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Abstract

Motivation: Large volumes of biomedical literature present an opportunity to build whole-body hu-
man models comprising both within-tissue and across-tissue interactions among genes. Current studies
have mostly focused on identifying within-tissue or tissue-agnostic associations, with a heavy emphasis
on associations among disease, genes and drugs. Literature mining studies that extract relations per-
taining to inter-tissue communication, such as between genes and hormones, are solely missing.
Results: We present here a first study to identify from literature the genes involved in inter-tissue
signaling via a hormone in the human body. Our models BioEmbedS and BioEmbedS-TS respectively
predict if a hormone-gene pair is associated or not, and whether an associated gene is involved in the
hormone’s production or response. Our models are classifiers trained on word embeddings that we had
carefully balanced across different strata of the training data such as across production vs. response
genes of a hormone (or) well-studied vs. poorly-represented hormones in the literature. Model training
and evaluation are enabled by a unified dataset called HGv1 of ground-truth associations between genes
and known endocrine hormones that we had compiled. Our models not only recapitulate known gene
mediators of tissue-tissue signaling (e.g., at average 70.4% accuracy for BioEmbedS), but also predicts
novel genes involved in inter-tissue communication in humans. Furthermore, the species-agnostic nature
of our ground-truth HGv1 data and our predictive modeling approach, demonstrated concretely using
human data and generalized to mouse, hold much promise for future work on elucidating inter-tissue
signaling in other multi-cellular organisms.
Availability: Proposed HGv1 dataset along with our models’ predictions, and the associated code
to reproduce this work are available respectively at https://cross-tissue-signaling.herokuapp.
com/, and https://github.com/BIRDSgroup/BioEmbedS.
Contact: nmanik@cse.iitm.ac.in

1 Introduction

Inter-tissue communication forms the basis for life and health in multi-cellular organisms, and complex
diseases often affect multiple organs/tissues. A grand goal of systems biology is to develop whole-body
models that capture not only within-tissue biomolecular interactions but also across-tissue interactions.
Recently developed whole-body metabolic models for humans [5] (such as the Harvey and Harvetta
models encompassing 26+ organs and their metabolic interactions culled from literature, and refined
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by large-scale genomic or other experimental data [25]) are promising, but models of similar scale at
the gene-level are lacking. Emerging multi-tissue genomic datasets (like the NIH GTEx data [10])
have encouraged some efforts to address this gap, and there is an urgent need to augment/validate
such data-driven whole-body gene networks by literature-driven approaches. An ideal literature mining
system would extract relations of the form “Gene X in Tissue A interacts with Gene Y in Tissue B via
a mediating signaling molecule”.

In this work, we harness the large volume of biomedical literature (present in repositories like
PubMed [27] with ∼23 million abstracts) to identify genes involved in inter-tissue signaling mediated
by hormones. We specifically focus on endocrine hormones, as they are a popular class of signaling
molecules and endocrine biology has revealed and continues to reveal many hormones and their regu-
lating genes. For example, in the pancreas tissue, gene INS produces the well-studied insulin hormone,
which is processed and secreted into the blood with the help of other gene products and biomolecules;
and the protein encoded by the INSR gene is the primary receptor of the hormone in muscle and other
tissues, where INSR gets activated by the insulin hormone and affects several other genes downstream
to regulate glucose uptake by body cells. A more recent example is a new type of vesicle-mediated
communication between liver and adipose tissues involving non-protein-coding (microRNA) genes [8,
32]. The goal of this work is to extract all such hormone-gene relations, and classifying the hormone-
associated genes as either source (genes aiding in hormone production/processing/secretion at a source
tissue) or target (genes responding to the hormone directly via binding or as a downstream response
at a target tissue).

Several challenges stand in the way of our goal of extracting hormone-gene relations from literature,
including:

1. Lack of a unified database of ground-truth hormone-gene associations, since current hormone
databases like HMRbase [23] and EndoNet [11] focus on the primary gene coding for a (peptide)
hormone and the primary receptor genes, and not on the many other genes involved in hormonal
processing/response.

2. Severe imbalance in known hormone-gene relations both in the number of source vs. target genes
of each hormone, and of associated genes per hormone which varies widely across hormones (e.g.,
insulin is better studied than many other hormones).

3. Lack of standard in silico strategies for large-scale validation of novel hormone-gene predictions
using independent data on inter-tissue signaling.

Our work attempts to address the barriers above to characterize inter-tissue signaling, and cur-
rent studies have addressed only the second challenge above and that too in very different con-
texts/applications. Specifically, current literature mining studies largely extracted relations among
entities that are tissue-agnostic (i.e., doesn’t depend on the tissue) or within-tissue (i.e., happens within
one or more of the tissues or cell types), and includes relations such as disease-gene [1], gene-phenotype
[28], drug-drug [29], or protein-protein/gene-gene [30, 24] types, or subsets of them [4, 15]. Besides us-
ing traditional NLP (Natural Language Processing) features based on syntax/semantics, these methods
also exploit modern advances like word embeddings, which are vector representations of words that are
learnt via deep learning models (Word2Vec [20] or FastText [2]) to capture the semantic similarities
and relationships among words. Examples include a joint ensemble learning approach by Bhasuran
et al. [1] for disease-gene predictions, which builds upon a Support Vector Machine (SVM) classifier
called BeFree introduced earlier by Bravo et al. [4]; and an approach by Park et al. [21] that combines
traditional NLP techniques with Word2Vec embeddings.

Given this context, our work on systematic prediction of genes mediating inter-tissue signaling
makes three main contributions:

1. Our work is the first study to predict hormone-gene associations from biomedical literature, with
our focus on inter-tissue communication setting it apart from earlier literature mining studies on
predicting tissue-agnostic or within-tissue interactions.
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Table 1: Example snapshot of our HGv1 dataset: Glucagon and Adiponectin hormones along
with their source and target GO terms.
Hormone Source terms Target terms

Glucagon

GO:0070091
(Glucagon secretion)
GO:0120116
(Glucagon processing)

GO:0033762 (response to Glucagon)
GO:0004967 (Glucagon receptor activity)
GO:0031769 (Glucagon receptor binding)

Adiponectin
GO:0070162
(Adiponectin secretion)

GO:0055100 (Adiponectin binding)
GO:0033211 (Adiponectin-activated signaling pathway)

2. Our work is enabled by expressly compiling a ground-truth bipartite (hormone-gene) database
HGv1, and balancing it in the space of mapped word embeddings to avoid well-studied hormones
and source-vs-target genes’ imbalance from unduly influencing our model predictions.

3. Our models BioEmbedS and BioEmbedS-TS, which are SVM classifiers trained on these balanced
word embeddings, not only corroborates existing hormone-gene links and hormone source vs.
target genes (collated in HGv1, respectively at an average accuracy of 70.4% and 72.5%), but
also predicts novel gene associations of hormones. These novel genes are enriched for diseases
known to be related to the corresponding hormone, across many different hormones.

2 Methods

2.1 Assembling a ground-truth dataset: HGv1

Since a unified database of source and target genes for known hormones was not available, we expressly
assembled such a database for 51 endocrine hormones, primarily ones listed in a Endocrine Society
website1, by integrating data from several sources [9, 23, 11]. We manually went through all GO (Gene
Ontology [9]) term names mentioning a given hormone, and manually extracted the GO terms that
could be unambiguously added to source and target sets for the hormone (see Table 1). Every GO term
we considered represents a species-agnostic biological process or molecular function, and can hence be
tailored to any species by taking the appropriate set of genes annotated to the term. We compiled a
human dataset HGv1.human of about two thousand hormone-gene associations (Table 2) derived from
the appropriate GO terms and augmented with primary genes (genes encoding a peptide hormone or
hormone-binding receptors) from other sources [23, 11]. Similarly, we constructed HGv1.mouse dataset
by collecting mouse genes annotated to the GO terms collected in the first phase, and by taking the
mouse homologs2 of the primary human genes. This work focuses on HGv1.human (simply referred to
as HGv1 in the text), with HGv1.mouse dataset being used to study generalizability of our models.

Table 2: HGv1 dataset overview: Summary of the 2, 009 hormone-gene associations in our
HGv1.human dataset. Note ± denotes standard deviation here and elsewhere in the text.

Number (#) of hormones/genes 51 / 1453
Median # of genes associated with a hormone 39.39 (± 78.36)
Median # of hormones associated with a gene 1.38 (± 0.86)
# of source/target genes across all hormones 519 / 1082
Median # of source genes for a hormone 14.3 (± 33.46)
Median # of target genes for a hormone 28.8 (± 54.04)

1https://www.hormone.org/your-health-and-hormones/glands-and-hormones-a-to-z, accessed Jul 23, 2019.
2Human-mouse homology mapping done via MGI Batch Query (http://www.informatics.jax.org/batch), accessed

Nov 11, 2020.
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Figure 1: BioEmbedS model overview: Our BioEmbedS model predicts if a hormone-gene pair
is associated or not from D-dimensional word embedding vectors of the hormone name and the
gene symbol. Our HGv1 dataset is crucial for proper training/evaluation of our model. In the
toy-example shown, circles and triangles indicate hormone-gene pairs for two illustrative hormones;
and blue and red colors respectively denote the positive (associated) and negative (non-associated)
genes for each hormone. The positive/negative classes are balanced across the two hormones, before
separating them in a higher dimensional space using a SVM classifier. BioEmbedS-TS model has
source and target genes for a hormone in place of positive and negative genes.

2.2 Our BioEmbedS and BioEmbedS-TS approach

Word embeddings based classifiers: We develop two classification models – BioEmbedS to predict
hormone-gene associations, and BioEmbedS-TS to classify an associated gene into source vs. target set
of a hormone. These models, referred jointly as BioEmbedS*, are trained and evaluated using the HGv1
dataset, and use word embeddings as input features (Figure 1). Specifically, we use word embeddings
for gene symbols and hormones from a FastText model pretrained on the PubMed biomedical corpus
called BioWordVec3 [31]. FastText [2] is a neural network model learned by minimizing cross-entropy
loss between each word and its predicted context within a fixed window size. We used 200-dimensional
embeddings obtained using a skip-gram based implementation with window size 20. This ensures
the embedding vectors of not only co-occurring entities in a document but also entities with similar
word neighborhoods exhibit high similarity [21]. BioWordVec actually uses subword information to
obtain embeddings of words (including out-of-vocabulary words), i.e., the embedding of each word is
represented by the sum of embeddings of all n-grams (3≤ n≤ 6) in the word (after converting the words,
including hormones and gene symbols, to lower-case) [31, 2]. Please note that BioWordVec is already
trained using the PubMed corpus and so our HGv1 dataset is not used to obtain the word embeddings;
HGv1 (training/testing splits) is instead used along with the pre-trained word embeddings to build our
BioEmbedS* classifiers.

Existing studies on prediction of disease-gene associations have shown that SVM (Support Vector
Machines) classifiers perform well when used with word embeddings [1]. So we explored SVM along with
RF (Random Forest) classifiers as our primary classifiers, and compared them with other secondary
choices of classifiers as well, and found SVMs to perform well (see Results). Hence we decided on a
SVM based model to predict hormone-gene relations and call it BioEmbedS (with S denoting SVM).
Similarly, we use the SVM based model to classify source vs. target genes for associated genes for a
given hormone and call it BioEmbedS-TS (with -TS denoting Target vs. Source).
Stratified/nested CV (cross-validation): We explored the parameter space (both hyper-parameter
tuning and parameter learning) of our SVM and RF models using a 5-fold CV strategy that is stratified
to ensure even distribution of each hormone’s genes across the different folds, and nested to allow

3BioWordVec model/embeddings are downloaded from https://github.com/ncbi-nlp/BioSentVec.
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proper partitioning of the HGv1 data into training, validation and test sets. In detail, a stratified split
amounts to considering each hormone with a certain number of associated genes in HGv1 (denoted n),
and putting randomly chosen ⌊n

5
⌋ genes into each of the 5 folds, and the remainder genes randomly

(one each) into any of the 5 folds. This procedure done for the BioEmbedS model ensures that each fold
has genes belonging to each hormone proportional to their presence in the overall dataset. A similar
procedure to distribute the number of source (and separately target) genes of each hormone evenly
across the 5 folds was done for the BioEmbedS-TS model also. In the nested 5-fold CV strategy that
we use to build both the models, we make a train/validation/test split using 3/1/1 folds respectively,
and identify the classifier’s parameters by using only train and validation splits. The test split is kept
aside from the training process, and used solely to report the model performance.

2.3 Balancing word embeddings within the nested CV framework

Over/under-sampling (balancing) training set embeddings: Our HGv1 dataset has a skewed
distribution of the number of genes associated with different hormones (Table 2); so it is important
to prevent well-studied hormones (with a large number of gene associations in HGv1) from unduly
influencing our model. To address the problem of class imbalance, oversampling techniques like SMOTE
(Synthetic Minority Oversampling Technique) [6] synthesize new examples from existing ones for the
minority class, whereas undersampling techniques like Condensed Nearest Neighbours [14], TOMEK
Links [26], etc. selectively remove examples from the majority class. A combination of oversampling and
undersampling techniques is shown to perform better than using either alone [6]. We strategically apply
a combination of SMOTE and TOMEK Links on the mapped embeddings of only genes with exactly
one hormone association in HGv1. Working in the space of embeddings of such “uni-hormone” genes
is both desirable in facilitating SMOTE oversampling of our data, and permissible as a large fraction
of all genes in HGv1, 1102 of all 1453, are uni-hormone (i.e., associated uniquely with some hormone,
as opposed to being multi-hormone or associated with more than one hormone within HGv1). This
technique applied to BioEmbedS and a similar technique applied to BioEmbedS-TS handle the large
variation in HGv1 in the number and type (source vs. target) of genes respectively across hormones.

For BioEmbedS, we assign a unique class ID to every hormone, and all the genes uniquely asso-
ciated with the hormone belong to the class indicated by its class ID (with all multi-hormone genes
discarded). We then use a combination of SMOTE oversampling and TOMEK Links undersampling
(with the number k of nearest neighbors in SMOTE set to 2 in the implementation used [18]) to get
an approximately equal number of genes/examples (same as the highest number of genes associated
with a hormone among all the hormones in HGv1) for every hormone. We now have a dataset with
approximately equal numbers of the genes related to every hormone that forms hormone-gene pairs
of positive class for our binary classification problem. The following strategy is applied to create the
negative class (set of non associated hormone-gene pairs). For every hormone, we construct a set that
contains the genes (synthesized examples from oversampling and undersampling) associated with all
the hormones except the one under consideration. To maintain the class balance between positive and
negative associations for a hormone, we select as many examples present for the positive set of that
hormone, from this set. Repeating this process for each hormone results in a set of negative hormone-
gene associations for each hormone. Finally, we have a balanced dataset across different hormones with
positive/negative classes.

For BioEmbedS-TS, we define two unique IDs for every hormone; one maps to the source genes
and the other maps to the target genes for that hormone (again we focus only on genes with exactly
one hormone association, and additionally remove the small set of genes that are annotated as both
source and target for the same hormone). The source and target genes associated with a hormone
belong to classes indicated by their IDs. This makes the number of classes equal to twice the number
of hormones present in our dataset. We use SMOTE and TOMEK Links strategy as for BioEmbedS
to get an approximately equal number of source and target genes (same as the highest number of
source/target genes associated to a hormone among all the hormones in HGv1) for every hormone.
Finally, we have a dataset that is balanced across the different hormones and source/target class.
Balancing and model selection within the nested CV framework: The overall careful appli-
cation of our balancing and model selection steps to the 3/1/1 train/validation/test folds is shown
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in Algorithm 1, along with what constitutes the training and testing sets of each inner/outer CV it-
eration (e.g., validation and test folds are the respective testing sets for inner and outer CV loops).
As for the genes considered by Algorithm 1, training sets are restricted to contain only uni-hormone
genes to facilitate application of SMOTE and TOMEK Links as discussed before, whereas testing sets
are allowed to contain both uni- and multi- hormone genes to reflect a real-world setting where any
gene may be queried for its association to a hormone. As for the hormones considered, the overall
algorithm considers only hormones with at least 5 gene associations to permit 5-fold CV; additionally,
each inner/outer CV iteration considers only hormones with sufficient gene associations as “eligible”
for further analysis. In detail, every hormone with at least 3 associations to uni-hormone genes in an
iteration’s training set is considered eligible for this iteration (to permit 2-nearest-neighbor SMOTE),
and the remaining hormones are removed from this iteration’s training as well as testing sets.

SVM and RF models with different hyper-parameter combinations are trained on the resulting
balanced training folds, and Cohen’s Kappa score of these trained models on the validation folds is
used to select the best model. In each iteration, the test fold is never used for training or choosing
hyper-parameters for the classifier. For BioEmbedS, a SVMmodel with a third degree polynomial kernel
was chosen as the best classifier by Algorithm 1 (Step 10) consistently in all 5 outer CV iterations. This
SVM model was later trained using the entire HGv1 dataset, after applying similar restrictions and
balancing as in Step 11 of Algorithm 1, to obtain the final BioEmbedS model – this final model was used
for making all protein-coding gene predictions (including novel ones discussed in Results). Hormones
found eligible for building the final model amounted to 34 and are known as primary hormones hereafter;
the remaining 17 ineligible hormones would also have been ineligible (and hence discarded or unseen
when choosing/training models) in each of the inner/outer CV iterations of Algorithm 1 due to these
hormones’ insufficient gene associations.

Algorithm 1: Pseudocode for nested 5-fold CV (cross validation).

Input: HGv1 dataset of ground-truth hormone-gene associations.
Output: Predictions/results for each test fold.

1 Divide the HGv1 dataset into 5 folds in a stratified manner;
2 for i in {1,2,3,4,5} /*outer CV iteration*/ do
3 Use fold i as test and remaining four folds as train and validation;
4 for j in {1,2,3,4,5}−{i} /*inner CV iteration*/ do
5 Use fold j as validation and remaining 3 folds for training;
6 Update training set to restrict to uni-hormone genes and eligible hormones (see text for

details);
7 Apply SMOTE and TOMEK Links on the training set;
8 Train (learn parameters of) SVM and RF models across a range of hyper-parameter

settings;
9 Compute Kappa score of each trained model on the validation set (which can contain

uni/multi-hormone genes of eligible hormones);

10 Choose a classifier and hyper-parameter setting having the best average validation score
across all 4 validation folds;

11 Apply SMOTE and TOMEK Links on train and validation folds (again restricting to
uni-hormone genes and eligible hormones), and use it to train the model chosen in the last
step;

12 Apply trained model on the test set to predict associations and report performance metrics
like F1-score and Accuracy;

2.4 Performance metrics, code availability, and disease enrichment analysis

We evaluate our model on five different unseen test sets (as shown in Algorithm 1), by reporting the
performance of classifiers on these test sets using standard performance metrics like Precision, Recall,
F1-score, Accuracy, Kappa score, Area under the Receiver Operating Characteristics curve (ROC-AUC)
and Area under the Precision-Recall curve (PR-AUC). All these metrics take values in the range 0 to 1
and hence can be expressed as percentages (with the exception of Kappa score that can take negative
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values), with higher values indicating better performance. Suppl Methods 1.1 provides definitions
for these metrics assuming the two classes in our binary classification problems are as follows: for
BioEmbedS, we naturally let positive and negative class to refer respectively to association and non-
association of a hormone-gene pair; for BioEmbedS-TS that starts with an associated hormone-gene
pair, we arbitrarily let positive and negative class refer to hormone-source gene pair and hormone-
target gene pair association respectively. Given these class definitions, a false positive for instance, for
BioEmbedS would be a non-associated hormone-gene pair that is wrongly predicted as associated by
our method; and for BioEmbedS-TS would be a hormone-target gene pair that is wrongly predicted as
hormone-source gene pair by our method.

Implementations are done using Python Scikit-learn framework using decision function() and pre-
dict proba() methods of SVC (Support Vector Classification) in sklearn respectively to obtain the SVM
model scores for all hormone-gene pairs and the probability of association between hormone-gene pairs
(probability score of SVM). For reproducibility purposes, we provide hyperparameter choices in Suppl
Methods 1.2 and open-source code in a public repository4.

Hormone-gene predictions are called using the final BioEmbedS model described above at a SVM
probability score of at least 0.7, with this default cutoff value chosen so as to get a reasonable number
of predictions for each hormone. To validate the predicted genes of a hormone, we perform a disease
enrichment analysis using the Enrichr tool [7] and DisGeNET [22] collection of known disease-related
genes. All reported disease enrichment P-values from this analysis are corrected for multiple testing of
different DisGeNET disease terms.

3 Results

3.1 Word embeddings are informative of relationship among hormones and genes

We first assess the quality of literature-based BioWordVec [31] embeddings of hormone names and gene
symbols using simple unsupervised learning methods. Hierarchical clustering of the word embeddings
of the 51 hormones in our HGv1 dataset (Figure 2) revealed that functionally similar hormones often
group together into clusters – for instance, neurotransmitter hormones like serotonin and dopamine
are clustered together; and so are steroid hormones with sexual and reproductive functions such as
testosterone, estradiol and progesterone.

To evaluate the quality of embeddings of both hormones and genes, we predicted hormone-gene
associations using the popular cosine similarity measure between word embeddings of a hormone and
a gene, and obtained an average ROC-AUC of 0.69 (Suppl Figure S1). This result confirms the good
quality of BioWordVec embeddings, seen in earlier studies on extracting relations among proteins
and drugs [31], in our new context of extracting hormone-gene relations from biomedical literature.
This result also provides a baseline performance from a simple unsupervised method to compare our
supervised BioEmbedS model against.

3.2 BioEmbedS strategy on disease-gene predictions is competitive with other
methods

Due to lack of existing tools for hormone-gene predictions and due to several tools available for disease-
gene predictions, we first validated our BioEmbedS strategy (of a SVM classifier trained on word em-
beddings) on predicting disease-gene associations from a corpus called EU-ADR [12]. For performance
comparison of our method, we used results reported by the BeFree [4] and Joint Ensemble [1] methods
discussed before in Introduction. BioEmbedS approach is able to obtain comparable or slightly better
F1-score of 85.84% relative to these methods (Table 3). This is promising as our approach, originally
conceived for predicting hormone-gene links, performs reasonably well for a disease-gene prediction
task. We do not delve further into these specific disease-gene predictions, as this work’s main focus is
to predict hormone-gene relations mediating inter-tissue signaling.

4https://github.com/BIRDSgroup/BioEmbedS
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Figure 2: Similarity of hormone embeddings: Hierarchical clustering dendrogram of the 200-
dimensional hormone embeddings using complete linkage method and one minus cosine similarity (co-
sine of the angle between two vectors) as the distance measure.

8

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 30, 2021. ; https://doi.org/10.1101/2021.01.28.428707doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.428707
http://creativecommons.org/licenses/by/4.0/


Table 3: Performance on disease-gene predictions: Our BioEmbedS approach’s 10-fold CV
based result is compared against existing methods’ reported results on the EU-ADR disease-gene
corpus.

Model Precision (%) Recall (%) F1-score (%)

BioEmbedS 77.13 ± 1.41 96.84 ± 2.67 85.84 ± 1.26

BeFree 75.10 97.70 84.6

Joint Ensemble learning 76.43 98.01 85.34

3.3 BioEmbedS predicts hormone-gene pairs reli ably, and better than a generic
resource STRING

In our 5-fold CV framework in Algorithm 1, a SVM model with a third degree polynomial kernel was
chosen as a consistent classifier, and the resulting BioEmbedS models predicted hormone-gene associa-
tions with a reasonably good accuracy of 70.4% ± 1.8% and F1-score of 71.4% ± 2.7% (Suppl Table S1).
The SVM based model also achieved better or comparable results than other classifier choices such as
logistic regression and decision trees (Suppl Table S2). We also note that in our baseline comparison,
our supervised BioEmbedS performed better than the unsupervised cosine similarity approach seen
above (Suppl Figure S1).

Since there are no direct hormone-gene prediction tools available to which we can compare our
method, the closest alternative was to match a (peptide) hormone to its primary gene encoding the
hormone, and then use predicted associations of this gene to other genes. Predicted gene-gene associ-
ations are available in a widely-used resource called STRING [24], and we found that our BioEmbedS’
hormone-gene scores were consistently better than STRING’s literature mining based scores for the
corresponding (mapped) gene-gene pairs (Figure 3(a)).

3.4 BioEmbedS-TS classifies source vs. target genes across different classes of
hormones

For genes known to be associated with a hormone, we next classify it they are source or target genes for
the hormone. The performance of our BioEmbedS-TS model was also reasonably good with accuracy
of 79% ± 1.9%, and F1-score of 84.8 ± 1.3% for target genes and 66 ± 3.5% for source genes (see Table
4 and Figure 3(c)).

Table 4: BioEmbedS-TS results: Classification of source vs. target genes across the 5 test sets.
Test fold Gene type Precision Recall F1-score Accuracy ROC-AUC PR-AUC Kappa score

1
Target 84 88 86

80 0.83 0.73 0.54
Source 72 64 68

2
Target 83 87 85

79 0.82 0.68 0.49
Source 69 60 64

3
Target 82 84 83

76 0.8 0.65 0.44
Source 63 59 61

4
Target 86 85 86

81 0.86 0.77 0.56
Source 69 71 70

5
Target 84 84 84

79 0.86 0.76 0.51
Source 67 67 67
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Figure 3: Performance curves of our BioEmbedS* models: (a) ROC curves of BioEmbedS
(solid lines) and STRING (dashed lines) for hormone-gene predictions based on 5-fold CV. (b) ROC
curve of BioEmbedS for unseen external hormones’ predictions. (c) PR curves of BioEmbedS-TS
for source/target gene predictions based on 5-fold CV. (d) PR curve of BioEmbedS-TS for unseen
external hormones’ predictions. AUC (Area Under Curve) of a perfect classifier is 1, and a random
classifier is 0.5 for ROC curves and specified as a dashed line in the PR curves.
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3.5 BioEmbedS* models generalize to unseen hormones and another species

While previous results are already based on an unseen test set of hormone-gene links performed within
a sound 5-fold cross-validation framework, we also wanted to test how well our models would predict
for fresh hormones that were never seen in the training/testing part of the cross-validation framework.
In other words, we tested BioEmbedS on an independent dataset of hormone-gene pairs pertaining
to “unseen” external hormones that were not used to train/evaluate the model (as these hormones
had too few gene associations to be considered eligible in the final model building step and hence
also every inner/outer CV iteration; see Algorithm 1 and associated text for details). This dataset
contained 17 hormones forming 151 associated hormone-gene pairs and 148 non-associated hormone-
gene pairs. Although, this dataset does not belong to the same distribution as the one used to train
our model due to very few gene associations per hormone, BioEmbedS performed reasonably on this
dataset obtaining accuracy of 65%, F1-score of 59%, and Area under ROC curve of 0.72 (Figure 3(b)).
Similarly, we applied BioEmbedS-TS on a set of hormone-source/target gene pairs from 40 unseen
hormones, forming 501 hormone-target gene pairs and 188 hormone-source gene pairs. It was able to
correctly classify these pairs with 69% accuracy and area under PR curve of 0.43 (Figure 3(d)).

We also wanted to assess how well our model trained on one species (human) generalizes to make
predictions in another species (mouse). That is, we applied BioEmbedS model trained on hormone-
gene pairs from the HGv1.human dataset (referred to as HGv1 so far in the text) to assess how well
it predicts hormone-gene associations in mouse (i.e., recovers the relations in HGv1.mouse dataset).
Our model was able to achieve a reasonable accuracy of 71% and F1-score of 73%. Similary, when
BioEmbedS-TS model trained on HGv1.human was used to classify hormone-associated genes in mouse
into source and target genes, we were able to achieve a reasonable accuracy of 83%, and a F1-score
of 78% for source genes and 87% for target genes. These results show that our BioEmbedS* models
trained using human data generalize well to an organism other than human.

3.6 Novel gene predictions are enriched for the corresponding hormone-related
diseases

The promising performance of BioEmbedS seen so far encouraged us to apply BioEmbedS to predict
association between each hormone in HGv1 and all 19,318 human protein-coding gene symbols [3]. We
were able to predict many novel hormone-gene links not captured in HGv1, comprising new links to
any of the 1, 453 genes in HGv1 (Table 2) or the remaining “out-of-HGv1” genes which were never
seen during training/testing of our model. To validate these predictions, we tested whether the set of
predicted genes for a hormone (at a default SVM probability score cutoff; see Methods) was enriched for
diseases already known to be related to the hormone. We found this was indeed the case for 16 of the 34
primary hormones (Suppl Dataset D1a, with primary indicating hormones in HGv1 considered eligible
for training the final model as already defined in Methods), and 9 of the 17 unseen external hormones
(Suppl Dataset D1b, with unseen referring to the remaining hormones in HGv1 with very few gene
associations). These results pertaining to hormones affecting a subset of tissues is shown in Figure 4.
For instance, all the insulin predicted genes are indeed significantly enriched for “Diabetes Mellitus”, a
disease term that is also recorded as insulin-related in the two hormone-disease “ground-truth” sources
that we considered (Endocrine Society [https://www.hormone.org] and DisGeNET [22] resources; see
Suppl Dataset D1a).

For well-studied hormones such as insulin, we repeated the above analysis on only the novel pre-
dictions (i.e., predicted hormone-gene links not in HGv1) to test if the disease term enrichments were
driven not just by known hormone-specific genes in HGv1 but also by the novel predicted genes. For
insulin, BioEmbedS predicted genes overlapped with 691 of the 1, 507 Diabetes Mellitus genes recorded
in DiSGeNET (disease enrichment P = 9.55 × 10−40), and 534 of these 691 overlapping disease genes
were novel predictions (disease enrichment P = 4.85 × 10−9). This trend of enrichment of predicted
novel genes for the corresponding diseases can also be seen visually in Figure 5 across a range of cut-
offs applied on the SVM score to call predictions – specifically, the curve for novel gene predictions is
better than that of a random classifier for insulin and other hormones, and follows closely the overall
gene-curve for the most part. Furthermore, a more stringent subset of novel BioEmbedS predictions
involving totally unseen out-of-HGv1 genes also got validated by a similar disease enrichment analysis
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Figure 4: Inter-tissue communication: Example of a multi-tissue system with inter-tissue edges
indicating hormonal signaling. BioEmbedS predictions for different hormones are enriched for the
indicated diseases (top two are shown, along with disease enrichment P-values). Shown alongside each
tissue-tissue link are examples of known disease genes that are also genes we predicted for a hormone
(with black marking the genes in HGv1 dataset, and red the novel out-of-HGv1 genes). Tissue/organ
pictures’ sources are given in Acknowledgments.
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(Suppl Figure S2).

(a) (b)

(c) (d)

Figure 5: Disease enrichment in novel gene predictions: Curves showing the number (no.)
of known disease genes (y-axis) recovered in top-k predicted genes (as per SVM score ranking;
x-axis) of the corresponding hormone; focusing on all (red) vs. novel (black) predicted genes of
the hormone. Our model (solid curves) performs better than chance recovery of disease genes by
a random classifier (dashed lines). Only genes predicted for a hormone with SVM score > 0 are
considered here; all protein-coding genes are considered in Suppl Figure S2.

4 Discussion

This work elucidates the computational problems and challenges in the emerging area of inferring cross-
tissue signaling interactions from biomedical literature, and presents a first approach BioEmbedS to
specifically predict hormone-gene associations from biomedical literature with reasonably good absolute
accuracy and also comparable or better performance than other popular alternatives such as STRING.
Our BioEmbedS and BioEmbedS-TS models are enabled by a ground-truth dataset HGv1 that we
carefully complied and balanced across different stratifications of the training data in the space of
mapped word embeddings of hormone names and gene symbols. The better performance of our method
over other alternatives follows from our models being the first systematically developed ones to make
hormone-gene predictions, and other methods being literature mining based relation extraction methods
that are generic or designed for other prediction tasks such as disease-gene prediction.

Our HGv1 dataset can be viewed as a two-layered/bipartite graph (with HGv1 hormone-gene rela-
tions being the edges/links between nodes in the hormone layer and the gene layer), hence our hormone-
gene prediction task can be viewed as a link prediction problem in bipartite graphs [17]. Current link
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prediction methods for bipartite or more general graphs [19, 16], such as ones based on pairwise node
similarity, utilize attribute data available at the nodes and/or the structural connectivity/neighborhood
of nodes based on existing links in the graph to predict new links. We decided to utilize only the at-
tribute data (word embeddings) of nodes to do hormone-gene bipartite link prediction, since our HGv1
graph doesn’t have rich structural connectivity. In detail, a large number of genes in our HGv1 dataset
(1,102 of the 1,453) are uni-hormone genes connected to only one hormone, and removing the few other
multi-hormone genes disconnects the HGv1 bipartite graph into several connected components (one per
hormone).

A caveat in this work worth mentioning is that randomly selected genes for a hormone need not be
truly negative examples. Our model may also predict false associations based on high co-occurrence or
context word similarity but no functional relationship, and a careful set of negative examples can help
mitigate this issue. Our balancing strategy using SMOTE is also not without its pitfalls, especially when
applied to high-dimensional data [13], and we coupled it with undersampling to carefully balance our
training data across different hormones that are represented in the literature to different extents and to
address imbalance in the number of source vs. target genes. Nevertheless, good accuracy of our model
on different unseen test sets and on an organism other than human, and our disease enrichment analysis
of novel gene predictions taken together suggest that our model predictions are indeed generalizable to
make novel predictions about inter-tissue gene signaling mediated by a hormone.

Future work would focus on integration of novel hormone-gene predictions with independent data
such as multi-tissue genomic data [10], and systematic interpretation/validation of non-coding gene
predictions for hormones (such as the preliminary lncRNA (long non-coding RNA) predictions that we
provide in our website). Future work could also try integrating literature information with data on
protein-protein, protein-DNA or other interactions among genes and gene products to further improve
model performance. A special feature of our ground-truth hormone-gene dataset HGv1 is its applica-
bility to organisms beyond human and mouse as it is based on species-agnostic Gene Ontology terms,
and this bodes well for extending our work to other multicellular organisms in the future. We hope this
work stimulates more work along these lines on cross-tissue signaling and advances the field forward to
developing whole-body, cross-tissue gene networks for different organisms.

Acknowledgments

We thank Arjun Sarathi for help in assembling the HGv1 dataset, and BIRDS (Bioinformatics and
Integrated Data Science) group members for their valuable suggestions and reviews for this work, and
Sanga Mitra and Sugyani Mahapatra in particular for their careful reviews, and Philge Philip for help
with the code repository. We thank Balaraman Ravindran and Harish Guruprasad from IIT Madras,
and Praveen Anand from nference for their valuable inputs on earlier stages of the project. The research
presented in this work was supported by WT/DBT grant IA/I/17/2/503323 awarded to MN.

Pictures of tissues/organs in Figure 4 are taken from the following sources - Liver: https://www.
medicalnewstoday.com/articles/305075, Pancreas: https://www.shutterstock.com/image-illustration/
anatomy-drawing-showing-pancreas-duodenum-gallbladder-1396704593, Hypothalamus: https:
//quizlet.com/289736618/human-brain-midsection-diagram/, Stomach: https://zen.yandex.

ru/media/wowfacts/neskolko-faktov-o-jeludke-5b916e7cc586d600aa836cc5.

Author Contributions

AJ and MN formulated the study and overall modeling approaches; AJ implemented the training/testing
of all primary models and performed associated analyses; TK and MN compiled the HGv1.human
dataset, and provided inputs on the modeling approaches; TK assembled the HGv1.mouse dataset, and
studied novel gene predictions at the hormone and inter-tissue level; MR performed associated analyses
of secondary modeling approaches, visualized embeddings, and developed the website with inputs from
AJ; TL performed disease and pathway enrichment, hierarchical clustering, and exploratory lncRNA
analyses; AJ, MN, TK, TL and MR interpreted results; AJ, MN and TK wrote the manuscript; MN
guided and supervised the study.

14

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 30, 2021. ; https://doi.org/10.1101/2021.01.28.428707doi: bioRxiv preprint 

https://www.medicalnewstoday.com/articles/305075
https://www.medicalnewstoday.com/articles/305075
https://www.shutterstock.com/image-illustration/anatomy-drawing-showing-pancreas-duodenum-gallbladder-1396704593
https://www.shutterstock.com/image-illustration/anatomy-drawing-showing-pancreas-duodenum-gallbladder-1396704593
https://quizlet.com/289736618/human-brain-midsection-diagram/
https://quizlet.com/289736618/human-brain-midsection-diagram/
https://zen.yandex.ru/media/wowfacts/neskolko-faktov-o-jeludke-5b916e7cc586d600aa836cc5
https://zen.yandex.ru/media/wowfacts/neskolko-faktov-o-jeludke-5b916e7cc586d600aa836cc5
https://doi.org/10.1101/2021.01.28.428707
http://creativecommons.org/licenses/by/4.0/


References

[1] B. Bhasuran and J. Natarajan. “Automatic extraction of gene-disease associations from literature
using joint ensemble learning.” In: PLoS ONE 13.7 (2018), pp. 1–22.

[2] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. “Enriching word vectors with subword infor-
mation”. In: Transactions of the Association for Computational Linguistics 5.0 (2017), pp. 135–
146.

[3] B. Braschi, P. Denny, K. Gray, T. Jones, R. Seal, S. Tweedie, B. Yates, and E. Bruford. “Gene-
names.org: the HGNC and VGNC resources in 2019”. In: Nucleic Acids Research 47.D1 (2019),
pp. D786–D792.
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1 Supplementary Methods

1.1 Performance Metrics

As explained in the main text, the positive and negative class in our binary classification
problems refer respectively to: association and non-association of a hormone-gene pair in the
BioEmbedS setting, and hormone-source gene pair and hormone-target gene pair association
in the BioEmbedS-TS setting. Applying standard definitions to these settings yields the
following definitions, with number abbreviated as “#”.

True Positives (TP): # of positive hormone-gene pairs predicted as positive by BioEmbedS;
# of hormone-source gene pairs predicted correctly by BioEmbedS-TS.

True Negatives (TN): # of negative hormone-gene pairs predicted as negative by BioEmbedS;
# of hormone-target gene pairs predicted correctly by BioEmbedS-TS.

False Positives (FP): # of negative hormone-gene pairs predicted as positive by BioEmbedS;
# of hormone-target gene pairs predicted as hormone-source gene pairs by BioEmbedS-
TS.

False Negatives (FN): # of positive hormone-gene pairs predicted as negative by BioEmbedS;
# of hormone-source gene pairs predicted as hormone-target gene pairs by BioEmbedS-
TS.

We evaluate our classifiers on the following performance metrics derived from the above
counts.

1. Precision: In the context of BioEmbedS classifier, it represents the proportion of pre-
dicted hormone-gene pairs (TP + FP) that are actually correct as per the HGv1 dataset
(TP). In the context of BioEmbedS-TS, it indicates the proportion of predicted source
genes that are truly the source genes as per the HGv1 dataset.

Precision =
TP

TP + FP

2. Recall: In the context of BioEmbedS, it is the ratio of hormone-gene associations that
our model can predict (TP) to the total associations present in the HGv1 dataset (TP
+ FN). In the context of BioEmbedS-TS, it is the ratio of source genes that our model
recovers to all source genes present in the HGv1 dataset.

Recall =
TP

TP + FN
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3. F1-score: It is the harmonic mean of Precision and Recall scores.
4. Accuracy: It indicates out of all the model’s predictions, how many are correct predic-

tions.

Accuracy =
TP + TN

TP + TN + FP + FN

5. Cohen’s Kappa score: It indicates how often the model’s predictions and the actual
HGv1 labels for all considered hormone-gene pairs agree relative to random chance
agreement, and is a useful metric for classification with imbalanced datasets [2].

6. ROC-AUC: The area under the Receiver Operating Characteristics (ROC) curve, which
plots TPR (true positive rate or recall TP

TP+FN
) on the y-axis against FPR (false positive

rate or FP

TN+FP
) on the x-axis, with different points on the curve based on different cutoffs

applied on the model scores to make positive vs. negative class predictions [1].
7. PR-AUC: The area under the Precision-Recall (PR) curve, which plots precision on

the y-axis against recall on the x-axis, with different points on the curve again based
on different cutoffs applied on the model scores to make positive vs. negative class
predictions [1].

1.2 Hyperparameters of BioEmbedS classifiers

Besides choosing SVM (Support Vector Machines) and RF (Random Forests) as our primary
classifiers for use with the BioEmbedS model (see main text and Suppl Table S1), we also
tried other secondary choices of classifiers (see Suppl Table S2). Hyperparameters of these
primary and secondary classifiers are given below, and are implemented using the Scikit-

learn machine learning framework in Python [3]. There were no hyperparameters to choose
for simpler models like logistic regression.

SVM: The range of hyperparameter values considered for the SVM classifier are as follows. For
kernel functions, we tried RBF (Radial Basis function) and polynomial kernel types. The
model complexity parameter C had 9 equally spaced values between -4 to 4 in the log
space. Gamma parameter for RBF kernel had 12 equally spaced values between -9 to
2 in the log space. Degree parameter for the polynomial kernel had values 2, 3, 5 and
7. In each fold, polynomial kernel with degree = 3 and C = 1, was chosen as the best
classifier based on scores on the validation set. We also choose this hyperparameter
setting of SVM as our final classifier model to make novel predictions.

RF: The range of hyperparameter settings considered for the sklearn implementation of the
RF classifier are as follows. For the number of trees in the forest, we tried 7 arbitrarily
pre-selected values from 100 to 1600; and for the maximum depth of each tree, we tried
9 pre-selected values from 120 to 360. We let the minimum number of samples required
to be at a leaf node to be 1, 2, or 4; and the minimum number of samples required to
split an internal node to be 2, 3, 5, or 7.

Neural Networks: The Neural Networks have 2 hidden layers. The number of units in each layer was
sampled among 32, 64 and 128 units. Four values of learning rate were tried out between
0.0001 and 0.1, and the regularisation parameter was chosen among 10−3, 10−4, and
10−5. From all these possible configurations, the combination of parameters that gave
the best results were chosen.

XGBoost: For the XGBoost model, 5 values of learning rate were sampled between 0.03 and 0.3 in
the log-space, 5 values of maximum depth were sampled between 2 and 6, and 5 values
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of the number of estimators were sampled between 100 and 150 in the linear space. From
these, the combination of parameters that gave the best results were chosen.

Decision Trees: Five values of maximum depth were sampled between 2 and 6, and five values of the
number of estimators were sampled between 100 and 150 in the linear space.
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2 Supplementary Tables

Fold Precision Recall F1-score Accuracy ROC-AUC PR-AUC Kappa Score

1 0.70 0.76 0.73 0.71 0.78 0.76 0.43

2 0.70 0.71 0.70 0.70 0.76 0.76 0.40

3 0.67 0.70 0.69 0.68 0.74 0.71 0.36

4 0.71 0.77 0.74 0.73 0.79 0.76 0.46

5 0.70 0.72 0.71 0.70 0.76 0.74 0.40

Table S1: BioEmbedS performance across 5 test folds: Results are using the 5 test
folds of our cross validation framework using the best primary classifier (which turned out
to be a SVM classifier with degree-3 polynomial kernel and C = 1 as mentioned in Suppl
Methods 1.2).

Model Precision Recall F1-score Accuracy ROC-AUC PR-AUC Kappa Score

Primary classifier (SVM) 0.69 0.73 0.71 0.70 0.77 0.75 0.41

Neural Network 0.68 0.77 0.72 0.70 0.76 0.73 0.41

XGBoost 0.60 0.84 0.70 0.64 0.70 0.66 0.29

Decision Trees 0.66 0.78 0.71 0.68 0.74 0.71 0.37

Logistic Regression 0.52 0.62 0.58 0.53 0.53 0.53 0.05

Table S2: BioEmbedS performance for different choices of classifiers: Performance
reported is average across the 5 cross-validation test folds – for instance SVM’s performance
is average of performance reported in Table S1. It is evident that the SVM classifier achieved
better or comparable performance relative to other classifiers. It is also clear that simpler
models like Logistic Regression could not capture patterns in the dataset, and higher order
function approximators like Neural Networks or algorithms like SVM provide better results.
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3 Supplementary Figures
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Fig. S1. Cosine similarity and BioEmbedS performance: ROC curves for hormone-gene
predictions using unsupervised cosine similarity based method (dashed lines), and our supervised
method BioEmbedS based on the SVM classifier (solid lines).
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(a) (b)

(c) (d)

Fig. S2. Disease enrichment in novel and out-of-HGv1 gene predictions: Curves
showing the number (no.) of known disease genes (y-axis) recovered in top-k predicted genes
(as per SVM score ranking; x-axis) of the corresponding hormone; focusing on all (red) vs.
novel (black) vs. out-of-HGv1 (green) predicted genes of the hormone. To clarify these terms
for a given hormone, ‘all” refers to predictions made for all 19,318 protein-coding genes; “novel”
refers to a subset of all predicted genes such that the hormone-gene pair is not in HGv1; and
“out-of-HGv1” refers to a subset of the novel predicted genes such that the gene is also not in
HGv1 (i.e., the predicted gene is not associated with any hormone in HGv1, and hence totally
absent from HGv1 and unseen during model building).
Our model (solid curves) performs better than chance recovery of disease genes by a random
classifier (dashed lines). Below each hormone’s disease enrichment plot, the number of disease
genes overlapping the predicted genes at SVM score > 0 for the hormone is shown as a ratio
(# overlapping disease genes / # predicted genes). It is evident that even after removing the
hormone-associated HGv1 genes, a significant number of disease-related genes are left and they
get predicted towards the top by BioEmbedS (black curves). Moreover, BioEmbedS performs
well on the totally unseen out-of-HGv1 genes too (green curves).
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4 Supplementary Datasets

Supplementary datasets are available at this link.

Suppl Dataset D1a: Disease enrichment analysis of predicted genes for the (34) primary hormones in the
HGv1 dataset.

Suppl Dataset D1b: Disease enrichment analysis of predicted genes for the (17) unseen/external hormones
in the HGv1 dataset.

https://drive.google.com/drive/folders/1dJI9E9qzr6WWr7A0Q-AIc6elwHJAa5FV?usp=sharing
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