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Abstract—The coronavirus disease 2019 (COVID-19) breaking
out in late December 2019 is gradually being controlled in China,
but it is still spreading rapidly in many other countries and
regions worldwide. It is urgent to conduct prediction research
on the development and spread of the epidemic. In this arti-
cle, a hybrid artificial-intelligence (AI) model is proposed for
COVID-19 prediction. First, as traditional epidemic models treat
all individuals with coronavirus as having the same infection
rate, an improved susceptible–infected (ISI) model is proposed
to estimate the variety of the infection rates for analyzing the
transmission laws and development trend. Second, considering
the effects of prevention and control measures and the increase
of the public’s prevention awareness, the natural language pro-
cessing (NLP) module and the long short-term memory (LSTM)
network are embedded into the ISI model to build the hybrid
AI model for COVID-19 prediction. The experimental results on
the epidemic data of several typical provinces and cities in China
show that individuals with coronavirus have a higher infection
rate within the third to eighth days after they were infected,
which is more in line with the actual transmission laws of the epi-
demic. Moreover, compared with the traditional epidemic models,
the proposed hybrid AI model can significantly reduce the errors
of the prediction results and obtain the mean absolute percent-
age errors (MAPEs) with 0.52%, 0.38%, 0.05%, and 0.86% for
the next six days in Wuhan, Beijing, Shanghai, and countrywide,
respectively.

Index Terms—Coronavirus disease 2019 (COVID-19)
prediction, epidemic model, hybrid artificial-intelligence (AI)
model, natural language processing (NLP).
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I. INTRODUCTION

T
HE OUTBREAK of the coronavirus disease 2019

(COVID-19), which quickly spread across the country,

coincided with the spring festival period in China. In its

primary stage of transmission, the COVID-19 was not effec-

tively suppressed because of the extreme irregularity of the

primary stage of the epidemic, the limited understanding of

the new coronavirus by the medical community, and the lack

of medical resources [1]. The COVID-19 can be transmitted

from person to person, as officially confirmed on January 20,

2020 [2]. Therefore, all provinces and cities in China have

implemented strong prevention and control measures, includ-

ing the closure of the airport and railway stations in Wuhan on

January 23, 2020, which are considered the strictest epidemic

control measures in history. Public awareness of epidemic

prevention has gradually increased because of these effective

prevention and control measures. Presently, the number of new

infections has decreased significantly. From February 3, 2020

to February 19, 2020, the number of new daily confirmed

cases outside Hubei has dropped for 16 consecutive days; the

number of new infections in Hubei has also been gradually

decreasing since February 12, 2020, and the number of cured

patients has increased. The epidemic prevention and control

have achieved initial success in China, but in other countries

and regions, especially in Europe, Iran, South Korea, the US,

and Japan, the epidemic situation is still severe. Every coun-

try or region needs to develop targeted prevention and control

strategies to control the epidemic effectively. Therefore, con-

ducting research on the development and spread of epidemics

is necessary. In the current case, analyzing the development

law and predicting the trend of COVID-19 are crucial for

effective prevention and control of this epidemic.

When a large-scale epidemic infectious disease emerges

and a major public health emergency is initiated, people uti-

lize epidemic models to analyze and predict the development

trend of the disease and use the analysis results to guide

the development of the prevention and control measures. The

most widely used traditional epidemic models are susceptible–

infected (SI), SI recovered (SIR), and susceptible–exposed–

infected–recovered (SEIR) models [3]–[5], where “S,” “E,” “I,”

and “R” denote the number of susceptible people, the number

of people in the incubation period, the number of infectious

cases, and the number of people who have recovered, respec-

tively. SI, SIR, and SEIR models represent the relationship

between I and S in the form of differential equations. These
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models have been successfully applied to the prediction of var-

ious diseases, such as Ebola and SARS, because of their strong

disease prediction capabilities [6]–[10]. Given the severe situ-

ation of COVID-19, the analysis of changes in the number

of new daily confirmed cases is particularly important for

inferring the trend of an epidemic. Therefore, we need to

focus on the impact of the trend of new infections on the

spread of an epidemic. Furthermore, the influence of cure

and mortality rates on the trend of the epidemic are not

considered in this article because both parameters have no

direct relationship with the number of new daily confirmed

cases.

Traditional epidemic models analyze the infection rate based

on the dynamic change in the number of infections and sub-

sequently predict the spread and development trend of the

epidemic. However, these models consider that all individuals

with coronavirus have the same infection rate. Their prediction

results can only provide general trends and, thus, have limita-

tions. The government’s prevention and control measures have

a significant impact on the containment of the development

trend of the epidemic, and transparent reporting of the epi-

demic, implementation of prevention and control measures,

and reinforcement of residents’ prevention awareness have

accelerated the containment of the virus. Evidently, epidemic

data alone are insufficient to achieve accurate prediction. We

must build a data-driven epidemic model for public health

emergencies. By using news information features, we can over-

come the limitation of traditional epidemic models that use

only a single factor, further improve the accuracy of model

prediction, and verify the effectiveness of the government’s

prevention and control strategies.

To deal with this problem, the long short-term memory

(LSTM) network with the natural language processing (NLP)

module is introduced into our epidemic model to update the

infection rate and further improve the predictive accuracy of

the model. LSTM is a classic recurrent neural network (RNN)

proposed by Hochreiter and Schmidhuber [11]. LSTM can

effectively alleviate gradient explosion and gradient disappear-

ance during the training procedure by introducing the constant

error carousel unit. Compared with traditional RNN [12],

LSTM exhibits better performance in capturing the long-

term dependencies of sequences and is therefore suitable

for the classification, processing, and prediction of long-

sequence data [13]–[16]. In recent years, LSTMs have been

widely used in various tasks, such as NLP [17]–[20]; image

generation [21], [22]; and video analysis [23], [24].

This article focuses on the analysis of the infection rate of

individuals with coronavirus, models the ability of viruses to

infect susceptible people according to different periods after

infection, and proposes an improved susceptible–infected (ISI)

model. Based on the proposed ISI model, the hybrid artificial-

intelligence (AI) model embedded the NLP module and LSTM

network for predicting the COVID-19 in this article, and it

introduces the important information of the great efforts led

by the central government and local governments as well as

the massive support participation from the public into the

prediction calculation process. Furthermore, this article ana-

lyzes the development of the epidemic based on the proposed

hybrid prediction model and predicts the trend of the epidemic.

The experimental results obtained based on the epidemic data

of several typical provinces and cities in China show that the

proposed hybrid model can provide a basis for estimating the

law of virus spread, and achieve more accurate and robust

performance compared with the traditional epidemic models.

Moreover, the prediction results of our hybrid AI model with

the introduction of news information are more in line with the

actual epidemic development trend, which demonstrates that

the openness, transparency, and efficiency of data releasing are

very important for establishing a modern epidemic prevention

system.

The remainder of this article is organized as follows.

Section II introduces the framework of the proposed AI model.

Section III proposes the ISI epidemic model to analyze the

laws of epidemic transmission. Section IV gives the NLP-

based LSTM model for precise prediction. Section V provides

the experimental results based on the epidemic data of sev-

eral typical provinces and cities in China. The conclusion is

provided in Section VI.

II. FRAMEWORK OF THE HYBRID AI MODEL

In existing epidemic models, the infection source of new

daily confirmed patients in the future consists of those with

coronavirus that are not quarantined. Therefore, most epidemic

models regard the number of patients who are infected but

not quarantined as the base, and then multiply the estimated

infection rate to predict the number of new daily confirmed

cases [25]–[27]. However, the infection rate of individuals with

coronavirus varies at different time intervals of infection [28].

Traditional epidemic models treat all individuals with coro-

navirus as having the same infection rate and are therefore

unable to reflect the evolution trend of an epidemic. Under

prevention and control measures, most new confirmed cases

at this moment are infected by the new confirmed cases in

recent days. Cured and deceased cases are not considered in

the establishment of the epidemic model in this article because

these cases have no direct impact on the number of new

confirmed cases. Based on this assumption, we propose an

ISI epidemic model that uses a retrospective approach and a

grouped multiparameter method. The basic principle of the ret-

rospective approach is to use the ratio of the number of new

confirmed cases at time t to the cumulative number of new

confirmed cases over different time scales before time t to

calculate the infection rate and establish an epidemic model.

Furthermore, the importance of different time scales to the

new confirmed cases at time t is analyzed in accordance with

the prediction result of the model. Grouped multiparameter

factors, which determine the impact of confirmed cases at dif-

ferent times before time t on the confirmed cases at time t, are

used to the ISI model to quantify the infection rate of infected

cases at different periods. Then, the improved model is used

for analyzing the development law of infectious diseases.

In addition, the LSTM network is used to estimate the

infection rate deviation of the epidemic model and is com-

bined with the proposed ISI model to estimate the number of
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Fig. 1. Hybrid AI model for COVID-19 prediction by using all historical data.

infected cases. To consider the influence of government con-

trol measures, the media’s transparent reports, and the increase

in public awareness regarding epidemic prevention, this article

uses pretrained NLP models to extract features from relevant

news of various provinces and cities. The extracted features

are subsequently combined with the LSTM network to correct

the deviation of the infection rate estimated by the ISI model,

which could predict the number of infected cases based on

the transmission laws and development trend. The proposed

framework is shown in Fig. 1.

III. ANALYSIS OF THE LAWS OF EPIDEMIC TRANSMISSION

Traditional epidemic models deem that the number of new

infectious cases is related to the number of people who are

infected and susceptible, but these models still lack an in-depth

analysis. People undergo different infection cycles for different

infectious diseases [29]. The time distribution of the infectious

sources of new daily confirmed cases must be determined to

investigate the infection law of an epidemic. The purpose of

this article is to analyze the spread laws and development trend

of an epidemic by modeling new confirmed data. However,

cure and mortality rates are not directly related to the number

of new confirmed cases, so they are not considered in this

article.

The observation period for COVID-19 is 14 days [30], so

we can posit that almost all new daily confirmed cases are

infected by patients confirmed in the past 14 days. Most of the

patients under investigation have been quarantined, observed,

and tested with a nucleic acid reagent. Patients need to obtain

at least two positive results before being confirmed as positive

for COVID-19, so we can infer that most of the confirmed

patients have been quarantined at least three days prior to the

confirmation and are unable to infect others, which means that

most of the confirmed patients cannot be infected by another

confirmed case who was confirmed 11 days ago. Therefore,

for each day t, this article examines the infection rate of new

daily confirmed cases in the past ten days relative to the con-

firmed cases of day t. For an enhanced analysis, the following

symbols are defined: S(t) represents the number of suscepti-

ble persons on day t, I(t) represents the cumulative number of

confirmed cases of day t (inclusive), and �I(t) = I(t)−I(t−1)

represents the number of new confirmed cases on day t.

To obtain a comprehensive understanding of the impact of

the infected cases on subsequent infected persons, we need to

determine the time interval in which the confirmed cases are

most likely to infect the new daily confirmed cases at day t.

Then, according to the difference between them, we can deter-

mine the laws of transmission. Therefore, in this article, we

consider that the patients confirmed on day t are infected by

a confirmed person from day t − 1 to day t − 10. To deter-

mine at which stage the current new daily confirmed cases

are infected at a high infection rate, we use the retrospective

method to analyze the time laws of epidemic transmission in

the past few days. We develop an improved multiparameter

epidemic model for the past ten days by applying it to several

infection periods and conduct an in-depth analysis of the time

laws of the transmission of COVID-19. The framework of the

ISI epidemic computational model is shown in Fig. 2.

A. Correlation Model of Infection Rate by Using the

Retrospective Method

Traditional epidemic models generally deem that the con-

firmed cases on a certain day originate from confirmed cases

in the past few days. Most of the epidemic models in previous

research [31], [32] are based on a fixed number of days

and assume that the transmission of an epidemic is affected
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Fig. 2. ISI model.

by previous k days. However, these models lack an in-depth

analysis of how epidemics are transmitted. According to the

general laws of the development of epidemics, compared with

the patients confirmed at the adjacent time (e.g., day t −1) on

day t, early confirmed patients (e.g., day t−5) are more likely

to affect patients confirmed on day t. Therefore, by modeling

on the infection rate of the cumulative number of confirmed

cases in the past k days relative to the confirmed cases on

day t, the laws of COVID-19 transmission can be obtained

with enhanced macroscopic guiding significance for the overall

trend estimation of epidemic development.

We use the retrospective method to analyze the influence of

cumulative confirmed cases at different times on the estimation

of the infection rate. We examine the infection rate of patients

in different regions at different time intervals and investigate

whether the current new confirmed cases are infected by the

cumulative number of confirmed cases in the past k days. The

equation is given as follows:

I(t) = I(t − 1) + β1(t, k)

k
∑

i=1

�I(t − i), k = 1, 2, . . . , 10 (1)

where β1(t, k) = �I(t)/
∑k

i=1 �I(t − i) is the infection rate

of the cumulative number of confirmed cases from day t − k

to day t − 1 relative to the new confirmed cases on day t. It

reflects the relationship between the number of new confirmed

cases I(t) on day t and the number of new confirmed cases
∑k

j=1 �I(t − k) in the past k days.

First, the purpose of determining β1(t, k) is to find out the

relatively stable relationship between �I(t) and
∑k

i=1 �I(t−i),

that is, to analyze the impact of the cumulative number of

confirmed cases in the past k days on the number of new con-

firmed cases on day t. The aim is to make the laws of epidemic

spread reasonably interpretable and provide support for follow-

up work. Second, we can obtain the parameter β̂1(t, k) of each

province and the entire country according to (1). Given that the

infection rate of epidemics changes exponentially, this article

uses the exponential function L(t) = a × e−bt to fit β̂1(t, k),

which can estimate the epidemic spread. In the formula, a and

b are the parameters of the exponential function, and a, b > 0.

Finally, patients have a strong infection rate because they can-

not be effectively quarantined during the incubation period.

Therefore, this section estimates β1(t, k) by gradually increas-

ing the value of k, and the number of new confirmed cases at

an earlier time point is gradually introduced into the model.

Then, in accordance with the predictions of the model, we

can analyze whether the new confirmed cases at each time

will infect the new confirmed patients on day t. The evolution

laws of patients in different time intervals in the process of

epidemic transmission can also be obtained.

B. Influence Model of Infection Rate With Grouped

Multiparameters

This article considers that infected cases cannot infect the

number of susceptible people after being quarantined due to

the strict control and quarantine measures. Therefore, the new

confirmed cases on day t are most likely to be infected by the

new confirmed cases in the past k days. A close relationship

exists between the infection rate and the time of infection of

patients [33]. Therefore, the new confirmed cases may have

different infection rates for the new confirmed cases on day

t at different times in the past k days. From (1), we estimate

that the most possible infection time dates back to the recent

several days. We further analyze this difference and quantify

the contribution of new confirmed cases at different times to

the infection rate at time t by giving different weights to the

number of new confirmed cases each day from day t − k to

day t − 1. Then, we estimate the infection rate by using the

weighted cumulative confirmed number, which is adopted to

model the epidemic.

To simplify the model, adjacent two days are regarded

as a propagation unit, and the same weight αi is assigned.

Multiparameter epidemic modeling is then carried out, as

shown in (2). The model avoids the drastic change in weight

caused by single data abnormality, thus making the model

more robust; at the same time, it reduces the search space

of the weight and the complexity of the model

I(t) = I(t − 1)

+ β2(t, k)

k/2
∑

i=1

(αi(�I(t − 2i + 1) + �I(t − 2i))) (2)

where 2
∑k/2

i=1 αi = 1.

Based on the above epidemic model, the model proposed

in this section comprehensively considers the difference in the

infection rate of new confirmed cases in the past k days relative

to the new confirmed cases on day t to study the transmission

correlation between the cumulative number of confirmed cases

in the past k days and the number of the new cases on day t.

First, several groups of different weights αi are initialized ran-

domly, and a multiparameter epidemic model is established by

(2). The better the prediction result of the model, the better the

corresponding weights reflect the real infection law. Finally,

the infection rate with a great contribution to the virus infec-

tion can be inferred by comparing the weights assigned to

different time points.

We obtain the relationship between the new confirmed cases

on day t and the new confirmed cases on days t − 10 to t − 1

through the value of αi on the basis of (1) and (2). However,

too few parameters can cause underfitting [i.e., (1)], while

too many parameters can easily cause overfitting [i.e., (2)].

Therefore, we further balance the number of parameters based

on the above results. The set of days {t − i|i = 1, 2, . . . , 10} is
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divided into two groups, where the set of days with a greater

impact on the new confirmed cases on day t is recorded as

set A, and the remaining days are recorded as set B. Set A is

given weight γ1, and set B is given weight γ2, as in

I(t) = I(t − 1) + β3(t)

⎛

⎝γ1

∑

t1∈A

�I(t1) + γ2

∑

t2∈B

�I(t2)

⎞

⎠ (3)

where γ1|A|+γ2|B| = 1, | · | denotes the number of elements

in a set. We calculate the infection rate according to (3).

C. Data Preprocessing Method Based on the Proposed

Model

The diagnostic criteria for patients at the beginning of the

outbreak of COVID-19 changed throughout the country due

to insufficient medical resources and limited understanding of

the clinical signs of the novel coronavirus. These factors led

to the presence of considerable noise in the epidemic data of

all provinces. Hubei Province incorporated clinical diagnosis

into the diagnostic criteria after the fifth edition of the treat-

ment and diagnosis plan was released on February 12, 2020.

This clinical diagnosis caused the new daily confirmed cases

of Wuhan to surge to 13 436 on that day. These abnormal

and noisy data points bring great difficulties to subsequent

modeling.

Data cleaning (i.e., removing abnormal data points) and the

interpolation-based method are two widely applied approaches

to deal with anomalous data points. However, these methods

have many drawbacks. Data cleaning causes serious data loss

and reduces the accuracy of the overall trend estimation of the

epidemic model because the time scale of the epidemic data is

extremely small. Meanwhile, although the interpolation-based

method does not cause data loss, it loses the dynamic evolution

laws of abnormal dates and affects the accuracy of short-term

parameter estimation. Therefore, most of the new daily con-

firmed cases from abnormal data points are missed diagnoses

from the early stage of the epidemic. Ignoring this number of

patients will force the model to be too optimistic about the epi-

demic status of the early stage of the outbreak and will affect

the modeling of subsequent evolution laws. For the abnor-

mal data points near February 12, 2020, this article proposes

a “data balance” method based on the epidemic model as a

data preprocessing module to reduce the impact of changes in

diagnostic criteria.

First, the data before February 12, 2020 are applied to build

an epidemic model to predict the number of new daily con-

firmed cases on the anomaly dates. Second, the difference

between all actual data points and the prediction results is

summed up as the number of early missed patients. Third,

these patients are evenly divided into abnormal and normal

dates to achieve “trend balance” of the overall data. The

implementation details are as follows.

1) Let the date with abnormal data start at ts and end at te.

Use I(t0) · · · I(ts) to establish an ISI epidemic model

and predict the number of new daily confirmed cases

on abnormal dates �Î(ts) · · · �Î(te).

2) Calculate the total number of missed diagnoses M and

the cumulative number of new daily confirmed cases of

the early stage N

M =

te
∑

t=ts

(�I(t) − �Î(ts))

N =

ts−1
∑

t=t0

�I(t) +

te
∑

t=ts

�Î(t). (4)

3) Let α = M/N. Then, the rebalanced data before te can

be obtained by the following equation:
{

�I′(t) = (1 + α)�I(t), t = t0, . . . , ts − 1

�I′(t) = (1 + α)�Î(t), t = ts, . . . , te.
(5)

The data balance preprocessing method has two main

advantages.

1) The evolution trend of β(t) will not be affected accord-

ing to the calculation method [i.e., (1)–(3)] of the

infection rate β(t) if the numbers of the new daily

confirmed cases before ts are increased α times.

2) The number of new daily confirmed cases I(t) before and

after the anomaly date can maintain its evolution trend

after all the data points before te have been enlarged;

therefore, the long-term fitting result of β(t) becomes

increasingly stable. We select ts as February 12, 2020

and te as February 13, 2020.

IV. PREDICTION OF THE DEVELOPMENT TREND

OF THE EPIDEMIC

The epidemic model can predict the spread of infectious

diseases well but does not consider other factors, such as pre-

vention and control measures, which prevent the spread of

infectious diseases. Therefore, new mechanisms need to be

introduced to update the parameters in the epidemic model.

The LSTM network can be used to model hidden variables

(e.g., number of potentially infected people) and is often uti-

lized for data prediction. However, experiments have proven

that using the LSTM network alone to predict the number of

infected cases is not an effective method. Considering that the

prevention and control measures and people’s awareness of

epidemic prevention are closely related to the spread of the

virus, this article uses the NLP technology to extract semantic

features from news reports related to prevention and control

measures and people’s attitudes toward the epidemic. These

features are then used in the LSTM network. The number of

infections is predicted by revising the infection rate in the tra-

ditional epidemic model. This method maintains the long-term

trend of infectious disease models and updates the infection

rate through the usage of news information to improve the

accuracy of epidemic prediction.

We collect news information related to the epidemic sit-

uation in China. From this information, text data related to

prevention and control measures are extracted. The extracted

titles and profiles are converted into feature vectors by using

a pretrained NLP model. We also extract the features in news

information through NLP and combine the LSTM network to

update the deviation of the infection rate in the ISI model and

achieve an accurate prediction of the number of infections,

which is shown in Fig. 3.
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Fig. 3. Prediction model based on the infection rate and NLP features (MLP: multilayer perceptron, NLP: natural language processing, LSTM: long short-term
memory network, and CDC: centers for disease control).

A. News Feature Extraction

To extract the relevant features of news information, we

examine the information related to the COVID-19, sort this

information by date, province, and city, and filter out case

reports and related foreign news. Feature extraction is only

performed on the title and main content of each news text

to obtain concise and robust features in practice. For each

given news text in Chinese, a pretrained model of the BERT

language model (RoBERTa) [34], which was designed by

researchers at Facebook AI and the University of Washington,

is used to extract text features. This model combines the

Chinese Whole Word Masking strategy, uses WordPiece seg-

mentation to divide a complete word into several subwords,

and also combines BERT. This model can achieve good feature

extraction results with minimal training.

The news titles and main content are separately obtained as

the input to prevent overfitting and achieve efficient training,

and the last hidden layer of the pretrained model is used to

encode the text. Then, we encode 768-D title and 768-D text

together to generate a 1536-D NLP feature vector, in which

each vector corresponds to a piece of news. The dataset is

divided into national and provincial datasets to achieve accu-

rate daily predictions in different cities and regions and the

entire country, where the national dataset contains news from

all regions, and the provincial dataset contains news from each

province. The news is classified by day to ensure the presence

of at least one news per day, and the features of all news of

the day are averaged as the NLP feature vector.

B. LSTM Network Based on NLP and Infection Rate

Deep neural networks have the capacity to fit complex dis-

tributions but tend to overfit without sufficient supervision. As

infection rate features are based on the growing percentage

of each factor, they are stable across time. However, epi-

demic models based on the infection rate cannot predict policy

changes and emergency conditions nor adjust the prediction

with short-term influence. Therefore, we introduce the LSTM

Fig. 4. LSTM network based on NLP features.

network based on NLP features to model the current policy and

social media, which is shown in Fig. 4. Then, the short-term

flexibility and long-term stability are both ensured.

In the ISI model, we assume that the actual infection rate is

β(t), and the infection rate that regressed under the exponential

function is β̂(t). We use the neural network to predict the bias

between the actual infection rate and the regressed infection

rate. We let the label of day t be y(t) = β(t) − β̂(t), which

is taken as the bias feature for prediction. Therefore, we can

use the LSTM network as a complement to the ISI model.

To take the impact of news and policies into considera-

tion, we combine the NLP features introduced in Section IV-A

with the bias features. We use LSTM to encode temporal

information and hidden states. We adopt a one-layer perception

model (with a fully connected layer and a leaky ReLU activa-

tion function) to transform the infection and NLP features into

32-D vectors. This approach ensures that two features provide

the same contribution to our network.

Given infection features s1 and NLP features s2, let the

weight of the first two perception model be W1 and W2. Let

g(·) be the function of convolution and leaky ReLU as follows:

f1 = g(s1; W1)

f2 = g(s2; W2). (6)
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The processed features are f1 and f2, which are concatenated

into a mixed feature f . At every timestamp t, assuming that the

given hidden state from timestamp t − 1 is ht−1, let the mixed

feature be f (t). Function lstm includes the LSTM network

and the fully connected layer that transforms the hidden state

into prediction. The output of the network is x(t) and the new

hidden state h(t). Then

(x(t), h(t)) = lstm(f (t), h(t − 1); Wl) (7)

where Wl is the weight of the network. We use gradient descent

and the Adam optimizer [35] as the optimization method dur-

ing training. Then, the mean-square error between prediction

and label is adopted as the loss function.

V. EXPERIMENTAL RESULTS

In this section, the performance of the proposed model is

evaluated on the epidemic data, which are sourced in two

ways. First, most of the data mainly come from the national

and provincial health commissions and include the numbers

of people who are infected, suspected, cured, and have died.

Second, data for NLP are obtained from dxy.com [36], social

media, and news media. We filter foreign news and disease

reports first and then classify the media by the dates and

relevant provinces.

A. Correlation Analysis of Cumulative Daily Confirmed

Cases and Infection Rate

The infection rate of viruses is deemed to be periodic in

existing epidemic models [37]. Considering that patients who

have been diagnosed are strictly medically isolated and no

longer have the conditions to infect others, we assume that

the majority of the sources of infection at day t come from

the cumulative new daily confirmed cases in the previous k

days. An epidemic model based on a retrospective method is

used to analyze the epidemic data of Beijing, Shanghai, and

Hunan and further explore the dynamic transmission laws of

the virus.

Some patients were missed or misdiagnosed in the early

stage of COVID-19 due to the lack of medical resources and

changes in diagnostic criteria in certain cities. These factors

introduced some noise to the epidemic data. To reduce the

impact of noise, we select Shanghai, where public health facil-

ities are relatively complete, as the research object and analyze

the evolution laws of the infection rate of the COVID-19. We

initially select k time scales to model the correlation between

infection rate β1 and cumulative confirmed cases; then, we

analyze the infection rate of the confirmed cases at different

time intervals according to the prediction results. The exper-

imental results are of great importance for us to infer the

evolutionary trend of the epidemic and estimate the laws of

virus infection.

The results of the exponential fitting curves of the estimated

infection rate in Shanghai against the different values of k

are shown in Fig. 5. Moreover, to quantitatively assess the

best value of k determining the infection rate, we use the

fitted infection rate to estimate the number of the predicted

cumulative confirmed cases. The mean absolute error (MAE)

curves between the number of actual cumulative confirmed

cases and the number of predicted cumulative confirmed cases

for Shanghai are shown in Fig. 6. The infection rate of each

epidemic model is obtained from the results of the exponential

fitting, and the time scale of the data used for the infection

rate fitting is from January 23, 2020 to February 18, 2020. As

shown in Fig. 5 and the curve of Shanghai in Fig. 6, when k

is small (k = 1–3), the distribution of infection rate β1 does

not show apparent regularity, and the prediction result of the

number of cumulative confirmed cases has a relatively large

error. This finding shows that the new daily confirmed cases of

dates near day t have a weak impact on the infection rate. As k

gradually increases (k = 4–6), the distribution of infection rate

β1 becomes concentrated, and the estimation error of the epi-

demic model decreases rapidly. This observation proves that

the trend of infection rate β1 gradually approaches the truth,

and the dates with a significant effect on day t are gradually

incorporated into the model. When k is greater than 7, the dis-

tribution of β1 no longer changes significantly, but the MAE

curve of the epidemic model gradually increases, proving that

the trend of β1 begins to deviate from the truth. This deviation

indicates that noisy data have been introduced into the model,

that is, the patients at day t − k have been isolated and no

longer infect the S group at day t.

We also establish two epidemic models for patients’ data

in Beijing and Hunan to verify the generality of the above-

mentioned laws. The MAE curves of the two regions are also

shown in Fig. 6. According to the performance of the epidemic

models, the exponential fitting effect of the infection rate in

the two regions is similar to an inverted bell curve, which

further validates that the impact of the new daily confirmed

cases on the infection rate varies at different dates. The new

daily confirmed cases in the middle phase during the period

from t − 10 to t − 1 have a great impact on the infection rate

of time t.

The experimental results of the aforesaid provinces and

cities reflect the general development trend of the epidemic,

but the change in the diagnosis criteria on February 12, 2020

led to a sharp increase in the number of new daily confirmed

cases in Wuhan. To resolve this problem, we initially establish

an epidemic model based on data from January 23, 2020 to

February 11, 2020 in Wuhan and use the exponential func-

tion to fit the overall evolution trend of the infection rate. As

shown in Fig. 7, the fitting curve of Wuhan’s infection rate

is similar to that of Shanghai and Beijing, that is, the trend

of the epidemic in Wuhan is also stable. Therefore, using the

data balance method described in Section III-C to preprocess

the anomaly data points in Wuhan is reasonable.

B. Analysis of the Influence on the Infection Rate of New

Confirmed Cases at Different Time Intervals

Patients in incubation at different infection time intervals

have different infection rates [38], [39]. The new daily

confirmed cases from day t − k to day t − 1 may have dif-

ferent influences on the infection rate of the newly confirmed

patients on day t. Here, we investigate the influence and time
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(g) (h) (i) (j)

(d) (e) (f)

(a) (b) (c)

Fig. 5. Fitting curves of infection rate β1 in Shanghai. (a) k = 1. (b) k = 2. (c) k = 3. (d) k = 4. (e) k = 5. (f) k = 6. (g) k = 7. (h) k = 8. (i) k = 9.
(j) k = 10.

Fig. 6. MAE curves between the number of actual cumulative confirmed
cases and the number of predicted cumulative confirmed cases in Shanghai,
Beijing, and Hunan.

laws of epidemic transmission in the different provinces and

cities by using (2).

We begin by analyzing the relationship between the new

confirmed cases in the past ten days and the new daily con-

firmed cases on day t in Beijing, Shanghai, Zhejiang, and

Hunan. Similar to the conclusions in the above section, the

curve of parameter α is generally similar to a bell curve when

the distribution of weights is considered. That is, the new

confirmed cases from day t − 8 to day t − 3 have a larger

contribution to the new confirmed cases on day t, whereas the

contribution rates of the new confirmed cases from t − 10 to

t−9 and from t−2 to t−1 are smaller, as shown in Fig. 8(a).

When (2) is used to fit the estimated parameter β2(t), the

distribution of αi shows a trend where the value is small on

both sides and large in the middle. Meanwhile, the value of αi

on day t−10 is close to 0, indicating that the earlier confirmed

cases have little influence on the confirmed cases on day t.

Further study reveals that αi on days t − 8 to t − 3 is larger,

whereas those on days t−10 to t−9 and days t−2 to t−1 are

smaller for most provinces and cities. Therefore, the average

infection time is about 5.5 days.

To avoid underfitting or overfitting phenomenon analyzed in

Section V-A, we balance the parameters via a grouped multi-

parameter strategy. According to (3), the weights of the dates

from t − 8 to t − 3 can be set as the same parameter γ1, and

the weights of the days t − 10 to t − 9 and t − 2 to t − 1 can

be set as the same parameter γ2. Then, (3) can be converted

to

I(t) = I(t − 1) + β2(t)γ1

8
∑

i=3

�I(t − i)

+ β2(t)γ2

(

2
∑

i=1

�I(t − i) +

10
∑

i=9

�I(t − i)

)

(8)
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(g) (h) (i) (j)

(d) (e) (f)

(a) (b) (c)

Fig. 7. Fitting curves of infection rate β1 in Wuhan. (a) k = 1. (b) k = 2. (c) k = 3. (d) k = 4. (e) k = 5. (f) k = 6. (g) k = 7. (h) k = 8. (i) k = 9.
(j) k = 10.

where 6γ1 +4γ2 = 1. According to this equation, we have the

results as shown in Fig. 8.

It shows a consistent distribution in the different provinces

and cities in Fig. 8. We can see that the values of γ2 are

always less than the values of γ1 for all the curves in Fig. 8.

For Zhejiang and Hunan, γ2 is close to zero. For other cities,

we take the values of γ2 as a noise and set γ2 as zero. Finally,

we can reformulate (3) as follows:

I(t) = I(t − 1) + β4(t)

8
∑

i=3

�I(t − i). (9)

C. Prediction of the Cumulative Number of

COVID-19 Cases

We verify our model in Wuhan, Beijing, Shanghai, and

countrywide. The numbers of preprocessed infections from

January 23, 2020 to February 18, 2020 are used as the train-

ing data to predict the number of infections from February 19,

2020 to February 24, 2020.

To verify the effectiveness of our model and the influence

of government control and public awareness of epidemic pre-

vention, we compare the traditional IS model, the ISI model,

the ISI model with the LSTM network, and the ISI model

with NLP features and the LSTM network. The NLP fea-

tures extracted from the current and past news are used in the

LSTM network. We compare the daily prediction, MAE, and

mean absolute percentage error (MAPE) for Wuhan, Beijing,

TABLE I
COMPARISON OF ACTUAL CONFIRMED NUMBER AND PREDICTED

NUMBER IN WUHAN

TABLE II
COMPARISON OF ACTUAL CONFIRMED NUMBER AND PREDICTED

NUMBER IN BEIJING

Shanghai, and countrywide. We round off the prediction

results for simplicity, and the compared results are shown in

Tables I–IV.
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(d) (e) (f)

(a) (b) (c)

Fig. 8. Infection rate of the new confirmed cases from day t − 10 to t − 1 to new confirmed cases on day t in the different provinces or cities and the
average effect, where “Average” denotes the average contribution of newly confirmed cases from t − 10 to t − 1 to new confirmed cases on day t in four
regions: Beijing, Shanghai, Zhejiang, and Hunan. (a) Average. (b) Beijing. (c) Shanghai. (d) Zhejiang. (e) Hunan. (f) Wuhan.

TABLE III
COMPARISON OF ACTUAL CONFIRMED NUMBER AND PREDICTED

NUMBER IN SHANGHAI

TABLE IV
COMPARISON OF ACTUAL CONFIRMED NUMBER AND PREDICTED

NUMBER AT THE COUNTRYWIDE SCALE

Our model makes decent predictions for the three typical

cities, as described in Fig. 9. Our ISI model makes a remark-

able improvement of the traditional SI model. Compared with

the ISI model, the LSTM network is not consistently improved,

which is unstable. The ISI+NLP+LSTM achieves a more

precise prediction than the other models. This finding shows

that NLP features provide extra information and guidance for

disease prediction.

In summary, based on the ISI model, the hybrid AI model

for predicting the COVID-19 proposed in this article is embed-

ded with the NLP module, which introduced the important

information of the great efforts led by the central government

and local governments as well as the massive support partici-

pation from the public into the prediction calculation process,

so that the prediction results are more in line with the actual

epidemic development trend.

D. Basic Reproduction Number R0

Basic reproduction number R0 is a widely applied epidemi-

ologic metric to describe the transmissibility of an infectious

patient. In this article, the basic reproduction number R0(t)

is defined as the average number of secondary cases that

one confirmed case at time t would produce in a completely

susceptible population. According to (9), it is formulated as

follows:

I(t + j) = I(t + j − 1) + β4(t + j)

8
∑

i=3

�I(t + j − i). (10)

According to the above equation, the secondary cases

infected by the new daily confirmed cases at time t consist

of β4(t + 3)�I(t), β4(t + 4)�I(t), . . . , β4(t + 8)�I(t). Thus,

the basic reproduction number at time t can be calculated as

R0(t) =

∑8
i=3[β4(t + i)�I(t)]

�I(t)
=

8
∑

i=3

β4(t + i). (11)

We analyze the evolutionary trends of the basic reproduction

number R0 in Beijing, Shanghai, Zhejiang, Hunan, and Wuhan,

as shown in Fig. 10, from which we can see that the values of



ZHENG et al.: PREDICTING COVID-19 IN CHINA USING HYBRID AI MODEL 2901

(d)

(a) (b)

(c)

Fig. 9. Comparison of actual confirmed number and predicted number in three typical cities and at the countrywide scale. (a) Wuhan. (b) Beijing. (c) Shanghai.
(d) Countrywide.

Fig. 10. Curves of the basic reproduction number R0 for different provinces
and cities in China.

R0 for all regions gradually decrease with the implementation

of prevention and control measures.

The Wuhan area was locked down on January 23, 2020,

which was a crucial time point of the COVID-19 epidemic.

To analyze the impact of the lockdown of the city on R0, we

analyze more values of R0 for Wuhan. As shown in Fig. 10, the

R0 curve in Wuhan peaked on January 24, 2020 then dropped

rapidly, indicating that locking down the city played an essen-

tial role in curbing the spread of the COVID-19. With the

proposed hybrid AI model, we also make a prediction about

the cumulative confirmed cases in Wuhan, and all of China, the

data used for prediction were collected from January 23, 2020

to February 18, 2020. The prediction curves of the cumulative

confirmed cases are shown in Fig. 11, from which we can see

that the number of cumulative confirmed cases till the end of

March would be 48 247 for Wuhan. However, if Wuhan was

locked down on January 27, 2020, with a delay of four days

of the actual time, the number would increase to 102 769.

VI. CONCLUSION

This article, which aims to predict the trend of the COVID-

19, discovered that new daily confirmed cases at different time

intervals have different contributions to susceptible infections.

The impact of confirmed cases in the past several days before

time t on the new daily confirmed cases at time t is analyzed.

On this basis, we propose a grouped multiparameter strategy

that sets the infection rates of the confirmed cases in the past

into different groups by time. Then, we derive the proposed

ISI model with multiple parameters. This article uses NLP

technology to analyze and extract related news information,

such as epidemic control measures and residents’ awareness

of epidemic prevention, which are then encoded into semantic

features. Then, these features are fed to the LSTM network to

update the infection rate given by the ISI model.

In summary, based on the ISI model, the hybrid AI model

for predicting the COVID-19 proposed in this article is

embedded with the NLP module, which introduced important

information led by the great efforts of the central government

and local governments as well as the massive support partici-

pation from the public into the prediction calculation process.

The prediction results of the model are highly consistent with

actual epidemic cases, which proves that the proposed hybrid

model can more accurately analyze the transmission law and

development trend of the virus compared with previous models

and that language information processing of related news can
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(a) (b)

Fig. 11. Prediction curves of the cumulative confirmed cases in (a) Wuhan and at the (b) countrywide scale.

help improve the accuracy of the prediction model. In addition,

we provide an effective method for the prediction of the trans-

mission law and development trend of public health events in

the future. This article also shows that the openness, trans-

parency, and efficiency of releasing data are very important

for establishing a modern epidemic prevention system.
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