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Abstract: Progression to exudative ‘wet’ age-related macular degeneration (exAMD) is a           

major cause of visual deterioration. In patients diagnosed with exAMD in one eye, we              

introduce an artificial intelligence (AI) system to predict progression to exAMD in the             

second eye. By combining models based on 3D optical coherence tomography images            

and corresponding automatic tissue maps, our system predicts conversion to exAMD           

within a clinically-actionable 6-month time window, achieving a per-volumetric-scan         



sensitivity of 80% at 55% specificity, and 34% sensitivity at 90% specificity. This level              

of performance corresponds to true positives in 78% and 41% individual eyes, and false              

positives in 56% and 17% individual eyes, at the high sensitivity and high specificity              

points respectively. Moreover, we show that automatic tissue segmentation can identify           

anatomical changes prior to conversion and high-risk subgroups. This AI system           

overcomes substantial interobserver variability in expert predictions, performing better         

than five out of six experts, and demonstrates the potential of using AI to predict disease                

progression. 

 

 



Introduction 

The application of artificial intelligence (AI) to disease classification has shown great promise towards 

increased utility and diagnostic accuracy for medical imaging1-3. Recent work has demonstrated further 

potential in risk stratification not previously thought possible4-5. There is significant potential for AI to 

improve our understanding of disease evolution, and to predict the future risk of disease onset and 

progression.  

 

Prediction of disease progression is particularly important in age-related macular degeneration (AMD). 

AMD is the commonest cause of blindness in the developed world6; in the US alone an estimated 148,000 

adults each year progress from the early, mild form of the condition to the sight-threatening late form 

known as exudative AMD (exAMD)7–9. Once exAMD develops, sight is lost precipitously and often 

cannot be fully restored by current therapies, making the point of conversion from early to exAMD a 

critical moment in the management of this disease14. Exudative AMD typically affects one eye first, 

leaving sufferers reliant upon the unaffected fellow eye to maintain their quality of life. However, 20% of 

these patients develop exAMD in the fellow eye within 2 years of the first10–13. This deprives individuals 

of essential daily activities such as reading, recognising faces, and driving.  

 

Treatment of exAMD is most effective if administered soon after conversion14. Regular follow up is thus 

the standard of care, but is not always available15. While studies are exploring preventative strategies 16-17, 

robust methods of identifying exAMD onset prior to conversion are needed to avoid the administration of 

costly, invasive treatment to the fellow eyes of all patients with unilateral exAMD, many of whom will 

never develop late disease in their fellow eye. To date there has been little evidence that clinicians are 
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able to accurately predict a patient’s imminent conversion, and despite progress in deriving prognostic 

indicators from fundus imaging18, further work is needed to achieve clinically useful predictive accuracy.  

 

To address this challenge we introduce an AI system to predict whether a fellow eye will convert to 

exAMD imminently, defined as within the ensuing 6 month period, using optical coherence tomography 

scans (OCT). To demonstrate the clinical applicability of this system, we explore its use across varying 

operating points (sensitivity/specificity pairs), and investigate the number and potential patient impact of 

false positive outputs. To better understand expert performance on the task, we compare model 

performance with Retinal Specialists and Optometrists in a benchmark study using a defined silver 

standard of conversion date. We further investigate automatic segmentations of clinically relevant tissue 

types to identify early changes and study high-risk subgroups. 
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Figure 1 | Clinical setup and proposed system. a) After diagnosis of exudative AMD (exAMD) in one eye (the first 

eye), a patient commences intravitreal therapy in that first eye. Both the first eye and the second, ‘fellow’ eye are 

followed-up regularly with further observation. b) Selected sequential scans from the fellow eye of a patient. This eye 

initially showed mild, early AMD and then converted to exAMD, following which it was treated with intravitreal therapy. 

The timing of each follow-up visit varies depending on the treatment regimen of the first eye as well as factors related 

to the individual patient and the clinic. At each visit, an optical coherence tomography (OCT) scan of the first eye is 

performed to assess efficacy of treatment. An OCT scan of the fellow eye is also performed, as the presence of 

exAMD in one eye presents a high risk of fellow eye conversion. Here, the fellow eye converts to exAMD during 

follow up at 11 months (red box). c) Illustration of the proposed AI system. The 3D OCT volume of the fellow eye (1) 

is used to provide a risk prediction of whether the eye will convert within a given time-window. A deep learning (DL) 

segmentation model (2) outputs a 3D segmentation of anatomical and pathological tissue (3). A prediction model then 

takes this tissue segmentation as an input (4). A further prediction model takes the original 3D OCT volume as an 

input (5), and these two prediction models are ensembled (6) to assign a risk of conversion to exAMD within a 

clinically-actionable time window of 6 months (7). 

Results 

Clinical Application & Deep Learning Architecture 

Predicting the future state of a progressive disease is a combination of two skills: identification of subtle 

signs early in the process of conversion, and modeling the future risk of exAMD. A model must be able to 

provide interpretable information to clinicians who may be making decisions based on its predictions. Our 

proposed system thus consists of two components: first predicting conversion to exAMD based on an 

interpretable tissue segmentation of the OCT and second making a prediction based on the raw OCT 

itself. The former adapts a two stage architecture2, trained on a subset of manually segmented scans, that 

first segments 13 relevant tissue types, and subsequently applies a classification network adapted to 
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predict the risk of conversion to exAMD within the next 6 months. We ensembled the two stage network 

with a model trained for the same task on the raw OCT alone. This was motivated by literature precedent 

on involvement of imaging features not yet captured by the segmentation model such as reticular 

pseudodrusen19–22 and reflectivity of tissues 23 in the conversion to exAMD. This approach captures the 

complementary performance of the two stage network and those based on raw OCT alone 

(Supplementary Tables 1a & 1b ). 
 

We trained and tested our system using a retrospective, consecutive cohort of 2,795 patients across seven 

different sites (Supplementary Table 2) who were first diagnosed with exAMD between June 2012 and 

June 2017 (Figure 1). Routine care for these patients comprises repeated bilateral OCT at varying 

intervals, most commonly every 4-12 weeks whilst undergoing therapy, and every 3-12 months if therapy 

is ceased to monitor for disease reactivation. The dataset consisted of 62% female and 38% male patients. 

Ethnicities were 55% Caucasian, 10% Asian, 2% Black, and 33% other or unknown. Average age at first 

eye presentation was 78.8 years (see Extended Data Figure 1). These figures reflect the epidemiology of 

AMD24. 

 

Fellow eyes were grouped into converting and non-converting within the follow-up available, referring to 

whether they converted to exAMD during the study period. All patients had a follow up period for their 

fellow eye of ≥6 months. To account for potential differences between the date a fellow eye converted, 

and when therapeutic injections were started, all scans underwent expert review to provide a clinical 

ground truth of a conversion scan in addition to the injection scan. The mean and median differences 

between these two events were 64.9 days and 13 days respectively (Extended Data Figure 1, Extended 

Data Figure 2). The dataset was randomly split at the patient level into model training and validation sets 
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(80%) and a hold-out test set on which to evaluate final model performance (20%) (see Supplementary 

Table 3 and Online Methods ). 

Future prediction of conversion to exudative AMD 

We evaluated our model on a primary outcome of identification of OCT scans at risk of developing 

exAMD within the ensuing 6 months. We chose this time window to enable the model to predict at least 

two follow-up intervals ahead of time, assuming a maximal follow-up interval of 3 months. 

 

Our system reached a per volumetric-scan area under the receiver operating characteristic curve (AUC) of 

0.745 on the test set, predicting the clinical ground truth of ‘conversion scan’, and an AUC of 0.884 when 

compared to a ground truth of the actual injection date (Figure 2). All following results use the 

‘conversion scan’ ground truth. This substantially outperformed baseline Gradient Boosted Machine 

models trained only on available demographic metadata (Supplementary Table 4).  
 

 



Figure 2 | Results on prediction of conversion within 6 months with conversion and first injection as ground 

truth. a) Receiver operating characteristic (ROC) curves showing per-volumetric scan performance on prediction of 

imminent conversion within 6 months on the full test set (386 unique patients; 5,581 total OCT scans) against a 

ground truth (GT) defined as the first injection occurring within 6 months, in blue (N(positive cases)=363, N(negative 

cases)=6578); and against a ground truth defined as the conversion date, in orange (N(positive cases)=241, 

N(negative cases)=5340). Conservative (90% specificity) and liberal (80% sensitivity) operating points shown. The 

numbers of true and false cases differ due to the exclusion of scans with unknown conversion dates. Gray shaded 

areas indicate 95% confidence intervals (see Methods). The grey diagonal line indicates chance performance. b) 

Precision-recall (PR) curves on the same results. 

 

Predicting future conversion is not a routine clinical task, and there are many ways in which our proposed 

AI system could be used in practice. One way of exploring this is through the balance between sensitivity 

and specificity, where changes in management such as visit scheduling may require different operating 

points compared with currently unproven preventative treatments. Without risk prediction, a conservative 

approach would entail providing the same management to every patient with exAMD in one eye, the 

highest possible false positive rate. This may not be practical, and in current practice there is no provision 

for changes in management for those most at risk of progression. To represent this balance, we propose a 

conservative (90% specificity) and a liberal (80% sensitivity) operating point. At the conservative point a 

sensitivity of 34% is achieved at 90% specificity; at the liberal point a specificity of 55% is achieved at 

80% sensitivity. This corresponds to false positives in only 9.6% of scans at the conservative operating 

point, and 43.4% of scans at the liberal operating point. There was minimal difference in the true or false 

positive rates at the conservative or liberal operating points when weighing the AUC to balance the 

average number of scans per patient (Supplementary Table 5). 
 



This approach could be extended across varying lead-times and a range of different operating points as 

required by individual clinics, healthcare systems, or therapeutic drug indications. Extended Data Figure 

3 and Supplementary Table 6 give examples of such extensions.  

 

To better reflect the alternative ways in which this system could be applied we explore the performance 

for individual patients (n=386) rather than scans. If applied in practice, a single correct positive prediction 

is sufficient to begin a potentially beneficial course of treatment if preventative treatment commenced. In 

patients whose fellow eyes converted during the study period (n=103), the system produced true positives 

in at least one scan during the preceding 6 months in 40.8% and 77.7% of the converting eyes for the 

conservative and liberal operating points respectively. Conversely, a false positive alert could lead to 

unnecessary treatment. For fellow eyes with at least 6 months of negative follow-up (n=386), the system 

produced at least one false positive in 23.1% of individuals at the conservative operating point, and 61.1% 

at the liberal operating point. Considering only those with a longer follow-up of 24 months (n=208), this 

dropped to 16.8% and 55.8% for the conservative and liberal operating points respectively 

(Supplementary Table 7a).  
 

Patients can still be managed effectively outside the 6 month window if it is expected that a patient will 

convert to exAMD. We investigate false positive predictions in fellow eyes where conversion did not 

occur within the 6 month window but later in the patient’s clinical history. At the conservative and liberal 

operating points, 23.6% and 25.8% respectively of all fellow eyes with false positive predictions were 

‘early’ and converted greater than 6 months after the initial model prediction. For patients with a 

follow-up of at least 24 months after initial model prediction, we investigate the number of false positive 

alerts that converted within a 6-24 month period. At the conservative and liberal operating points this was 

35.2% and 32.8% respectively (Supplementary Table 7b). 



Clinical expert benchmark for future prediction 

Predicting future conversion to exAMD is not a routine task performed by clinicians. In current practice, 

scans are assessed for signs of having already converted. Though several of prognostic imaging features 

have been described25, clinical expert performance at prediction of future fellow eye conversion has not 

previously been studied.  

 

It is essential to establish a benchmark for human performance in practice to understand the performance 

of our proposed system. We used an enriched subset of the test set to meet statistical power, randomly 

choosing at least one scan in the 6 months prior to conversion for each converting fellow eye, resulting in 

a prevalence of 13.5% of scans that converted within 6 months (see Online Methods ). For each case, we 

obtained the predictions from our system and six clinical experts: three Retinal Specialists and three 

Optometrists trained in medical retina. Each expert was asked to predict whether the eye would convert in 

the following 6 months, and provided two separate decisions at least one week apart: one (like our 

system) from a single OCT scan (single scan task) (Dataset #9 in Supplementary Table 8), and one 

from the OCT with available historical OCTs, fundus images and patient demographic and visual acuity 

data (sequential scan task) (Dataset #10 in Supplementary Table 8). We compared these against the 

clinical ground truth of time to exAMD conversion. 

 

Despite the task not being routinely performed by clinicians, the experts performed better than chance 

alone. However, performance varied substantially; sensitivity ranged from 18-56%, and specificity from 

61-93% for the single scan task. On average, when given additional information specificity improved at 

the expense of reduced sensitivity (sensitivity range 8.5-41.5%, specificity range 77.4-98.6%). Inter-rater 

agreement for the single scan task was slightly better among Retinal Specialists (κ=0.335) than 

https://paperpile.com/c/o1NvfM/Uu4t


Optometrists (κ=0.258). For the sequential task, agreement between the Retinal Specialists (κ=0.143) was 

worse than the Optometrists (κ=0.305). Intra-observer agreement between the single and sequential scan 

tasks ranged between a κ of 0.180 and 0.523. Further details on individual expert decisions are given in 

Extended Data Figure 4, and additional expert metrics and agreement comparisons are given in 

Extended Data Figure 5.  

 

Comparing these results for future prediction to our system, we outperform the majority of experts 

(Figure 3). The system had a higher performance than five experts (all three Retinal Specialists, two 

Optometrists) and matched one (an Optometrist) for the single scan task. When experts additionally had 

access to each patient’s previous OCT scans, fundus images and additional clinical information, our 

model again outperformed five experts (two Retinal Specialists and all three Optometrists), while one (a 

Retinal Specialist) was similar to our system. The system achieves a significantly better F1 score at the 

equal error point compared to five out of six experts (model, 0.38, human experts, 0.23-0.33; 

Supplementary Table 9). We evaluate the conservative and liberal operating points with a McNemar test 

between each expert and the points (Supplementary Table 10 ). At the conservative operating point the 

model has significantly greater sensitivity than 3 experts, and significantly greater specificity than 2 

experts. At the liberal operating point, where we trade specificity for sensitivity, the model has, as 

expected, a significantly better sensitivity than all experts but with a significantly worse specificity. 



Figure 3 | Results from the clinical benchmark study. a) ROC curve showing the performance of the AI system on 

the clinical expert benchmark subset. Clinical experts are represented by filled circles for the single scan task and 

open circles for the sequential scan task. The individual points for single and sequential scan tasks for each expert 

are linked by dashed lines. The larger monochrome squares and circles show a human performance where a 

prediction of conversion requires at least n or more (n+) retinal specialists or optometrists in agreement the case will 

convert in the next 6 months. Grey shaded regions areas indicate 95% confidence intervals (see Methods). The grey 

diagonal line indicates chance performance. b) Close-up of the region between 0-30% false positive rate (outlined as 

a dotted region in (a)). 

 



Visualising anatomical subgroups 

Additional information that is interpretable to clinicians can aid effective implementation26. One such 

benefit of our system is that it automatically segments each scan. Extracting clinically relevant features 

provides a systematic method to visualise change over time (Extended Data Figure 6). Figure 4 shows a 

representative example, combining the risk predictions with top down two-dimensional enface maps 

created from the automatic 3D segmentations. Further examples are provided in Supplementary Figures 

1-7. 
 

By enabling the visualisation of important anatomy and pathology, segmentations also provide a 

quantitative method to derive clinical subgroups based on segmented tissue volumes (Table 1, 

Supplementary Table 11). One clinically relevant example is provided by the Age-Related Eye Disease 

Study (AREDS) Simplified Severity Scale used to assess 5-year conversion risk in clinical practice from 

fundus photographs, based on the size of the drusenoid pigment epithelial detachment (PED)27. Taking 

advantage of the 3D nature of OCT we approximate this scale using drusen volume. The findings were 

consistent with literature precedent - higher conversion rates were seen in subgroups with greater drusen 

volume. This approximation can also serve as a baseline with which to compare the model, imitating the 

existing scenario where AREDS has been used for recruitment into clinical trials of prophylactic 

treatments for exAMD. Our model outperforms measures based on drusen or hyper-reflective foci (HRF) 

alone (Figure 5). 
 

This approach provides insight into model  performance. The system is substantially more sensitive when 

features known to be predictive, such as HRF 28-29 and high drusen volumes 30-31, are present (Table 1). 
This is also the case for fibrovascular pigment epithelial detachment (PED) present prior to conversion, 
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possibly highlighting early exudative changes. We show the system’s performance is consistent across 

key demographics such as sex and ethnicity, provide more examples of clinically important subgroups 

including cases selected by the appearance of the conversion scan in Supplementary Tables 12 & 13, 

and present Kaplan-Meier survival plots for individual subgroups in Extended Data Figure 7.  
  



Table 1 | System performance for selected examples of patient subgroups, as identified using automatic 
segmentation. All subgroups were derived using automated segmentation of individual volumetric OCT scans of 
individual eyes, taken from the test set, that did not show exAMD on first presentation.  
 

Patient subgroup 
Number 
of scans 

Imminency 
scan 

prevalence 
(%) 

Imminency AUC 
(95% CI) 

Conservative operating 
point (90% specificity) 

Liberal operating point 
(80% sensitivity) 

Sensitivity 
(%) 

Specificity 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

All patients 5581 4.3 0.745 (0.718-0.772) 33.6 90.0 79.7 55.1 
No drusen (no AMD) 425 0.0 n/a N/A 100.0 N/A 95.1 
Drusen volume 0-25th 
percentile 971 0.5 0.915 (0.862-0.968) 0.0 97.8 60.0 88.4 

Drusen volume 25-50th 
percentile 1395 4.3 0.681 (0.616-0.746) 15.0 94.8 68.3 61.9 

Drusen volume 50-75th 
percentile 1395 5.9 0.584 (0.515-0.649) 24.1 87.3 72.3 36.3 

Drusen volume 75-100th 
percentile 1395 6.7 0.759 (0.710-0.808) 55.9 78.8 94.6 29.6 

Geographic atrophy 
present 1573 4.0 0.692 (0.633-0.751) 31.7 85.7 88.9 34.9 

Geographic atrophy 
absent 4008 4.4 0.774 (0.742-0.806) 34.3 91.7 76.4 63.1 

HRF present 3867 5.3 0.725 (0.692-0.758) 38.8 86.7 87.9 41.7 
HRF absent 1714 2.0 0.779 (0.737-0.821) 2.9 97.3 31.4 84.6 
Fibrovascular PED 
present 2326 6.6 0.675 (0.632-0.718) 48.1 77.3 90.9 22.4 

Fibrovascular PED absent 3255 2.7 0.784 (0.746-0.822) 8.0 98.7 59.8 77.6 
  



 
 
a 

 

 
 
 
 
 
b 

 
 

Figure 4 | Example of a correct prediction by the AI system. In this example, progression of the right ‘fellow’ eye 

of an 80-year-old male patient being treated in the left eye for exudative AMD with intravitreal injections is shown. The 

patient was seen at regular intervals, over which time his right eye showed a gradual progression in anatomical 

abnormalities, before converting to the exudative form approximately 11 months after first presentation and receiving 

therapeutic injections beginning at 13 months. (a) For each set of images, shown are B-scan slices of the OCT 

imaging (top left), the segmentation produced by a DL segmentation model2 (bottom left), and en face thicknesses of 

two clinically important retinal tissues produced by the segmentation model, where blue=0mm and red=0.1mm 

(fibrovascular pigment epithelial detachment (fibro. PED, top right) and subretinal hyper-reflective material (SHRM, 

bottom right)). Each set of four images is from a clinical visit (selected visits indicated with arrows) during the 

12-month period shown. In the months leading to conversion, we observed an increasing presence of SHRM and 

fibrovascular PED. At 10.5 months, the volume of SHRM and fibrovascular PED increased further and intraretinal 

fluid was observed (en face map not shown), signaling conversion to exAMD. Treatment commenced 2 months later; 

at this point further anatomical changes had occurred, including an additional OCT finding of subretinal fluid (en face 



map not shown). b) Prediction of the AI system for conversion to exAMD within 6 months. At the liberal operating 

point (yellow dotted line) it correctly predicted conversion within 6 months for all three scans within the actual 6 month 

window prior to conversion (grey box).  

a) b) 

 

  

Figure 5 | AUC curve comparisons of the system against benchmark predictions based on the volume of 

drusen and hyper-reflective foci (HRF). (a,b) Estimation of the performance of the Age-Related Eye Disease Study 

(AREDS) Simplified Severity Scale in classifying patients as ‘high risk’. Shown are ROC curves using the volume of 

drusen (a) and of hyper-reflective foci (HRF) (b). The curves were built by varying the volume threshold at which a 

prediction of 6-month conversion would be triggered and evaluating this against the ground truth. Operating points 

are shown at the 25th, 50th and 75th percentiles of volume. 



Discussion 

We demonstrate an AI system to predict conversion to exAMD in fellow eyes of patients with exAMD in 

their first eye. We propose two clinically applicable operating points and consider the system’s potential 

impact to clinical care through analysis of false positive alerts, and demonstrate the value of automatic 

segmentation in identifying early signs of progression and studying high-risk subgroups. We establish a 

clinical expert benchmark for comparison as this task is not currently performed in clinical practice, 

showing humans are able to perform the task albeit with high variability. 

 

Our system has several potential implications for patient care. Future prediction of conversion is 

important in guiding preventative measures in AMD. These are already being explored, with examples of 

prophylactic intravitreal therapy16-17 and gene therapies 32 in clinical trials, and longer-acting intravitreal 

therapy33,34 and port-delivery systems for long-term continuous therapy35 under investigation. Means of 

identifying those most at risk are required if these therapies are to be efficiently targeted in increasingly 

burdened healthcare systems and are to be acceptable to patients. Our proposed system outperforms 

volume based risk predictions similar to those currently used for trial cohort selection, and may enable 

targeting of preventative treatments and identification of high-risk patients for inclusion in similar 

upcoming trials. The operating points are configurable and will vary depending on the use, healthcare 

system and therapy of choice. 

 

A further implication for care is in influencing patient follow-up and improving time to treatment. Early 

diagnosis is paramount as delays in intervention can result in a loss of vision36. However, the mean 

difference between injection date and conversion date in our dataset was 64.9 days (median, 13 days). 

One explanation for this gap is that subtle early signs are not always being treated because they are 
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missed or do not fall within set treatment criteria, or because the patients were asymptomatic. This only 

partially explains the difference: there is still a substantial delay, a mean of 34 days, even in those within 

treatment criteria. The model may be particularly beneficial in these cases. In addition to predicting 

conversion, the segmentations produced provide information aimed at earlier detection of exAMD. The 

improvement in system performance when trained and evaluated using the scan from the date of injection 

as a ground truth further indicates the potential to identify conversion changes earlier. Moreover, our 

system does not require sequential information. While including a patient's previous scans and 

demographics led to mixed results for the experts, it is plausible that AI can extract additional useful 

information5. However, predicting only on single scans supports settings where patient follow up varies 

depending on perceived risk. This is particularly relevant in centers that cannot offer regular follow up, 

especially with increasing availability of OCT through community eye care centers, and for future work 

to investigate the applicability of our system in patients that have yet to develop exAMD in either eye. 

 

The segmentation portion of the model enables automated detection and analysis of important tissues 2. 
One use of this is to study groups of scans based on known prognostic indicators from the OCT, as well 

as other important phenotypes such as the pathological tissues present on the conversion scan. Not only 

do the enface maps provide summary information to clinicians treating a patient, but they may open up 

new ways to study AMD subgroups, and indeed other conditions, which may differ in their conversion 

risk or response to treatment in important ways.  

 

Further imaging in patients where the model produces false positive predictions may demonstrate 

particular subgroups of interest. Newer imaging modalities such as OCT angiography (OCTA) are 

becoming more widely used to safely acquire high-resolution images of the choroidal vasculature to 

identify exAMD. Recent studies employing OCTA have distinguished a form of exAMD coined as 
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subclinical or non-exudative neovascular AMD that does not result in the appearance of macular fluid 

visible on conventional OCT or modalities such as fundus fluorescein angiography37-39. For our study, the 

clinical ground truth of conversion was labeled where exudation was visible. Eyes with suspected 

fibrovascular PED without the presence of fluid were labeled as non-exudative, but may represent 

examples of subclinical exAMD. It is possible that our model has identified examples that would warrant 

further imaging using OCTA (Supplementary Figure 6). Such patient groups would offer an explanation 

for both early findings of fibrovascular material prior to conversion (6.6% of immenancy scans), and the 

clustering of false positive alerts in a small number of cases. Further work is needed to validate this 

hypothesis by evaluating model predictions with OCTA. 

 

Our work builds upon a body of literature investigating the development of AMD40, and promising early 

work to develop predictive models for exAMD based on fundus photographs 41 and OCT scans 42–45. We 

improve on generalisability and applicability in several ways. Our datasets are representative of the 

patient population at a large specialist eye-care centre, both in the cadence of patient visits and the 

inclusion of challenging cases, such as eyes with geographic atrophy (25.2% of eyes with geographic 

atrophy converted to exAMD in our dataset). Crucially, our clinical ground truth reflects the date of 

conversion rather than using injection as a proxy measure. There is often a delay between conversion and 

treatment; when first injection date is used as the conversion label for training model performance 

improves substantially. In addition, when the ground truth is based on the injection, exAMD masquerades 

are mislabelled as they may still receive injections. 

 

Clinicians do not routinely make predictions about future conversion. Our results indicate that clinical 

experts are able to perform the task, but with large variability. Though specificity improved for all experts 

when given the full clinical scenario with all historical images and additional patient information, the 
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sensitivity reduced. While an exploration of variability is beyond this work’s scope, our results open up 

the possibility of exploring human performance on this task as has been investigated in conditions such as 

diabetic retinopathy46. The low inter-rater agreement between individual experts may reflect that 

predicting conversion is not routine. Despite some literature evidence of prognostic features, no formal 

prognostic criteria exists. Standardised training can reduce variability between individuals, but without 

established criteria such training is impossible. It is possible that models may reduce this variability; 

future work can investigate this through human-computer interaction studies. 

 

There are several limitations of our work. While our system was trained and evaluated on a diverse and 

clinically representative demographic from Moorfields Eye Hospital, they are not fully representative of a 

global population. AMD is multifactorial, with genetics, race, sex, and lifestyle factors such as smoking 

and diet known to contribute to disease risk47. Its incidence varies globally, being lower in Asia and 

Africa compared to Europe and North America48. Additional representative datasets would be required to 

confirm performance on a general population. In addition we only test our model on one OCT scanner 

type. Different models may vary in appearance; future work should investigate generalisability across 

OCT manufacturers. We powered the study based on and report performance across individual scans. 

While we explore subgroups of the full dataset for per-patient and segmentation analyses, the statistical 

power is limited and future work should include larger datasets. We investigate a 6-month time window 

prior to a clinical ground truth of conversion date. This clinical ground truth is defined based on an OCT 

scan demonstrating exudative conversion. It is unlikely the date that patient conversion corresponds 

exactly to when the scan was taken, but rather to a point in time between the current and previous scans. 

This difference may account for some of the false positives that occur in patients that do still convert 

outside the 6-month time window. There are differences in performance by training a model on raw OCT 

scans compared with training on the OCT segmentation. Though small, the differences suggest there are 
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important imaging features for this task that are not captured by the segmentation model; further work 

could extend the segmentation model with the addition of a wider range of different tissue classes to 

improve performance24 and investigate models using segmentation alone. Cases of undiagnosed PCV that 

may masquerade as positive examples of exAMD were removed by manual OCT grading. Indocyanine 

green angiography can be used to confirm this diagnosis, but was unavailable routinely in the Moorfields 

dataset. A final limitation is that there may be important differences in treatment regimes and other patient 

factors that correlate with the number of scans a patient has. Future work should investigate potential bias 

across larger datasets.  

 

Our model was trained and evaluated on a dataset of fellow eyes of patients with exAMD in one eye. This 

is a population at high-risk of developing exAMD in their second eye, and associated loss of vision 

substantially impacts quality of life in a patient who has already lost vision in their first eye. Future work 

can build on these results through prospective implementation and validation studies, and by investigating 

model performance in patients without any AMD, or with dry AMD in one or both eyes.  

 

In summary, we introduce a clinically applicable AI system that produces a prediction of fellow eye 

conversion to exAMD based on OCT scans from a clinically relevant population, and provides additional 

information to clinicians through automatic segmentation. The system opens up new possibilities for 

research and treatment for the leading cause of blindness in the developed world. 
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Online Methods 

Ethical and IG approvals 

This work, and the collection of retrospective data on implied consent, received national Research Ethics 

Committee (REC) approval from the Cambridge East REC and Health Research Authority approval 

(reference 16/EE/0253); it complies with all relevant ethical regulations. De-identification was performed 

in line with guidance provided by the Information Commissioner’s Office’s Anonymisation: managing 

data protection risk code of practice49, and validated by the Moorfields Eye Hospital Information 

Technology and Information Governance departments respectively. Only de-identified retrospective data 

was used for research, without the active involvement of patients. 

 

Further details on the methods are described in a published protocol describing the DeepMind 

collaboration with Moorfields Eye Hospital50. 

Datasets and Clinical Taxonomy 

Dataset description 

Data were collected using the Moorfields Eye Hospital electronic health record (EHR) system, querying 

all patients receiving intravitreal injection therapy with a diagnosis of age-related macular degeneration at 

7 different Moorfields sites across London, United Kingdom. The clinical data used for the training and 

evaluation were collected by Moorfields Eye Hospital and transferred to DeepMind in a de-identified 

format. Retrospective data were aggregated from Moorfields Eye Hospital including its satellite sites 

https://paperpile.com/c/o1NvfM/jUNo
https://paperpile.com/c/o1NvfM/lQt4


where data had been archived to a central network. The data included adult patients aged over 50 years, 

with patients aged over 100 rounded to age 100 to retain anonymisation. Data were collected for all 

patients that started treatment in one eye between June 2012 and June 2017. Data for each patient were 

collected until June 2018, and included OCT images (acquired using Topcon 3D OCT-2000, Topcon, 

Japan) at every visit for both eyes where available; clinical information containing visual acuity and 

whether an intravitreal injection was delivered, including drug administered; and additional patient 

information including age in years at each scan, sex, and ethnicity. After initial exclusions this dataset 

consisted of 130,327 scans from 3,111 patients, and included a total of 6,149 eyes, and 2,526 fellow eyes 

(Extended Data Figure 8). Extended Data Figure 7 shows for all fellow eyes a survival curve of 

conversion to exAMD from baseline. 

 

The data was randomly divided at a patient-level into training (60%), validation (20%) and test (20%) 

sets. Cross-validation was performed after merging the training and validation sets (80%). Extended 

Data Figure 1 contains an overview of patient demographics and the data as well as prevalence of fellow 

eye involvement. Further description of the dataset and labelling is provided in Extended Data Figure 8 

and Supplementary Tables 4 & 9. 

Clinical Taxonomy 

All patients included in the dataset were diagnosed with exAMD in at least one eye - considered to be the 

first eye. If both eyes presented with exAMD, both eyes were considered as first eyes and excluded from 

the test set. Where there was only one first eye, the other eye without exAMD was known as the ‘fellow’ 

eye. Fellow eyes that developed exAMD during our study period were labelled as converting fellow eyes 

(see following section for the diagnosis procedure), whereas those that did not develop the condition were 

labelled as non-converting fellow eyes. As all patients were undergoing treatment in at least one eye, 



OCTs of both eyes were acquired at regular intervals - generally between 4-12 weeks depending on the 

drug being administered and the treatment response. The drug and treatment regime followed was either 

ranibizumab or aflibercept, on either pro re nata or ‘treat and extend’ schemes. 

Clinical labelling 

Once data were transferred, a labelling procedure was followed to (i) exclude eyes that were incorrectly 

coded as exAMD in the EHR and presented with other vascular conditions such as exudative choroidal 

neovascularisation (CNV) secondary to myopia, idiopathic polypoidal choroidal vasculopathy, or macular 

oedema, and (ii) to label the conversion scan of fellow eyes if exAMD has developed. The latter was 

required as a delay between conversion to exAMD and treatment was frequently observed (Extended 

Data Figure 2b), often related to further investigations being undertaken, or if the eye was not within 

eligibility criteria to receive injections. 

 

A consensus definition of conversion from OCT images has not previously been described in the 

literature. Hence, the clinical ground truth of conversion was defined as requiring both (1) the presence of 

subretinal or intraretinal fluid with (2) a suspicious pigment epithelial detachment (PED), haemorrhage or 

subretinal hyperreflective material (SHRM). A further definition of the presence of retinal angiomatous 

proliferation (RAP) with surrounding intraretinal fluid was also taken. The procedure was followed to 

label the first scan showing signs of conversion of fellow eyes that received treatment, by two retinal 

specialists and one optometrist trained in OCT interpretation. Disagreements were found in 16% of scans, 

and arbitrated by a senior expert, independent of the original three labelers but with knowledge of their 

labels, whose decision superseded. Two of the three experienced graders confirmed that untreated fellow 

eyes did not develop exAMD, and that first eyes were correctly diagnosed. These eyes were arbitrated by 

the senior expert where an untreated eye was thought to have converted to exAMD, where the diagnosis 



was equivocal (see Supplementary Figure 8), or if the eye was being considered for exclusion. As other 

imaging modalities often used in clinical practice such as fundus fluorescein angiography were 

unavailable (as it is not routinely performed in fellow eyes), and the lack of a consensus definition of 

conversion, we describe the OCT-derived conversion label as a silver standard. From this process, we 

found 85 fellow eyes converted and did not yet receive treatment. A number of eyes were excluded from 

the dataset, including 252 eyes diagnosed with other retinal disorders, and 103 eyes that started treatment 

at a visit without any signs of exAMD on the OCT scan. These eyes often presented with features 

commonly mistaken for exAMD such as vitelliform lesions, non-neovascular drusenoid PEDs with 

overlying fluid51-52, and non-exudative detachments of the neurosensory retina53. Some examples of 

excluded eyes are shown in Supplementary Figure 8 . Two patients had a fellow eye excluded due to 

disorders other than retinal conditions such as anterior eye conditions that obscured posterior segment 

imaging. These eyes were labelled prior to transfer. In addition, images were manually excluded if they 

were poor quality (where the major retinal interfaces were not visible), or contained significant blink or 

foldover artefact that obscured the relevant features described above, and would prevent a clinical 

decision being made. 

 

The initial dataset for patients with confirmed nAMD in one eye consisted of 3,111 patients, 6,149 eyes, 

2,526 fellow eyes, and 130,327 scans. The final dataset after exclusions were applied consisted of 2,795 

patients, 4,729 eyes (including both first and fellow eyes in the the training set), 2,261 fellow eyes (777 

converting and 1,484 non-converting), 96,111 OCT scans (65,633 scans after conversion to exAMD as 

defined by the silver standard), and 30,478 scans before conversion or without exAMD) (Extended Data 

Figure 8). Extended Data Figure 2 shows a histogram of the number of scans per unique eye in test and 

training/validation sets. A subset of patients only had first eye scans in the dataset. While all first eyes 



were excluded from the test set, first eyes with prior scans to conversion were included in during training 

to increase prevalence.  

Benchmarking the expert performance 

For this evaluation study, we recruited 3 Consultant Ophthalmologists with subspeciality training in 

Medical Retina and extensive clinical experience. These are referred to as Retinal Specialist 1, 2 and 3, 

with 14, 13, and 12 years of experience, respectively. Three hospital optometrists with specialist training 

in OCT interpretation and retinal diseases were also recruited, referred to as Optometrist 1, 2, and 3, with 

14, 15 and 10 years of experience, respectively. All participants were independent and not involved in 

grading scans. 

 

A subset of the test set was used for the evaluation. A stratified sample of OCT scans from the test set was 

selected to achieve 90% statistical power and to balance how often each eye was represented in the 

benchmark. For each converting fellow eye, one scan was first sampled in the 6 month period prior to 

conversion, and where data was available a second was sampled in the period >6 months prior to 

conversion. We then randomly sampled one further scan in the 6 months prior to conversion from half of 

the converting fellow eyes, with available scans chosen at random and independently sampled one more 

scan in the non-imminent period from half of the converting fellow eyes also chosen at random. Ten scans 

were excluded because the quality was insufficient for diagnosis. For each non-converting fellow eye, up 

to 3 scans were sampled conditionally on the scans having at least 6 months follow up; nine scans were 

excluded due to poor quality. This led to a total of a total of 1053 scans (336 eyes with 3 scans, 29 eyes 

with 2 scans, and 26 eyes with 1 scan), of which 13.5% converted within 6 months. Each sampling step 

was performed independently of the others contingent on the constraints we described. 

 



Experts were informed that the OCT scans in the study were of untreated fellow eyes of patients with 

exAMD in their first eye. The primary question asked the experts to predict whether the eye will convert 

within the next 6 months. The experts were also given the option to select that the eye had already 

developed exAMD - this selection was assumed to be interchangeable for predicting that the eye will 

convert within 6 months. To capture the ambiguity of clinical practice, a secondary question was 

presented, asking the experts if the eye will convert in 6-12 months, or if the eye will not convert in the 

next 12 months. 

 

To assess the performance in a realistic clinical environment, all scans were presented in a random order 

without any time constraints. The same random order was maintained for all 6 experts. The task 

comprised two reviews, with at least a week between them. On the initial ‘single scan’ review, only the 

OCT scan was presented at each trial (Dataset #9 in Supplementary Table 8 ). On second review, 

participants were presented with all the information available at the time of the OCT scan including all 

historical scans of both eyes, fundus photographs, age, sex, ethnicity, and where available information on 

visual acuity and treatment for both eyes (Dataset #10 in Supplementary Table 8). For the second 

review, trials were presented in a random but chronological order to avoid revealing future scans ahead of 

a trial that required a prediction on an earlier scan. The model only received the OCT scan. 

Network Architectures and Training Protocol 

Segmentation network 

Previous work developed an accurate OCT segmentation network that categorises each voxel into one of 

12 tissue classes and 3 different types of artefacts 2. The network architecture was built using a 

three-dimensional U-Net54. The deep learning networks were implemented in TensorFlow55 and Sonnet56. 

https://paperpile.com/c/o1NvfM/8LN4
https://paperpile.com/c/o1NvfM/kDE5
https://paperpile.com/c/o1NvfM/jHOk
https://paperpile.com/c/o1NvfM/JTkXg


To prevent data contamination, we retrained the segmentation network from random weight initialization 

on the original ground truth segmentation maps while removing patients that were in the current test set. 

Training was performed across 300,000 training iterations with a batch size of 16 spread evenly across 16 

NVIDIA Tesla V100 graphics processing units (GPU) using the TF-Replicator distributed training 

system57. All other model details, data augmentation, and training hyperparameters were kept the same as 

those used in De Fauw et al. (2018)2.  
 

In addition, a further sample of scans with dry AMD were manually segmented to increase the variety in 

AMD phenotypes seen by the network for training (Dataset #4, Supplementary Table 8 ). Furthermore, a 

new tissue class, termed ‘hyperreflective foci’ was added (described below). The segmentation network 

was trained to incorporate both of these additions. After training, the segmentation model generated 

predictions for every scan in the dataset including the validation and test set, providing tissue maps and 

volumes for 13 different tissues and 3 different types of artefact. Details of the tissue classes can be found 

in De Fauw et al. (2018)2. The segmentation maps were subsequently input into the classification or 

Clinical Referral model and used for Clinical Analysis (see below). 

Hyperreflective foci segmentation class 

Hyperreflective foci (HRF) are well-circumscribed dot or oval-shaped lesions that are present within the 

intraretinal layers. They can be visualised on OCT as small lesions with equal or greater hyperreflectivity 

than the RPE. The aetiology of these lesions vary by disease - in macular oedema, HRF often represent 

lipid exudates, whereas in age-related macular degeneration HRF are hypothesised to represent migrating 

RPE cells 58. The presence of HRF has been associated with progression to late-stages of AMD - both 

geographic atrophy59,29 and exAMD 28,29. HRF have been shown to correlate with pigmentary changes 

https://paperpile.com/c/o1NvfM/aH8bB
https://paperpile.com/c/o1NvfM/8LN4
https://paperpile.com/c/o1NvfM/8LN4
https://paperpile.com/c/o1NvfM/CWlvZ
https://paperpile.com/c/o1NvfM/76Mc
https://paperpile.com/c/o1NvfM/NRJQ


visible on colour fundus photography60, a feature identified in epidemiological 61,62 and clinical studies 63 

as a key risk factor for AMD conversion. 

 

As HRF is therefore likely to be a prognostic biomarker, this feature was added as a new tissue to the 

segmentation model. HRF in all previously manually segmented images were identified and segmented 

(Dataset #3, Supplementary Table 8 ). The segmentation network was subsequently retrained to predict 

this new tissue (Extended Data Figure 9). 

Clinical referral and diagnosis network 

The segmentation maps were used to retrain the referral and diagnosis classification model from De Fauw 

et al. 2018 that outputs four referral decisions and ten additional diagnoses 2. Though the clinical referral 

and diagnosis task is not the focus of this study, they can be used as an auxiliary task to improve 

performance in the main task of exAMD prediction as discussed below. We retrained the same 

classification model on the current dataset where clinical diagnosis and referral labels were available - 

excluding any patient in our current test set. The performance of our clinical referral and diagnosis model 

closely matched the performance reported in De Fauw et al. 2018 (overall accuracy 94.5%). This 

motivated the generation of reliable distillation64 labels by running the trained model over each scan in the 

dataset. These distillation labels were used as a ground truth for auxiliary tasks during training of the 

exAMD prediction model. We found this improved performance on the main task of future prediction.  

exAMD prediction network 

The prediction model learns to map an input scan in the form of a grey-scale raw OCT scan or one-hot 

encoded segmentation map to predictions conversion with varying lead times. Raw OCT inputs were 

https://paperpile.com/c/o1NvfM/XGAba
https://paperpile.com/c/o1NvfM/gM8ze
https://paperpile.com/c/o1NvfM/f7WPL
https://paperpile.com/c/o1NvfM/8LN4
https://paperpile.com/c/o1NvfM/8Mtn


normalized and downsampled using linear interpolation in the x and y axis while nearest-neighbor 

interpolation in the z -axis to prevent smoothing of subtle intensity changes across slices. The 

segmentation inputs were downsampled using linear interpolation in all axes, with no need for nearest 

neighbor interpolation on coarsely encoded inputs. Exact input shape and voxel sizes of the inputs can be 

found in Supplementary Table 14. We performed data augmentation using random three-dimensional 

affine and elastic transformations of the input volumes using the Multidimensional Image Augmentation 

library (see Code Availability section). Our deformation parameters are listed in Supplementary Table 

15. 
 

The network consists of six levels of three-dimensional convolutions organised into "blocks". A block 

consists of convolutions with 1x3x3 and 3x1x1 kernels with skip connections to a final concat operation 

where the outputs of all previous convolutions plus the input are stacked in the channel dimension (see 

Extended Data Figure 10). If the input has dimension  and a block has convolution with z, y, x, c][    n k  

channels each then the final output of a block would be . Skip connections drawz, y, x, c ][    + n * k  

inspiration from Dense Blocks described in Huang et al. 201665, where each convolution receives the 

stacked outputs of all previous convolutions plus the input: the ith convolution receives an input of size 

 leading to an explosion of parameters but denser representations. However, wez, y, x, c i ) ][    + ( − 1 * k  

found the dense skip connections at every layer in the block to be dispensable in our case. Our blocks 

with single skip connections per layer save memory, use less parameters and still achieve the benefits 

from dense blocks such as better feature propagation and better gradients. The choice of 1x3x3 and 3x1x1 

kernels is motivated by Xie et al. 201866 that found the factorised 1x3x3 and 3x1x1 saves memory and 

performs better than the full 3x3x3 convolution.  A combination of 1𝗑1𝗑1 convolutions and 

three-dimensional max pooling operations were performed between consecutive levels to reduce the 

number of feature outputs from concatenated dense blocks. The output of the network is fed to a dense 

https://paperpile.com/c/o1NvfM/k6IHk


layer with a global pool average that outputs exAMD conversion predictions over future time windows 

ranging from 3 to 24 months as well as predictions for the auxiliary tasks of predicting additional 

diagnoses and referral decision (see Clinical referral and diagnosis network). For an exact description of 

the architecture see Supplementary Table 16.  
 

The training loss is taken as the sum of the sigmoid cross entropy losses for the exAMD conversion and 

the disease components and the softmax cross entropy loss for the multi-class referral decision 

components. The following describes the loss function for the exAMD prediction model with multiple 

tasks. As described in the ensembling section, each model is independently trained and thus has weights 

that differ from those of the other models.  

 

The loss function for each model task is given by the cross-entropy loss between the ground-truth labels 

 and the model prediction given an input scan or segmentation map :y f (x|θ) x  

 

 

where  is 1 for the correct class and 0 for the rest, and  is the model prediction for class yk f (x|θ)k  k  

given the model weights .θ  

 

As we describe in the paper, for the auxiliary diagnosis and clinical referral classification tasks that 

regularise the model, the same loss function is used with  being the distillation labels, which0, ]yk ∈ [ 1  

are continuous due to being the prediction outputs 64 from the referral and diagnosis model (see Clinical 

referral and diagnosis network). Note that the exAMD conversion predictions and the disease 

classifications are binary classification tasks, and the referral classification is a multi-class task ( ).K = 4  



 

The total loss function per input is defined as 

 

with  being the time window for conversion predictions in months, and  and  being thet iseased efr  

auxiliary diagnosis and clinical referral classifications respectively. 

 

Loss weighting was found to be crucial in training the models to favor the training loss in maximizing 

future-conversion performance. The number of post-conversion scans compared to pre-conversion 

constituted a 10:1 ratio which is reflected in the label distributions. Post-conversion scans were thus loss 

weighted 1/10 for auxiliary task to boost performance. Masking future conversion labels in 

post-conversion scans improved performance, as penalizing the model for incorrect future predictions 

once the event has occurred is illogical. 

 

The hyperparameters were chosen based on performance on the validation set. Batch-norm, layer-norm, 

and dropout were ineffective in improving validation performance. Furthermore, minimal differences 

were found when using different model parameter settings for each input modality. Thus, the same 

hyperparameters were chosen for both the raw OCT input and segmentation input. The model was trained 

separately on each input without any parameter sharing. Training was performed with a batch size of 16 

and a learning rate schedule starting with 0.0005 then set to 0.0005/8 after 60% of the total iterations, 

0.0005/64 after 90%, and finally 0.0005/256 for the final 5% of training. Optimization was performed 

using Adam67 with 1×10−5 weight decay, 0.9 𝛽1 and 0.98 𝛽2; learning rate warmup over 10000 iterations 

at a rate of 0.5. OCT training was run for 100000 iterations. 



Cross-validation and ensembling 

While hyperparameter tuning was carried out using a 20% validation set, cross-validation (CV) was used 

for final model ensembling due to the limited size of the dataset to prevent overfitting. The patients in the 

training and validation set were randomly partitioned into four folds at the patient level. Our final 

ensemble included model instances trained on each CV group (three folds used for training, one for 

validation). For each CV group, three instances of the exAMD prediction model with different random 

initializations were trained on three folds and evaluated on the validation fold. This was performed for 

both input types (raw OCT and segmentation map). The total number of trained models was 24, three 

randomly initialised instances for each of the two input modalities trained on each of the four CV groups. 

After training each model individually and freezing the weights, we ensembled all 24 models by taking 

the average over each of the models’ outputs. Ensembling all 24 models resulted in the best performance 

with more instances giving insignificant improvements.  At test time evaluation, we performed 10 

instances of test-time augmentation (TTA) for each model using deformation parameters toned down 

from train-time deformation (Supplementary Table 15 ). We observed using TTA on the cross validation 

set improves performance but did not treat the number of TTA or any of the deformation parameters as a 

hyperparameter to avoid any subtle overfitting. In total we ensembled 240 different model outputs for 

each example in the test set to get the final system predictions. Extended Data Figure 7 gives a diagram 

of our ensembling scheme. 

Clinical analysis 

The segmentation network comprises five instances of the segmentation model. For clinical analyses, we 

used the mean segmentation map, obtained by averaging the logits over the 5 instances. By equating each 



voxel to the volume it occupies, overall volumes of each tissue class can be derived. We further analysed 

the mean segmentation output using calculated volumes and computer vision algorithms to perform 

geometric categorisation of different tissue classes to derive clinically meaningful subgroups 

(Supplementary Table 17). Four different categories of subgroups were analysed: drusen volume, 

geographic atrophy (GA) presence, hyperreflective foci (HRF) presence, and features pathognomonic of 

exAMD that were present on the conversion scan (i.e. intraretinal fluid (IRF), subretinal fluid (SRF), 

subretinal hyperreflective material (SHRM), and fibrovascular pigment epithelium detachment (PED)). In 

addition, enface maps were produced to qualitatively analyse segmentation outputs. 

Drusen staging 

Drusen parameters such as diameter, height, area, and volume have been studied extensively and are 

known to correlate with exAMD conversion risk30,31. For this study, we explored conversion rates and 

system performance in ranges of drusen volume. To calculate the volume of drusen in the OCT scans, the 

drusenoid PED tissue class was isolated from each segmentation map for each scan in the test set. The 

distribution of drusen volume was stratified into 4 quartiles (0-25th percentile, 25-50th percentile, 50-75th 

percentile, 75-100th percentile). See Supplementary Table 17 for further details. 

Geographic atrophy presence 

Geographic atrophy (GA) is identified by the attenuation of RPE tissue. GA is most easily visible on 

enface maps. To isolate areas of GA, a connected components algorithm was subsequently run on the 

pixels without RPE to find areas of atrophy. Each detected atrophy region was measured along each axis 

of the enface map to detect the largest diameter (major axis) of atrophy. GA was classified as present if 

the major axis had a diameter of ≥250 μm, as proposed by Sadda et al68. 

https://paperpile.com/c/o1NvfM/nhfw
https://paperpile.com/c/o1NvfM/jfxX
https://paperpile.com/c/o1NvfM/5RMD


Hyperreflective foci presence 

HRF are presented by relatively small hyperreflective regions within the neurosensory tissue on 

segmentation maps. We defined HRF as definitely present if a set of connected HRF voxels was ≥4 

voxels, approximately equal to 5750 μm3. This was determined using a connected components algorithm. 

Conversion scan subgroups 

For each converting fellow eye, we analysed the segmentation map on the visit determined to be where 

the eye converted. IRF, SRF, SHRM, and fibrovascular PED were classified as present if they had a 

volume greater than 5 voxels, approximately equal to 7200 μm3. For the subgroup analysis, all scans prior 

to conversion in these eyes were analysed, stratified by the appearance of the conversion scan. 

Enface maps 

Given a 3-dimensional tissue segmentation we calculated an enface map per tissue by summing the 

number of voxels across the A-scan direction, generating a 2-dimensional map of tissue thicknesses 

across the scanned macula area. The result is a tissue heatmap across B and C scans. These can be plotted 

across time providing a useful summary of anatomical abnormalities across the full patient history. 

Statistical analysis 

To compute 95% confidence intervals for the true and false positive rates (i.e. sensitivity and 

1-specificity), we used the Clopper-Pearson interval as implemented in the Python statsmodels  library 

(v0.9.0).  Kaplan-Meier survival curves were calculated using the Python lifelines  library (v0.14.6). 

Inter-expert variability was calculated using Python sklearn.metrics library (v0.20.0). ROCAUC 



confidence intervals were computed via Bootstrap. P-values in Supplementary Table 9, Extended Data 

Figure 3 were computed using two-sided permutation tests. P-values in Supplementary Table 10 were 

computed with McNemar tests. 

Reporting summary 

Further information on experimental design is available in the Nature Research Reporting Summary 

linked to this article. 

Code availability 

We make use of several open-source libraries to conduct our experiments, namely the machine learning 

framework TensorFlow (https://github.com/tensorflow/tensorflow) along with the TensorFlow library 

Sonnet (https://github.com/deepmind/sonnet) which provides implementations of individual model 

components 57. For image augmentation we use the Multi-dimension image augmentation library 

previously open sourced by DeepMind (https://github.com/deepmind/multidim-image-augmentation). The 

model architecture is available open source (https://github.com/google-health/imaging-research). Other 

aspects of the experimental system make use of proprietary libraries and we are unable to publicly release 

this code. We detail the experiments and implementation details in the methods section and in the 

supplementary figures to allow for independent replication.  

Data availability 

The clinical data used for the training, validation and test sets were collected at Moorfields Eye Hospital 

NHS Foundation Trust and transferred to DeepMind in a de-identified format. Data were used with both 

https://paperpile.com/c/o1NvfM/jHOk
https://github.com/deepmind/multidim-image-augmentation


local and national permissions. They are not publicly available and restrictions apply to their use. The 

data, or a test subset, may be available from Moorfields Eye Hospital NHS Foundation Trust subject to 

local and national ethical approvals. Moorfields Eye Hospital NHS Foundation Trust intends to make the 

raw data shared with DeepMind openly available to researchers as part of the Ryan Initiative for Macular 

Research (http://rimr.doheny.org/). 
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Extended Data 

 

Extended Data Figure 3 | ROC curves for various time windows. ROC curves for model predictions over time 

windows of a ) 3 months, b) 6 months, c ) 12 months, and d) 24 months.  Note that the difference in AUC between 12 

and 24 month predictions is not statistically significant (p-value=0.54, two-sided permutation test). 

 



 

 

Extended Data Figure 4 | Confusion matrices per expert and task. Confusion matrices for the prediction decision 

for all 6 experts for the single scan and sequential scan tasks, and for the system at two chosen operating points . 
n=1053 trials (380 unique patients). 

 



 



 



Extended Data Figure 7 | Kaplan-Meier survival curves for full dataset and subgroups stratified by drusen 

stage and presence of HRF. a) A Kaplan-Meier survival curve for fellow eye conversion to exAMD from baseline 

(defined as the first presentation of first eye conversion) in number of months, showing a little over 40% of patients 

converted during over 6 years of available follow up. The table shows number of eyes remaining at risk per month. b) 

The same plot for comparison with following plots. c-g) Plots for varying amounts of drusen, showing increasing 

numbers of patient convert as drusen volume increases. Drusen size categories are calculated as quartiles. The 

same plots are shown for patients h) without and i) with geographic atrophy (GA), those j) without and k ) with 

hyper-reflective foci (HRF), and those l) without and m ) with fibrovascular pigment epithelial detachment (PED). In all 

plots the timeline is with reference to the first incidence of the feature in the eye.  

 



 

 

Extended Data Figure 8 | Consort diagram. Data labelling of the Moorfields Eye Hospital AMD dataset. Manual opt 

outs before data transfer are not included as none of the patients who manually opted out had digital OCT within the 

study dates. 

 



Extended Data Figure 2 | Dataset statistics. (a) Histogram of scans per unique eye (pre-conversion) in 

training/validation set and test set.  (b) Histogram of difference between conversion and injection date for fellow eyes 

in training and test set (n=537, 214 have matching dates). 
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Extended Data Figure 9 | Segmentation colour key and new hyperreflective foci class. a) Colour key for 13 

tissues and 3 artefacts segmented by the network.  b) Left: Raw OCT input to the segmentation network. Right: 

Output of the retrained segmentation network. Three hyperreflective foci apparent in the intraretinal layers were 

successfully segmented in this B-scan (purple). 



 

a) 

 

b) 

c) 

d) 



Extended Data Figure 7 | Deep learning system diagram. Flow chart of the deep learning system including 

ensembling and TTA. Model inputs are shaped as trapezoids. Deep learning networks are shaped as rectangles. 

Model outputs are shaped as pointed rectangles. a ) The segmentation network takes a raw OCT scan as input to 

generate a dense segmentation of the OCT which is then fed into a Diagnosis and referral network to obtain auxiliary 

task referral and diagnosis labels. b) The auxiliary labels along with either the raw OCT scan or dense segmentation 

are inputted into each exAMD prediction network across each cross validation fold group. Although the arrows apply 

to one fold group and instance, they generalise across all fold groups and instances. c ) Ten TTA predictions are 

obtained from each instance. All TTA predictions are combined via averaging to obtain the final ensembled 

prediction. d) Architecture of a single block in our network. Green circles are convolution layers applied sequentially 

to the input of the previous layer. Each convolution has stride 1 and uses ReLU activation. Four convolutions are 

shown for demonstrative purposes but the number of convolutions and the kernels used for each will differ between 

blocks. Each convolution has a skip connection to the last orange node which concatenates all the intermediate and 

final activations along the channel dimension as the output. 

 



 



Extended Data Figure 6 | Aggregate volumes and volume change per 3 months before conversion for major 

ocular structures and abnormal tissues in patients who converted (n=549 unique patients). The box extends 

from the lower to upper quartile values of the data, with an orange line at the median. The whiskers show the 5th & 

95th percentiles. For the left column, the statistics are calculated across patients, where patients with multiple scans 

per quarter are volumes averaged across these scans. For the right column the statistics for volume change over 3 

months were calculated on the difference for each patient between the mean volume for that quarter against the 

previous quarter. Volumes are calculated using the whole 2.3*6*6mm OCT volume. 

 



Extended Data Figure 1 | Summary statistics and patient demographic data. A breakdown of training (60%), 

validation (20%) and test (20%) datasets by unique patients and unique scans. 

 
Patients and demographics Training Validation Test Total 

Unique patients 2,019 669 676 3,364 

Unique patients with scans 1,964 658 662 3,284 

Unique patients after exclusions applied 1,795 614 386 2,795 

Age at first eye exAMD presentation (baseline) - mean (SD) 79.2 (8.4) 79.9 (8.6) 78.8 (8.4) 79.3 (8.5) 

Age at fellow eye conversion - mean (SD) 81.6 (7.3) 82.0 (7.8) 82.3 (7.3) 81.8 (7.4) 

Ethnicity White British and Irish 1000 322 206 1,528 

 Asian 179 60 42 281 

 Black 33 9 10 52 

 Other 399 160 89 648 

 Unknown 184 63 39 286 

Sex Female 1,073 400 240 1,713 

 Male 720 213 146 1,079 

 Unknown 2 1 0 3 

Visual acuity at first eye exAMD presentation (baseline) - mean 
(SD) 

55.3 (16.8), 
n=757 

56.0 (17.2), 
n=257 

55.5 (16.7), 
n=282 

55.5 (16.8), 
n=1296 

Visual acuity of fellow eye at baseline - mean (SD) 69.6 (17.3), 
n=671 

68.9 (17.3), 
n=217 

70.2 (17.8), 
n=235 

69.6 (17.4), 
n=1123 

Visual acuity at fellow eye conversion - mean (SD) 62.1 (16.8), 
n=347 

62.1 (16.9), 
n=117 

64.4 (17.3), 
n=108 

62.5 (16.9), 
n=572 

Eyes where visual acuity of fellow eyes at conversion:  
≥71 letters / ≤70 letters / unknown VA 

105 / 242 / 160 39 / 78 / 49 43 / 65 / 65 187 / 385 / 
274, n=846 

Number of days between fellow eye conversion and treatment - 
mean (SD) 

64.0 (149.8), 
n=329 

66.3 (147.4), 
n=111 

66.4 (165.1), 
n=97 

64.9 (151.9), 
n=537 

Number of days between fellow eye conversion and treatment - 
median (IQR) 

9.0 
(0.0-50.0) 

12.0 
(0.0-59.5) 

21.0 
(0.0-77.0) 

13.0 
(0.0-60.0) 

Number of days between fellow eye conversion and treatment 
where visual acuity at conversion ≥71 letters - mean (SD) 

128.3 (198.5), 
n=97 

141.2 (221.8), 
n=35 

136.2 (253.5), 
n=36 

132.7 (214.9), 
n=168 

Number of days between fellow eye conversion and treatment 
where visual acuity at conversion ≤70 letters - mean (SD) 

37.1 (114.0), 
n=232 

31.8 (75.9), 
n=76 

25.2 (38.6), 
n=61 

34.0 (98.0), 
n=369 

Scans      

Unique sequential scans Pre-conversion to exAMD 18,662 6,235 5,581 30,478 

 Post-conversion to exAMD 49,243 16,390 0 65,633 

 Total scans 67,905 22,625 5,581 96,111 

 



Extended Data Figure 5 | Clinical expert metrics on the benchmark study. (a) Metrics for each expert for the 
single scan and sequential scan tasks. Intra-observer agreement was assessed using Fleiss’ Kappa. (PPV: positive 
predictive value, NPV: negative predictive value). (b) Agreement between the clinical experts for the single and 
sequential tasks, measured using Fleiss’ Kappa. N=1053 for both single and sequential task. 
a) 

Expert Task Sensitivity 
(%) 

Specificity 
(%) 

Accuracy 
(%) 

PPV (%) NPV (%) Kappa Kappa 95% 
CI 

Retinal Specialist 1 
Single 24.6 93.3 84.0 36.5 88.8 

0.32 0.239, 0.404 
Sequential 31.7 88.4 80.7 29.8 89.2 

Retinal Specialist 2 
Single 18.3 93.3 83.2 29.9 88.0 

0.316 0.212, 0.421 
Sequential 8.50 95.1 83.4 21.1 86.9 

Retinal Specialist 3 
Single 28.9 89.9 81.7 30.8 89.0 

0.180 0.099, 0.260 
Sequential 5.60 98.6 86.0 38.1 87.0 

Optometrist 1 
Single 39.4 72.1 67.7 18.1 88.4 

0.287 0.224, 0.350 
Sequential 36.6 84.7 78.3 27.2 89.6 

Optometrist 2 
Single 55.6 60.5 59.8 18.0 89.7 

0.292 0.236, 0.348 
Sequential 41.5 77.4 72.6 22.3 89.5 

Optometrist 3 
Single 37.3 86.4 79.8 29.9 89.8 

0.523 0.453, 0.592 
Sequential 34.5 86.5 79.5 28.5 89.4 

 



b) 
Single Task Kappa 95% CI 

Between all Retinal Specialists (n=3) 0.335 0.267, 0.399 
Retinal Specialist 1 & Retinal Specialist 2 0.384 0.288, 0.479 
Retinal Specialist 1 & Retinal Specialist 3 0.302 0.216, 0.387 
Retinal Specialist 2 & Retinal Specialist 3 0.333 0.247, 0.420 
Between all Optometrists (n=3) 0.258 0.215, 0.304 
Optometrist 1 & Optometrist 2 0.272 0.215, 0.330 
Optometrist 1 & Optometrist 3 0.323 0.261, 0.386 
Optometrist 2 & Optometrist 3 0.240 0.188, 0.291 
Between all Retinal Specialists & Optometrists (n=6) 0.243 0.210, 0.280 

Sequential Task Kappa 95% CI 

Between all Retinal Specialists (n=3) 0.143 0.082, 0.214 
Retinal Specialist 1 & Retinal Specialist 2 0.165 0.088, 0.242 
Retinal Specialist 1 & Retinal Specialist 3 0.132 0.063, 0.202 
Retinal Specialist 2 & Retinal Specialist 3 0.208 0.083, 0.332 
Between all Optometrists (n=3) 0.306 0.254, 0.652 
Optometrist 1 & Optometrist 2 0.300 0.234, 0.366 
Optometrist 1 & Optometrist 3 0.291 0.219, 0.364 
Optometrist 2 & Optometrist 3 0.335 0.269, 0.401 
Between all Retinal Specialists & Optometrists (n=6) 0.204 0.168, 0.242 
 



Supplementary Information for Predicting 
exudative conversion in age related macular 
degeneration using deep learning 

Supplementary Figures 

 
a)  Baseline 
VA 76 letters 

b) 8 months 
VA 85 letters 

c)  9 months 
VA 85 letters 

d) 13 months 
VA 76 letters 

e)  17 months 
VA 78 letters 

f) 23 months 
VA 83 letters 

g) 



 
Supplementary Figure 1 | A true positive success case of an 81 year old white female presenting with exAMD 
in her right eye. Her fellow eye (left eye) shown in the figure is routinely scanned at every visit. a)  The fellow eye 
presents with large drusen of highest density inferior-nasal to the fovea. This is clearly seen in the enface map. 
b) The drusen increases slightly in volume within 7 months. c) 9 months after baseline, the drusen has significantly 
and rapidly regressed in this area. d) Over time, a new shallow area of PED appears. Here the segmentation model 
predicts this has serous and fibrovascular elements - both suggestive of choroidal neovascularisation. However, no 
fluid is observed at this point and therefore observation continues. e)  4 months after the previous scan, cysts of 
intraretinal fluid are observed. Here, the eye is labelled and diagnosed with exAMD. As the vision is still as high as 78 
letters, this particular patient does not receive treatment until 4 months later when the vision drops to 65 letters.  
f)  After treatment, visual acuity improves and both intraretinal fluid and fibrovascular PED are markedly reduced.  
g) Risk prediction graph showing risk of imminent conversion rising above both operating point thresholds from 
slightly before the 6 months window prior to conversion. Note that there are early false positives ahead of conversion 
at both liberal and conservative operating points. (Enface map abbreviations, HRF: hyperreflective foci; Drus. PED: 
drusenoid PED; Fibro. PED: fibrovascular PED; IRF: intraretinal fluid; NSR: neurosensory retina). This and all 
subsequent success or failure cases were selected from the models most confident predictions. 
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Supplementary Figure 2 | A true positive success case of a 75 year old white British male presenting with 
exAMD in his left eye. a)  The right fellow eye presented with a large central drusenoid PED. Here the model 
segments the majority of this tissue as drusen, with some elements of fibrovascular. No fluid is present. b) At the next 
scan available in 7 months, the drusenoid PED has collapsed (drusen regression), leaving behind an irregular PED. 
c) 3 months later, the scan appears quite similar with both elements of fibrovascular and drusenoid PED being 
segmented. d) 15 months from the first presentation, the eye has converted to exAMD with new SRF. e)  Risk 
prediction plot shows a steady increase in prediction score. At baseline, the prediction score was below both chosen 
operating points. Here, the majority of experts predicted imminent conversion in both the single and sequential tasks. 
At 7 months, the prediction score has risen above the liberal operating point, but still below the conservative 
operating point. Less than half of the experts predicted imminent conversion. At 10 months, 5 months before the eye 



converts, the system’s prediction rises above both operating points, correctly signalling that this eye is likely to 
convert to exAMD within the next 6 months.  
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Supplementary Figure 3 | A true negative success case of a 68 year old Female patient of ‘other’ ethnicity 
presenting with exAMD in the right eye. The fellow eye, left eye, is shown in the figure. a)  At baseline, large drusen 
are present, mostly focused around the central 3mm. HRF are present in the intraretinal tissues lying above the 
drusen. b) After 10 months, the drusen height and volume has increased slightly. c)  2 years from baseline, the height 
of the drusen regresses below the fovea, but the volume and number of drusen overall increases. d) Over 1 year 
later, a large drusenoid PED forms below the fovea, HRF increase in number, and the visual acuity drops from 82 to 
74 letters. e)  Another 2 years later, the drusenoid PED has grown larger, occupying a significant volume below the 
fovea. The visual acuity drops further to 63 letters. f) The risk-prediction plot correctly predicts that this eye will not 
convert at every visit despite the presence of large drusen and HRF. More than half of the experts predicted that the 
eye would convert imminently at all 3 scans presented (b, c, d) for the single scan task. When given all historical 
scans in the sequential task, fewer experts believed the eye would convert within 6 months. 



a)  Baseline b) 35 months c)  42 months d) 44 months e)  47 months f) 66 months 
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Supplementary Figure 4 | A false negative failure case of an ambiguous case with questionable conversion to 
exAMD.  A 75 year old Indian female presented to the hospital eye service with approximately 6/18 vision in both 
eyes. The left eye was labelled as a converting fellow eye. However, there is a poor response to treatment with 
persistent fluid and PED. This is suspicious of simply a large drusenoid PED with overlying fluid, rather than true 
conversion to exAMD. In this case, the model predicts the eye will not convert with high confidence at all previous 
scans. a)  The patient’s first OCT scan of the left eye reveals confluent central drusen. A drusenoid PED is observed 
in the right eye (not shown). b) Nearly 3 years later, a large drusenoid PED is present. The segmentation model 
segments predominantly drusen material. At this point, the right eye converts with significant SRF. c)  At 42 months 
the drusenoid PED has extended in diameter. d) Only 8 weeks later subretinal fluid appears above the PED for the 
first time. Here a consensus of conversion to exAMD was called. From this point on the segmentation model has 
some uncertainty trying to distinguish fibrovascular PED from drusenoid. e)  The eye receives their first injection 4 
weeks later, and after 3 injections at 47 months, the SRF appears persistent. f) Nearly 1.5 years later, the PED 
appears larger, with persistent SRF. There is a suboptimal response to treatment, and therefore may warrant further 



investigation. g) Risk prediction graph showing low risk of 6 month conversion up to conversion date, a false 
negative. 
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Supplementary Figure 5 | A false negative failure case of an 84 year old female white female was diagnosed 
with exAMD in the left eye, and who started treatment. Her (right) fellow eye was followed up and scanned at 
every follow-up visit. a)  At presentation, the fellow eye has scattered drusen on OCT, appearing as white punctate 
accumulations on the fundus photo. b) After 8 months, there is little change in OCT appearance. c)  2 months later the 



eye converts to exAMD with the new appearance of SHRM with a fibrovascular PED. d) Risk prediction graph 
showing incorrect low risk of 6 month conversion up to conversion date. At all 3 scans presented, not a single expert 
predicted conversion within 6 months on both the single and sequential tasks. 
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Supplementary Figure 6 | A false positive failure case of suspicious subclinical choroidal neovascularisation. 
This eye did not receive any treatment during the available follow-up of over 2 years. a)  An irregular PED is observed 
on the first scan, suspicious of exAMD. As there is a lack of fluid, the eye is not labelled as exAMD at this point. The 
model segments this tissue as drusenoid PED with some elements of fibrovascular and believes there is a high risk 
that the eye has already converted. b) The segmentation model continues to segment a similar area of drusenoid and 
fibrovascular PED. c)  The last scan available for this eye shows no significant change in the size of the PEDs and the 
enface maps look similar to the prior scans. d) Illustration of the risk-prediction. Here the system predicts that the eye 
will convert imminently: the system prediction for 6 month conversion is above the threshold for every visit. For the 
single-scan task, the experts were split between ‘already converted’, ‘will convert imminently’ and ‘will not convert for 
>12 months’. When given historical scans in the sequential task, half of the experts believed the eye will convert. This 
is likely to be a case that would warrant further investigation such as OCT angiography imaging. 
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Supplementary Figure 7 | A false positive failure case demonstrating false positive predictions at every visit, 
with questionable low-grade exAMD. This patient is an 81 year old Black-Caribbean male who started treatment for 
exAMD in his right eye. His fellow eye (left eye) was labelled as a non-converting eye during the follow-up available. 
At every visit, the system predicted that the eye would convert imminently. a)  His fellow eye, shown in the figure, 
presented with a small PED with fuzzy overlying RPE. b) After 4 months, a small pocket of SRF appeared above the 
PED. Here the segmentation model predicts that this is a fibrovascular PED. c)  1.5 months later, the SRF had 
resolved. d) 16 months and e)  20 months later, the PED appears to occupy a larger volume however there is no 



surrounding fluid. The segmentation model predicts this is a drusenoid PED. This particular case may represent a 
low-grade form of exAMD. 

 

 
 
Supplementary Figure 8 | Difficult and ambiguous example cases. a) A 73-year-old white female presented with 
reduced vision. The fundus appearance is consistent with high myopia - choroidal vessels are visible and there is 
significant peripapillary atrophy. A circumscribed area of exudation is visible at the macula. The convexity of the 
macula is consistent with a dome-shaped macula, a condition associated with high myopia. Drusen was not seen in 
either eye. These findings likely represent myopic macular degeneration. b) A 59-year-old black female presented 
with a large peripapillary subretinal haemorrhage extending towards the fovea. OCT revealed multiple PEDs with 
overlying subretinal fluid adjacent to the optic nerve. The patient’s fellow eye had no drusen changes. These features, 
and the ethnicity and age, suggest a variant of peripapillary choroidal neovascularisation or idiopathic polypoidal 
choroidal vasculopathy. c)  This 87-year-old white female presented with an accumulation of yellow heterogeneous 
material located between the photoreceptor layer and the RPE, known as adult-onset vitelliform macular dystrophy. 
This condition is also age-related and is often mistaken for exAMD. The patient received 3 injections without any 
anatomical or visual response. d) A 75-year-old female who received treatment without clear evidence of exudative 
AMD. The patient presented with large intermediate drusen and a non-exudative detachment of the neurosensory 
retina - observed as SRF bridging between drusen. At 6 months the appearance was unchanged, but treatment was 
started as vision had reduced. The neurosensory detachment and drusenoid PED was still present 2 years after 
treatment. After 3 years of treatment and 14 injections, the drusenoid PED collapsed with little to no overlying SRF. e) 
Early appearance of SRF, temporal to the fovea, was observed in this 69-year-old male 819 days after starting 
treatment in the first eye. The SRF resolved 8 weeks later. After nearly 15 months, the eye converted to exAMD – the 
retina is thickened centrally, with SRF and SHRM adjacent to the previous area of fluid. The consensus grader label 
of conversion was at day 1269 . 
 



Supplementary Tables 
Supplementary Table 1 | Difference in OCT and Segmentation model performance for selected examples of 
patient subgroups identified using automatic segmentation.  
 

(a)  OCT model performance for all subgroups were derived using automated segmentation of individual scans 
without exAMD in the test set. 

 

Patient subgroup 
Number of 

scans 

Imminency 
scan 

prevalence 
(%) 

Imminency AUC 
(95% CI) 

Conservative operating 
point (90% specificity) 

Liberal operating point 
(80% sensitivity) 

Sensitivity 
(%) 

Specificity 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

All patients 5581 4.3 0.759 (0.731-0.787) 44.4 86.5 77.6 56.2 
No drusen (no AMD) 425 0.0 N/A N/A 98.1 N/A 95.1 
Drusen volume 25th 
percentile 971 0.5 0.874 (0.866-0.954) 20.0 96.0 60.0 86.3 

Drusen volume 25-50th 
percentile 1395 4.3 0.694 (0.620-0.768) 28.3 91.0 70.0 58.0 

Drusen volume 50-75th 
percentile 1395 5.9 0.617 (0.550-0.684) 34.9 84.6 69.9 43.7 

Drusen volume 75-100th 
percentile 1395 6.7 0.775 (0.722-0.828) 64.5 73.0 90.3 32.0 

Geographic atrophy 
present 1573 4.0 0.702 (0.641-0.763) 39.7 79.3 87.3 38.4 

Geographic atrophy 
absent 4008 4.4 0.787 (0.755-0.819) 46.1 89.4 74.2 63.2 

HRF present 3867 5.3 0.743 (0.710-0.776) 51.5 81.8 83.5 43.9 
HRF absent 1714 2.0 0.769 (0.721-0.817) 2.9 96.7 42.9 83.1 
Fibrovascular PED 
present 2326 6.6 0.707 (0.661-0.753) 58.4 72.2 87.0 28.3 

Fibrovascular PED 
absent 3255 2.7 0.781 (0.743-0.819) 19.5 96.3 60.9 75.4 

  



 
(b) Segmentation model performance for a ll subgroups were derived using automated segmentation of individual 

scans without exAMD in the test set. 
 

Patient subgroup 
Number of 

scans 

Imminency 
scan 

prevalence 
(%) 

Imminency AUC 
(95% CI) 

Conservative operating 
point (90% specificity) 

Liberal operating point 
(80% sensitivity) 

Sensitivit
y (%) 

Specificity 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

All patients 5581 4.3 0.731 (0.704-0.758) 32.0 90.0 80.1 53.1 
No drusen (no AMD) 425 0.0 N/A N/A 100.0 N/A 94.6 
Drusen volume 25th 
percentile 971 0.5 0.914 (0.851-0.977) 20.0 98.3 80.0 87.9 

Drusen volume 25-50th 
percentile 1395 4.3 0.666 (0.603-0.729) 10.0 94.6 63.3 60.8 

Drusen volume 50-75th 
percentile 1395 5.9 0.566 (0.501-0.631) 26.5 86.1 75.9 31.9 

Drusen volume 75-100th 
percentile 1395 6.7 0.733 (0.684-0.782) 51.6 79.7 94.6 27.3 

Geographic atrophy 
present 1573 4.0 0.680 (0.620-0.740) 28.6 87.3 90.5 32.3 

Geographic atrophy 
absent 4008 4.4 0.760 (0.728-0.792) 33.1 91.1 76.4 61.4 

HRF present 3867 5.3 0.706 (0.672-0.740) 37.4 86.7 87.9 39.7 
HRF absent 1714 2.0 0.772 (0.726-0.818) 0.0 97.2 34.3 82.5 
Fibrovascular PED 
present 2326 6.6 0.647 (0.607-0.687) 44.8 77.0 92.2 21.2 

Fibrovascular PED 
absent 3255 2.7 0.771 (0.731-0.811) 9.2 98.9 58.6 75.0 

 
 
Supplementary Table 5 | Test set imminency performance with AUC weighting. Weighting is used to average 
the number of scans per patient at liberal and conservative operating points. N=5581. 
 

Operating point Sensitivity (95% CI) Specificity (95% CI) 

Weighted Imminency  

Liberal 0.800 (0.774-0.826) 0.525 (0.422-0.628) 
Conservative 0.393 (0.292-0.494) 0.900 (0.889-0.901) 

Unweighted Imminency 

Liberal 0.800 (0.750-0.850) 0.551 (0.495-0.607) 
Conservative 0.344 (0.2820.406) 0.900 (0.889-0.901) 

 
  



Supplementary Table 3 | Model and ensemble performance on cross-validation folds. Performance is shown for 
the task of prediction of exAMD within 6 months (imminency).  Each model type’s outputs were averaged over three 
replicas with different random initialization and small amounts of TTA applied (see Methods for more details). The 
mean (m) and standard deviation (std) among the replicas are given in parentheses. The best performing model type 
was then used for test time evaluation which was determined to be the Ensemble system from ensembling over OCT 
and segmentation models. Cross-validation folds were generated at the patient level to ensure approximately equal 
patient representation. Folds were generated before any exclusion criterias resulting in slightly different counts for 
each fold. 
 

Fold 
Non-excluded 

patients 

Imminency AUC 

OCT model Segmentation model Ensemble system 

1 601 0.81 (m=0.80, std=0.002) 0.81 (m=0.80, std=0.007) 0.82 

2 595 0.75 (m=0.74, std=0.011) 0.78 (m=0.77, std=0.008) 0.78 

3 610 0.80 (m=0.79, std=0.011)  0.79 (m=0.78, std=0.007) 0.81 

4 603 0.78 (m=0.77, std=0.008) 0.76 (m=0.75, std=0.001)  0.78 

  



Supplementary Table 7 | False positive alerts. a) Number of eyes with at least one false positive (FP) alert with 
varying operating points, stratified by converting and non-converting fellow eyes, and the follow-up available for the 
eye. Highlighted rows correspond to the liberal (80% sensitivity) and conservative (90% specificity) thresholds.  
b) Number of eyes with at least one false positive (FP) alert at the liberal (80% sensitivity) and conservative (90% 
specificity) thresholds, those with 24 months follow-up from the FP scan, and the number (%) which were 
non-converting throughout the study, those converting with the FP 6-24 months prior to conversion, and those with 
the FP >24 months prior to conversion. 
 
a) 

Sensitivity Specificity 

Total unique 
eyes with at 
least one FP 

(n=386) 

Unique converting eyes with at least 
one FP (n=103) 

Unique non-converting eyes with at 
least one FP (n=283) 

6-12 months 
prior to 

conversion 

6-24 months 
prior to 

conversion 

>6 months 
prior to 

conversion 
≥6 months 
follow-up 

≥12 months 
follow-up 

≥24 months 
follow-up 

9.54% 98.45% 20 1 4 4 16 13 8 
20.33% 96.42% 38 9 10 10 28 25 16 
29.88% 93.02% 66 13 16 17 49 38 23 
39.83% 87.06% 103 18 23 26 77 69 43 
49.79% 78.41% 157 31 40 43 114 98 70 
60.17% 72.25% 170 37 45 48 122 114 79 
70.12% 64.63% 201 42 50 56 145 133 95 
80.08% 54.55% 237 49 58 62 175 163 115 
90.04% 40.37% 264 54 66 71 193 183 135 

100.00% 16.50% 323 60 70 76 247 235 171 

Sensitivity Specificity        
99.59% 16.50% 323 60 70 76 247 235 171 
98.76% 21.12% 310 60 70 76 234 220 165 
96.68% 30.11% 292 59 70 75 217 202 148 
90.04% 39.89% 265 54 66 71 194 184 135 
83.40% 50.11% 246 51 59 63 183 173 124 
73.86% 60.02% 218 45 53 58 160 147 102 
62.66% 69.14% 180 38 45 50 130 118 83 
46.89% 79.93% 147 29 36 40 107 94 68 
34.02% 89.93% 88 16 19 21 67 56 35 
0.00% 100.00% 0 0 0 0 0 0 0 

 
b) 

 

Total unique eyes 
with at least one 

FP (n=386) 

Total unique eyes with 
at least one FP and 24 

months follow-up Non-converting 
6-24 months prior 

to conversion 
>24 months prior 

to conversion 
Liberal Operating 
Point 236 174 116 (66.7%) 57 (32.8%) 27 (15.5%) 
Conservative 
Operating Point 89 54 35 (64.8%) 19 (35.2%) 6 (11.1%) 
  



Supplementary Table 6 | System performance with varying lead times . System performance is shown for 
prediction of conversion within 3 month, 6 month, 12 month, and 24 month time windows at a scan-level. Sensitivity 
and specificity thresholds were varied from 10% (or lowest possible) to 100%. 

a) System performance predicting future conversion to exAMD within 3 months 

Sensitivity Specificity TP FP TN FN PPV NPV Sensitivity Specificity TP FP TN FN PPV NPV 

10.09% 98.23% 10 103 5723 99 0.088 0.983 99.08% 17.95% 108 4779 1047 1 0.022 0.999 

20.18% 96.72% 21 191 5635 88 0.099 0.985 99.08% 17.95% 108 4779 1047 1 0.022 0.999 

30.28% 93.65% 32 370 5456 77 0.080 0.986 97.25% 33.02% 106 3901 1925 3 0.026 0.998 

40.37% 89.58% 43 607 5219 66 0.066 0.988 95.41% 39.84% 104 3504 2322 5 0.029 0.998 

49.54% 81.82% 53 1059 4767 56 0.048 0.988 88.99% 50.02% 97 2911 2915 12 0.032 0.996 

59.63% 74.48% 64 1487 4339 45 0.041 0.990 82.57% 59.89% 90 2336 3490 19 0.037 0.995 

69.72% 68.47% 75 1837 3989 34 0.039 0.992 66.06% 70.01% 72 1746 4080 37 0.040 0.991 

79.82% 62.44% 86 2188 3638 23 0.038 0.994 51.38% 79.83% 56 1174 4652 53 0.046 0.989 

89.91% 50.02% 97 2912 2914 12 0.032 0.996 38.53% 90.20% 42 570 5256 67 0.069 0.987 

100.00% 17.95% 108 4780 1046 1 0.022 0.999 0.00% 100.00% 0 0 5826 109 NaN 0.982 

b) System performance predicting future conversion to exAMD within 6 months 

Sensitivity Specificity TP FP TN FN PPV NPV Sensitivity Specificity TP FP TN FN PPV NPV 

9.54% 98.45% 22 83 5257 219 0.210 0.960 99.59% 16.50% 240 4458 882 1 0.051 0.999 

20.33% 96.42% 48 191 5149 193 0.201 0.964 98.76% 21.12% 238 4211 1129 3 0.053 0.997 

29.88% 93.02% 71 373 4967 170 0.160 0.967 96.68% 30.11% 233 3731 1609 8 0.059 0.995 

39.83% 87.06% 95 691 4649 146 0.121 0.970 90.04% 39.89% 217 3209 2131 24 0.063 0.989 

49.79% 78.41% 119 1153 4187 122 0.094 0.972 83.40% 50.11% 201 2663 2677 40 0.070 0.985 

60.17% 72.25% 144 1482 3858 97 0.089 0.975 73.86% 60.02% 178 2134 3206 63 0.077 0.981 

70.12% 64.63% 168 1889 3451 73 0.082 0.979 62.66% 69.14% 151 1647 3693 90 0.084 0.976 

80.08% 54.55% 192 2427 2913 49 0.073 0.983 46.89% 79.93% 113 1071 4269 128 0.095 0.971 

90.04% 40.37% 216 3184 2156 25 0.064 0.989 34.02% 89.93% 82 537 4803 159 0.132 0.968 

100.00% 16.50% 240 4459 881 1 0.051 0.999 0.00% 100.00% 0 0 5340 241 NaN 0.957 

 
c) System performance predicting future conversion to exAMD within 12 months 

Sensitivity Specificity TP FP TN FN PPV NPV Sensitivity Specificity TP FP TN FN PPV NPV 

10.32% 98.00% 48 89 4359 427 0.350 0.911 99.79% 14.86% 474 3786 662 1 0.111 0.998 

20.00% 95.17% 94 215 4233 381 0.304 0.917 98.95% 19.45% 470 3582 866 5 0.116 0.994 

29.89% 89.30% 141 476 3972 334 0.229 0.922 96.42% 29.99% 458 3113 1335 17 0.128 0.987 

40.00% 83.12% 189 751 3697 286 0.201 0.928 88.21% 40.42% 419 2649 1799 56 0.137 0.970 

49.89% 75.97% 236 1069 3379 239 0.181 0.934 81.05% 49.82% 385 2231 2217 90 0.147 0.961 

60.00% 69.24% 284 1368 3080 191 0.172 0.942 72.63% 60.07% 345 1775 2673 130 0.163 0.954 

69.89% 62.19% 331 1682 2766 144 0.164 0.951 57.89% 69.96% 275 1335 3113 200 0.171 0.940 

80.00% 53.73% 379 2058 2390 96 0.156 0.961 44.00% 79.92% 209 892 3556 266 0.190 0.930 

90.11% 37.63% 427 2774 1674 48 0.133 0.972 28.63% 89.97% 136 445 4003 339 0.234 0.922 

100.00% 14.86% 474 3787 661 1 0.111 0.998 0.00% 100.00% 0 0 4448 475 NaN 0.904 

 



 
d) System performance predicting future conversion to exAMD within 24 months 

Sensitivity Specificity TP FP TN FN PPV NPV Sensitivity Specificity TP FP TN FN PPV NPV 

10.20% 97.07% 81 79 2613 723 0.506 0.783 99.75% 9.32% 802 2440 252 2 0.247 0.992 

20.02% 93.91% 160 164 2528 644 0.494 0.797 99.01% 18.50% 796 2193 499 8 0.266 0.984 

29.85% 90.01% 239 269 2423 565 0.470 0.811 97.89% 30.35% 787 1874 818 17 0.296 0.980 

39.93% 86.59% 320 361 2331 484 0.470 0.828 88.56% 40.12% 712 1611 1081 92 0.307 0.922 

50.00% 79.75% 401 545 2147 403 0.424 0.842 81.09% 50.04% 652 1344 1348 152 0.327 0.899 

59.95% 71.10% 481 778 1914 323 0.382 0.856 72.76% 60.03% 585 1075 1617 219 0.352 0.881 

70.02% 62.52% 562 1009 1683 242 0.358 0.874 61.19% 70.02% 492 806 1886 312 0.379 0.858 

79.98% 52.34% 642 1283 1409 162 0.334 0.897 49.50% 80.05% 398 536 2156 406 0.426 0.842 

90.05% 38.00% 723 1669 1023 81 0.302 0.927 29.73% 90.01% 239 268 2424 565 0.471 0.811 

100.00% 4.83% 803 2562 130 1 0.239 0.992 0.00% 100.00% 0 0 2692 804 NaN 0.770 

 



Supplementary Table 8 | Datasets used. An overview of all datasets used for training, validation and testing of the 
different networks. 
 

Dataset Number 
of scans Input Labels Label source 

#1 Training set for 
segmentation 846 OCT scans 

Sparse segm. 
maps (3-5 slices 
per scan) 

Manually segmented by trained ophthalmologists, 
reviewed and edited by a senior ophthalmologist. Used 
for the original model described by De Fauw et al. 
2018. 

#2 Validation set for 
segmentation 181 OCT scans 

Sparse segm. 
maps (3-5 slices 
per scan) 

Manually segmented by trained ophthalmologists, 
reviewed and edited by a senior ophthalmologist. Used 
for the original model described by De Fauw et al. 
2018. 

#3 

Overridden 
training/validation 
set for 
segmentation 

421 OCT scans 
Sparse segm. 
maps (3-5 slices 
per scan) 

Manually segmented images from sets #1 and #2 with 
HRF additionally segmented by trained optometrists 
and ophthalmologists, reviewed and edited by a senior 
optometrist. 

#4 

Additional 
training/validation 
set for 
segmentation 

86 OCT scans 
Sparse segm. 
maps (3-5 slices 
per scan) 

Additional manually segmented images including extra 
examples of dry AMD and HRF by trained optometrists 
and ophthalmologists, reviewed and edited by a senior 
optometrist. 

#5 
Training set for 
classification loss 
in predictive model 

35,575 OCT scans Diagnoses and 
referral decision 

Automated notes search + trained ophthalmologist and 
optometrist review of the OCT scans. 

#6 Training set for 
predictive model 67,802 

OCT scans, 
segmentation 
maps 

Date of 
conversion 

Graded by two graders. Disagreement in conversion 
labels arbitrated by a senior grader. 

#7 Validation set for 
predictive model 22,583 

OCT scans, 
segmentation 
maps 

Date of 
conversion 

Graded by two graders. Disagreement in conversion 
labels arbitrated by a senior grader. 

#8 Hold-out test set 5,581 OCT scans Date of 
conversion 

Graded by two graders. Disagreement in conversion 
labels arbitrated by a senior grader. 

#9 Benchmark study: 
Single scan task 1,053 Subset of scans 

in #8 

Individual 
predictions from 
6 experts 

6 experts (3 retinal specialists and 3 optometrists) 
grading on OCT scan only 

#10 Benchmark study: 
Sequential task 20,706 

Same scans as 
#9 (plus all 
historical scans 
for both eyes) 

Individual 
predictions from 
6 experts 

6 experts (3 retinal specialists and 3 optometrists) 
grading on OCT scan, fundus image and clinical notes 

 
 



Supplementary Table 11 | Subgroup derivation using OCT segmentation maps. 
 
Non-converted scan feature Definition 
No drusen Absence of drusen 
Any drusen Drusenoid PED of any size 
Drusen volume 0-25th percentile Drusen volume between 1 and 4124 voxels (0 and 5.9e-3 mm3) 

Drusen volume 25-50th percentile Drusen volume between 4125 and 22760 voxels (5.9e-3 and  3.3e-2 

mm3) 
Drusen volume 50-75th percentile Drusen volume between 22761 and 72070 voxels (3.3e-2 and 0.1 

mm3) 
Drusen volume 75-100th percentile Drusen volume between 72071 and 7.5e5 voxels (0.1 and 1.1 mm3) 
Geographic atrophy (GA) At least one atrophic area with diameter ≥ 250 µm 
Hyperreflective foci (HRF) Present if at least one instance present with ≥4 voxels in volume 
Conversion scan feature  
Fibrovascular pigment epithelial detachment (PED) Present if ≥ 5 voxels in volume overall 
Serous PED Present if ≥ 5 voxels in volume overall 
Subretinal hyperreflective material (SHRM) Present if at least one area ≥ 5 voxels in volume 
Intraretinal fluid (IRF) Present if at least one cyst with ≥ 5 voxels in volume 
Subretinal fluid (SRF) Present if at least one area ≥ 5 voxels in volume 
 
  



Supplementary Table 12 | System performance across different subgroups 
 

a) System performance across subgroups derived using segmentation 
 

Tissue 
presence 

HRF 
presence 

Number 
of scans 

Number 
of eyes 

Converting 
eyes (%) 

Imminency 
prevalence 

(%) 
Imminency 

AUC (95% CI) 

Conservative operating 
point (90% specificity) 

Liberal operating point 
(80% sensitivity) 

Sensitivity 
(%) 

Specificity 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

All patients All 5581 386 103 (26.7) 4.3 0.745 (±0.027) 33.6 90.0 79.7 55.1 
Present 3867 365 97 (26.6) 5.3 0.725 (±0.033) 38.8 86.7 87.9 41.7 
Absent 1714 227 48 (21.1) 2.0 0.779 (±0.042) 2.9 97.3 31.4 84.6 

Any drusen All 5156 376 103 (27.4) 4.7 0.725 (±0.031) 33.6 89.2 79.7 51.7 
Present 3761 356 97 (27.2) 5.5 0.717 (±0.035) 38.8 86.3 87.9 40.1 
Absent 1395 216 48 (22.2) 2.5 0.739 (±0.05) 2.9 96.7 31.4 82.1 

No drusen (no 
AMD) 

All 425 41 0 (0.0) 0.0 n/a 0.0 100.0 0.0 95.1 
Present 106 31 0 (0.0) 0.0 n/a 0.0 100.0 0.0 94.3 
Absent 319 38 0 (0.0) 0.0 n/a 0.0 100.0 0.0 95.3 

Drusen volume 
25th percentile 

All 1396 135 12 (8.9) 0.4 0.931 (±0.042) 0.0 98.5 60.0 90.4 
Present 551 114 10 (8.8) 0.9 0.866 (±0.080) 0.0 96.3 60.0 82.1 
Absent 845 98 7 (7.1) 0.0 n/a 0.0 99.9 0.0 95.9 

Drusen volume 
25-50th 
percentile 

All 1395 172 48 (27.9) 4.3 0.681 (±0.065) 15.0 94.8 68.3 61.9 
Present 962 158 44 (27.8) 4.7 0.679 (±0.072) 17.8 93.1 82.2 50.6 
Absent 433 87 21 (24.1) 3.5 0.706 (±0.006) 6.7 98.3 26.7 86.6 

Drusen volume 
50-75th 
percentile 

All 1395 186 60 (32.3) 5.9 0.584 (±0.067) 24.1 87.3 72.3 36.3 
Present 1130 172 53 (30.8) 5.7 0.638 (±0.077) 31.3 86.3 84.4 30.6 
Absent 265 78 23 (29.5) 7.2 0.511 (±0.009) 0.0 91.9 31.6 61.0 

Drusen volume 
75-100th 
percentile 

All 1395 144 46 (31.9) 6.7 0.759 (±0.049) 55.9 78.8 94.6 29.6 
Present 1224 139 46 (33.1) 7.5 0.746 (±0.051) 56.5 77.1 94.6 25.4 
Absent 171 38 12 (31.6) 0.6 0.812 (±0.057) 0.0 90.0 100.0 57.6 

Geographic 
atrophy 
present 

All 1573 206 52 (25.2) 4.0 0.692 (±0.059) 31.7 85.7 88.9 34.9 
Present 1408 188 50 (26.6) 4.3 0.685 (±0.059) 32.8 84.3 90.2 31.6 
Absent 165 70 8 (11.4) 1.2 0.552 (±0.035) 0.0 97.5 50.0 62.0 

Geographic 
atrophy absent 

All 4008 327 87 (26.6) 4.4 0.774 (±0.032) 34.3 91.7 76.4 63.1 
Present 2459 305 81 (26.6) 5.9 0.748 (±0.038) 41.4 88.1 86.9 47.5 
Absent 1549 204 46 (22.5) 2.1 0.809 (±0.039) 3.0 97.3 30.3 87.0 

Fibrovascular 
PED present 

All 2326 280 90 (32.1) 6.6 0.675 (±0.043) 48.1 77.3 90.9 22.4 
Present 2036 259 85 (32.8) 7.2 0.68 (±0.047) 50.0 76.1 92.5 19.9 
Absent 290 96 28 (29.2) 2.8 0.481 (±0.088) 12.5 85.5 62.5 39.0 

Fibrovascular 
PED absent 

All 3255 298 64 (21.5) 2.7 0.784 (±0.038) 8.0 98.7 59.8 77.6 
Present 1831 269 56 (20.8) 3.3 0.757 (±0.054) 11.7 97.9 76.7 64.8 
Absent 1424 188 32 (17.0) 1.9 0.852 (±0.039) 0.0 99.7 22.2 93.8 

 
 
 
 
 



b) System performance across subgroups based on tissue present on conversion scan (tissue presence threshold is 5 
voxels in tissue segmentation volume) 

 

Tissue presence 
on conversion 
scan 

Number of 
converting 

eyes 

Number 
of scans 
in history 

of eye 

Imminency 
prevalence 

(%) 

Imminency 
AUC 

(95% CI) 

Conservative operating 
point (90% specificity) 

Liberal operating point 
(80% sensitivity) 

Sensitivity 
(%) 

Specificity 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

All 103 1119 21.5 0.626 (±0.04) 33.6 85.2 79.7 32.2 
IRF 62 709 20.5 0.674 (±0.054) 44.8 80.7 89.7 26.4 
SRF 71 813 19.3 0.635 (±0.051) 36.3 84.6 77.1 35.4 
SHRM 69 715 19.9 0.626 (±0.057) 33.8 84.3 85.2 26.5 
Fibrovascular PED 99 1045 22.2 0.634 (±0.041) 34.9 84.9 79.7 33.6 
Serous PED 15 142 23.9 0.570 (±0.018) 32.4 63.9 64.7 37 

 
 

c) System performance across subgroups based on outputs from the classification model described in De Fauw et al. 
(2018). CNV: choroidal neovascularisation, GA: geographic atrophy, VMT: vitreomacular traction, ERM: epiretinal membrane. 

Drusen and GA were classified as present if the classification network risk prediction was >0.9. CNV, VMT, and ERM were classified 
as present if the risk prediction was >0.8. 

 

Referral and Disease 
outputs 

Number 
of scans 

Numbe
r of 

eyes 
Converting 

eyes (%) 

Imminency 
prevalence 

(%) 

Imminency 
AUC 

(95% CI) 

Conservative operating 
point (90% specificity) 

Liberal operating point 
(80% sensitivity) 

Sensitivity 
(%) 

Specificity 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

All patients 5581 386 103 (26.7) 4.3 0.745 (±0.027) 33.6 90 79.7 55.1 
CNV present (P>0.8) 157 37 15 (40.5) 10.2 0.635 (±0.033) 75 41.8 100 0 
CNV absent (P<0.8) 5424 381 98 (25.7) 4.1 0.744 (±0.03) 30.7 91.3 78.2 56.6 
Drusen present (P>0.9) 3944 311 97 (31.2) 5.2 0.700 (±0.036) 29.4 90.7 79.9 47.7 
Drusen absent (P<0.9) 1637 180 31 (17.2) 2.3 0.865 (±0.036) 56.8 88.5 78.4 72.6 
GA present (P>0.9) 1528 168 44 (26.2) 3.7 0.725 (±0.057) 25 91.7 92.9 38.6 
GA present, drusen present 1453 164 43 (26.2) 3.9 0.732 (±0.059) 25 91.6 92.9 39.8 
GA absent (P<0.9) 4053 345 95 (27.5) 4.6 0.763 (±0.031) 36.2 89.4 75.7 61.5 
GA absent, drusen absent 1562 175 31 (17.7) 2.4 0.872 (±0.032) 56.8 88.3 78.4 75.3 
VMT (P>0.8) 84 19 2 (10.5) 1.2 1.00 (±0.000) 100 94 100 88 
ERM (P>0.8) 551 59 12 (20.3) 3.1 0.772 (±0.002) 5.9 98.9 70.6 71.7 

 
  



Supplementary Table 13 | System performance across demographics . Sensitivity and specificity at both 
conservative (90% specificity) and liberal (80% sensitivity) operating points. Performance is given at a scan-level. 
 

Demographic 
Number 
of scans 

Number 
of eyes 

Converting 
eyes (%) 

Imminency 
prevalence 

(%) 
Imminency AUC 

(95% CI) 

Conservative operating 
point (90% specificity) 

Liberal operating point 
(80% sensitivity) 

Sensitivity 
(%) 

Specificity 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

All 5581 386 103 (26.7) 4.3 0.745 (0.718-0.772) 33.6 90.0 79.7 55.1 
Sex Female 3397 240 68 (28.3) 4.8 0.733 (0.696-0.770) 33.5 89.1 81.1 51.7 

 Male 2184 146 35 (24.0) 3.5 0.764 (0.717-0.811) 33.8 91.4 76.6 60.4 
Age 50-59 103 8 0 (0.0) 0.0 n/a n/a 100.0 0.0 97.1 

 60-69 734 59 10 (16.9) 1.2 0.751 (0.700-0.802) 0.0 96.0 77.8 71.3 

 70-79 1769 156 34 (21.8) 3.1 0.722 (0.657-0.787) 31.5 93.4 61.1 63.3 

 80-89 2413 211 66 (31.3) 5.6 0.709 (0.665-0.753) 37.8 84.9 82.2 45.0 
Ethnicity White 3010 206 61 (29.6) 4.7 0.732 (0.694-0.770) 36.6 88.9 80.3 50.8 

 Black 139 10 3 (30.0) 4.3 0.954 (0.917-0.991) 16.7 95.5 100.0 85.0 

 Asian 644 42 10 (23.8) 3.9 0.778 (0.694-0.862) 28.0 92.7 76.0 62.7 

 Other 1141 89 24 (27.0) 4.4 0.729 (0.672-0.786) 30.0 89.1 72.0 59.1 

 Unknown 647 39 5 (12.8) 2.8 0.780 (0.700-0.788) 33.3 92.7 94.4 54.2 
 
 
  



Supplementary Table 14 | Overview of inputs used in this study. All OCT sizes are given in A-scan, B-scan, 
C-scan direction 
 

Dataset Image size 
[voxels] 

Real-world voxel 
size [µm] 

Real-World 
image size [mm] Comments 

Raw OCT scans 885 · 512 · 128 2.6 · 11.7 · 47.2 2.3 · 6.0 · 6.0 Images acquired on Topcon 3D OCT-2000 
device 

Segmentation 
network input 448 · 512 · 128 5.2 · 11.7 · 47.2  

Raw OCT scans resampled in A-scan direction 
to 5.2μm voxel size, and zero-padded to the 
next multiple of 64 (added 6 pixels). 

Clinical referral 
segmentation input  300 · 350 · 43 7.8 · 17.6 · 141.7  

Segmentation map resampled to 7.8µm · 
17.6µm · 141.7µm voxel size such that the full 
classification network fits into GPU memory 

exAMD prediction 
OCT/segmentation 
input 

450 · 450 · 41 5.7 · 17.6 · 141.7  
Image and voxel size chosen as a tradeoff of 
GPU memory constraints and validation 
performance. 

 
 
Supplementary Table 17 | Total OCT scans in the dataset stratified by time-to-conversion of the fellow eye. 
 

Fellow eye conversion 

Number of scans 

Training Validation Test Benchmark 
Study Total 

Converts within 0-6 months 846 281 240 141 1,367 

Converts within 6-12 months 500 197 170 31 867 

Converts after 12 months 1,901 589 662 63 3,152 

Does not convert within study 
period with >6 months follow-up 14,980 5,084 4,462 808 24,526 

Does not convert within study 
period with >12 months follow-up 12,580 4,265 3,784 613 20,629 

 



Supplementary Table 16 | exAMD prediction network architecture details. Shapes are all given as [x, y, z]. 
Depending on the input modality, the channel dimension of the first two levels differ as denoted in parentheses 
(channels with OCT input, channels with segmentation input). The first 1x1x1 convolution in level 3 standardizes the 
shape. Block convolutions describe the list of convolutions and their kernels used in each block . See Extended Data 1

Figure 10 for a description of the block architecture.  
 

Level Type 
1x1x1 and Max 

pool Kernel shape/ 
stride 

Output shape Block convolution layer list 
Channels 
per block 

convolution 

Input   450x450x41x(1,17)   

1 
Block   [3x3x1, 3x3x1] 8 

Max pool [2x2x1]/[2x2x1] 225x225x41x(17,33)   

2 
Block   [3x3x1, 3x3x1, 1x1x3] x 2 16 

Max pool [2x2x1]/[2x2x1] 112x112x41x(113,129)   

3 

Conv [1x1x1]/[1x1x1]   128 

Block   [3x3x1, 3x3x1, 1x1x3] x 2 16 

Max pool [2x2x2]/[2x2x2] 56x56x20x224   

4 

Conv [1x1x1]/[1x1x1]   128 

Block   [3x3x1, 3x3x1, 1x1x3] x 2 32 

Block   [3x3x1, 3x3x1, 1x1x3] x 2 32 

Max pool [2x2x2]/[2x2x2] 28x28x10x512   

5 

Conv [1x1x1]/[1x1x1]   128 

Block   [3x3x1, 3x3x1, 1x1x3] x 2 32 

Block   [3x3x1, 3x3x1, 1x3x3] x 2 32 

Max pool [2x2x2]/[2x2x2] 14x14x5x512   

6 

Conv [1x1x1]/[1x1x1]   256 

Block   [3x3x1, 3x3x1, 1x1x3] x 2 32 

Block  14x14x5x640 [3x3x1, 3x3x1, 1x1x3] x 2 32 

Output 
Conv 

Global Avg pool 
[1x1x1]/[1x1x1] 

[14x14x5]/[14x14x5] 
14x14x5x128 

1  128 
 

 
 
 
 
 
 
 
 
 
  

1 For example, the block in level 2 uses 6 convolution layers each with 16 channels. As described in Extended Data 
Figure 7, the convolutions are identical except for the kernels used which for this block are ordered as: 
[3x3x1]→[3x3x1]→[1x1x3]→[3x3x1]→[3x3x1]→[1x1x3]. Thus each block is fully described with the stack of 
kernels used and the channels per convolution. 



Supplementary Table 4 | Gradient Boosted Machine baseline performances. To investigate if the model was 
overfitting to demographic information we trained a baseline Gradient Boosting Machine model using only the 
demographic metadata available in our dataset (sex, ethnicity, visual acuity, and age), data that was not used in 
training for the main model presented in this paper. A further experiment used tissue volumes derived from the 
segmentation model as features in addition to demographic metadata and visual acuity. Both methods overfit strongly 
and perform worse than the DLS on the cross validation folds, suggesting that demographic information alone is 
insufficient to predict conversion to exudative AMD. See Supplementary Table 3 for patient and scan information on 
each fold.  
 

 
Fold 

Demographic metadata and visual acuity only Tissue volumes, demographic metadata and visual acuity 

Train imminency AUC Valid imminency AUC Train imminency AUC Valid imminency AUC 

1 0.73 0.58 0.88 0.74 

2 0.75 0.52 0.88 0.73 

3 0.72 0.51 0.88 0.75 

4 0.73 0.59 0.89 0.70 

 
 
Supplementary Table 9 | Model F1 score compared with human experts. F1 score at equal error point compared 
with human experts on the human benchmark task. The model performs better than all experts with statistical 
significance to five out of six experts (in bold). N=1053. P-values obtained with two-sided permutation tests. 
 

 F1 score Difference with equal error point 

Equal error point 0.38  

Retina Specialist 1 0.29 -0.09 (p<0.01) 

Retina Specialist  2 0.23 -0.15 (p<0.0001) 

Retina Specialist  3 0.30 -0.08 (p<0.01) 

Optometrist 1 0.25 -0.13 (p<0.0001) 

Optometrist 2 0.27 -0.11 (p<0.0001) 

Optometrist 3 0.33 -0.05 (p=0.14) 

  



Supplementary Table 10 | Sensitivity and specificity difference between human and model in the benchmark 
study. Negative values show how much better the model performs over humans for either sensitivity or specificity 
with positive values indicating humans performing better. Below each number is the p-value obtained using 
McNemar’s test. Bold font is used to indicate statistical significance p<0.05. The liberal model is statistically superior 
to each expert for sensitivity but not specificity. The conservative model is statistically superior at either specificity 
or/and sensitivity for each expert except Optometrist 3 who matches the conservative model the closest (p>0.05 for 
specificity and sensitivity). N=1053 for all values. 
 

 
 

Conservative model Liberal model 

Sens (0.39) Spec (0.89) Sens (0.82) Spec (0.56) 

Optometrist 1 Sens 
(0.39) 

0.0 
(p=1.0) 

 -0.43 
(p<0.0001) 

 

Spec 
(0.72) 

 -0.17 
(p<0.0001) 

 +0.17 
(p<0.0001) 

Optometrist 2 Sens 
(0.56) 

+0.17 
(p<0.0001) 

 -0.26 
(p<0.0001) 

 

Spec 
(0.60) 

 -0.29 
(p<0.00001) 

 +0.04 
(p=0.014) 

Optometrist 3 Sens 
(0.37) 

-0.02 
(p=0.76) 

 -0.45 
(p<0.0001) 

 

Spec 
(0.86) 

 -0.03 
(p=0.11) 

 +0.30 
(p<0.0001) 

Retina 
Specialist 1 

Sens 
(0.25) 

-0.14 
(p<0.00001) 

 -0.57 
(p<0.0001) 

 

Spec 
(0.93) 

 +0.04 
(p<0.001) 

 +0.37 
(p<0.0001) 

Retina 
Specialist 2 

Sens 
(0.18) 

-0.21 
p<0.00001 

 -0.64 
(p<0.0001) 

 

Spec 
(0.93) 

 +0.04 
(p<0.001) 

 +0.37 
(p<0.0001) 

Retina 
Specialist 3 

Sens 
(0.29) 

-0.10 
(p=0.02) 

 -0.53 
(p<0.0001) 

 

Spec 
(0.90) 

 +0.01 
(p=0.32) 

 +0.34 
(p<0.0001) 

 
 
 
 
  



Supplementary Table 2 | Differences in demographics across sites. The dataset was collected from seven 
separate sites in the London area. Differences in age, sex and ethnicity are reported here for each site. For patients 
that attended more than one site during their history, the site that the patient attended more frequently was used for 
collating this data. Two sites, Darent Valley and Potters Bar have been excluded from the table - these sites had 
EMR data available but without imaging data and were excluded from the dataset after transfer. 
 

Site  Total 
patients 

% of 
dataset 

Age Sex Ethnicity 

Median 
age Mean age % female % male % Asian % Black % Other % 

Unknown % White 

City Road 2092 64.0 79 77.8 59.8 40.2 8.7 2.9 13.0 10.9 64.5 

Ealing 225 6.9 82 80.9 61.8 38.2 23.1 2.2 25.3 1.3 48.0 

Loxford 95 2.9 83 80.9 67.4 32.6 13.7 1.1 4.2 10.5 70.5 

Sir Ludwig 
Guttmann 

45 1.4 79 77.5 57.8 42.2 8.9 2.2 8.9 8.9 71.1 

Northwick 
Park 

266 8.1 84 83.1 62.8 37.2 18.4 1.5 3.4 21.4 55.3 

St. Ann's 96 2.9 81 80.6 62.5 37.5 4.2 3.1 9.4 11.5 71.9 

St. George's 449 13.7 82 80.9 63.3 36.7 6.2 2.0 34.1 5.6 52.1 

 
 
Supplementary Table 15 | Deformation parameters.  Parameters were chosen to provide sensible deformations 
during augmentation of exAMD network inputs. Deformations were consistent across OCT and segmentation inputs. 
Each parameter was chosen carefully to not deform important imaging characteristics but help the model learn 
morphological invariances. Parameters are listed for train and test in the x, y, z axes. Ranges indicate uniform 
sampling done during each augmentation. For a description of each deformation, see 
https://github.com/deepmind/multidim-image-augmentation. 
 

Deformation parameter Train Test 

Control grid spacing (voxels) 101x101x11 101x101x11 

Cropping offset (voxels) [-16,16]x[-16,16]x[-1,1] [-16,16]x[-16,16]x[-1,1] 

Deformation magnitude (um) 7x7x0 1x1x0 

Rotation (angle) 0x0x[-π/12,π/12 ] 0x0x0 

Scaling factors [0.8,1.2]x[0.8,1.2]x1 [0.95,1.05]x[0.95,1.05]x1 

Mirror factor (probability) 0.5x0x0.5 0x0x0 

Shearing coefficient [-0.1,0.1]x[-0.1,0.1]x0 0x0x0 

 


