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Predicting COVID-19 mortality with electronic medical

records
Hossein Estiri 1,2,3,7✉, Zachary H. Strasser1,2,3,4,7, Jeffy G. Klann 1,2,3, Pourandokht Naseri5, Kavishwar B. Wagholikar 1,2,3 and

Shawn N. Murphy1,2,3,6

This study aims to predict death after COVID-19 using only the past medical information routinely collected in electronic health

records (EHRs) and to understand the differences in risk factors across age groups. Combining computational methods and clinical

expertise, we curated clusters that represent 46 clinical conditions as potential risk factors for death after a COVID-19 infection. We

trained age-stratified generalized linear models (GLMs) with component-wise gradient boosting to predict the probability of death

based on what we know from the patients before they contracted the virus. Despite only relying on previously documented

demographics and comorbidities, our models demonstrated similar performance to other prognostic models that require an

assortment of symptoms, laboratory values, and images at the time of diagnosis or during the course of the illness. In general, we

found age as the most important predictor of mortality in COVID-19 patients. A history of pneumonia, which is rarely asked in

typical epidemiology studies, was one of the most important risk factors for predicting COVID-19 mortality. A history of diabetes

with complications and cancer (breast and prostate) were notable risk factors for patients between the ages of 45 and 65 years. In

patients aged 65–85 years, diseases that affect the pulmonary system, including interstitial lung disease, chronic obstructive

pulmonary disease, lung cancer, and a smoking history, were important for predicting mortality. The ability to compute precise

individual-level risk scores exclusively based on the EHR is crucial for effectively allocating and distributing resources, such as

prioritizing vaccination among the general population.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19) has wreaked unprece-
dented havoc on economies and health, with unique manifesta-
tions that have been difficult to manage with existing treatments.
Yet, it is a disease that has appeared after many millions of dollars
invested in the worldwide informatics infrastructure. The greater
availability of electronic health record (EHR) data has enabled an
explosion of studies on COVID-19. At an extremely rapid pace,
hospital systems have been developing COVID-19 data reposi-
tories to track patient data and try to discover risk factors and
treatments for the disease. Standard terminologies have been
expanded to include new diagnosis codes and laboratory tests to
make the disease analyzable by statistics and machine learning
algorithms. In just 3 months, tens of thousands of COVID-19-
related studies were published. Early studies were primarily
population descriptions, but more recent work has used hospital
data to identify risk factors1–10.
Many of the data-driven studies do not take full advantage of

the richness of EHRs. Many isolate a small subset of EHR data to
study only COVID-19 hospitalizations. Few studies use the entire
longitudinal medical records. This is likely because EHRs are rife
with missing and miscoded data, making analysis potentially
misguided by confounders and overfitting. EHR data may not
perfectly suit the definition and scope of classic epidemiological
studies. Yet, the sheer vastness of the EHR is also an advantage: by
using the full medical records, it becomes possible to perform
predictive analytics, simply because there is so much data. This

possibility is more prominent during pandemics, when access to
large-scale research-grade data are not feasible.
Mass General Brigham (MGB) started the COVID-19 Center of

Excellence, of which one pillar is analytics. For this, our team
developed the COVID-19 datamart, a frequently refreshed snap-
shot of longitudinal data on patients with a COVID-19 infection
flag from many data sources from across the enterprise. This
resource provides a system-wide opportunity to perform COVID-
related analytics.
We utilized the MGB COVID-19 datamart containing long-

itudinal medical records from 16,709 COVID-19 patients, to predict
risk of mortality and study risk factors for death across different
age groups. We demonstrate that the data already routinely
collected and stored in EHRs can be rapidly leveraged to address
pressing questions related to the COVID-19 pandemic. The initial
models we trained by May 2020 (<3 months after the COVID-19
surge in the United States) achieved comparable predictive power
to the models described in this study (which were trained in
October 2020). Applying a computational algorithm, Minimize
Sparsity, Maximize Relevance (MSMR)11,12, enhanced with clinical
expertise, we constructed clusters of mortality predictors from EHR
data for COVID-19 patients. Using these covariates, we developed
a set of nested generalized linear models (GLMs) to predict
mortality and understand the relationship of various demo-
graphics and diseases with COVID-19 mortality. The predictive
model provided the ability to forecast the most severe COVID-19
outcome (i.e., death) based on past medical records, which is of
special importance for managing hospital resources and making
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preventive policies, as the virus continues to threaten our
wellbeing. We controlled for the confounding effects of age by
stratifying models into age-separated cohorts. As most known risk
factors for COVID-19 mortality are correlated with age, this
stratification allowed us to study the relative importance of
different risk factors for each of the age groups.
To date, a number of COVID-19 epidemiology studies have

identified risk factors associated with mortality. Several of the
risk factors are based on specific demographics. Initial studies
from China showed significant increased risk of mortality among
patients older than 65 with COVID-191–4. Race and ethnicity
have also been identified as potential risk factors. Data collected
from the health departments of Chicago and New York City
showed increased mortality per 100,000 people in Black and
Latinx patients5,6. The Centers for Disease Control and Preven-
tion (CDC) also reported disproportionately elevated levels of
mortality among Black and Latinx patients based on death
certificates7,8. Sex has also been identified as a risk factor. In
both China and the United States, more men than women were
hospitalized with COVID-198,9. The meta-analysis by Jin et al.10

showed significant differences in mortality between men and
women with the disease.
Patient comorbidities have also been associated with increased

risk for severe outcomes. Although in Wuhan, 42.6% of
hospitalized patients with COVID-19 had at least one comorbid-
ity13, in the United States the CDC reported that 89% of
hospitalized patients with COVID-19 had at least one comorbid-
ity8. The retrospective cohort study by Zhou et al.3 identified a
number of comorbidities with significant differences in prevalence
between survivors and non-survivors. This included hypertension
(HTN), diabetes mellitus (DM), coronary artery disease (CAD),
chronic obstructive pulmonary disease (COPD), and chronic kidney
disease (CKD)3. The retrospective study by Wu et al.1 reported a
significant difference between the rates of HTN and diabetes in
those who developed acute respiratory distress syndrome among
COVID-19 patients. Beyond demographics and comorbidities,
specific symptoms (i.e., dyspnea), biomarkers (i.e., elevated ferritin,
d-dimer, high-sensitivity C-reactive protein), and imaging
(abnormalities on chest X-ray image) have also been associated
with increased mortality in COVID-191–3,13,14.
In addition, many models have been developed that sought to

predict COVID-19 outcomes. Wynants et al.15 systematically
reviewed and critically appraised 145 prediction models for
COVID-19, which included many pre-print manuscripts that were
not peer-reviewed. Wynants et al.15 labeled all 50 models that
prognosticate COVID-19 severity as “poorly reported, highly
biased, and overly optimistic.” Of those 50 models, 7 were
published in peer-reviewed journals, 4 of which reported the area
under the reciever operating curve (AUC-ROC) values for their
model. This included the retrospective analysis by Yuan et al.16 of
27 COVID-19 patients, which used a scoring system for computed
tomography (CT) scans that had previously predicted avian
influenza mortality. Yuan’s CT score predicted mortality with an
AUC-ROC of 0.90 (95% confidence interval (95% CI): 0.87, 0.93).
Colombi et al.17 examined 236 patients with COVID-19 and found
that including results of CT scans of the chest together with
clinical findings increased their AUC-ROC from 0.83 (95% CI:
0.78–0.88) to 0.86 (95% CI: 0.81–0.90). Gong et al.18 created a
model based on 189 COVID-19 patients that included biomarkers
to identify likelihood of severe disease. Gong’s model had an AUC-
ROC of 0.85 (95% CI: 0.79–0.92). Finally, Hu et al.19 examined how
different prognostic scores that included vital signs could predict
mortality. Depending on the model used, the AUC-ROC of Hu
et al.19 ranged from 0.68 (95% CI: 0.58–0.77) to 0.84 (95% CI: 0.76
to 0.91). Together, these models have a wide range of AUC-ROC
values from 0.68 to 0.90. However, they all relied on features that
were collected at the time of diagnosis, including vital signs,
symptoms, biomarkers, and/or images, whereas our model relied

exclusively on previous medical records, which could offer
advantages by predicting who in our society would be at greatest
risk if they were to contract the virus.

RESULTS

Features

We began with over 53,100 distinct initial features (i.e., diagnosis
and medication records) available in the study population’s EHRs.
The first step of the MSMR algorithm reduced the dimensionality
to under 9500 distinct features, which we then reduced to 1000
using the joint mutual information (JMI) score. Using clinical
expertise, we grouped these medical records into 46 clusters of
prior clinical conditions, to which we added other available
relevant diagnosis or medication records in the MGB EHR
repository. These clusters represent pseudo-cohorts of diseases
and we used them as covariates for mortality after COVID-19. For
example, the pseudo-cohort of CAD patients encompassed
COVID-19-positive patients who had International Classification
of Diseases, 10th Revisions (ICD-10) codes such as “Diagnosis of
Old Myocardial Infarction” and “Atherosclerotic Heart Disease of
Native Coronary Artery.” In certain cases, if a medication was
specifically associated with a disease, the medication code(s) was
used to identify a disease cluster. For example, the patients taking
levothyroxine were designated as having hypothyroidism. Table 1
also includes the list of the 46 clusters of prior conditions. Certain
disease pseudo-cohorts were subdivided into two clusters
between a non-severe and severe subtype. For example, HTN
was divided into a category of HTN and urgent/emergent HTN.
The final 46 clusters included all major and subdivided clusters.
The list of diagnosis and medication codes used to curate disease

clusters are provided in Supplementary Table 1. In addition to these
features, we included five demographic covariates, including age (in
years), and binary variables to describe gender (female), race (Black
and White), and ethnicity (Hispanic). Overall, 51 covariates were
used for the analysis.

Univariate analysis

The overall probability of death in our COVID-19 patients was
4.9%. Twenty-five percent of the patients in this cohort were
hospitalized. The hospitalized patients encompassed 77% of the
830 death events. Table 1 shows that probability of death
fluctuated by demographics. Of the measured demographics, the
two groups of under 45 years and between 45 and 65 years were
both associated with a decreased risk of mortality. The odds ratio
(OR) for mortality in those under 45 years was 0.034 (CI:
0.021–0.051). Those between 45 and 65 years had an OR for
mortality of 0.38 (CI: 0.31–0.45). Being identified as Hispanic or
female was also associated with a decreased risk of mortality with
an OR of 0.31 (CI: 0.20–0.45) and 0.65 (CI: 0.57–0.75), respectively.
Identification as Black was not found to be statistically significant,
whereas being identified as White was associated with increased
mortality with an OR of 2.45 (CI: 2.10–2.88). Finally, ages between
65–85 years and greater than 85 years were both associated with
increased probability of mortality with an OR of 4.30 (CI: 3.73–4.96)
and 11.36 (CI 9.65–13.36), respectively.
All of the comorbidities were associated with increased risk of

mortality; hence, their ORs are all >1. The five comorbidities with
the highest ORs were CKD, heart failure, abdominal aortic
aneurysm, HTN, and aortic valve disease.

Model comparison

The overall model, which included patients under 45 years, had a
mean AUC-ROC of 0.898 with a 95% CI between 0.896 and 0.900
(Table 2).
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Table 1. Univariate analysis of the 51 covariates (46 clinical+ 5 demographic).

Covariates Survivors (N= 15,879)
no. (%)

Non-survivors
(N= 830) no. (%)

p-Value Relative risk 95% CI Odds ratio 95% CI

Female 9168 (58.1) 391 (47.1) <0.001 0.67 0.58 0.76 0.65 0.57 0.75

Hispanic 1567 (9.9) 27 (3.3) <0.001 0.32 0.22 0.47 0.31 0.20 0.45

White 8374 (53) 608 (73.3) <0.001 2.36 2.03 2.74 2.45 2.10 2.88

Black or African American 2326 (14.7) 104 (12.5) 0.102 0.84 0.69 1.03 0.84 0.67 1.03

Under 45 years 6903 (43.7) 21 (2.5) <0.001 0.04 0.02 0.06 0.03 0.02 0.05

45–65 Years 5629 (35.7) 142 (17.1) <0.001 0.39 0.33 0.47 0.38 0.31 0.45

65–85 Years 2659 (16.8) 385 (46.4) <0.001 3.88 3.41 4.43 4.30 3.73 4.96

Over 85 years 688 (4.4) 282 (34.0) <0.001 8.35 7.35 9.49 11.36 9.65 13.36

Abdominal aortic aneurysm 110 (0.7) 41 (4.9) <0.001 5.70 4.35 7.46 7.47 5.12 10.68

Atrial fibrillation and flutter 996 (6.3) 266 (32.0) <0.001 5.77 5.05 6.60 7.05 6.00 8.26

Anemia 4485 (28.4) 489 (58.9) <0.001 3.38 2.96 3.87 3.64 3.16 4.20

Aortic valve disorder 557 (3.5) 170 (20.5) <0.001 5.66 4.87 6.59 7.09 5.86 8.54

Benign prostate hypertrophy 1552 (9.8) 255 (30.7) <0.001 3.66 3.18 4.20 4.09 3.50 4.78

Coronary artery disease 1577 (10.0) 347 (41.8) <0.001 5.52 4.85 6.28 6.51 5.62 7.55

Cardiomegaly 739 (4.7) 154 (18.6) <0.001 4.03 3.43 4.74 4.67 3.85 5.63

Chronic kidney disease 1212 (7.7) 342 (41.2) <0.001 6.83 6.01 7.77 8.48 7.29 9.85

Chronic obstructive pulmonary disease 731 (4.6) 179 (21.6) <0.001 4.77 4.10 5.55 5.70 4.74 6.82

Cerebrovascular accident 1082 (6.9) 255 (30.7) <0.001 5.10 4.45 5.84 6.07 5.16 7.11

Depression 4471 (28.3) 356 (42.9) <0.001 1.85 1.62 2.11 1.92 1.66 2.21

Diverticulosis 1431 (9.1) 177 (21.6) <0.001 2.55 2.17 2.98 2.74 2.29 3.25

Diabetes mellitus, type 1 503 (3.2) 87 (10.5) <0.001 3.20 2.60 3.93 3.58 2.80 4.53

Diabetes mellitus, type 2, with
complications

1789 (11.3) 293 (35.3) <0.001 3.83 3.35 4.39 4.30 3.69 4.99

Diabetes mellitus, type 2, without
complications

2658 (16.8) 360 (43.4) <0.001 3.47 3.05 3.96 3.81 3.30 4.40

Epilepsy 551 (3.5) 72 (8.7) <0.001 2.45 1.95 3.08 2.65 2.03 3.40

End-stage renal disease 300 (1.9) 83 (10.0) <0.001 4.74 3.87 5.80 5.78 4.46 7.41

Gastroesophageal reflux disease 3429 (21.7) 286 (34.5) <0.001 1.84 1.60 2.11 1.91 1.64 2.21

Gastrointestinal bleed 1339 (8.5) 183 (22.0) <0.001 2.82 2.42 3.30 3.07 2.58 3.65

Gout 553 (3.5) 117 (14.1) <0.001 3.93 3.28 4.70 4.55 3.66 5.61

Heart failure 1081 (6.8) 301 (36.3) <0.001 6.31 5.54 7.19 7.79 6.67 9.08

Hyperlipidemia 5170 (32.7) 563 (67.8) <0.001 4.04 3.50 4.65 4.37 3.76 5.08

Hypertension 5867 (37.2) 672 (81.0) <0.001 6.61 5.58 7.84 7.25 6.10 8.68

Hypertensive emergency 289 (1.8) 64 (7.7) <0.001 3.87 3.07 4.88 4.51 3.38 5.94

History of pneumonia 2940 (18.6) 406 (48.9) <0.001 3.82 3.36 4.36 4.21 3.66 4.86

History of a urinary tract infection 3607 (22.8) 369 (44.5) <0.001 2.56 2.25 2.93 2.72 2.36 3.14

Hyperparathyroidism 342 (2.2) 74 (8.9) <0.001 3.83 3.08 4.77 4.45 3.40 5.75

Hypothyroidism 1635 (10.4) 180 (21.7) <0.001 2.27 1.94 2.66 2.41 2.03 2.86

Interstitial pulmonary disease 207 (1.3) 53 (6.4) <0.001 4.32 3.36 5.54 5.17 3.76 7.00

Mitral valve disorder 945 (6.0) 186 (22.4) <0.001 3.98 3.42 4.63 4.57 3.82 5.43

Breast neoplasm 356 (2.3) 51 (6.1) <0.001 2.62 2.01 3.42 2.86 2.09 3.84

Lung neoplasm 147 (0.9) 43 (5.2) <0.001 4.75 3.62 6.23 5.86 4.09 8.22

Prostate neoplasm 260 (1.6) 54 (6.5) <0.001 3.63 2.82 4.68 4.19 3.07 5.62

Osteoarthritis 3307 (20.9) 369 (44.5) <0.001 2.84 2.49 3.24 3.04 2.64 3.51

Occlusion of the carotid artery 443 (2.8) 130 (15.7) <0.001 5.23 4.42 6.18 6.47 5.23 7.96

Obstructive sleep apnea 1529 (9.7) 128 (15.4) <0.001 2.84 2.49 3.24 3.04 2.64 3.51

Parkinson’s disease 133 (0.8) 32 (3.9) <0.001 4.02 2.92 5.53 4.76 3.16 6.96

Pulmonary embolism 795 (5.0) 145 (17.5) <0.001 3.55 3.01 4.19 4.02 3.30 4.86

Pulmonary hypertension 249 (1.6) 73 (8.8) <0.001 4.91 3.96 6.07 6.06 4.59 7.91

Peripheral vascular disease 529 (3.4) 145 (17.5) <0.001 5.04 4.28 5.92 6.15 5.02 7.48

Rheumatoid arthritis 351 (2.2) 45 (5.4) <0.001 2.36 1.78 3.14 2.54 1.83 3.46

Smoking history 1304 (8.3) 137 (16.5) <0.001 2.09 1.76 2.50 2.21 1.82 2.67

Thoracic aortic aneurysm 177 (1.1) 35 (4.2) <0.001 3.43 2.51 4.67 3.92 2.67 5.60
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Figure 1 illustrates the difference in prediction performances
(ROC curves and AUC ROCs) between the standard GLM and
boosting GLM, both with the logit link and binomial distribution.
In the overall model, a Wilcoxon’s rank-sum test was performed to
compare the standard GLM with the boosting GLM (mean AUC
ROCs 0.892 [CI: 0.889–0.896] vs. 0.898 [CI: 0.896–0.900]). Although
there was a small absolute difference between the two models
(a difference of 0.005), the p-value was significant at 0.0038.
However, the boosting algorithm offered an even greater
improvement to the age-based models. In the 45–65 cohort, the
boosting algorithm improved the median prediction performance
measure (AUC-ROC) computed on the held-out set by 15% (0.789
vs. 0.688). The improvements in prediction provided by the
boosting algorithm were over 5% in the 65–85 cohort (0.753 vs.
0.715) and 7% in the 85+ cohort (0.685 vs. 0.641). Each of the
models was compared to one another with a Wilcoxon’s rank-sum
test and showed a p-value <%.
We also plotted the diagnostic reliability diagrams (calibration

curves) to test the reliability of the models and compare the
algorithms. Figure 2 illustrates the calibration curves for the overall
and 85+ models. To compare the two algorithms, we fitted a
smoothed trend line as a representation of the overall calibration
curve obtained from the ten calibration plots for each algorithm.
The calibration plots are produced from the raw predicted
probabilities computed by each algorithm (X axis) against the
true probabilities of patients falling under probability bins (Y axis).
In a well-calibrated model, the calibration curve appears along the
main diagonal—the closer the more reliable. As illustrated in
Fig. 2, the calibration curves from the boosting algorithm are close
to the diagonal, which means that the models are generally
reliable. Despite the boosting algorithm not having an acceptable
discrimination power for the oldest age group, the calibration
curve demonstrates relatively reliable probabilities.

Overall model

In the overall model, 18 features were identified in at least 20% of
the models (2 of 10) as being associated with an increased
mortality risk (Fig. 3). We present Odds Ratios (ORs) with
interquartile ranges (IQR) to compare relative importance of the
variables for predicting mortality. Of these features, age had the

most prominent association—median OR: 2.82 (iqr: 0.03)—for
predicting mortality. All median ORs are provided in Supplemen-
tary Table 2. It is important to note that the ORs from the boosting
models might be smaller than those obtained from a standard
model, as boosting has the effect of shrinkage. The coefficient for
the next highest feature was considerably smaller. We found that
several respiratory diseases were associated with an increased
mortality risk including a history of pneumonia (OR: 1.06, iqr: 0.02),
COPD (OR: 1.02, iqr: 0.02), interstitial pulmonary disease (OR: 1.03,
iqr: 0.02), and a history of a pulmonary embolism (OR: 1.02, iqr:
0.02). Other identified risk factors included diseases of the
heart and vascular system such as a history of cardiomegaly,
hypertensive urgency or emergency, heart failure, cardiomegaly,
and atrial fibrillation or flutter. In addition, diseases affecting
diverse organs were associated with various degrees of risk in
the model including a history of a cerebrovascular accident,
CKD, diabetes with complications, benign prostatic hypertrophy,
and gout.

Age-based models

As described in the methods, we stratified the overall model by
age groups in order to reduce the variability in age and to identify
risk factors of different ages. We created three age groups (Fig. 4)
in which age was fixed to a 20-year variation: 45 to 65, 65 to 85,
and above 85 years (the oldest patient group included at least a
20-year age variation). As presented in Table 2, we found that the
prediction performance declined from an AUC-ROC of 0.898 in
the overall group to between 0.685 and 0.789 for the different
age groups.
Among the 45–65-year age group, there were 17 features

associated with increased mortality. Many of these features were
not only associated with the pulmonary system, but included
diseases affecting various organs. The highest risk disease
clusters were a history of diabetes with complications (OR: 1.16,
iqr: 0.03), a gastrointestinal bleed (OR: 1.08, iqr: 0.05), breast
cancer (OR: 1.07, iqr: 0.03), and a tricuspid valve disorder (OR:
1.07; iqr: 0.01). Disorders unique to this specific age cohort
included atrial fibrillation and atrial flutter, CAD, and tricuspid
valve disorders.
Among the 65–85-year age group, 21 features were associated

with increased risk. For this group, many of the features were
related to the respiratory system. A history of pneumonia (OR:
1.13, iqr: 0.03), interstitial pulmonary disease (OR: 1.08, iqr: 0.05),
COPD (OR: 1.04, iqr: 0.07), pulmonary embolism (OR: 1.04, iqr:
0.02), and lung cancer (OR: 1.03, iqr: 0.02) were all associated with
increased risk of mortality. Smoking (OR: 1.06, iqr: 0.04) was also
associated with an increased risk. A few features were associated
with the cardiac and vascular system including a history of
cardiomegaly, heart failure, atrial fibrillation, and hypertensive
urgency and emergency. Unique features for this age group
included a smoking history and occlusion of the carotid artery.
In the 85+ years age group, there were 17 features associated

with increased mortality. The highest risk disease clusters included
CKD (OR: 1.10, iqr: 0.04), hypertensive emergency (OR: 1.09, iqr:
0.01), cerebrovascular accident (OR: 1.06, iqr: 0.03), and DM type 2

Table 1 continued

Covariates Survivors (N= 15,879)
no. (%)

Non-survivors
(N= 830) no. (%)

p-Value Relative risk 95% CI Odds ratio 95% CI

Tricuspid valve disorder 569 (3.6) 126 (15.2) <0.001 4.12 3.47 4.91 4.82 3.90 5.91

Vitamin D deficiency 2244 (14.2) 164 (19.8) <0.001 1.46 1.24 1.73 1.50 1.25 1.78

Ventricular tachycardia 249 (1.6) 82 (9.9) <0.001 5.42 4.44 6.63 6.89 5.28 8.90

Difference in the mortality probabilities between the group with the condition (or demographic status) and the no-condition group.

Table 2. The mean area under the operating characteristics curve

(AUC-ROC) by model.

Model GLM w/ gradient
boosting

Standard GLM p-Valuea

Overall model 0.898 [0.896, 0.900]b 0. 892 [0.889, 0.896] 0.0038

45–65 Years 0.789 [0.795, 0.809] 0.688 [0.675,0.701] 0.00001

65–85 Years 0.753 [0.745,0.760] 0.715 [0.705,0.725] 0.00001

85+ Years 0.685 [0.673, 0.697] 0.641 [0.626,0.656] 0.0001

ap-Values from the Wilcoxon’s rank-sum test.
b95% confidence intervals in brackets.
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with complications (OR: 1.06, iqr: 0.03). There were several features
exclusive to this model including Vitamin D deficiency and benign
prostate hypertrophy.

Demographic covariates

Among the demographic features, age was the most important
predictor of mortality in the overall COVID-19 patient population.
However, in the age-based models where the variability in age
was limited to 20 years, we found its association diminish from a
median OR of 2.82 in the overall model to 1.19 in the 45–65
model, to 1.36 in the 65–85 model, and 1.06 in the patients over
85 years. Despite separating cohorts into different ages, the age
feature continued to be an important predictive factor in mortality
within those groups. This finding was most apparent among the
65–85-year-old age group.
For gender, we found that being female consistently reduced

the risk of death—the median OR in the overall model was 0.98
(iqr: 0.005). In each of the age models, by limiting the age range
and thereby reducing the importance of age, being female
became more strongly associated with decreased mortality.
In the overall model, we did not find any evidence that a certain

race or ethnicity would alter the chance of mortality after COVID-19.
However, among the oldest cohort of patients, we found that being
Black (or African American) was associated with a higher chance of
mortality and being Hispanic or White was associated with a
lower risk.

DISCUSSION

We demonstrated that EHR data can be rapidly leveraged for
predicting outcomes and studying newly emerging infectious
diseases. We were able to train early versions of the models
presented in this paper by May 2020 with similar predictive power,
only 3 months after the COVID-19 pandemic was recognized in
the United States. The models developed in this study leveraged
only the demographics, diagnoses, and medications, in order to
predict who, with a COVID-19 diagnosis, was at risk of death. Even
though the features independently have relatively low ORs (see
Table 1), our overall model still has an AUC-ROC of 0.898. Other

Fig. 1 Comparing the classification performance between the boosting and standard GLM (binomial logistic) models. a–d The ROC curves
for the overall 45–65, 65–85, and 85+models, respectively. e–h The area under the ROC curves for the overall, 45–65, 65–85, and 85+models.

Fig. 2 Calibration curves of models. a The calibration curve for the
overal model. b The calibration curve for the 85+ model.
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published COVID-19 predictive models for mortality have AUC-
ROC’s that range from 0.68 to 0.9016–19, relying on an assortment
of symptoms, laboratory values, and images at the time of
diagnosis or during the illness to predict mortality.
Our model was able to provide a relatively high AUC-ROC, while

relying exclusively on findings already stored in the EHR. For each
patient, the model predicted a probability for death, solely based
on the past medical records. We demonstrated the clinical
reliability of the models through calibration curves. This has
substantial implications, especially as the virus continues to spread
rapidly. At the point of care, the estimated probabilities can be
used to construct risk strata to quickly separate low risk patients
from those with a high risk of mortality. This technique could be
extremely valuable for determining who is most likely to benefit
when resources are limited, such as informing vaccination
distribution. Currently, the CDC recommendations for vaccinations
rely on generalizations that are based on age, occupation, and the
living environment20. Such recommendations are imprecise and
do not leverage the wealth of information in the EHR. A model,
such as the one proposed in this study, could assess the individual
risk of every participant in a healthcare system based off of
demographics, diagnoses, and medications found in the EHR. This
could ensure resources are being equitably distributed by
identifying and then prioritizing the highest risk individuals in
each of the groups.
Our results show that the boosting algorithm improved the

discrimination power in age-based models over the standard GLM
algorithm by 5–15%. Although previous COVID-19 epidemiology
studies have identified chronic diseases that independently have
an impact on prognosis, many of the risk factors identified were
highly correlated with one another and therefore when combined
do not necessarily lead to a significantly higher likelihood of an
adverse outcome. For example, in our overall model, HTN had a
correlation with age of 0.36, with hyperlipidemia of 0.67, and with
DM type 2 with complications of 0.41. Although early research
findings observed higher rates of HTN among severely ill COVID-
19 patients21–23, in the case of HTN, it is not clear if the disease
actually caused a higher mortality or if it is a confounder. Our
model provides a framework for understanding how multiple risk
factors can collectively be interpreted to predict death after a
COVID-19 diagnosis. Of note, certain risk factors like HTN were not
included in our final model.

Despite certain features dropping out, the features that were
ultimately included in the overall model correspond well with
previously identified risk factors from previous epidemiology
studies. For example, in our overall model, age was by far the most
important feature for predicting COVD-19 mortality. Previous
epidemiology studies have shown higher rates of case fatalities
among older patients3,24. This model demonstrated just how
significant the age feature (OR of 2.82) is compared to the next
highest feature of pneumonia (OR of 1.06). In addition, our overall
model supported the previous epidemiological findings that
women with COVID-19 have an overall lower chance of death
compared to men5–9. Our overall model, associated the female
label with having an OR of 0.972. Further, this feature was present
in nearly every fold of the overall model (9 out of 10).
Several features identified in the models warrant further

evaluation. The second most important feature in the overall
model was a history of pneumonia. This feature also appeared in
some of the age group models as well. Many of the COVID-19
epidemiology studies do not report a history of pneumonia as a
risk factor1,3,8. However, the MSMR method of selecting features
from the totality of longitudinal data of a patient’s EHR led to its
identification. Its incorporation into the final prediction model was
due to it not only being predictive, but likely less correlated with
many other chronic diseases like HTN, hyperlipidemia, CAD, and
age for predicting death. It is possible that the diagnostic label
was a proxy for an underlying chronic lung disease. These findings
suggest that future studies should investigate this correlation
between a previous pneumonia diagnosis and increased risk of
death with COVID-19.
The model also identified several features that were not

specifically seen in the initial COVID-19 epidemiology studies. In
the initial study in China by Zhou et al.3, only 2 of the 191 patients
had CKD3. Subsequent studies such as that of Cheng et al.13 have
shown significant increased mortality in patients with acute
kidney injury at the time of COVID-19 diagnosis, but did not
comment specifically on previous CKD. Our overall model showed
that CKD was one of the more important risk factors for assessing
the potential for death due to COVID-19 in the overall population
with an OR of 1.04 in the overall model. Among the 85+ years age
group, it is one of the most important features for predicting
mortality.

Fig. 3 Odds ratios for the covariates identified as predictors of mortality in COVID-19 patients. Risk factor observation represents the
number of model iterations that identified a covariate as a predictor of mortality in COVID-19 patients. The total number of model iterations is
10. Median and interquartile ranges (IQR) for odds ratios are available in Supplementary Table 2.
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Interestingly, the top features of the overall model span a
number of different organ systems. After age, the top features
were a history of pneumonia, CKD, DM type 2 with complications,
and heart failure. These diseases correspond to the respiratory,
renal, endocrine, and cardiovascular systems, respectively. The
findings suggest that simply adding the commonly identified risk
factors such HTN, diabetes, and CAD will not lead to the most
predictive model. Rather there is an increased risk specifically for
patients that have a diverse set of comorbidities spanning
different organ systems.
When the models were separated into different age groups,

age became less of a prominent feature compared to its effect in
the overall model. Still, even among the 45–65-year-old patients,
of all the features included in the model, age remained the most
important predictor for death. In addition, in this younger age
group, the next most important feature was a history of DM type
II with complications. The model showed that when evaluating
risk among 45–65-year-olds, the most important features were
the relative age within the group and a history of DM with
complications.
Among the 65–85-year-olds, age remained the most important

feature for predicting death among COVID-19 patients. In this age
range, many respiratory diseases independently increased the risk
for COVID-19 mortality. This included a history of pneumonia,
COPD, lung cancer, pulmonary embolism, interstitial pulmonary
disease, and smoking. Despite these diseases all being related to
the respiratory system, each individually still contributed to an
increased risk of mortality among COVID-19 patients. They did not
have substantial correlation with one another despite all of them
having an effect on the lungs. When assessing patients in this age
range, the model suggests that it could be helpful to quantify the
number of chronic diseases affecting the lung.
Unlike other studies that began with a limited set of hypothetical

risk factors, we took a primarily inductive approach for identifying

potential COVID-19 risk factors. This approach allowed us to filter
through thousands of medical records to identify potential risk
factors for death after COVID-19, some of which, like the history of
pneumonia, might have never been included in an epidemiological
study with covariates chosen a priori.
Finally, our initial univariate analysis showed an increased risk of

mortality among patients who identified as White, no difference
among those who identified as Black, and a decreased risk among
those who identified as Hispanic. After taking into account
demographics, diagnoses, and medications, the risk of death
associated with each race and ethnicity was no longer evident in
the overall model. In the oldest age model Black patients had an
increased risk and Hispanic and White patients had a decreased
risk. Every machine learning model is subject to the constraints of
the specific population that it trains on. Although our model may
have been trained on a dataset that had a high association of
White patients with comorbidities, it accounted for this in the
adjusted model and no longer showed the association in the
actual model. The findings of Black patients having an increased
risk of mortality corresponds with previous epidemiology studies
that have identified increased risk among minorities7,8.
This study relied on retrospective data from the EHRs. As a

result, there are considerations that need to be taken into account
when analyzing the data. First, the history of a medical record
does not guarantee that the patient currently has (or maybe ever
had) the respective clinical condition. It could be that a disease
was resolved over time or never even existed. Second, multiple
imputation for missing diagnosis and medication records was not
possible. As a result, if a patient did not have any EHR from a
disease cluster, we assumed that the history of disease was not
present. Third, our models did not fully control for all confounders,
which could bias some of the findings. For example, high
healthcare utilization among patients may lead to artificially
increased numbers of diagnoses, compared to patients with low

Fig. 4 Odds ratios for the covariates identified as predictors of mortality in COVID-19 patients by age groups. a Odds ratios for the 45-65
model. b Odds ratios for the 65-85 model. c Odds ratios for the 85+model. Risk factor observation represents the number of model iterations
that identified a covariate as a predictor of mortality in COVID-19 patients. The total number of model iterations is 10.
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healthcare utilization. Future studies should evaluate specific
features by attempting to control for confounders. The risk factors
identified in this study should be understood collectively as a
powerful tool for ascertaining risk in COVID-19 patients. Finally,
external validation of the predictive models and features in this
study should eventually be tested on data from other healthcare
institutions.
The ever-increasing availability and prevalence of EHR systems

offer longitudinal medical data on millions of patients. EHR data
can be rapidly leveraged for predicting outcomes and studying
pandemics. We trained our initial models with comparable metrics
in May 2020, roughly 3 months after the COVID-19 pandemic was
recognized in the United States. These data are not clean and may
not perfectly suit the definition and scope of classic epidemiolo-
gical studies. However, when coupled with innovative approaches,
EHR data can be useful for predicting and understanding disease
trajectories and treatment outcomes. This possibility is more
prominent during pandemics, when access to large-scale
research-grade data is not feasible. We showed that EHR data
can be leveraged to predict death after COVID-19. This capability
enables us to predict the most severe COVID-19 outcome (i.e.,
mortality) based exclusively on the past medical records. It is of
special importance for allocating finite resources and guiding
preventative policies as the virus continues to spread. Inevitably,
when new viruses emerge, predictive modeling capabilities with
EHR data will be crucial for allocating therapies, vaccinations, and
other resources.

METHODS

Study goals

The primary goal of this study was to create a predictive model for COVID-
19 mortality based on the longitudinal data stored in EHRs, in hopes that
longer medical history will allow improved predictive performance. We
strive to (1) develop a predictive model for the overall population and
specific age groups based on longitudinal medical records (as initial
features) stored in the EHRs and (2) analyze and interpret the importance
of the features identified by each of the models, to see if it conveys some
explanatory power in the risk factors of the disease.

Data

We used EHR’s data from 24,215 patients with a confirmed case for COVID-
19 (confirmed polymerase chain reaction test, PCR) between 03 March
2020 and 10 November 2020. We narrowed this cohort to those who had
at least 1 year of medical history—i.e., a 1-year time difference between
the first and the last medical record before the COVID-19 positive PCR test
—with MGB, resulting in a final study cohort of 16,709 patients with a
confirmed COVID-19 PCR test. MGB includes 10 hospitals in the Greater
Boston area with a total of over 3400 beds, 160,000 discharges per year,
and 200 intensive care unit beds. For each patient, we performed temporal
data segmentation to eliminate any possible temporal data leakage in the
analysis (Fig. 5). We included data from the beginning of the electronic
record (as far back as 1 January 2000 for some patients) up to 14 days prior
to the positive COVID-19 PCR test date. This temporal buffer ensured that
no COVID-19-related medical conditions were included in the model as a
risk factor (the study design is illustrated in Fig. 5). Mortality data were
retrospectively added to the record from various data sources and this
included mortality unrelated to the visit. The use of data for this study was
approved by the MGB Institutional Review Board (2020P001063). A waiver
of consent was granted due to the rapidly evolving nature of the
pandemic, patient intake and visitor policies. Table 1 includes a summary
of demographic information about the study cohort.

Feature selection

Unlike other studies that begin with a limited set of hypothetical risk
factors, we took an inductive approach for identifying potential risk factors
for COVID-19 mortality. The feature selection began with a computational
algorithm that MSMR11,12. We enhanced the algorithmic feature selection
with clinical knowledge by constructing clusters of past medical conditions
from the MSMR’s initial features. Finally, we utilized a boosting algorithm

to identify covariates that were associated with the risk of death in COVID-
19 patients.

Minimize Sparsity, Maximize Relevance

The MSMR11,12 algorithm is a filter method that aims to minimize sparsity
and maximize relevance in a high dimensional feature space. All steps of
the MSMR algorithm were performed in R statistical language25. MSMR
filtered out sparse medical records that were utilized in this study as initial
features, removing medical records seen in <0.25% of the patient
population (fewer than ~20 patients). MSMR then computed the JMI26,27

score for each of the remaining medical records (applying the praznik R
package)28. JMI represented the mutual information between a set of
features and an outcome, while also taking into account the redundancy
between the features—i.e., reducing multicollinearity among covariates.
Using a combination of JMI score and the observation frequency, MSMR
ranked and limited the number of potential initial features (i.e., medical
records) to the top N features. The top 1000 initial features were used in
this study for expert covariate clustering.

Expert feature clustering

EHR records often contain different concept codes (e.g., codes from the
ICD-9 or -10, Clinical Modification, known as ICD-9 or ICD-10 codes), which
refer to similar clusters of clinical conditions. We utilized the 1000 initial
features (including diagnosis and medication records) provided by the
MSMR algorithm as an initial set of indicators for potential covariates that
could predict death in COVID-19 patients. Using these medical records, a
clinician in our team constructed clusters of records to identify patient
pseudo-cohorts with similar prior clinical conditions, which we used as
clinical covariates in this study. To increase robustness of the clusters, we
include additional diagnosis and medication codes into the construction of
clusters that were not initially included in the top 1000 codes by MSMR,
which may happen due to the variability in the healthcare utilization
processes across time. For example, if multiple ICD codes related to HTN
are recommended by the MSMR algorithm, the clinician would create one
(or more) cluster(s) of hypertensive patients, using all the codes in the EHR
that are used to define HTN cohorts. Each cluster was considered a
predictor of mortality in COVID-19 patients.

Univariate analysis

For each of the clusters of prior conditions, we performed a two-proportion
z-test between survivors and non-survivors, and calculated the p-value. The
relative risk and OR were calculated for each demographic and disease
cluster to compare patients with and without the condition (or
demographic status) of interest.

Boosting algorithm

To further evaluate the identified candidate clusters of risk factors for
mortality after COVID-19 and study their potential fluctuations across age
groups, we applied GLMs with component-wise functional gradient
boosting, implemented in the R25 add-on package mboost29,30. Boosting
algorithms improve the prediction power of the model by training a
sequence of weak models that each compensate for the weaknesses of their
predecessor30–32. A Wilcoxon’s rank-sum test was performed to compare the
GLM with gradient boosting to the standard GLM and determine their AUC-
ROC difference was statistically significant. We then leveraged the boosting
algorithm to perform a final evaluation of the relative importance of the final
features obtained from the MSMR and expert clustering.

Experimental setting

For classifier training and testing, we used an 80 : 20 ratio (i.e., 80% of the
data used for training) with random sampling. We iterated the train-test
sampling 10 times to account for possible patient population differences
caused by the sampling. To train the models, we performed fivefold cross-
validation. To evaluate the models’ discrimination power, we computed
the AUC-ROC on the held-out test sets. We also evaluated the models’
reliability for clinical interpretation using diagnostic reliability diagrams
(calibration curves). We extracted the GLM boosting regression coefficients
with the logit link and binomial distribution to study risk factor importance
and fluctuations across age groups. We then performed a nonparametric
Wilcoxon’s rank-sum test to compare the GLM with boosting to a
traditional GLM.
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To control for age as a risk factor, we created uniform 20-year age groups
from subsets of the patient population with a focus on patients who were
over 45 years old. The age groups included 45–65, 65–85, and above 85
years. We repeated the same model for training and evaluation experiments
on each of these age groups as was done on the overall patient population.
Together, using the clinical risk factors and the five demographic

covariates (binary variables for female, White, Hispanic, and Black or African
American, as well as continuous variable for age) we trained and tested four
models as follows: (1) the overall model trained and tested on the entire
patient population, (2) a model for patients older than 45 years and younger
than 65 years (45–65), (3) a model on patients between 65 and 85 years of
age (65–85), and (4) a model on patients older than 85 years (85+). Due to
the highly unbalanced data, we under-sampled the alive patients to improve
model training. That is, we limited patients to those who survived for at least
a specific number of days after contracting COVID-19, depending on the age
group model. In the overall, 45–65, and 65–85 models, we specified a 28-day
buffer for the alive patients, but in the 85+ model, where death incidents
were more balanced, we only required a 7-day buffer to assume a patient’s
survival. We computed ORs by exponentiating the regression coefficients
obtained from the GLMs to compare relative importance of the variables for
predicting mortality within and across age groups. It is important to note
that the ORs from the boosting GLM are expected to be smaller than those
obtained from a standard GLM, as boosting has a shrinkage effect.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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