS	

	

7.3.3	 Multi-state	Models	of	Transitions	

A	 higher	 ANU-ADRI	 score	 was	 associated	 with	 an	 increased	 risk	 of	

transitioning	from	CN	to	MCI	or	MCI-TB	(Figure	7.2;	Table	7.4).	The	probability	of	

transitioning	 from	 CN	 to	 either	 MCI	 or	 MCI-TB	 after	 12	 years	 for	 individuals	

scoring	 1	 SD	 below	 the	 mean	 on	 the	 ANU-ADRI	 was	 10%	 and	 for	 individuals	

scoring	1	SD	above	the	mean	was	20.	A	higher	ANU-ADRI	score	was	not	associated	

with	transitions	from	CN,	MCI,	dementia	or	MCI-TB	to	death;	cognitive	impairment	

to	dementia;	 or	with	 cognitive	 recovery	 from	MCI	or	MCI-TB	 to	CN.	The	EV-GRS	

was	associated	with	an	increased	risk	of	transitioning	from	CN	to	dementia,	with	

probability	of	 transitioning	 from	CN-dementia	 for	 individuals	scoring	1	SD	above	

the	mean	1.3%.	 	The	interaction	between	the	ANU-ADRI	and	the	EV-GRS	was	not	

significant	for	any	of	the	transitions	for	either	the	MCI	or	MCI-TB	models.		
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In	 the	 sensitivity	 analysis,	 using	 a	 more	 stringent	 MCI-TB	 criterion	

(Supplementary	 Table	 4),	 confirmed	 that	 the	 ANU-ADRI	 was	 associated	 an	

increased	risk	of	progression	 from	CN	–	MCI-TB	(HR	=	1.12	 [1.07-1.17]).	For	 the	

complete	 case	 analysis	 (Supplementary	 Table	 5),	 the	 ANU-ADRI	 remained	

statistically	 significant	 for	both	 the	 transition	 from	CN	 -	MCI	 (1.06	 [1.02	 -	 1.09])	

and	CN	-	MCI-TB	(HR	=	1.05	[1.01	-	1.08])	models. 

	

Table	7.4:	Hazard	ratios	(95%	CI)	of	the	ANU-ADRI	and	EV-GRS	scores	upon	

cognitive	transition	

Transition	 MCI/Dementia	 MCI-TB	

	 ANU-ADRI†	 EV-GRS‡	 ANU-ADRI†	 EV-GRS‡	
CN	–	

				MCI	
1.07	(1.04	-	1.1)*	 1.05	(0.86	-	1.29)	 1.07	(1.04	-	1.09)*	 1.03	(0.87	-	1.21)	

CN	-					

Dementia	
0.61	(0.33	-	1.13)	 4.19	(1.72	-	10.2)*	 	 	

CN	–	

				Death	
1.03	(0.94	-	1.12)	 0.70	(0.27	-	1.84)	 1.02	(0.98	-	1.06)	 0.89	(0.69	-	1.16)	

MCI	–	

				CN	
0.85	(0.11	-	6.79)	 0.95	(0	-	181.21)	 0.71	(0.50	–	1.00)	 0.44	(0.12	-	1.54)	

MCI	-		

Dementia	
1.02	(0.94	-	1.10)	 1.19	(0.76	-	1.85)	 	 	

MCI	

	-	Death	
0.96	(0.83	-	1.11)	 0.87	(0.29	-	2.63)	 1.05	(0.98	-	1.12)	 1.05	(0.65	-	1.71)	

Dementia	

-	Death	
0.99	(0.90	-	1.09)	 0.78	(0.51	-	1.19)	 	 	

*p	<	.05;.	CN:	Cognitively	normal;	MCI/Dementia:	Mild	cognitive	impairment	or	Dementia;	MCI-TB:	
Test-based	mild	cognitive	impairment;	†per	unitary	increase	in	the	ANU-ADRI;	‡per	SD	increase	in	
EV-GRS;	all	estimates	are	from	models	adjusting	for	the	ANU-ADRI	and	EV-GRS	

	

7.4	 Discussion	

To	 our	 knowledge,	 we	 report	 the	 first	 concurrent	 evaluation	 of	 a	 non-

genetic	and	genetic	 risk	 score	 in	 the	 risk	of	progression	 to	MCI	over	a	 long	 time	

period	 in	 a	 population-based	 cohort.	 As	 such	 this	 study	 provides	 much	 needed	

information	 on	 the	 utility	 of	 risk	 assessment	 tools	 in	 assessing	 the	 risk	 of	

progressing	 to	 MCI	 in	 the	 general	 population.	 Using	 cox	 proportional	 hazard	

models,	 we	 found	 that	 a	 per	 unitary	 increase	 in	 the	 ANU-ADRI	 at	 baseline	 was	

associated	6%	and	4%	increased	hazard	of	transitioning	from	CN	-	MCI/Dementia	

and	MCI-TB	respectively.	Additionally,	we	used	multistate	models	to	extend	upon	

the	 cox	 proportional	 hazard	 models	 to	 account	 for	 back	 transitions	 between	

cognitive	states	and	the	competing	risks	of	death	and	dementia.	We	observed	that	

a	 unitary	 change	 in	 the	 ANU-ADRI	was	 associated	with	 7%	 increased	 hazard	 of	

transitioning	 from	CN	 to	 either	MCI	 or	MCI-TB.	 In	 contrast,	 the	 EV-GRS	was	 not	
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associated	 with	 transitions	 from	 CN	 to	 cognitive	 impairment,	 though	 it	 was	

associated	with	a	4.19	risk	of	transitioning	to	dementia	from	CN.	

	

MSMs are well suited to analysing a more 'realistic' model of cognitive decline 

in which cognitive deterioration and recovery are modelled simultaneously in addition 

to misclassification, death and censoring. This is important in the examination of MCI, 

as pathological cognitive change is often not a linear progression from normal cognition 

to MCI and finally to dementia, as reversions from MCI back to normal cognition are 

common, which was also observed in the PATH cohort [22,467]. Individuals with a 

stable progression to MCI are more likely to progress to dementia than those with an 

unstable course or no diagnosis of MCI [22]. A higher ANU-ADRI score is associated 

both with an increased risk of transition to clinically diagnosed MCI and to a 

psychometric test-based MCI, suggesting that it could be useful for assessing an 

individual’s risk of developing MCI. Additionally, even in individuals who revert to 

normal cognition, the diagnosis of cognitive impairment may still have prognostic 

implications as these individuals have a greater likelihood of progressing to dementia or 

MCI than those who remain cognitively normal [22]. As such individuals that have a 

higher ANU-ADRI are more likely to revert back to MCI or develop dementia in the 

future [463]. These results show that the ANU-ADRI may be used to measure risk 

reduction for clinically significant MCI as well as dementia, and have implications for 

secondary prevention of dementia. However, while the ANU-ADRI is strongly 

associated with the progression from CN – MCI, it’s predictive ability was limited (c-

index of 0.60 for MCI and 0.56 for MCI-TB). This may be due to the relatively young 

age of the PATH cohort and consequently small number of participants with MCI and 

the narrow age-range of the sample. We expect that further validation of the ANU-

ADRI in slightly older cohort with a higher incidence of MCI, or with a wider age-

range, would show that the ANU-ADRI has greater predictive ability.	

	

The ANU-ADRI has several strengths [459]. First, the ANU-ADRI is the only 

risk assessment tool that has not been developed by identifying risk factors through the 

analysis of a single cohort and as such the predictive variables are not optimised to a 

particular study. The ANU-ADRI also does not include any risk factors that require 

clinical assessments or laboratory tests.	

The genetic risk was observed to be associated with the transition from CN to 

dementia, but not with CN to MCI, or MCI to dementia. This lack of an association may 
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be a result of the broad categorization of MCI, rather than MCI subtypes, such that it 

would have included participants with cognitive impairment that was not MCI due to 

AD [471,472]. This may also explain the reduced risk associated with both MCI and 

MCI-TB in our sensitivity analysis. Unfortunately, due to the small number of 

participants with MCI in PATH, further subgroup analysis would likely be 

underpowered to detect an effect. However, it should be noted that most dementia cases 

are associated with mixed pathologies rather than singular pathologies, suggesting that 

an AD GRS would be associated with both amnestic and non-amnestic MCI [473].	

Previous studies have investigated the association of AD GRS with MCI. In 

3605 participants (360 MCI, 191 dementia) an AD GRS composed of APOE + 19 

LOAD GWAS variants was associated with an increased risk of incident MCI and 

nominally associated with amnestic and non-amnestic [448]. In a second study of 2674 

participants (347 MCI, 132 LOAD) a GRS composed of APOE + 9 LOAD GWAS 

variants, was associated with progression from to normal cognition to MCI/LOAD 

[120]. Lack of replication in this study could be due to younger and fewer cognitively 

impaired participants. Furthermore, inclusion of additional AD risk loci that were 

identified to be nominally significant with AD in GWAS studies may identify a stronger 

association [461].	

	

Limitations of our study include the relatively high level of education of the 

PATH cohort [322]; the ethnicity in PATH is predominately Caucasian, potentially 

limiting the generalizability of the results in this study to other ethnicities, and 

biomarkers of AD were not available (e.g. CSF, Ab). Not all the predictive variables for 

the ANU-ADRI were available in PATH, suggesting the present study may 

underestimate the sensitivity of this tool in predicting individuals who are at risk of 

developing cognitive impairment. However, the validation studies also included a 

subset of the variables contributing to the ANU-ADRI [463].		

Study strengths included the large population-based sample with high retention 

rates and twelve years of follow-up data. The PATH cohort was recruited from a narrow 

age-band, reducing the impact of age-differences on findings. This is particularly 

important because age has the largest weighting of risk factors in the ANU-ADRI. 

Finally, the conservative clinical classifications of MCI/Dementia, based on a thorough 

clinical assessment and consensus diagnosis by clinicians using published criteria, was 

complemented by a broader psychometric test-based classification of MCI.	
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7.5	 Conclusions	

In conclusion, higher ANU-ADRI scores are associated with increased risk of 

progressing from cognitively normal to MCI. These results complement previous 

evidence that the ANU-ADRI is predictive of AD and dementia [463]. In comparison, a 

genetic risk score comprising the main AD genes was associated with the development 

of dementia but was not associated with the risk of developing MCI. These results 

provide further support for using the ANU-ADRI for population-level strategies and 

individual patient assessment and for informing intervention and treatment strategies 

aimed at delaying or preventing dementia.	
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Chapter	8.	 Conclusion		

8.1	 Summary	of	Findings	in	this	Thesis	

8.1.1	 Role	of	LOAD	Risk	Loci	in	Cognitive	Decline	

The	primary	aim	of	this	thesis	was	to	elucidate	the	role	of	LOAD	genetic	risk	

factors	in	normal	cognitive	function.	Common	genetic	variants	account	for	40-50%	

of	the	variance	in	general	cognitive	function	in	late	life	and	24%	of	the	variance	in	

late	 life	 cognitive	 change	 [102,103].	 In	 recent	 years,	 large-scale	 genome	 wide	

association	studies	(GWAS)	have	identified	over	20	loci	associated	with	Late-onset	

Alzheimer’s	 disease	 [108-113].	 LOAD	 risk	 genes	 are	 good	 candidate	 genes	 for	

associations	with	cognitive	decline	as	the	pathological	hallmarks	of	AD,	amyloid-b	

plaques	 and	 neurofibrillary	 tangles,	 are	 observed	 to	 occur	 to	 varying	 degrees	 in	

individuals	without	dementia	and	are	associated	with	nonclinical	cognitive	decline	

[82,95-99].	Previous	studies	of	association	of	the	first	11	identified	LOAD	risk	loci	

with	 cognitive	 decline	 produced	mixed	 results	 [115,116,118,120,121,124,129,442],	

and	 the	 new	 risk	 loci	 identified	 by	 IGAP	 have	 yet	 to	 be	 extensively	 investigated	

[117,122,123].		

In,	 ‘Association	 of	 genetic	 risk	 factors	 with	 cognitive	 decline:	 the	 PATH	

through	 life	project’	 (Chapter	 4),	 I	 investigated	 the	 first	 11	 LOAD	 risk	 loci	 to	 be	

identified	by	four	LOAD	genetic	consortia	 for	association	with	change	 in	episodic	

memory,	 working	 memory,	 verbal	 ability	 and	 perceptual	 speed	 over	 8	 years.	 I	

found	 that	ABCA7	 is	 associated	 with	 worse	 performance	 in	 episodic	 memory	 at	

baseline;	 APOE	 *e4	 and	 CR1	 are	 associated	 with	 increased	 rate	 of	 decline	 in	

episodic	memory;	and	MS4A4E	with	reduced	rate	of	decline	 in	episodic	memory.	

Additionally,	 I	 observed	 that	 a	 higher	 weighted	 genetic	 risk	 score	 is	 associated	

with	an	 increased	rate	of	decline	 in	episodic	memory,	although	this	 is	due	to	 the	

dominant	effect	of	the	APOE	*e4	allele.		

	 In,	 ‘Late	 Onset	 Alzheimer’s	 disease	 risk	 variants	 in	 cognitive	 decline:	 The	

PATH	Though	Life	Study’	(Chapter	5)	I	extended	upon	this	study	too	include	the	12	

additional	 loci	 identified	 in	 the	 IGAP	meta-analysis,	 and	 investigate	 associations	

with	 non-linear	 cognitive	 change	 over	 12	 years.	 I	 found	 that	 11	 SNPs	 are	

associated	with	cognitive	performance.	ABCA7,	MS4A4E	and	SORL1	are	associated	

with	 baseline	 cognitive	 performance	 in	 episodic	 memory,	 verbal	 ability	 and	

perceptual	speed,	respectively.	For	linear	rate	of	change,	APOE	was	associated	with	
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episodic	memory	and	perceptual	speed;	ABCA7	with	perceptual	speed;	EPHA1	with	

working	memory;	 INPP5D	was	 associated	with	 episodic	memory	 and	 perceptual	

speed;	 and	ZCWPW1	was	associated	with	 verbal	 ability	and;	CELF1	was	 associated	

with	episodic	memory.	For	quadratic	rate	of	change,	APOE	was	associated	with	a	

decelerating	 positive	 slope	 in	 working	 memory;	 CLU	 was	 associated	 with	 an	

accelerating	positive	slope	 in	working	memory;	and	FERMT2	was	associated	with	a	

decelerating	negative	slope	in	perceptual	speed.	Weighted	GRS	composed	of	all	25	

loci	 were	 associated	 with	 a	 greater	 rate	 of	 decline	 in	 episodic	 memory	 and	

perceptual	 speed,	 although	 the	 association	 was	 not	 significant	 when	 APOE	was	

excluded	from	the	risk	score.		

	 For	 the	 LOAD	 risk	 loci	 that	 were	 significantly	 associated	 with	 cognitive	

function,	the	effect	sizes	and	variance	they	explained	was	small.	This	suggests	that	

individual	 AD-related	 genetic	 markers	 may	 have	 limited	 use	 in	 identifying	

individuals	at	risk	of	cognitive	decline,	especially	in	relation	to	environmental	and	

lifestyle	risk	factors.	This	finding	is	supported	by	previous	studies	that	have	found	

limited	utility	in	including	additional	LOAD	risk	loci	beyond	APOE	into	predictive	

models	 for	 incidence	 of	 LOAD	 [111,119,120].	 The	 limited	 improvement	 in	

predictive	accuracy	can	be	expected,	as	non-genetic	variables	such	as	age,	gender	

and	 education	 already	 have	 high	 discriminative	 accuracy	 for	 AD	 and	 as	 such	

additional	 variables	 would	 need	 to	 have	 large	 effect	 sizes	 to	 markedly	 improve	

model	performance	[111].		

Due	to	the	polygenic	nature	of	AD,	it	is	has	been	suggested	that	aggregating	

the	 effects	 of	many	 loci	 across	 the	 genome,	 rather	 than	 restricting	 analysis	 to	 a	

small	number	of	risk	 loci,	may	improve	model	performance	[474].	LAOD	genome	

wide	polygenic	risk	scores	composed	of	all	SNPs	that	were	identified	by	the	IGAP	

meta-analysis	 to	be	associated	with	LOAD	below	a	 threshold	of	p	<	0.05	and	p	<	

0.01	have	been	associated	with	cross-sectional	and	longitudinal	cognitive	function	

respectively	 [213,474].	 Nevertheless,	 a	 genetic	 risk	 score	 composed	 of	 APOE	 +	

IGAP	risk	loci	+	all	genetic	variants	with	a	P-value	<	0.5	only	improved	predictive	

accuracy	of	LOAD	by	3%	in	comparison	to	a	risk	score	of	just	APOE	+	IGAP	risk	loci	

[461].		

This	highlights	that	more	complex	models	that	investigate	other	genetic	and	

non-genetic	 factors	 need	 to	 be	 investigated,	 including	 potential	 interactions	

between	variables.	
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8.1.2	 Role	of	SNPs	Associated	with	Cognitive	Function	in	Cognitive	Decline	

Amyloid	 and	 tau	 pathology	 only	 explain	 30%	of	 the	 observed	 variance	 in	

cognitive	decline,	indicating	that	while	LOAD	pathology	plays	an	important	role	in	

the	 development	 of	 cognitive	 decline	 it	 operates	 in	 conjunction	 with	 other	

pathological	 features	 and	 features	 of	 brain	 aging	 [91,435].	 Additionally,	 both	

premorbid	levels	of	cognition	and	cognitive	decline	contribute	to	the	development	

of	 cognitive	deficits	 in	 later	 life,	 highlighting	 the	need	 to	understand	 factors	 that	

moderate	both.	As	such,	a	secondary	aim	of	this	thesis	was	to	investigate	the	role	

of	 selected	 SNPs	 that	 had	 been	 previously	 linked	 with	 cognitive	 function.	 In	

‘Association	 of	 genetic	 risk	 factors	 with	 cognitive	 decline:	 the	 PATH	 through	 life	

project’	 	 (Chapter	 4)	 and	 ‘Association	 of	 AKAP6	 and	 MIR2113	 with	 cognitive	

performance	in	a	population-based	sample	of	older	adults’	(Chapter	6)	I	investigated	

the	 role	of	9	 SNPs	 (BDNF,	CETP,	COMT,	CTNNBL1,	LGALS3,	PDE7A,	SPON1,	AKAP6,	

and	MIR2113)	with	cogntive	decline.		

To	 date,	much	 of	 the	 genetic	 research	 in	 cogntive	 decline	 has	 focused	 on	

candidate	genes	with	a	biologicaly	plausiable	role	in	cogntive	performance.	Studies	

of	 candidate	 genes	 have	 produced	 inconsistent	 results	 often	 due	 to	 insufficent	

sample	 sizes	 leading	 to	 false	 postive	 and	 false	 negative	 assocations.	 Two	 of	 the	

most	 widely	 studied	 such	 genes	 are	 COMT,	 which	 encodes	 the	 neurotransmiter	

catechol-O-methyl	transferase,	and	BDNF,	which	encodes	the	neurotrophin	brain-

derived	 neurotrophic	 factor	 [104,436,475].	 The	 COMT	 VAL158MET	 and	 BDNF	

VAL66MET	polymorphisms	have	been	assoicated	with	excutive	function,	episodic	

memory	 and	 working	 memory,	 though	 the	 results	 are	 inconsistent	 between	

studies	 (reviewed	 in	 [104,436,475]).	 In	 this	 work,	 the	 BDNF	 MET	 allele	 was	

associated	with	worse	working	memory	 performance	 at	 baseline	 and	 the	COMT		

MET	allele	was	assoicated	with	a	faster	rate	of	decline	in	episodic	memory.	

In	contrast	to	candidate	gene	approaches,	genome	wide	assocation	studies	

provide	a	hypothesis	free	approach	that	allows	for	the	intetergation	of	hundreds	of	

thousands	SNPs	simultaneously	to	identify	robust	assocations	with	a	phenoytpe.	A	

GWAS	in	1073	Swiss	identified	CTNNBL1	as	being	associated	with	cross-sectional	

verbal	memory	[348],	while	in	this	work	CTNNBL1	was	associated	with	a	reduced	

rate	of	decline	episodic	memory.	A	second	GWAS	in	749	subjects	identifed	a	SNP	in	

PDE7A	associated	with	reduced	rate	of	cognitive	decline	[116].	Our	replication	of	
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this	study	found	that	PDE7A	was		assoicated	with	worse	perforamnce	at	baseline	in	

working	memory	and	a	reduced	rate	of	decline	of	perceptual	speed.	

In	two	of	the	largest	GWAS’s	performed	to	date,	by	the	CHARGE	consortium	

(n	=	53,949)	and	in	a	follow-up	study	performed	in	the	UK	Biobank	(n	=	112,151),	

SNPs	within	MIR2113	were	associated	with	general	cognitive	function,	educational	

attainment,	 and	verbal-numerical	 reasoning.	 SNPs	within	AKAP6	were	associated	

with	 general	 cognitive	 function,	 verbal-numerical	 reasoning,	 and	 reaction	 time	

[122,133].	In	the	work	presented	here,	AKAP6	was	not	associated	with	decline	in	

any	 of	 the	 cognitive	 abilities	 tested,	 although	 we	 did	 replicate	 the	 previously	

observed	association	with	baseline	cognitive	performance,	with	AKAP6	associated	

with	worse	 performance	 in	 episodic	memory,	working	memory,	 vocabulary	 and	

perceptual	 speed.	MIR2113	was	associated	with	 an	 accelerated	 rate	of	 decline	 in	

episodic	 memory,	 although	 we	 did	 not	 replicate	 the	 previous	 findings	 with	

baseline	cognitive	performance.		

As	with	the	LOAD	risk	loci,	the	effect	sizes	of	these	SNPs	was	small	and	the	

amount	of	variance	explained	by	the	SNPs	was	negligible.	These	results	reflect	that	

cognitive	function	is	a	polygenic	trait	composed	of	many	SNPs	of	small	effect	size	

[122].		

	

8.1.3	 Role	of	Environmental	and	Lifestyle	in	Cognitive	Decline	

LOAD	 is	 increasingly	 understood	 as	 a	 multifactorial	 neurodegenerative	

disease,	 with	 a	 long-term,	 complex,	 and	 dynamic	 etiology.	 Although	 genetic	

variation	explains	53%	of	the	variance	in	AD	[106],	a	variety	of	biological,	health,	

environmental	 and	 lifestyle	 risk	 and	protective	 factors	 can	 influence	whether	 an	

individual’s	 genetic	 predisposition	 to	 developing	 AD	 is	 elevated,	 exacerbated,	

buffered,	or	protected.	Genetic	variants,	in	contrast	to	environmental	and	lifestyle	

risk	 factors,	 are	 non-modifiable	 limiting	 their	 ability	 to	 be	 used	 in	 medical	

interventions	 or	 to	 modify	 individual	 behaviour	 to	 reduce	 risk.	 It	 has	 been	

estimated	 that	one	 third	of	AD	cases	worldwide	may	be	attributed	 to	modifiable	

risk	 factors	 (see	 subsection	 1.4)	 and	 that	 reducing	 the	 prevalence	 of	modifiable	

risk	factors	by	10%	per	decade	may	reduce	the	prevalence	of	AD	by	8%	by	2050	

[476].	As	such	it	is	important	to	further	explore	role	of	environmental	and	lifestyle	

risk	factors	 in	cognitive	decline,	and	their	potential	 interactions	with	genetic	risk	

factors.	 	
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In	 ‘Interactive	 Effect	 of	 APOE	 Genotype	 and	 Blood	 Pressure	 on	 Cognitive	

Decline:	The	PATH	Through	Life	Study’	 (Chapter	 3),	 I	 investigated	 the	 interaction	

between	 APOE	 genotype	 and	 hypertension.	 I	 found	 evidence	 that	 the	 APOE-

hypertension	 interaction	 has	 a	 significant	 effect	 on	 rate	 of	 decline	 in	 episodic	

memory,	verbal	ability	and	a	composite	global	cognition	measure.	 In	contrast,	no	

significant	 interaction	was	 observed	 between	APOE	and	Mean	 Arterial	 Pressure,	

possibly	due	to	a	confounding	effect	of	hypertension	medication,	since	individuals	

with	controlled	hypertension	have	mean	arterial	pressure	in	the	normal	range.	

	 	In	 ‘ANU-ADRI	 and	 not	 Genetic	 Risk	 score	 predicts	MCI	 in	 a	 cohort	 of	 older	

adults	 followed	 for	 12	 years’	 (Chapter	 7)	 I	 examined	 the	 association	 of	 both	 a	

weighted	AD	genetic	risk	score	(GRS)	and	an	environmental	and	lifestyle	risk	score	

with	 the	 risk	 of	 transitioning	 to	 cognitive	 impairment.	 The	 GRS	 was	 associated	

with	an	 increased	risk	of	 transitioning	to	dementia,	while	 the	environmental	and	

lifestyle	 risk	 score	 was	 associated	 with	 an	 increased	 risk	 of	 transitioning	 to	

cognitive	impairment.	

	

8.1.4	 Limitations	

The	presented	 findings	 in	 this	 thesis	 should	be	 interpreted	 in	conjunction	

with	 some	 study	 limitations.	 Firstly,	 the	 participants	 in	 the	 60+	 cohort	 have	 on	

average	a	higher	level	of	education	(63%	with	post-school	qualifications	vs	45%)	

and	a	higher	 socio-economic	 status	 (26%	of	 the	 sample	 report	 an	 income	below	

the	 national	 average)	 then	 the	 general	 Australian	 Population	 [322].	 As	 these	

factors	are	associated	with	reduced	risk	of	cognitive	decline,	cognitive	impairment	

and	dementia,	this	may	limit	the	ability	to	detect	associations	between	risk	factors,	

and	in	particular	genetic	variants,	and	cognitive	performance.	Second,	the	sample	

is	 relatively	 ‘young’	 and	 only	 at	wave	 4	 have	 participants	 began	 to	 experience	 a	

higher	 frequency	 of	 transitions	 between	 cognitive	 states.	 As	 such,	 to	 date	 the	

prevalence	of	MCI	and	dementia	in	PATH	is	low,	potentially	limiting	our	ability	to	

detect	 associations	 between	 risk	 factors	 and	 cognitive	 impairment.	 Third,	 the	

PATH	 is	 predominantly	 of	 European	 ancestry,	 potentially	 limiting	 the	

generalizability	 of	 the	 results	 in	 this	 study	 to	 other	 ethnicities	 and,	 due	 to	 the	

limited	 genetic	 data	 available,	 we	 are	 unable	 to	 account	 for	 population	

stratification.	 Fourth,	 the	 SNPs	 genotyped	 as	 part	 of	 this	 study	 that	 were	

previously	 identified	by	GWAS	are	 the	most	 strongly	 associated	with	 the	 trait	 of	



	

153	

interest.	These	SNPs	are	unlikely	to	be	the	causal	variants,	but	are	expected	to	be	

in	 linkage	 disequilibrium	 with	 other	 genetic	 variation	 that	 causes	 the	 observed	

associations	 with	 cognitive	 function.	 Fifth,	 while	 the	 attrition	 rate	 has	 been	

relatively	low	between	waves,	there	may	have	been	differential	attrition	as	a	result	

of	 individuals	who	 later	became	severely	 impaired	and	demented.	This	may	bias	

results	as	these	individuals	would	not	be	excluded	from	our	analysis	and	are	more	

likely	to	experience	faster	rates	of	cognitive	decline	[451].	Sixth,	despite	excluding	

participants	 with	 dementia	 or	 cognitive	 impairment	 at	 an	 each	 wave	 in	 the	

relevant	 analysis,	 it	 is	 still	 possible	 that	 individuals	 in	 the	 preclinical	 phase	 of	

dementia	 were	 included	 in	 the	 analysis,	 potentially	 biasing	 results	 [93].	 Finally,	

due	to	the	breadth	of	the	study,	PATH	is	predominately	limited		to	self-reported	or	

lay	administrated	measures,	in	contrast	to	clinical	biomarkers	and	assessments	of	

disease	outcomes.	In	particular	biomarkers	of	AD	(e.g.	CSF	or	PET	imaging	of	Tau	

and	Ab)	are	not	available.		

	

An	 additional	 limitation	 of	 the	 work	 presented	 in	 this	 thesis	 is	 the	

possibility	 of	 type	 1	 errors,	 particularly	 for	 chapters	 4	 &	 5,	 due	 to	 the	 issue	 of	

multiple	 testing.	 Due	 to	 the	 large	 number	 of	 genetic	 variants	 investigated,	 in	

combination	 with	 multiple	 outcomes	 and	 the	 longitudinal	 analysis,	 numerous	

hypothesis	tests	were	performed.	This	increases	the	probability	of	reporting	false	

positives	 (Type	 I	errors)	by	 falsely	rejecting	 the	 true	null	hypothesis.	To	account	

for	the	increased	probability	of	type	I	errors,	significance	level	adjustment	is	often	

employed	 to	 account	 for	multiple	 testing	 and	 control	 for	 study-wide	 error	 rates,	

and	thus	lower	the	probability	of	type	1	errors.	Typically,	Bonferroni	correction	is	

used	 to	 adjust	 for	 multiple	 testing,	 as	 was	 the	 case	 in	 this	 thesis,	 whereby	 the	

significance	 level	 for	 rejecting	 the	 null	 hypothesis	 is	 adjusted	 such	 that	 the	

significance	 level	 one	would	 normally	 use	 if	 only	 one	 test	was	 performed	 (a)	 is	

divided	by	 the	number	of	 tests	 performed	 (n).	 Bonferroni	 correction	however	 is	

often	 overly	 conservative	 and	 can	 result	 in	 an	 increased	 probability	 of	 type	 II	

errors,	in	which	the	null	hypothesis	is	falsely	rejected	[477].	A	key	assumption	of	

Bonferroni	 correction	 is	 that	 all	 hypothesis	 tests	 are	 independent	 of	 each	 other.	

However,	 this	 assumption	 is	 often	 violated	 in	 the	 context	 of	 longitudinal	 studies	

with	 multiple	 outcomes	 resulting	 in	 Bonferroni	 correction	 been	 overly	

conservative	 leading	 to	 increased	 type	 II	 errors	 [477].	 This	 is	 the	 case	with	 the	
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work	 presented	 in	 this	 thesis	 as	 firstly,	 the	 cognitive	 outcomes	 are	 highly	

correlated	with	each	other,	and	secondly,	the	baseline,	linear	and	quadratic	rate	of	

change	 coefficients	 are	 also	 correlated.	 As	 such,	 when	 correcting	 for	 multiple	

testing,	a	less	conservative	Bonferroni	correction	was	used	in	which	a was	divided	

by	the	number	of	genetic	variants	tested.	Future	analysis	using	novel	methods	that	

can	account	for	correlated	outcomes,	both	in	the	context	of	Bonferroni	correction	

[478]	or	false	discovery	rates	[479],	or	by	using	of	Bayesian	modeling	is	warranted	

[480].		

	

8.1.5	 Strengths	

Despite	 the	 limitations	 associated	 with	 PATH,	 the	 study	 design	 has	 a	

number	of	strengths	that	allows	for	robust	statistical	modelling	of	the	association	

of	risk	factors	with	cognitive	performance.	First,	 this	study	investigated	cognitive	

change	in	a	randomly	selected	community	dwelling	cohort	of	older	adults,	and	as	

such	 the	 results	 are	 likely	 generalizable	 to	 other	 populations	 of	 older	 adults.	

Second,	 the	 participants	 have	 been	 followed	 for	 12	 years	 with	 four	 follow-up	

interviews	 assessing	 four	 separate	 cognitive	 domains,	 allowing	 for	 the	

examination	of	non-linear	declines	across	a	broad	spectrum	of	cognitive	abilities.	

Third,	while	specific	clinical	biomarkers	of	disease	outcome	are	not	available,	the	

concurrent	 availability	 of	 broad	 spectrum	 of	 variables	 including	 demographics,	

stressors,	 physical	 measures,	 cognitive	 measures,	 mental	 health,	 psychological	

scales,	general	health	and	genetic	variants	 is	a	strength.	Finally,	 the	PATH	cohort	

was	recruited	from	a	narrow	age-band,	reducing	the	impact	of	age-differences	on	

findings	allowing	for	the	discrimination	between	age	and	cohort	effects.		

	
	

8.1.6	 Conclusions		

	 In	 summary,	 the	 research	 presented	 in	 this	 thesis	 provides	 valuable	

information	 about	 the	 association	 of	 common	 genetic	 variants	 with	 cognitive	

performance	in	a	large	well-characterized	cohort.	The	results	suggest	that	a	subset	

of	the	AD	risk	 loci	are	associated	with	cognitive	performance,	but	effect	sizes	are	

small.	This	suggests	that	 individual	AD-related	genetic	markers	may	have	 limited	

use	 in	 identifying	 individuals	at	 risk	of	cognitive	decline,	especially	 in	relation	 to	
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environmental	and	lifestyle	risk	factors.	Nevertheless,	these	results	from	the	PATH	

study	open	up	several	new	lines	of	inquiry	for	future	research.	

	

8.2	 Future	Directions		

8.2.1	 Are	 AD	Genetic	 Variants	 Associated	with	 Cognitive	 Performance	 in	 ‘Robust’	

Cognitively	Normal	Individuals?		

Future	 work	 investigating	 the	 association	 of	 AD	 risk	 loci	 with	 cognitive	

function	 needs	 to	 account	 for	 the	 inclusion	 of	 participants	 with	 preclinical	

dementia.	 Cognitively	 normal	 individuals	with	 abnormal	 levels	 of	 amyloid-b	 and	

tau	 experience	 a	 faster	 rate	 of	 cognitive	 decline	 compared	 to	 individuals	 with	

normal	measures	of	amyloid	and	tau	or	abnormal	measures	of	only	amyloid	or	tau	

[481].	 Furthermore,	 inclusion	 of	 individuals	 with	 neuroimaging	 and	 biomarker	

evidence	 of	 preclinical	 AD	 greatly	 exaggerates	 age-related	 cognitive	 decline	 in	

‘cognitively	normal’	populations	[93].	As	such,	examining	the	association	of	AD	risk	

loci	 with	 cognitive	 performance	 separately	 in	 ‘robust’	 normal	 participants	 (i.e.,	

those	with	normal	measures	of	 amyloid	and	 tau)	and	preclinical	AD	participants	

may	further	elucidate	the	role	of	these	loci	in	normal	cognitive	aging.		

A	 gold	 standard	 approach	would	 use	 neuroimaging	 or	 CSF	 biomarkers	 to	

inform	the	classification	of	preclinical	AD.	In	the	absence	of	neuroimaging	or	CSF	

biomarkers,	 other	 methods	 for	 identifying	 the	 preclinical	 stages	 of	 AD	 are	

available.	 A	 greater	 difference	 in	 a	 discrepancy	 between	 fluid	 and	 crystallized	

cognitive	ability	 is	associated	with	greater	Ab	disposition	and	a	thinner	cortex	 in	

AD-vulnerable	 regions,	 and	may,	 therefore,	 be	 a	marker	 of	 preclinical	 AD	 [482].	

Alternatively,	 using	 risk	 scores,	 such	 as	 the	 ANU-ADRI,	 to	 predict	 future	 risk	 of	

developing	AD	may	be	used	to	segregate	the	population.	

	

8.2.2	 Investigating	the	Role	of	AD	Loci	Involved	in	the	same	Biological	Pathways	or	

Stage	of	Pathogenesis		

	 As	highlighted	 in	subsection	1.2,	 the	pathogenesis	of	LOAD	spans	decades	

and	progresses	through	preclinical,	MCI	and	dementia	stages,	with	the	underlying	

pathological	 processes	 starting	 with	 amyloidosis	 followed	 by	

hyperphosphorylated	tau	accumulation	and	subsequent	structural,	functional	and	

cognitive	 declines	 [54].	 As	 such,	 individual	 LOAD	 risk	 loci	 may	 be	 involved	 at	
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specific	stages	in	LOAD	pathogenesis,	and	this	may	influence	whether	the	loci	are	

associated	with	processes	that	predispose,	initiate	or	propagate	cognitive	decline.	

Therefore,	rather	than	investigating	if	all	known	LOAD	risk	loci	are	associated	with	

cognitive	 function,	 focusing	 on	 a	 subset	 of	 LOAD	 risk	 loci	 based	 on	 known	

associations	 with	 LOAD	 neuropathology	 or	 transitions	 between	 cognitive	 states	

may	 provide	more	 consistent	 associations.	 Constructing	 separate	GRSs	 based	 on	

known	similarities	between	risk	loci	may	also	prove	to	be	more	informative.		

In	AD	case/control	autopsies	ABCA7,	BIN1,	CASS4,	MEF2C,	PICALM,	MS4A6A,	

CD33	and	CR1	have	been	associated	with	neurotic	plaque	burden	and	ABCA7,	BIN1,	

CASS4,	 MEF2C,	 PICALM,	 CLU,	 SORL1	 and	 ZCWPW1	 with	 neurofibrillary	 tangles	

[128,142].	 In	 relation	 to	 transitions	 between	 cognitive	 states,	 associations	 have	

been	 reported	 between	 LOAD	 risk	 loci	 CD2AP,	 CLU,	 MS4A6A	 and	 INPP5D	 and	

progression	 from	 normal	 cognition	 to	 dementia	 [448];	 between	 CLU,	 CR1,	 and	

NME8	and	progression	from	MCI	to	dementia	[448-450];	between	INPP5D,	MEFC2,	

EPHA1,	PT2KB,	FERMT2,	CASS4	and	rate	of	progression	in	AD	[163];	and	between	

PICALM	 and	MS4A6A	 and	 progression	 to	 MCI/Dementia	 from	 normal	 cognition	

normal	 [120].	 However,	 these	 studies	 are	 often	 limited	 by	 examining	 the	

association	between	only	two	cognitive	states.	The	Multi-state	Models	outlined	in	

Chapter	5	provide	a	methodology	for	analysing	a	more	realistic	model	of	cognitive	

change	 in	 which	 transition	 between	 normal	 cognition,	 cognitive	 impairment,	

dementia	and	death	can	be	modelled	simultaneously.		

	

8.2.3	 Gene	x	Gene	Interactions		

	 Known	loci	for	AD	only	explain	30%	of	the	genetic	variance	associated	with	

AD,	with	some	of	the	unexplained	variance	likely	to	be	accounted	for	by	gene-gene	

interactions	 (epistasis)	 [106,483].	 An	 assumption	 underlying	 the	 construction	 of	

LOAD	GRS	is	that	the	effects	of	the	individual	loci	exhibit	independent,	additive	and	

cumulative	 effects.	 However,	 this	 is	 likely	 to	 be	 an	 oversimplification,	 with	

combinations	of	individual	genetic	variants	interacting	to	affect	a	phenotype	[303].	

Initial	analyses	of	epistasis	in	AD	was	based	on	hypothesis-driven	approaches	and	

resulted	 in	 over	 100	 claims	 of	 epistasis,	 of	which	 only	 27	 could	 be	 replicated	 in	

later	 comprehensive	 analyses.	The	vast	majority	of	 these	were	with	APOE	 [484].	

The	first	exhaustive	genome-wide	association	interaction	analysis	only	identified	a	

single	gene-gene	 interaction	between	KHDRBS2	and	CRYL1,	which	was	supported	
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by	meta-analysis	of	5	additional	replication	cohorts	[485].	In	comparison,	a	study	

using	a	priori	evidence	to	select	SNP-SNP	models	based	on	known	gene	or	protein	

interactions	 or	 participation	 in	 common	 pathways	 and	 processes	 identified	

significant	interactions	across	13	data	sets	between	SIRT1	x	ABCB1,	PSAP	x	PEBP4,	

and	GRIN2B	x	ADRA1A	[486].	Investigation	of	epistasis	between	known	LOAD	risk	

loci	has	been	limited	to	the	loci	identified	in	the	initial	GWAS	studies,	with	only	an	

interaction	 between	 CLU-MS4AE	 being	 replicated	 [305,486-488],	 while	

interactions	 between	 APOE-ABCA7	 and	 APOE-CD33	 have	 been	 associated	 with	

cognitive	function	[118,489].	Novel	methods	for	evaluating	gene-gene	interactions	

such	as	AGGrEGATOr,	which	uses	a	gene-level	approach	to	jointly	models	all	SNPs	

within	a	genomic	region	[490];	aggregated-multifactor	dimensionality	reduction,	a	

method	 that	 exhaustively	 searches	 for	 significant	 gene-gene	 interactions	 and	

constructs	an	aggregated	epistasis	enriched	risk	score	[491];	and	machine	learning	

methods	 that	 overcome	 the	 limitations	 associated	 with	 traditional	 regression	

methods	 [492],	 will	 allow	 for	 a	 more	 robust	 analysis	 of	 epistasis	 in	 AD	 and	

cognition.	 Incorporating	 this	 information	 into	 additive	GRS	may	 further	 improve	

their	predictive	power	and	explain	some	of	 the	missing	variance	associated	with	

AD	and	cognition.			

	

8.2.4	 Gene	x	Environment	Interactions	

	 Genetic	variation,	 in	 total,	accounts	 for	50%	of	 the	phenotypic	variance	 in	

LOAD,	 highlighting	 that	 environmental	 and	 lifestyle	 risk	 factors	 also	 play	 an	

important	role	in	the	development	of	LOAD.		However,	genetic	and	environmental	

factors	do	not	act	independently	of	each	other	but	are	likely	to	interact	with	each	

other	such	that	environmental	exposures	may	have	differential	effects	that	depend	

on	individual	genetic	risks	and	vice	versa.	To	date,	much	of	the	research	on	gene-

environment	 interactions	 in	 LOAD	 or	 LOAD	 endophenotypes	 have	 focused	 on	

interactions	 with	 APOE,	with	 interactions	 observed	 between	 APOE	 and	 smoking	

[258],	 depression	 [493],	 vascular	 risk	 factors	 [494],	 cognitive	 activity	 [495],	 and	

physical	activity	[496].	Interactions	between	APOE	and	depression,	education,	BMI,	

diet,	 and	 blood	 pressure	 have	 also	 been	 associated	 with	 cognitive	 performance	

[266,497-500].	 Interactions	 between	 the	 non-APOE	 risk	 loci	 and	 environmental	

factors	 have	 yet	 to	 be	 extensively	 investigated,	 although	 associations	 have	 been	

observed	 for	 risk	 scores	 composed	 of	 PICALM-BIN1-CLU	 and	 physical	 activity;	
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APOE-CLU-CR1-PICALM	and	diabetes;	and	CLU	and	Mediterranean	diet	 [306-308].	

As	 such,	 further	 investigation	 of	 the	 interactions	 between	 LOAD	 risk	 loci	 and	

environmental	factors	are	needed,	with	a	particular	emphasis	on	risk	factors	that	

share	the	same	underlying	biological	pathways.	The	 inclusion	of	 this	 information	

into	 risk	 prediction	 models	 would	 improve	 predictive	 accuracy	 and	 facilitate	

prevention	strategies.		

	

8.2.5	 Mendelian	Randomization		

The	observed	associations	of	environmental	and	 lifestyle	risk	 factors	with	

cognitive	 impairment	 or	 dementia	 may	 be	 subject	 to	 reverse	 causation	 or	

confounding	 and	 thus	 may	 overestimate	 the	 cognitive	 benefits	 associated	 with	

environmental	 and	 lifestyle	 interventions.	 Due	 to	 the	 difficulties	 and	 ethical	

implications	of	implementing	large	scale	randomized	control	trials	to	evaluate	the	

causal	relationships	between	environmental	and	lifestyle	risk	factors	and	cognitive	

impairment	or	dementia,	alternative	approaches	are	needed	to	evaluate	causality	

of	 observed	 associations.	 Mendelian	 Randomization	 is	 one	 method	 that	 uses	

genetic	variants	as	proxies	for	environmental	exposures	to	provide	an	estimate	of	

the	 causal	 association	between	an	 intermediate	exposure	and	a	disease	outcome	

[501].	Mendelian	 randomization	 is	 akin	 to	 a	 ‘genetically	 randomized	 trial’	 due	 to	

the	 random	 allocation	 of	 genotypes	 from	 parents	 to	 offspring	 and	 are	 thus	 not	

affected	by	reverse	causation	and	are	independent	of	confounding	factors	that	may	

influence	 disease	 outcomes	 [502].	 The	 genetic	 variants	 used	 in	 Mendelian	

randomization	act	as	an	instrumental	variable	under	the	following	assumptions:	1)	

it	 is	 associated	with	 exposure;	 2)	 it	 is	 independent	 of	measured	 or	 unmeasured	

confounders	and;	3)	 it	 is	associated	with	 the	outcome	via	 the	causal	effect	of	 the	

exposure	 [502].	 If	 the	 assumptions	 hold	 for	 the	 genetic	 variant,	 an	 association	

between	 a	 genetic	 variant	 and	 a	 disease	 outcome	 would	 indicate	 a	 causal	

relationship	between	 the	exposure	and	disease	outcome.	 In	 contrast	 to	 standard	

genetic	epidemiological	approaches	that	aim	to	quantify	the	magnitude	of	a	genetic	

variants	influence	on	disease,	Mendelian	randomization	aims	to	use	the	observed	

associations	to	demonstrate	the	causal	influence	of	modifiable	environmental	and	

lifestyle	 risk	 factors	 on	 disease	 outcomes.	 Using	 Mendelian	 randomization	 to	

estimate	 the	 causal	 effects	 of	 potentially	 modifiable	 risk	 factors	 on	 cognitive	

impairment	or	dementia	would	inform	the	extent	to	which	interventions	targeted	
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at	 modifiable	 risk	 factors	 can	 reduce	 the	 risk	 of	 cognitive	 impairment	 and	

dementia.	

	

8.2.5	 Utilizing	 AD	 Environmental,	 Lifestyle	 and	 Genetic	 Risk	 Factors	 in	 Predictive	

Modelling		

	 One	 reason	 for	 identifying	 risk	 factors	 associated	 with	 dementia	 or	 its	

preclinical	 stages	 is	 so	 that	 they	 can	be	 included	 in	 risk	prediction	models.	 Such	

predictive	models	are	essential	for	public	health,	facilitating	the	implementation	of	

population-based	 prevention	 strategies;	 for	 clinical	 interventions	 aimed	 at	

prevention	of	dementia	using	personalized	medicine;	and	for	research	to	identify	

high-risk	 individuals	 for	 improving	 inclusion	 of	 participants	 into	 dementia	 trials	

[503].	 	Additive	regression	methods	that	combine	genetic	and	clinical	risk	scores,	

such	 as	 those	 constructed	 in	 this	 study,	 into	 an	 easily	 interpretable	 report	 for	

clinical	 use	 are	 already	 available	 [504].	More	 sophisticated	models	 are	 required,	

however,	with	a	particular	focus	on	identifying	high-risk	individuals	who	are	likely	

to	develop	dementia	in	the	near	term	(3-years)	or	long-term	(10-5	years)	and	that	

account	 for	 confounding	 factors	 that	 may	 influence	 disease	 onset	 and	 potential	

interactions	 between	 variables	 [291,503].	 Furthermore,	 these	 models	 need	 to	

leverage	 the	 ever-increasing	 data	 that	 is	 available,	 both	 for	 environmental	 and	

lifestyle	risk	factors	due	to	the	increasing	availability	of	electronic	health	records	

[505]	 and	 genomic	 data	 as	 a	 consequence	 of	 the	 falling	 costs	 of	 whole	 genome	

sequencing	 [506,507].	 Data	 mining	 and	 machine	 learning	 methods	 such	 as	

Random	 Forests	 [508],	 Stochastic	 Gradient	 Boosting	 [509]	 and	 Support	 Vector	

Machines	[510]	offer	an	alternative	approach	to	traditional	classification	methods	

such	 as	 logistic	 regression.	 These	 methods	 are	 particularly	 useful	 for	 analysing	

high	 dimensional	 datasets	 that	 have	 a	 larger	 number	 of	 predictor	 variables	 in	

comparison	to	observations,	and	in	tree-based	methods,	 implicitly	accounting	for	

interactions	 between	 variables	 [511,512].	 In	 addition	 to	 constructing	 highly	

predictive	models,	machine	 learning	methods	often	provide	measures	of	variable	

importance	which	can	be	used	for	feature	selection	to	identify	the	key	variables	in	

predictive	models.	 The	 selected	 features	 can	 then	 be	 used	 to	 develop	 predictive	

models	targeted	at	specific	subpopulations	(i.e.	clinical	vs.	population,	near	vs.	long	

term)	for	identifying	individuals	at	risk	of	developing	dementia	[511,512].		
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