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ABSTRACT 

 

The main purpose of this paper is the development and validation of a failure 

classification model for UK public industrial companies using current techniques: 

logit analysis and Neural Networks. Our dataset consists of 51 matched-pairs of failed 

and nonfailed UK public industrial firms over the period 1988-1997. Prediction 

models are developed for up to three years prior to the failure event. The models are 

validated using an out of sample period ex-ante test and the Lachenbruch technique. 

Our results indicate that a parsimonious model that includes three financial variables, 

a profitability, an operating cash-flow and a financial leverage variable can yield an 

overall correct classification accuracy of 83% one year prior to failure.  In summary, 

our models can assist managers, shareholders, financial institutions, auditors and 

regulatory agents in the UK to forecast financial distress.  
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Predicting Corporate Failure: Empirical Evidence for the UK 

 
I. Introduction 
 

One of the most significant threats for many businesses today, despite their 

size and the nature of their operations, is insolvency. Extant evidence shows that in 

the past two decades business failures have occurred at higher rates than at any time 

since the early 1930’s. It is also interesting to note that during the 1980’s certain 

sectors of the UK economy, such as small industrial businesses in depressed areas, 

experienced failure rates as high as 50% over a five-year period (Rees, 1995).  

The factors that lead businesses to failure vary. Many economists attribute this 

phenomenon to high interest rates, recession squeezed profits and heavy debt burdens. 

Furthermore, industry-specific characteristics, such as government regulation and the 

nature of operations can contribute to a firm’s financial distress. Studies of patterns of 

business failure in the UK, US, Canada and Australia (e.g. Star, 1990) found that 

small, private and newly-founded companies with ineffective control procedures and 

poor cash flow planning are more vulnerable to financial distress than large well-

established public firms.  

The economic cost of business failures is relatively large. Evidence shows that 

the market value of the distressed firms declines substantially (Warner, 1977). Hence, 

the suppliers of capital, investors and creditors, as well as management and employees 

are severely affected from business failures. The auditors will also face the threat of a 

potential lawsuit if they fail to provide early warning signals about failing firms 

through the issuance of qualified audit opinions (Boritz, 1991; Jones, 1987; Zavgren, 

1983).                  
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 Indeed, the need for reliable empirical models that predict corporate failure 

promptly and accurately is imperative, in order to enable the interested parties to take 

either preventive or corrective action. Although a substantial volume of failure 

prediction studies has been published since Beaver’s pioneering work (1966), research 

interest has also continued in the ’90s, especially in the US. However, in the UK, a 

great deal of research in this area was conducted in the ’70s and ’80s, with research 

interest declining dramatically in the ’90s. One of the most prominent researchers who 

has developed failure prediction models using UK data is Taffler, whose contribution 

in this field has been undoubtedly valuable. The models developed by Taffler have 

performed well in terms of classification accuracy and they have become well-

accepted tools for practical financial analysis in the UK. 

However, the majority of the UK corporate failure prediction studies was 

conducted in the 1980´s using multiple discriminant analysis (MDA) and did not 

examine the usefulness of operating cash flow information despite the fact that there 

has been increasing interest in cash flow reporting in the UK in the past few years  

(FRS #1, 1991, 1996; Charitou and Vafeas, 1998). Work by Mensah (1984) suggests 

that distress prediction models are fundamentally unstable, in that the coefficients of a 

model will vary according to the underlying health of the economy. This, along with 

results reported by other researchers (e.g. Moyer, 1977) suggest that the model 

derivation should be as close in time as possible to the period over which predictions 

are to be made (Keasy and Watson, 1991). Thus, there is a need for the construction of 

corporate insolvency prediction models using the latest possible financial data of UK 

companies. Moreover, although the MDA technique used in the majority of prior UK 
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studies continues to be the focus of much academic research, questions were raised 

about the restrictive statistical requirements posed by the models (Ohlson, 1980).1 

Thus, the main objective of this study is the development and testing of 

reliable failure classification models for UK public industrial firms. The present study 

differs from prior UK studies in the following respects. First, we examine the 

usefulness of operating cash flows in predicting corporate failure. Second, we 

methodologically refine prior UK studies by 1) using a more recent sample of failed 

and nonfailed firms (1988-97), 2) using logit analysis and Neural Networks (NNs) to 

develop the prediction models and 3) using an out of sample period ex ante test as 

well as the Lachenbruch jackknife method to validate the results. 

Our data set consists of 51 matched-pairs of failed and nonfailed UK public 

industrial firms over the period 1988-97. Logistic regression analysis and neural 

networks are used to develop corporate insolvency prediction models for one, two and 

three years prior to the event. The models are validated using a future-dated holdout 

sample and logit models are also validated using the Lachenbruch jackknife technique. 

Our results indicate that a parsimonious model that includes three financial variables, 

a profitability, an operating cash flow and a financial leverage variable, can yield an 

overall correct classification accuracy of 82% one year prior to failure. Moreover, 

contrary to the findings of most prior studies, an operating cash flow variable was 

shown to add to the explanatory power of the models developed.  

This study proceeds as follows.  Section II motivates the study; the research 

design is presented in section III; the empirical results are presented and analysed in 

section IV; conclusions are presented in section V.  

                                                           
1 The multiple discriminant approach (MDA) is based on the following assumptions that are frequently 
violated: a) the independent variables are multivariate normal and b) the covariance matrices of the two 
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II.  Motivation for the study 

 UK is considered a major worldwide economic market. The London Stock 

Exchange has a huge daily volume of transactions that competes against the other 

major international stock exchanges such as New York, NASDAQ, Tokyo and 

Toronto stock exchanges. Hence, researchers contend that the UK provides a financial 

environment ´ideal´ for the successful development of statistical models for the 

assessment of company solvency and performance (Taffler, 1984). However, most 

researchers employed US data to extend the linear discriminant analysis approaches 

developed by Beaver (1966) and by Altman (1968) [see table 1].2   These extensions 

include among others: i) the use of a more appropriate quadratic classifier (Altman et 

al., 1977), ii) the assignment of prior probability membership classes (Deakin, 1972), 

iii) the use of cash flow based models (Gentry et al., 1987), iv) the use of quarterly 

information (Baldwin and Glezen, 1992), v) the use of current cost information (Aly 

et al., 1992). Even though the aforementioned studies provided high classification 

accuracy, they were criticised because MDA models are based on certain assumptions 

that are frequently violated.  

 Since the multivariate discriminant analysis approach has certain limitations, 

Ohlson (1980) applied an alternative statistical method, logit analysis, in predicting 

corporate failure since this method avoids some of the argued limitations of the MDA 

approach.3 Since then, logistic regression has been extensively used for the 

                                                                                                                                                                      
groups (failed and nonfailed) are equivalent.  
 
2 For an in depth review of the corporate failure related literature see Keasey  and Watson, 1991;  
Jones, 1987; Taffler, 1984 and Zavgren, 1983. 
 
3 Logistic regression has the following advantages over MDA models: (Ohlson, 1980, Mensah, 1984): 
a) No assumptions have to be made regarding prior probabilities of failure and the distribution of 
predictor variables, b) the use of such models permits an assessment of the significance of the 
individual independent variables included in the model, c) these models calculate the weight which each 
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development of failure classification models (see table 1). Extensions to Ohlson´s 

study include among others the following: i) the effect of industry-relative ratios on 

the likelihood of corporate failure (Platt and Platt, 1990), ii) distinguishing between 

firms in financial distress and failed firms (Gilbert et al, 1990), iii) development of 

industry specific models (Platt et al., 1994), iv) expanding the outcome space used to 

predict failure to include a third group of financially weak firms in an attempt to 

reduce the misclassification error (Johnsen and Melicher, 1994).   

Neural Networks (NNs) is another technique that has been applied in the 

corporate insolvency prediction area mainly in the last two decades. NNs are computer 

systems that take their inspiration from known facts about how the brain works and 

they can be ‘trained’ to solve certain problems or identify specific patterns. Coats and 

Fant (1993) and Wilson and Sharda (1994) compared the results of multiple 

discriminant analysis against the neural network approach and their results suggested 

that the NNs approach is more effective than MDA in classifying distressed and 

nondistressed firms, whereas Boritz, Kennedy and Albuquerque (1995), after 

comparing two NNs techniques to MDA, probit and logit, as well as against Altman’s 

and Ohlson’s prediction models, found that the two NNs techniques did not provide 

superior classification rates. Similar results were also reported by Laitinen and 

Kankaanpaa (1999), who stated that ‘…, neural networks, is in its present form as 

effective as discriminant analysis was as early as thirty years ago’.   

As far as the UK failure prediction studies are concerned, as already mentioned 

in the introduction, the great majority of them constructed their models using multiple 

discriminant analysis (MDA). Taffler constructed several failure classification models 

                                                                                                                                                                      
coefficient contributes to the overall prediction of failure or nonfailure and produce a probability score, 
something which makes the results more accurate. 



 8 

using this technique (1976, 1977, 1980, 1982). Some UK researchers also examined 

the predictive ability of adjusted historic cost accounting ratios for either general price 

level changes (inflation) or for specific price changes (current cost accounting) (Ketz, 

1978; Norton and Smith, 1979; Keasy and Watson, 1986 etc.). Nonetheless, their 

findings were conflicting. Moreover, notable is also the work by Keasy and Watson on 

small company failure (1986, 1987). Their latter study employed logit analysis for the 

model construction and along with Peel and Peel (1987), Storey et al. (1987) and 

Keasy and McGuiness (1990) are among the few researchers that have used probit and 

logit techniques in the UK. Another interesting UK study is the one by Molinero and 

Ezzamel (1991), who applied multidimensional scaling to corporate failure, a 

technique that produces graphical representations of the structures of the data, thus 

making it possible to acquire an intuitive understanding of its structure. Table 2 

presents the main features of some representative UK insolvency studies.   

However, all the aforementioned studies, regardless of the approached used, 

have one common impediment: they are not based on an economic theory in choosing 

the variables for distinguishing between failing and nonfailing firms. Instead, 

researchers selected financial ratios as predictor variables mainly because of their 

popularity and predictive success in previous research. However, this weakness is 

mitigated to some extent by validating the model with a holdout sample from a future 

time period. This approach was followed in designing the present study. 

As it has already been discussed, one of the major motives of this study is the 

limited research on insolvency prediction conducted in the ’90s in the UK and in 

particular the nonexistence research in this area that examines the usefulness of 

operating cash flow information. The following question, however, can justifiably be 
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raised: Why cannot a model developed from US financial data be used to predict 

failure using UK company data? There exists evidence that a) there are significant 

financial reporting differences between the two countries (Nobes and Parker, 1999) 

and b) US and UK have also different insolvency codes (Franks et al., 1996).  As far 

as UK research on corporate insolvency prediction is concerned, evidence shows that 

this research was undertaken mainly in the 1980´s4. Since the majority of UK 

insolvency studies was conducted in the 1980´s, it can thus be argued that the models 

developed in these studies may not be applicable nowadays since various economic 

changes have occurred in the UK since then. This study employs the latest UK data set 

to develop and test insolvency classification models. In addition, since UK researchers 

employed mainly the MDA approach to develop their empirical models, a method that 

was shown to suffer from certain limitations, we employ two alternative approaches in 

the present study, i.e., logit analysis and NNs. 

 Furthermore, since organisations cannot survive without generating cash from 

their normal everyday operations, we develop several operating cash flow related 

ratios in order to evaluate their usefulness in predicting corporate failure5. Prior US 

studies provided some evidence that these variables add to the explanatory power of 

the insolvency prediction models developed (Gentry et al. 1987; Gilbert et al., 1990; 

Ward, 1994). In contrast, existing UK failure literature evidence reveals that operating 

cash flow variables have not been used in UK insolvency models despite the fact that 

there has been increasing interest in cash flow reporting in the UK in the past few 

years  (FRS #1, 1991, 1996; Charitou and Vafeas, 1998). 

 

                                                           
4 See Taffler (1984) for a review of the failure related literature undertaken prior to the mid-80s.  
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III.  Methodology 

In this section we discuss a) the data set, b) the selection of the predictor variables and 

c) the statistical models used. 

a) Data set  

The majority of corporate failure prediction studies defined failure 

legalistically, since this kind of definition possesses certain advantages (can be 

objectively dated, it provides an objective criterion that allows researchers to easily 

classify the population of firms being examined). This approach is also followed in 

this study, where the selection of sample failed firms was made according to the 

options available for companies as per the Insolvency Act of 1986. This act provides 

five courses of action for insolvent companies: administration, company voluntary 

arrangement (CVA), receivership, liquidation and dissolution. However, due to 

difficulties in finding annual financial statements for the companies that filed under 

the CVA and dissolution, the five insolvency options were limited to the three most 

usual ones (i.e. liquidation, administration and receivership). The failed firms were 

identified from 1) the Compustat (Global) database and 2) the UK insolvency credit 

database. 

 Our final data set consists of 51 failed firms that met the following criteria: 1) 

the company’s shares must have been publicly traded, i.e. the company must have 

been a public limited one (plc) according to the UK Companies Act of 1985, 2) the 

company must have been classified as industrial. Utilities, banks and other financial 

institutions were excluded from the data set since firms in these industries are 

structurally different and their financial reporting practices generally preclude 

                                                                                                                                                                      
5 Net cash flow from operating activities differs from net income for three main reasons: “noncash” 
expenses, timing differences and “nonoperating” gains and losses. 
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combining them with nonfinancial firms in models using financial ratios (Gilbert et 

al., 1990) and 3) sample firms must have had at least 3 years of data prior to their 

failure6. Table 5 presents a list of all failed and their matched nonfailed firms. The 

year of failure and the standard industrial classification (SIC) of the failed firms is also 

presented.                                                                                                                                                         

 The financial information needed for this study was collected from the 

following sources: a) Datastream, b) Compustat (Global), c) Worldscope European 

Disclosure and d) Silverplatter: UK Corporations. Information for failure dates was 

collected from the Wall Street Journal Index (Europe) and from the UK Insolvency 

database. After the sample of failed firms was obtained, a control sample of nonfailed 

firms was drawn.  Moreover, consistent with the majority of prior insolvency 

prediction studies, the insolvent firms were matched with healthy firms by fiscal year, 

industry and asset size7.  

b. Selection of predictor variables 

 Table 4 presents the major financial ratios that were found statistically 

significant in predicting failure in prior research. These ratios were also examined in 

this study. In order to identify the statistically significant ratios, univariate logistic 

                                                           
6 It must be noted that the initial target of this research study was to predict insolvency for up to five 
years earlier, since many researchers have observed that failed companies have different characteristics 
for up to five years prior to their failure (Beaver, 1966; Molinero and Ezzamel, 1991). However, there 
were difficulties in finding an adequate number of failed companies in the databases available which 
had financial data for so many years prior to insolvency. 
 
7 Jones (1987) states the advantages of matching “ Bankrupt firms are often disproportionately small 
and concentrated in certain failing industries. If nonbankrupt firms were drawn at random, there would 
probably be substantial differences between the two groups in terms of size and industry. The result is 
that the model attempting to discriminate between failing and healthy firms may actually be 
distinguishing between large and small firms, or between railroads and other industrials”. A number of 
researchers, though, seems to disagree with the above. Foster (1986) and Taffler (1982) argue that 
matching failed and nonfailed firms by industry, size or financial year end eliminates the predictive 
power of these variables, possibly resulting in a restricted, rather than a general, model of company 
failure.  



 12 

regression was performed for each one of the forty-nine ratios8. Table 6 presents the 

financial ratios that were found to be statistically significant (at the 10% level) in 

univariate analysis. In addition, the forward logistic selection and backward 

elimination methods were applied and different combinations of the ratios were tested. 

The selection of the final set of ratios was based on the statistical significance of the 

estimated parameters, the sign of each variable’s coefficient and the model’s 

classification results.  

c. The logit model 

 The logit model utilises the coefficients of the independent variables to predict 

the probability of occurrence of a dichotomous dependent variable. Specifically, the 

technique weights the independent variables and creates a score for each company in 

order to classify it as failed or healthy. The function considered in logistic regression 

is called the logistic function and can be written as follows:     

Pjt(Y=1) = 1/(1+e-z) = 1/{1+exp[-(b0+b1X1+b2X2+...+bnXn)]}  

where: 

Pjt(Y=1) = Probability of failure (1 for failed companies and 0 otherwise) for 

entity j at the end of year t;  exp =  exponential function;  b1, b2, ... , bn =  slope 

coefficients; X1, X2, ... , Xn =  predictor variables.   

d. Neural Networks 

Neural Networks are inspired by neurobiological systems. Robert Hecht-

Nielsen, inventor of one of the earliest neurocomputers, defines a neural network as a 

computing system made up of a number of simple, highly interconnected processing 

                                                           
8 Statistical analysis was performed with the SPSS (version 8.0) statistical package. Since we did not 
wish our prediction models to be sample depended, the cutoff point used for logistic regression was 0.5. 
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elements which process information by their dynamic state responses to external 

inputs.  

Each processing element receives and combines input signals and transforms 

them into a single output signal. Each output signal, in turn, is sent (from its 

processing element) as an input signal to many other processing elements (and 

possibly back to itself). Signals are passed around the network via weighted 

interconnections (links) between processing elements. Network knowledge is stored 

both in the way the processing elements connect in order to transfer signals and in the 

nature and strength of the interconnections (Coats and Fant, 1993). 

The concept of an artificial neural network has been around since the early 

1940’s (McCulloch and Pitts, 1943). In the mid-1980’s, there was a revival of interest 

in NNs with the publication of the particularly influential Parallel Distributed 

Processing by Rumelhart, McClelland and their colleagues (1986, 1988). In the past 

several years, numerous models, articles, software packages, hardware and 

applications have been developed and it is widely held that NNs represent 

opportunities for enhancing the capabilities of systems that involve pattern recognition 

and classification (Boritz, Kennedy and Albuquerque, 1995). 

NNs have been used successfully in many accounting and financial 

applications9. Dutta and Shekhar (1988) and Surkan and Ying (1991) have applied 

NNs to bond ratings. White (1988) examined the efficient market hypothesis using a 

NN. Hansen et al. used a NN to distinguish between qualified and unqualified audit 

opinions and litigated and non-litigated firms.  

                                                           
9 For a detailed discussion of NNs and their applications in the accounting field, see Trigueiros and 
Taffler, 1996. 
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A major advantage of NNs is their ability to induce algorithms for recognising 

patterns. Unlike traditional models, the NNs approach is considered to be more robust 

in that it is not subject to restrictive statistical assumptions such as the linear relation 

and/or multivariate normality. As such it has an adaptive nature and has the ability of 

expressing non-linear relations (Suh and Kim, 1996). As pointed out by Hawley et al. 

(1990), the NN approach can be most effectively applied to such tasks as classification 

and clustering where problem-solving environments are unstructured with incomplete 

data. 

However, NNs also present some drawbacks. First, they do not provide the 

contribution of each variable to the final classification (i.e. the variable’s 

significance). Thus, it is impossible for an investigator to select the most significant 

predictor variables for the model development with the NNs approach. In addition, the 

investigator must decide upon the physical architecture of the network. This is often 

done by trial and error, varying the number of layers, the number of processing 

elements in each layer, the nature of the connection patterns etc. Moreover, the danger 

of over-parameterisation of the models is always present and finally, derived weights 

are not readily interpretable as with discriminant or logit analysis (Trigueiros and 

Taffler, 1996).     

 

IV.  Empirical results 

In this section we discuss a) descriptive statistics, b) univariate analysis, c) the 

multivariate logistic regression models, d) the validation of the logit models, e) the 

application of Altman’s variables, f) neural networks results and g) comparison of the 

all results. 

a) Descriptive statistics 
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 A basic step for the analysis of the data is the identification of any significant 

differences between the two groups of companies (i.e. failed and nonfailed). Initially, 

this was accomplished through the calculation of the significant descriptive statistics 

for all financial ratios used in the study. In figure I we present the median of three 

representative statistically significant variables over the three-year period prior to the 

year of failure.10  First, the medians of all three variables differ between the two 

groups of firms. Second, the medians of the CFFOTL (cash flows from operations to 

total liabilities) and EBITTL (earnings to total liabilities) for the insolvent group 

present a decreasing trend as the year of failure approaches, whereas the medians of 

the healthy firms do not follow any specific pattern. This observation is consistent 

with our expectations (i.e., cash flow and profitability measures are negatively related 

with the probability of failure). Third, the median of the TLTA variable (total 

liabilities to total assets) presents an increasing trend as the year of failure approaches, 

whereas it remains relatively stable for the healthy firms. This observation is also in 

accordance with our expectations, i.e., that financial leverage is positively related to 

the probability of failure.11    

b) Univariate analysis 

 The objective of the univariate logistic approach is to evaluate the predictive 

ability of each variable for one, two and three years prior to failure (Beaver, 1966). 

Table 6 presents the univariate results for the statistically significant12 variables one 

year prior to failure. Data for the period 1988-94 are used to test the variables. 

                                                           
10 We have also observed the trend of the median and mean of all variables used in the study. The 
results are consistent with our expectations. These trends and the descriptive statistics of all variables 
are available upon request. 
 
11 Prior to testing the final multivariate regression models we also performed correlation analysis and 
multicollinearity tests (Variance inflation factors and pairwise correlations) [Dielman, 1996]. 
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Univariate results show that financial leverage, cash flow, liquidity, profitability and 

activity ratios can be used to predict failure. Several variables are shown to have at 

least 80% classification accuracy one year prior to failure. It should be noted that the 

financial leverage ratios provide the highest univariate classification accuracy. More 

specifically, the retained earnings to total assets ratio (REAT) achieves nearly 90% 

overall correct classification for the training sample for the first year prior to failure 

and it retains its strong classification accuracy in the other two years (84.09% and 

84.56% respectively).13 The findings for the financial leverage variables are not so 

surprising if one considers the fact that one of the main reasons that firms become 

insolvent is their inability to meet their heavy debt burdens. Relatively high overall 

classification accuracy is also provided by the profitability ratios for all three years 

prior to failure. The earnings before interest and taxes to total liabilities ratio 

(EBITTL) provides 85.42% overall correct classification rate for the first year prior to 

failure.  Moreover, the operating cash flow variables (operating cash flows to current 

liabilities, CFFOLCT; and operating cash flows to total liabilities, CFFOTL) are both 

statistically significant and they achieve 67% and 69%, respectively, overall correct 

classification. In summary, univariate analysis is a useful tool for the identification of 

the potential predictor variables that will ultimately be part of the multivariate 

model14.    

c) The multivariate logistic regression model 

                                                                                                                                                                      
12 The level of significance used is 10%. 
13 Results for two and three years prior to failure are consistent with our expectations and can be 
provided upon request. 
 
14 Nonetheless, the variables that are statistically significant in a univariate model will not necessarily 
enter in a multivariate model due to the following: a) multicollinearity problem and b) a variable may 
not add significantly to the overall predictive power of the model due to the presence of some other key 
variables, despite the fact that it provides high classification accuracy if included alone in the model. 
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 Besides the univariate (simple) logistic regression presented in the previous 

section, the selection of the significant predictor variables was also made using the 

forward selection and backward elimination methods. These two techniques are 

particularly useful since a) they select variables based on the Likelihood Ratio test, 

and, b) they avoid the multicollinearity problems that it is possible to arise with the 

inclusion of many variables. Finally, nearly all the possible combinations of the 

remaining variables were examined. Care, however, was taken for the variables’ 

coefficients to be significant at the 10% level of significance, for the sign of each 

variable’s coefficient to be in accordance with the one stated in the hypothesis and 

finally for the model to provide high classification results. 

Panel A of table 7 presents multivariate logistic regression results one, two and 

three years prior to failure using data for the period 1988-94. Results show that the 

statistically significant predictor variables that entered the multivariate model are: 

cash flows from operations to total liabilities (CFFOTL), earnings before interest & 

taxes to total liabilities (EBITTL) and total liabilities to total assets (TLAT).  

Interestingly, this is a parsimonious model that includes only three variables that 

represent the main categories of financial ratios, i.e. operating cash flow/liquidity, 

profitability and financial leverage ratios. Results also show that the debt ratio 

(TLAT) is positively associated with the probability of failure, whereas the 

profitability (EBITLT) and the operating cash flow (CFFOTL) variables are negatively 

related to the probability of failure. These results are consistent with our expectations. 

Moreover, consistent with univariate evidence, these results show that the debt ratio 

(TLAT) is the most significant variable. This variable alone provides 83.33% correct 

classification. The overall correct classification of the multivariate model for the first 

year prior to insolvency is 93.75%. The type I and type II error rates are 8.33% and 
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4.17% respectively.15  However, in order to examine the model’s external validity, the 

model should be tested against a holdout sample. This testing approach is discussed in 

the next section.    

Multivariate results for the logit model two years prior to insolvency show that 

the model classifies correctly 84.09% of the firms. The type I and II error rates are 

18.18% and 13.64%, respectively.   Finally, multivariate logit results three years prior 

to insolvency show that the model classifies correctly 69.44% of the firms. The type I 

and type II error rates are 33.33% and 27.88%, respectively.  In summary, consistent 

with prior empirical evidence, the highest correct classification rate is achieved in the 

first year prior to failure. 

SPSS statistical package produces two statistics that are roughly equivalent in 

interpretation to the R2 in linear regression: Cox and Snell’s R2 and Nagelkerke’s  R2. 

The former has the disadvantage that for discrete models (such as logistic regression), 

it may not achieve the maximum of one, even when the model predicts all the 

outcomes perfectly. Nagelkerke’s  R2 is an improvement of Cox and Snell’s R2 that 

can attain a value of one when the model predicts the data perfectly. Thus, only 

Nagelkerke’s  R2 is reported (table 7) for all three models prior to failure. The 

interpretation is that the models explain about 88%, 49% and 40%, for each of the 

three years, of the variation in the data. However, there is no formal test that can tell 

us if these percentages are sufficient or not.   

A more widely used statistic for logistic regression models is the Likelihood 

Ratio test. This test checks if the null model (i.e. the model that only includes the 

constant term) fits the data as well as the fuller (final) model. In other words, it tests if 

                                                           
15 Type I error is the misclassification of a failed firm as healthy and Type II error is the 
misclassification of a healthy firm as failed. 
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the variables included in the final model are significant in explaining some of the 

variability in the data. Table 7 (Panel A) presents the Likelihood Ratio tests for the 

multivariate logistic regression models along with their respective significant levels. 

In all three models, the test is significant at the 1% level, indicating that the variables 

included can explain a significantly large proportion of the data variability.  

Finally, to assess the concordance between observed and predicted, a 

Goodman-Kruskal coefficient of association was calculated (table 7). The result is 

0.99 and 0.93 for the first two years, which are both very high and significantly 

different from zero at the 99% level. This coefficient, as expected, reduces to 0.68 in 

the third year. 

d) Validation of the Logistic Regression Model 

 Validation tests examine the ability of classification models to predict failure 

among a new set of companies. Prior studies used various validation methods, among 

those 1) an out of sample period ex ante test (forecast test), and 2) the Lachenburch 

jackknife method. These methods are employed in the present study.  

1. Forecast validation test                        

 The external validity of the multivariate logit model discussed in the previous 

section is tested by using an out of sample period ex ante test.16 In testing the logit 

model that was developed using data for the period 1988-94, we use an equal sample 

of insolvent and healthy firms for the period 1995-97 (a total of 26 insolvent and 26 

matched healthy firms). The overall correct classification results one, two and three 

                                                                                                                                                                      
 
16 As Jones (1987) comments, if a holdout sample is obtained from a later period, one can test for both 
overfitting and a violation of the stationarity assumption. The stationarity assumption implies that the 
relationship between the independent variables and the dependent variable will hold over time. Thus a 
number of researchers tested their models on a sample obtained from a later period (Platt and Platt, 
1994; Mensah, 1984). 
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years prior to failure are 80.95%, 73.81%, and 72.92%, respectively (table 9). 

Goodman-Kruskal γ statistic also yields in high values (0.90, 0.79 & 0.82), which are 

all significant at the 1% level, thus indicating a very good association between the 

observed and predicted.  It is also interesting to note that in all years tested, the type I 

errors rates are much lower than the type II error rates. More specifically, the average 

type I error rate for all three years tested is about 15%, whereas the average type II 

error rate is 32%. This finding is very important since the cost of the two types of 

error rates differ. Altman et al. (1977) estimated type I error rates to be 35 times as 

costly as type II error rates. 

 In summary, the validation results of our study indicate that a parsimonious 

model with three variables, a profitability, a financial leverage and an operating cash 

flow/liquidity variable can provide reasonably good results in predicting financial 

distress in the UK. Another merit of this model is that its type I error rate is lower than 

the type II error rate. 

2. Lachenbruch jackknife method 

A statistical technique widely accepted for model validation is the 

Lachenbruch jackknife method. This method is particularly useful to researchers who 

deal with relatively small sample sizes, since the entire sample can be used to derive 

the parameters and a model is then constructed using n-1 observations. The model is 

then used to predict the remaining observation. The process is repeated n times and 

the percentage misclassified is used to estimate the misclassification rate. According 

to Lachenbruch (1975) this method gives an almost unbiased estimate of the 

misclassification rate so that the statistical overfitting problem will be accounted for. 

However, jackknife method does not provide the test of external validity that a 

holdout sample offers (Jones, 1987).  
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Thus, as mentioned above, the first step was to derive three failure prediction 

models (one for each year prior to insolvency) using the entire sample of both 

insolvent and healthy firms17. In order to be consistent with the multivariate logit 

model developed earlier, the same three variables (TLTA, EBITTL & CFFOTL) were 

used. Panel C of table 7 presents the average classification results of this model one, 

two and three years prior to failure, which are 85.56%, 73.26% and 70% for each year, 

respectively18. The second step was the application of the jackknife validation method. 

Table 9 presents the validation (testing) results of this method. The correct predictions 

one, two and three years prior to failure are 82.22%, 72.09% and 70%, respectively. 

These overall correct predictions are similar to those reported when we use the 

forecasting logistic method (see table 9).  

e. Application of Altman’s variables 

 The insolvency prediction model developed by Altman (1968) has been 

commonly applied in finance and accounting research. Furthermore, Altman´s model 

has been used extensively by both academics and practitioners as a standard of 

comparison for subsequent insolvency classification studies (Wilson and Sharda, 

1994; Coats and Fant, 1993).  Thus, an attempt is also made in this study to examine 

whether Altman’s significant variables can yield high classification results when they 

are applied to a more recent UK data set using the logistic regression technique.  

Table 7 (Panel D) presents the training of Altman’s variables. It is interesting 

to note that for the first year the model achieves the same classification results for the 

training sample as the logit model (Panel A). However, only one (MKVALDT) out of 

the five variables is significant at the 5% level. The overall results for the second year 

                                                           
17 90 observations were used for the construction of the first model, 86 for the second and 80 for the 
third.  
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are quite lower, as expected, but they are still satisfactory. Surprisingly, third year 

overall classification results are marginally higher than the second year’s and they 

achieve the highest overall correct classification when compared with the two 

previous models (Panel A and Panel C).  Type I error is lower than Type II in both 

years and only the leverage variable (REAT) is significant. Goodman-Kruskal γ 

statistic yields in high values (0.94, 0.80 & 0.81), which are all significant at the 1% 

level. The Likelihood Ratio test statistic indicates that the model significantly explains 

the variability in the training data set.  

The external validity of Altman’s model was tested by using the same future-

dated holdout sample (1995-97) that was used for the validation of the logit model. 

Table 9 summarizes the results. Overall classification is high for the first year prior to 

failure (82.50%), but declines substantially in the other two years (62.50% and 68%). 

Thus, Altman’s variables do not seem to perform that well when they are applied to a 

more recent UK data set, the main reason being the fact that these variables were 

selected by using an outdated US financial information.   

f) Neural Networks 

 To validate and complement the prediction performance of the logit model, 

feedforward neural networks with conjugate gradient training algorithm were 

employed19. A feedforward neural network consists of a set of input nodes that 

constitute the input layer, one or more hidden layers of neurons and an output layer of 

neurons. The network used in this study consists of three layers, the input layer, the 

hidden layer with a number of hidden neurons and the output layer with a single 

                                                                                                                                                                      
18 This model, for convenience, it is referred to as the Jackknife model. 
19 The NNs analysis was performed using the Matlab programming language.  
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neuron. The hidden layer uses the hyperbolic tangent sigmoid activation function fh(.), 

while the output layer uses the log-sigmoid activation function. 

  Panel B of table 7 presents the neural networks training (1988-94) 

classification results for one, two and three years prior to failure, while table 8 shows 

the final weights of the training phase of the feedforward networks. NNs provide 

higher overall classification results for the first and third year when compared to the 

logit model (95.83% vs. 93.75% and 75% vs. 69.44% respectively), while the 

classification for the second year remains the same at 84.09%. Interestingly, NNs also 

reduce significantly the type I errors for all three years prior to failure, providing no 

such error in the first year. Type II errors, however, increases for the first and second 

year, while it remains the same on the third year (27.8%). 

 The external validity of the three NNs models is examined by means of the 

same future-dated data set (1995-97) as the one used to test the logit model. The 

resulting classification results are presented in table 9. As expected, the overall correct 

classification results for the first two years are significantly lower to the respective 

ones of the training data set, but, surprisingly, this classification remains the same for 

the third year at 75%. Moreover, in all three years the overall testing classification 

results of the NNs models are a bit higher than the ones of the logit models.  

 Another interesting observation concerns the type I errors: while NNs 

significantly reduce this error in the first year (9.52% vs. 14.29%), they provide higher 

errors for the other two years when compared to the respective ones of the logit 

models. Type II error rates remain the same on the first year, while they significantly 

decrease on the second and third year.  

g) Comparison of validation results 
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 This section compares the testing results (overall correct classification, type I 

and type II error rates) derived from the four alternative failure prediction models 

developed in this study. Table 9 summarises the results of these methods. As far as the 

overall correct classification is concerned, NNs were proved to be superior as they 

provided the highest prediction results in all three years prior to insolvency. Altman’s 

model and jackknife validation model came second best for the first year, having 

approximately 1% difference with the NNs model. However, as far as the other two 

years are concerned, the logit model provided the second highest classification results, 

whereas Altman’s variables performed the least well. 

 Since a type I error is more costly than a type II one, researchers tend to prefer 

prediction models that minimise type I errors. Table 9 shows that Altman´s variables 

provide the lowest type I error rates for the first two years prior to failure (NNs also 

yield to approximately the same error rate as Altman’s model on the first year). 

Nonetheless, as the type II error rates are very high (25% and 60% respectively) this 

model proves to be quite inappropriate. Table 9 and figure II also show that the 

forecasting test (i.e. the so-called logit model) provides the lowest type I error rates 

(on average 15% in all three years tested), whereas the NNs models yield in slightly 

higher type I error rates (on average 17%).  

In summary, comparing the above results we conclude that the forecasting 

approach along with the NNs can be sound alternative failure prediction models for 

practical application purposes, since, despite the fact that they were tested on an out of 

sample period ex-ante test, they still led i) to high overall prediction rates and ii) to 

low type I error rates. 
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V.   Summary and Conclusions 

The primary objective of this study was the development and testing of 

insolvency prediction models for UK public industrial firms. Even though several 

researchers attempted to develop failure prediction models, most of them used US 

data. In the UK the majority of failure prediction studies was conducted in the ’70s 

and ’80s using discriminant analysis and ignored the role of operating cash flows in 

predicting failure. Therefore, the need for a failure prediction model development and 

validation using more recent UK financial data, including operating cash flow 

information, is indubitable.  

Our data set consists of 51 matched-pairs of failed and nonfailed UK public 

industrial firms covering the period 1988-97. A parsimonious model including three 

financial variables (a profitability, a financial leverage and an operating cash flow) 

was developed based on a univariate and subsequently forward selection and 

backward elimination logistic regression analysis. The same three variables were also 

used for the development of alternative prediction models using feedforward neural 

networks. A forecasting test was employed to validate the models developed with the 

two methods (i.e. logit analysis and NNs). The logit models were also validated using 

the Lachenbruch jackknife method. Both approaches yielded in high prediction results 

one, two and three years prior to failure. However, the forecasting test results could be 

considered somewhat superior because even though this method is based on a future-

dated sample test, its type I error rates were relatively low for both the logit and the 

NNs models. NNs achieved the highest overall classification results for all three years 

prior to insolvency, with average classification of 78% (see figure II). The logit model, 

though, although it achieved a lower percentage of overall correct classification 

(average of 76%), it resulted in slightly lower type I error rates (average of 16% vs. 
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17% of the NNs). Hence, we can deduce that both these models can be reliable 

alternatives for insolvency prediction in practical applications. 

Moreover, in contrast to prior studies, our results indicate that operating cash 

flows play an important role in predicting failure. Furthermore, the potential 

application of the model developed by Altman (1968) was also examined, but the 

validation results were relatively low, indicating that this model may not be applicable 

to a more recent UK data set. In summary, our study extends prior studies in the 

following respects: First, we examine the usefulness of operating cash flows in 

predicting corporate failure. Second, we methodologically refine prior UK studies by 

a) using a more recent sample of failed firms (1988-97); b) using logistic regression 

and neural networks to develop the prediction models; c) using an out of sample 

period ex ante test, as well as the Lachenbruch jackknife method to validate the 

results. However, a limitation of this and all prior failure prediction studies is that the 

models are not based on any economic theory in choosing those factors that predict 

failure. Even though it is evident that the extant distressed prediction studies are 

mainly application driven, the development of a theoretical framework for failure 

prediction still remains. 
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