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predicting county‑scale maize 
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Maize (corn) is the dominant grain grown in the world. Total maize production in 2018 equaled 1.12 
billion tons. Maize is used primarily as an animal feed in the production of eggs, dairy, pork and 
chicken. The US produces 32% of the world’s maize followed by China at 22% and Brazil at 9% (https 

://apps.fas.usda.gov/psdon line/app/index .html#/app/home). Accurate national-scale corn yield 
prediction critically impacts mercantile markets through providing essential information about 
expected production prior to harvest. Publicly available high-quality corn yield prediction can help 
address emergent information asymmetry problems and in doing so improve price efficiency in futures 
markets. We build a deep learning model to predict corn yields, specifically focusing on county-level 
prediction across 10 states of the Corn-Belt in the United States, and pre-harvest prediction with 
monthly updates from August. The results show promising predictive power relative to existing 
survey-based methods and set the foundation for a publicly available county yield prediction effort 
that complements existing public forecasts.

In the 2001 Nobel Prize winning paper “�e Market for  Lemons2”, George Akerlof develops a model of a second-
hand car market where asymmetric information exists, sellers know the quality of their cars but the buyers do 
not. Buyers o�er a price based on the expected quality of the car, this price includes the possibility that the car 
is of poor quality and is less than the price of a high quality car. As a result, sellers of the high-quality cars worth 
more than the average price will exit the market, driving the proportion of low value cars up, thus pushing o�er 
prices further down. Eventually, only “lemons” are le� in the market and the market collapses. Akerlof shows that 
the key to this collapse is information asymmetry (i.e., in this case sellers have more information than buyers do).

Recently, many public crop production forecasts are becoming private. In 2015 and 2016, Descartes Labs 
provided publicly available corn yield predictions. �ese were within one bushel of the �nal  number3. �at 
same year the Lab formed a partnership with Cargill, a large grain trader, and Descartes stopped publishing the 
information. �e partnership became public in  20184. In 2016 and 2017, TellusLabs provided excellent pubic 
predictions of US corn  yield5 . TellusLabs stopped publishing the yield forecast a�er merging with IndigoAg a 
major grain trader. Similarly in 2011, the futures market in pork bellies stopped functioning because the volume 
of trade had fallen signi�cantly. One company, Smith�eld, was producing and selling 30% of the bellies and had 
excellent information on worldwide demand and supply. �e other traders could not compete with Smith�eld’s 
knowledge base and they stopped trading. In 2019, the market moved before the USDA released its  information6 
. �is suggests that some private forecasts knew what the NASS yield estimate would be. �is is a classic example 
of the information asymmetry problem.

One solution to information asymmetry is to provide public information to all participants in the market at 
the same time. �e United States Department of Agriculture (USDA) has been predicting national corn yield 
and production every year since 1964, providing consistent, publicly available and unbiased information to all 
stakeholders. �e main method they use to create this information is survey based. Additionally, they deploy 
enumerators who make �eld visits in important corn production areas. �e results from this traditional survey 
method is subjective since it is the farmer’s estimation of his/her yield at the point the survey is taken. USDA has 
tried new sources of data collection including satellite imagery from MODIS (moderate resolution imaging spec-
troradiometer) from NASA. However, as of fall 2018, USDA continues to rely primarily on the survey-based data.

Several private companies, such as  Lanworth7, Tellus  Labs8 and Climate  Corp9, are probably in a position to 
improve on the USDA survey. In contrast with the monthly state-level prediction from USDA, these companies 
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set up plant growth models based on weather information and expert knowledge, monitor satellite imagery 
and weather patterns, and incorporate as many independent lines of evidence as possible into their estimates to 
produce daily yield estimates of both individual farms as well as aggregated estimates at the county scale. Corn 
futures traders in the Chicago Mercantile Exchange who have preferential access to this information may be 
in a position to make pro�table trades to the detriment of traders who do not have access. Corn futures prices 
have a strong negative correlation with expected corn yield. If a company or individual can predict yield more 
precisely, they will have better information about futures prices and can speculate better in the futures market, 
therein causing an information asymmetry problem.

Our motivation is to provide the public with a high-quality corn yield prediction that can substitute for private 
information from companies, thus eliminating information asymmetry in the corn futures market in the long 
run. We attempt to do so by improving the accuracy and quality of USDA predictions. Two limitations of USDA 
predictions are that they only o�er state-level, but not county level predictions, and that USDA only publishes 
four monthly prediction reports annually instead of a daily early prediction during the corn-growing season. In 
this paper, we utilize advanced machine learning techniques to provide monthly Corn-Belt corn yield predictions 
at the county level. �is method can also be used to provide a daily update on expected yield.

Background knowledge. Corn is mainly grown in the midwestern part of the United State, in an 
area called the Corn-Belt. (Corn belt de�nition, https ://digit alcom mons.unl.edu/cgi/viewc onten t.cgi?artic 
le=2848&conte xt=usdaa rsfac pub.) �e region is characterized by level land, deep fertile soils, and high organic 
soil  concentration10. �e Corn-Belt includes Iowa, Illinois, Indiana, southern Michigan, western Ohio, eastern 
Nebraska, eastern Kansas, southern Minnesota and parts of Missouri. Corn is typically planted in April and 
harvested in October. �e USDA reports the nationwide county level corn yield in late February of the follow-
ing year. �e USDA provides a monthly estimate of expected yield beginning in August. Farmers use the corn 
futures contract as a way to reduce risk. �ey accomplish this by selling a portion of their expected production at 
a set price before harvest commences. At the time of writing (7/30/2019) total volume of short (sold) futures on 
the Chicago corn futures market equaled 1,776,475  contracts11. Each contract is for 5,000 bushels. To put this in 
perspective this volume of sold corn represents approximately 60% of 2018 US corn production of 14.63 billion 
 bushels12. �e corn futures price depends heavily on the expected harvest volume, which in turn depends on the 
weather during the growing season.

Related work. Beginning in the early 2000, groups started using traditional machine learning (ML) meth-
ods for yield prediction, and Basso and Liu review the recent progress on the yield  forecast13. Basso et al.14 add 
spatial measurements—remote sensing in crop models. Remote sensing provides spatial inputs for the model 
and results show that a combination of crop model and remote sensing can identify management zones and 
causes for yield variability. Charles et al.15 use a spatial Bayesian regression model to predict maize yields in the 
Corn Belt. �ough spatial smoothness among the regression coe�cients will mitigate the e�ects of noisy data 
across regions and improve yield forecasting, their results indicate that corn yield prediction still remains a dif-
�cult problem. Gerlt et al.16 studied the relationship between farm-level yields and county-level yields by exploit-
ing the fact that county-level yields are the aggregate of farm level yields to derive bounds that can be reduced to 
direct relationships between county- and farm-level yields under certain conditions.

Early research activities created ML models using discrete weather variables. �ese models, however, do not 
account for the long-term dependencies between (continuous) weather variables and �nal yield. A pressing ques-
tion has been to develop and deploy methods that could provide insight into whether and how each point along 
the weather time series in�uences the �nal yield. In this regard, recent advances in data science and machine 
learning can help resolve this critical agricultural economics  problem17,18. Here, we use Long Short-Term Memory 
(LSTM)19, a special form of Recurrent Neural Network (RNN)20–22 to accomplish this. �e e�ciency of LSTM 
networks in capturing long-term dependencies in multivariate time series with complex inner relations makes 
them a natural �t for this problem. Although LSTM is a promising and very popular deep learning approach, 
its use has remained particularly focused to applications in natural language processing. Our work is one of the 
�rst to apply LSTM in crop yield prediction, illustrating its potential for solving other prediction problems, and 
to improve the accuracy of publicly available corn yield prediction.

�e selection of variables plays a prominent part in determining the quality of any predictive model. In this 
context, production agriculture contains a rich body of work that provides domain knowledge regarding impor-
tant input variable in selection and preprocessing. For instance, the  work23 (“�e Seven Wonders of the Corn 
Yield World”), indicates that weather holds the �rst place among the seven “wonders” a�ecting corn yield. �e 
key determinants of weather include rain, temperature, wind and humidity. Early work focused on �tting linear 
models to explore trends and patterns in crop yields associated with  weather24–26. Recent work has shown that 
some weather variables (like temperature and water/drought) have nonlinear e�ects on corn  yield27,28. �ere 
also exists another category of yield prediction using remote  sensing29 which we do not consider for this study.

�is sets the stage for ML models that can model both linear and non-linear e�ects without any hand cra�ing 
of parametrization. Some of the early work includes work by Monisha and Robert (2004) who used an arti�cial 
neural network (ANN) model with rainfall data to predict corn and soybean  yield30. Newlands and Townley-
Smith31 apply a Bayesian Network (BN) to crop yield prediction and used it to produce distributional forecasts 
of energy crop yield, and this was extended by Chawla et al.32 showed to predict county-level corn yield. More 
recently, Kim et al. (2016) use four machine learning approaches for corn yield estimation in Iowa—SVM (Sup-
port Vector Machine), RF (Random Forest), ERT (Extremely Randomized Trees), and DL (Deep Learning)—and 
utilize satellite images and climate data as explanatory  variables33. With di�erences between their predictions 
and USDA statistics about 6–8%, they persuasively conclude that machine learning is a viable option for crop 
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yield modeling. �ese prior e�orts set the stage for a continuous variable based ML yield prediction model that 
can also provide in-season monthly updates to the predicted crop yield.

Results
Data collection. We collected publicly available historical data for ten states in the Corn-Belt: Iowa, Illinois, 
Indiana, Minnesota, Nebraska, Kansas, Michigan, Ohio, Missouri, and South Dakota. All data is from 1980 to 
2016. �e data range is restricted due to availability of weather data. �e �rst 33 years are selected as the train-
ing data, while the most recent four years are used as testing data to explore the model’s predictive capability. As 
Iowa is the dominant corn planting state, we use it as our primary model testing state. �e data collection process 
consists of two parts: collection of raw data and feature selection and preprocessing.

Yield data. Historical corn yield data is collected through Quick Stats from the National Statistics Service 
(NASS)34 for 37 years. Corn yield data is collected yearly at the county level. Taking Iowa as an example, this 
data consists of yearly information for each of the 99 counties in Iowa, resulting in 37 × 99 = 3,663 records of 
historical yield data available, with 3,267 of them acting as training samples. It should be emphasized that corn 
yields increase through time due to genetic gain (Fig. 1(a)). �erefore, we adjust the historical corn yield onto 
a uniform projected yield (similar to ‘in�ation adjusted’ costs). We consider two methods of this adjustment: 
In the �rst approach we use a 1.5% annual yield increase, which is the standard number used by agricultural 
 experts35. In the second approach, instead of a percentage increase, we use an absolute increase corresponding 
to genetic gain of 2.5 bu/ac per year from 1980 to 2000 and 4.67 bu/ac per year a�er  200036. (We try both adjust-
ments in our model; however, that raises a few more concerns. Which year should the yield be adjusted to? Will 
that in�uence the prediction results? If all yields are adjusted to the 2015 base year, will the 2015 prediction be 
better than other years? To answer these questions, we train our model with corn yield adjusted to both 2013 
and the 2015 base year. �e results show that there is no evidence for such concerns. �us, we de-trend all the 
yield data into 2013 base).

Weather and soil data. �ree types of input variables associated closely with corn yield are available. �ey are 
hourly weather data, soil quality data and soil moisture data. �e hourly weather data was purchased from a 
weather data company—Weather  Underground37. �e data is a quality controlled and each data point is a 19 × 19 
mile area spatially representative snapshot. We note that this is more accurate than the commonly used weather 
station data which measures weather at one central point. We use weather data from April to October to re�ect 
the growing season in the Corn-Belt.

Weather variables impact yield in non-trivial ways. For instance, rainfall in the growing season may result 
in high yields, but extensive rainfall and �ooding resulting in standing water can signi�cantly reduce yield. 
Similarly, high wind speed can damage corn crops by uprooting plants, but in moderation can increase evapo-
transpiration. Temperature has the most complex impact on yield with the maximum, minimum and the mean 
temperature all in�uencing yields. Plant physiologists use a concept called Growing Degree Days  (GDDs)38 
to quantify this complex impact of temperature on plant development rates and yield. GDD are calculated as 
GDD =

Tmax+Tmin

2
− Tbase where Tmax = min (86 °F, daily maximum temperature), and Tmin = max (50 °F, daily 

minimum temperature). Here, Tbase is the minimal temperature (set to 50 °F for corn) over which photosynthesis 
is active triggering growth. Finally, we note that the cumulative GDD seen by the plant also in�uences the �nal 
yield.

Figure 1.  Background introduction: (a) Nationwide corn yield from 1980 to 2016, and (b) Iowa crop reporting 
district map (courtesy: https ://www.icip.iasta te.edu/sites /defau lt/�les /uploa ds/image s/ region_maps/crop_
districts.jpg).

https://www.icip.iastate.edu/sites/default/files/uploads/images/
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Soil moisture has a critical impact on corn yield. �e Palmer Drought Severity Index (PDSI)39 is a long-term 
cumulative measure of water availability in the soil. It is a standardized index that spans − 10 (dry) to + 10 (wet). 
0 stands for a normal moisture condition, negative shows the soil is dry and positive means there is surplus water. 
PDSI uses temperature data and a physical water balance model to capture the basic e�ect of global warming 
on drought. PDSI is monthly data downloaded from the National Oceanic and Atmospheric Administration 
(NOAA) at the Crop Reporting District (CRD) level (Fig. 1b). We assign PDSI values to all counties within each 
district (i.e. counties in the same CRD has the same PDSI value).

Finally, soil  quality40 data is collected from the SSURGO  database41 (database for storing gridded soil survey 
results) and aggregated to the county level using only areas classi�ed as cropland according to the  NLCD42 
(National Land Cover Database). For continuous variables, we aggregated to the county level by taking the 
spatial average. Nathan Hendricks at Kansas State University completed this spatial averaging and kindly made 
it available to us. His procedure for averaging he data is described  here43. �e data covers the whole Corn-Belt 
region at county level. �ere are over one hundred variables in this dataset. Each variable is a constant number 
for each county, since soil quality typically does not change over time. We pick fourteen variables most related 
to corn yield (Fig. 2a) from this dataset. Among these, root zone for water storage and soil drought vulnerability 
are considered the most two signi�cant soil variables.

Variable selection and data preprocessing. �e time series of input variables are expressed in a daily 
format. Each county for each year is one data point containing yield as the output variable and the correspond-
ing input time series collected from April to October. Considered on a daily basis, the length of the input time 
series, {xt} , is t = 214. Choosing a �ner granularity (i.e. hourly data) for the input was not promising due to two 
reasons, (a) with only 3,267 training samples, considering hourly time series (with a corresponding t = 5,136) let 
to too many parameters to viably estimate, and (b) daily weather data is able to track plant physiological response 
fairly well.

Variable selection. �ere are totally twenty-eight candidate input variables. In addition to the fourteen soil 
quality variables and PDSI, we also include max/min/mean temperature for each day, total daily rainfall, daily 
average wind speed, max rainfall during the day, accumulated rainfall and GDD accumulated up to that date. 
Since July is considered to be the most important month for corn  growth44, rainfall and max temperature in July 
are also included. �e ratio of acres planted for corn divided by the total acres planted may also help predict corn 
yield since farmers in corn intensive counties will specialize in corn management techniques and management. 
Two interaction terms (max temperature x soil droughty and max x PDSI) are also included. �e idea behind this 
is that at high temperatures soil moisture will be more important than at low temperatures.

First, we trained the model using all these 28 variables. Our county level yield predictions turned out to be 
almost constant (at the county average). We subsequently used  MRMR45 (minimum redundancy maximum 
relevance), a feature selection method introduced in Peng (2005). Using MRMR, we eliminated variables with 
low rank. Based on some additional model exploration and domain expertise, we arrived at the “best” ten input 
variables for corn yield prediction. �ese are max/min/mean temperature, total daily rainfall, wind speed, soil 
root space for holding water (rootznaws), soil droughty vulnerability (droughty), PDSI, accumulative rainfall 
and GDD.

Data augmentation. Even when using daily as opposed to hourly input series, 3,267 training samples are still 
not good enough for good training. A standard approach is to perform data augmentation. We perform data 
augmentation by considering pairs of nearby counties (in the same CRD) and take the average of their yield and 
input variables respectively, to create a new sample data. With this strategy, the total number of training data 
increases up to 70,026. (We emphasize that these combination samples are meaningful and reasonable since 
PDSI is also collected at the CRD level and all other data are also average numbers for county area (the most 
precise data point should be each farmland, which is not available).

Ten input variable sequences are stored in the format of 3D tensor cube for LSTM training. Figure 2 is an 
example of 3D tensor cube. X-axis indicates the number of the input variables, Y-axis is the length of the time 
series and Z-axis shows the number of samples. Hence the dimension of our 3D tensor is 10 × 214 × 70026 . 
(PDSI is monthly data, so it repeats the times of number of days in each month. While rootznaws and droughty 
repeat 214 times since they are constant).

Yield prediction results. We train separate models for each state with both percentage and constant 
adjustment. Our results indicate that percentage adjustment works much better for the whole Corn-Belt. Fig-
ure 3 shows our county-level prediction result for several states. Absolute errors between our prediction and the 
true value is calculated and represented as dots in the �gures for each year. �e results indicate that over 80% of 
the county-level yield prediction fall into the ± 20 bushels/acre region away from the true yield. We emphasize 
that this is a very signi�cant result, especially considering that no farm management or genetic data is used.

We also aggregate the prediction to state level for each state to compare with the USDA prediction in Novem-
ber. In order to make the comparison clear, we only present the mean absolute error (MAE) and mean absolute 
percentage error (MAPE) of the prediction for 2013–2016. According to the results listed in Table 1a, all the 
MAPEs are less than 7% with most of them are less than 3%, indicating excellent predictive accuracy. �e MAPE 
of Kansas, Missouri, and South Dakota was about 5–7%, these are the states that include less than 40 counties 
for testing. When we aggregate the results to the whole Corn Belt as shown in Table 1, the results are even better. 
�e prediction error is less than 1 bushel/acre and also beats the USDA prediction.
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Figure 2.  Data preparation and LSTM framework for yield prediction. �e description of available soil 
variables is shown in (a), the three sets of selected variables are listed in (b) the LSTM framework is shown in (c) 
including data augmentation, the structure of LSTM unit, and the deep LSTM structure.
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Early prediction. In order to make a comprehensive comparison between USDA and our model, we 
retrained our model for Iowa using three sets of partially available information, speci�cally with data avail-
able until August, September and October respectively (i.e. y = 122, 153 and 183 for the 3D tensor cube). �ese 
trained models make in-season predictions of �nal yield based on information available to them until that point. 
Figure 4 summarizes the prediction results of USDA and our LSTM model. It is clear that most of our early pre-
diction results are better than the USDA prediction. We also observe that predictions in November are usually 
worse than in October. �is is because we do not know the accurate harvest date for each year and data a�er the 

Figure 3.  County-level Prediction Results in Iowa (a), Illinois (b), Indiana (c), Minneapolis (d), Ohio (e), and 
Nebraska (f). For each subplot, the le� panel shows the prediction vs the actual yield and the error bars in 20 bu/
ac and 30 bu/ac are marked in blue and cyan respectively. �e right panel of each subplot show the errors of the 
predicted year (2013–2016).
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harvest date is included in the training data. �erefore, the resulting redundant and noisy information have been 
learned by the model and that in�uences the �nal prediction. �is comparison indicates the power of our model 
in early prediction and the ability to beat USDA with limited data. (LSTM is also available for daily prediction. 
It would be too much work to train separate models for each day to make daily predictions. �erefore, we can 
use the best model for each state, input known explanatory variables data, and �ll unknown data with expected 
values. Weather and soil humidity data a�er the date on which the daily prediction is made is the unknown data. 
�e expected input values can be either past 10-year average or from the professional prediction in weather 
websites/channels if it is available).

Performance comparison. For performance comparison with other ML techniques, Lasso, Random For-
est, AdaBoost, Support Vector Regression (SVR), Recurrent Neural Network (RNN) approaches are also applied 
with the same training and testing data, and the results are listed in Table 1. Hyperparameter searching is imple-
mented for every compared technique with a similar sized parameter search space as done for the LSTM model. 
�e results show that the LSTM model outperforms for predicting yield in most of the states (Table 1a). At the 
corn-belt level (Table 1b), the LSTM model presents a much smaller MAE and MAPE, in comparison with the 
other listed methods. �is veri�es the e�cacy of the proposed framework. A key aspect to note here is that 
while LSTM (as well as the RNN) model considers the temporal dynamics of the weather variables to forecast 
the yield at the end of the season, many other techniques, e.g., Lasso and Random Forest, do not explicitly cap-
ture that. We observe that these methods perform signi�cantly worse compared to RNN or LSTM. Our LSTM 
model outperforms the RNN as well most likely due to the larger model capacity. �erefore, it is evident from 
our observation that explicit consideration of the temporal dynamics is critical for the yield forecasting problem.

Discussion
�is paper describes the prediction of county-level corn yields in the Corn Belt area using the deep learning 
method called LSTM. We only leverage historical weather and publicly available yield data to learn such models 
that are demonstrated to be a powerful option for crop yield prediction. Results show that our LSTM model can 
provide useful early prediction and accurate county-level corn yield prediction in the US Corn-Belt without 
private farm management data and the genetic information of seeds. As USDA NASS reports their yield predic-
tion based on surveys, the NASS predictions in November already include a part of the harvesting data for some 
states such as Kansas and Missouri. In contrast, our model does not use such information, which is probably the 
reason for lower accuracy values for these states. Also, irrigation operations are widely used in Kansas, which 
would a�ect the yield. Our model does not use any farm management information such as irrigation, which also 

Table 1.  Corn yield prediction at State and Corn-Belt level. In (a), the state-level performance is evaluated 
with MAE and MAPE metrics, and the performance of NASS predictions are listed in the right panel for 
comparison. In (b), the Corn-Belt level performance of the proposed framework is evaluated yearly as well as 
the predictions by NASS.

State

Lasso_Nov RF_Nov AdaBoost_Nov SVR_Nov RNN_Nov LSTM_Nov NASS_Nov

MAE 
(bu/ac)

MAPE 
(%)

MAE 
(bu/ac)

MAPE 
(%)

MAE 
(bu/ac)

MAPE 
(%)

MAE 
(bu/ac)

MAPE 
(%)

MAE 
(bu/ac)

MAPE 
(%)

MAE 
(bu/ac)

MAPE 
(%)

MAE 
(bu/ac)

MAPE 
(%)

(a)

Iowa 24.08 13.57 24.07 13.24 25.78 14.53 26.17 13.87 7.99 4.29 4.31 2.29 4.37 2.41

Illinois 19.41 10.03 13.04 6.73 11.16 5.64 8.55 4.61 11.59 6.05 2.85 1.56 3.50 1.92

Indiana 13.75 8.09 14.14 8.51 16.44 9.84 20.35 12.36 7.26 4.08 2.96 1.74 3.75 2.27

Kansas 12.45 9.81 18.88 14.60 17.74 14.03 8.36 6.58 19.13 13.58 10.14 6.95 4.25 3.02

Michigan 22.04 13.80 14.98 9.37 16.65 10.37 35.23 22.09 17.96 11.23 6.09 3.79 3.25 2.03

Minne-
sota

17.71 9.44 13.53 7.33 11.08 6.31 7.13 3.88 6.40 3.42 4.24 2.38 4.50 2.75

Missouri 20.29 11.76 23.25 14.74 16.03 9.96 28.51 17.18 28.30 17.36 9.92 5.88 3.25 2.06

Nebraska 9.60 5.31 4.62 2.56 8.42 4.65 8.24 4.60 8.44 4.68 3.41 1.95 2.50 1.39

Ohio 12.13 7.12 12.36 7.22 13.68 8.08 11.82 7.22 2.14 1.26 3.42 2.01 4.00 2.56

South 
Dakota

39.71 25.30 36.70 23.33 23.56 14.98 20.33 12.90 19.81 12.80 7.76 5.29 6.75 4.46

Year Yield
Lasso_
Nov RF_Nov AdaBoost_Nov SVR_Nov RNN_Nov LSTM_Nov NASS_Nov

(b)

2013 161.78 164.12 165.03 168.79 155.16 161.28 162.90 164.29

2014 175.60 167.68 173.07 173.17 163.18 166.34 175.44 178.49

2015 173.10 170.84 176.66 178.81 169.45 169.21 173.40 173.04

2016 181.09 174.56 182.06 180.85 173.40 175.95 179.34 181.54

MAE (bu/ac) 4.76 2.58 3.85 7.60 4.70 0.83 1.48

MAPE (%) 2.72 1.51 2.29 4.38 2.67 0.48 0.87
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possibly in�uences the performance for this state. Finally, for Kansas, Missouri, and South Dakota, there are less 
than 40 counties that leads to smaller data sizes for these states compared to other states in the corn belt. Smaller 
data sizes cause di�culty in training complex deep learning models with large number of trainable parameters 
thus resulting in larger errors for these states.

In summary, despite the lack of critical but non-public information for necessary for yield prediction such 
as farm management data, our proposed deep LSTM model shows excellent performance in predicting corn 
yield compared to other machine learning models and the NASS prediction for most cases. �erefore, our 
LSTM models seem to be a good supplement and improvement to the USDA prediction that will contribute to 
eliminating the information asymmetry problem that arises from the success of private companies in crop yield 
prediction. �e authors established a public corn yield projection website and used hourly weather data to make 
available; county yield, Corn-Belt yield and national yield projections on a daily basis during the 2019 growing 
season. �e model proved to be extremely accurate, coming within one bushel of the true number in 2019. A 
screen shot of the yield prediction from 2019 is provided in Fig. 5. �e intent is to continue this e�ort using the 
website of Iowa State University, a major Land Grant University.

Several avenues for future work are possible. For instance, in using soil and weather information we assume 
that both crop land and weather are uniformly distributed throughout the county. �is assumption can be relaxed 
by using spatial masks that enable weighted averaging of soil, cropland and weather to more accurately re�ect 
weather and soil impact on  cropland46. Such a strategy lends itself to multiscale data assimilation (for example, 
highly resolved weather data, or subwatershed HUC12 data, both of which are publicly available). Our future 
research will also focus on developing interpretability mechanisms for black-box models such as ours to further 
gain scienti�c and economic insights from  data47.

Materials and methods
Problem formulation. As described in the Results section, the variable to be predicted in this work is the 
yield, which is a yearly data and de�ned at county level in this work. �e input variable for the prediction model 
include hourly weather data, soil quality data, and soil moisture data. �erefore, the yield prediction is de�ned 
as Y = f (X) , where Y is the vector of the yield in county-level, X is the input matrix with multivariate time-series 
data.

To best extract the information embedded in the time-series data, Long short-term memory (LSTM) networks 
is selected as it is e�cient in dealing with time-series data and extracting recurrent features in relatively long-term 

Figure 4.  Early Yield Prediction Comparison between USDA and LSTM. �e yield predictions from August to 
November by the proposed framework are compared with actual yields and the NASS prediction.
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time-series data. With this setup, early prediction can also be formulated using the available time-series data, 
i.e., the weather data prior to August can be used for early prediction in August.

Recurrent neural network. LSTM is based on Recurrent Neural Network (RNN) and with a special 
memory cell to handle the features needed to be remembered and those should be discarded. In general, RNN 
is a family of neural networks for processing sequential data. It is typically used in text prediction and speech 
recognition.

For a regular RNN, the network consists of three layers: an input layer, a hidden layer and an output layer. x(t) 
is the input sequence, y(t) is the output sequence and h(t) is a series of hidden states. �e number of the hidden 
layers is not constrained to one. In the deep learning recurrent neural networks, the number of the hidden layers 
can reach eight or more. Adding hidden layers can help to study the more complex structure of the model, but 
also requires more data. U ,V ,W are shared weights that we need to learn. And there is an activation function f  
that h(t)

= f (Ux(t)
+ Wh(t−1)) , which should be chosen before learning the networks. �e corn yield prediction 

problem could not �t into a regular RNN, therefore we use the many-to-one RNN model here. �e many-to-one 
RNN model is suitable when there is sequence input with one output, thus it is perfectly match with our data 
format described in the data section.

Long short-term memory (LSTM). �e mathematical challenge of learning long-term dependencies in 
recurrent networks is called the “vanishing gradient problem”. As we propagate the gradient back in time, the 

Figure 5.  Screen shot from the public corn yield projection website established based on the proposed 
framework. �e model proved to be extremely accurate, coming within one bushel of the true number in 2019 
(courtesy: https ://www.card.iasta te.edu/tools /yield -predi ction /, downloaded on 8/29/2019).

https://www.card.iastate.edu/tools/yield-prediction/
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magnitude quickly decreases. �at is to say, as the input sequence gets longer, it becomes more di�cult to cap-
ture the in�uence from the �rst stage. �e gradients to the �rst several input points vanish and are approximately 
equal to zero (rarely the gradients will explode with much damage to the optimization). �erefore, a special 
RNN model called Long Short-Term Memory (LSTM) was developed. LSTM uses the identity function with 
a derivative of one. As a result, the back propagated gradient remains constant instead of vanishing or explod-
ing when passing through. Clearly LSTM has a more complex structure to capture the recursive relationship 
between the input and hidden  layer48. We call the cell between the input and hidden layer LSTM cell.

LSTM adds a new sequence {ct} called cell state to RNN. Cell state is a space speci�cally designed for stor-
ing past information (i.e., the memory space) that mimics the way the human brain manipulates information 
when making decisions. �e le� part of the cell is the forget gate layer, which makes the decision whether past 
information stored in the cell state should be discarded or not. �e middle is the input gate layer, which decides 
whether new information from the input should be added or not. �e operation is executed to update old cell 
state ct−1 to ct . �is is when old information is dropped and new information added. We can get the output as ht 
by operating the right part, which is the same process as regular RNN.

In summary, the behavior of the memory cell is determined by three gates: input it , output ot , and forget ft . 
�e updated equations are as follows:

where all U ∈ R
d×d ,W ∈ R

d×k , b ∈ R
d are learnable parameters and the operator ⊙ denotes the element-wise 

multiplication.
Figure 2 shows the structure of our �nal LSTM model used for county-level corn yield prediction in the 

Corn-Belt.

Training of LSTM. Loss function is a measure of how good a prediction model does in terms of being able 
to predict the expected outcome. �e loss function we picked for our LSTM model is the mean squared error 
(MSE). �e target of training the prediction model is to �nd parameters that could achieve the minimum point 
of the loss function, thus turning it into an optimization problem. �e algorithm to learn the recurrent neural 
network is gradient  descent49 and back-propagation through  time50 (BPTT). Gradient descent is one of the most 
popular algorithms to perform optimization. It is an e�cient algorithm to search for the local minimum of the 
loss function. �e BPTT algorithm is used to compute the gradient for the equation h(t)

= f (Ux(t)
+ Wh(t−1)) 

and the loss function. �e core idea behind BPTT is the composite function chain rule. �e nodes of our com-
putational graph include the parameters U ,V ,W and constant terms as well as the sequence of nodes indexed 
by t  for x(t) and h(t) . Once the gradients on the internal nodes of the computational graph are obtained, we can 
obtain the gradients on the parameter nodes. �e parameters are shared across time steps. Given a starting point, 
calculating the gradient of that point and searching in the direction of the negative gradient is the fastest way to 
search for a local minimum. �en we can update the parameters with iterations of the gradient descent optimizer 
by searching for a smaller local minimum.

Model settings. �ere are still some questions about the model settings. Should we use one, two, or more 
hidden layers? Will more related input variables improve the prediction? Will more created training samples 
generated with combinations described in the data section improve the prediction? We tried all these di�erent 
settings in the Iowa model and the results showed that the best model is the one with two hidden layers, ten 
variables picked up in the data augmentation section, and two county combination samples added, which totals 
19,734 samples.

How should we expand the model to other states in the Corn-Belt from Iowa? We have three choices: (a) 
apply the “best” Iowa model to all other states; (b) train models separately for each state; and, (c) train the “best” 
model with all data from the Corn-Belt. �e Iowa model performed badly when applied to the other states. �e 
Corn-Belt model also performed poorly. Even though we include all data from di�erent states, many unknown 
variables correlated with each state did not get included in the model. LSTM then only keeps the common 
information and throws away all other noises, leading to the result that our big Corn-Belt model learns less 
information than does a separate model for each state. �erefore, the best choice and the one we pursued is to 
train models separately for each state.

Implementation. Our LSTM model was learned using the  Keras51 package. We assigned a linear relation 
between the hidden and output layers. �ere are several choices for gradient descent optimizer in Keras. We 

it = sigmoid(Wiht−1 + Uixt + bi)

ft = sigmoid(Wf ht−1 + Uf xt + bf )

ot = sigmoid(Woht−1 + Uoxt + bo)

∼

c t = tanh(Wcht−1 + Ucxt + bc)

ct = ft ⊙ ct−1 + it ⊙
∼
c t

ht = ot ⊙ tanh(ct)
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tried both Stochastic Gradient Descent (SGD) and RMSprop optimizer. Our �nal LSTM model used RMSprop 
optimizer as this optimizer is usually a good choice for RNNs. Besides the parameters that we need to learn from 
the data, there is also another kind of parameter speci�ed manually for LSTM models, called a hyperparameter. 
A model hyperparameter is a con�guration that is external to the model whose value cannot be estimated from 
data. Hyperparameter searching is an important process before the commencement of the learning process. �e 
choice of the hyperparameter in�uences the learning result.

�e hyperparameters that we decided manually for our LSTM model include the number of hidden nodes 
within each hidden layer, batch size, dropout rate, learning rate, momentum, and decay rate. Batch size is the 
number of training examples utilized in one iteration of SGD or RMSprop optimizer. �e higher the batch size, 
the more memory space needed. Dropout is a technique where randomly selected neurons are ignored during 
training. A 0.2 dropout rate means that one in �ve hidden neurons will be randomly excluded from each updated 
cycle. Dropout could make the network less sensitive to the speci�c weights of neurons, and in turn solve the 
over�tting problem. Learning rate, momentum, and decay rate are important parameters for SGD optimizer. �ey 
would decide the speed of convergence of the network. �e learning rate is how quickly a network abandons old 
beliefs for new ones. With a large learning rate, we take huge jumps to reach the bottom. �ere is also a possibility 
that we will overshoot the global minima (bottom) and end up on the other side of the pit instead of the bottom. 
�us, we will never be able to converge to the global minima. However, it will take too much time to converge 
if the learning rate is too small. Hence, it is o�en useful to reduce the learning rate as the training progresses, 
which is what the decay rate is used for. Momentum is an argument in SGD optimizer to obtain faster conver-
gence. RMSprop optimizer is similar to the SGD optimizer with momentum. It uses a moving average of squared 
gradients to normalize the gradient itself. We only need to de�ne the learning rate for RMSprop optimizer.

It is impossible to know the best value for a model hyperparameter of a given problem. We may use rules 
of thumb, copy values used on other problems, or search for the best value by trial and error. What we did was 
assign a set of numbers by experience for these hyperparameters and let the machine randomly pick one value 
in the set for each hyperparameter. �e choice sets include: (1) hidden nodes, [8, 16, 32, 64, 128, 214], (2) batch 
size, [16, 64, 128, 512, 1024], (3) dropout rate, [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7], (4) learning rate, [1e−07, 1e−06, 
1e−05, 1e−04, 0.001], (5) momentum, [0.0001, 0.001, 0.01,0.05, 0.1], and (6) decay, [0.0001, 0.001, 0.01,0.05, 
0.1]. For each choice set, SGD and RMSprop optimizers are tested. Usually a�er searching for over 300 models 
with di�erent combinations of hyperparameter settings, we can �nd the ‘best’ model and the corresponding 
‘best’ hyperparameters.
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