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Predicting CTCF-mediated chromatin interactions
by integrating genomic and epigenomic features
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The CCCTC-binding zinc-finger protein (CTCF)-mediated network of long-range chromatin

interactions is important for genome organization and function. Although this network has

been considered largely invariant, we find that it exhibits extensive cell-type-specific inter-

actions that contribute to cell identity. Here, we present Lollipop, a machine-learning fra-

mework, which predicts CTCF-mediated long-range interactions using genomic and

epigenomic features. Using ChIA-PET data as benchmark, we demonstrate that Lollipop

accurately predicts CTCF-mediated chromatin interactions both within and across cell types,

and outperforms other methods based only on CTCF motif orientation. Predictions are

confirmed computationally and experimentally by Chromatin Conformation Capture (3C).

Moreover, our approach identifies other determinants of CTCF-mediated chromatin wiring,

such as gene expression within the loops. Our study contributes to a better understanding

about the underlying principles of CTCF-mediated chromatin interactions and their impact on

gene expression.
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H
igher-order chromatin structure plays a critical role in
gene expression and cellular homeostasis1–7. Genome-
wide profiling of long-range interactions in multiple cell

types revealed that CCCTC-binding factor (CTCF) is bound at
loop anchors and enriched at the boundaries of topologically
associating domains (TADs)8–11, suggesting that it plays a central
role in regulating the organization and function of the 3D gen-
ome12,13. Depletion of CTCF revealed that it is required for
chromatin looping between its binding sites and insulation of
TADs14,15, and disruption of individual CTCF-binding sites
deregulated the expression of surrounding genes16–19. Mechan-
istically, many of the CTCF-mediated loops define insulated
neighborhoods that constrain promoter–enhancer interactions13,
and in some cases CTCF is directly involved in
promoter–enhancer interactions9,10,20.

The CTCF-mediated interaction network has been considered
to be largely invariant across cell types. However, in studies of
individual loci, cell-type-specific CTCF-mediated interactions
were found to be important in gene regulation17,21. Furthermore,
CTCF-binding sites vary extensively across cell types22,23. These
findings suggest that the repertoire of CTCF-mediated interac-
tions can be cell-type-specific, and it is necessary to understand
the extent and functional role of cell-type-specific CTCF-
mediated loops. If cell-type-specific interactions are prevalent
and contribute to cellular function, it would be inappropriate to
use the CTCF-mediated interactome derived from a different cell
type.

CTCF-mediated loops can be mapped through Chromatin
Conformation Capture (3C)-based technologies2. Among them,
Hi-C9,24 provides the most comprehensive coverage for identi-
fying looping events. However, it requires billions of reads to
achieve kilobase resolution9. On the other hand, Chromatin
Interaction Analysis using Paired-End Tags (ChIA-PET) increa-
ses resolution by only targeting chromatin interactions associated
with a protein of interest10,25,26. Recently developed protocols,
including Hi-ChIP27 and PLAC-seq28, improved upon ChIA-PET
in sensitivity and cost-effectiveness. Despite recent technical
advances, experimental profiling of CTCF-mediated interactions
remains difficult and costly, and few cell types have been ana-
lyzed9,10,24,29. Therefore, computational predictions that take
advantage of the routinely available ChIP-seq and RNA-seq data
is a desirable approach to guide the interrogation of the CTCF-
mediated interactome for the cells of interest.

Here, we carry out a comprehensive analysis of CTCF-
mediated chromatin interactions using ChIA-PET data sets
from multiple cell types. We find that CTCF-mediated loops
exhibit widespread plasticity and the cell-type-specific loops are
biologically significant. Motivated by this observation, we develop
Lollipop—a machine-learning framework based on random for-
ests classifier—to predict the CTCF-mediated interactions using
genomic and epigenomic features. Lollipop significantly outper-
forms methods based solely on convergent motif orientation
when evaluated both within individual and across different cell
types. Our predictions are also experimentally confirmed by 3C.
Moreover, our approach identifies other determinants of CTCF-
mediated chromatin wiring, such as gene expression within the
loop.

Results
CTCF-mediated loops exhibit cell-type specificity. We used the
ChIA-PET2 pipeline30 and analyzed published ChIA-PET data
sets from three cell lines (Supplementary Table 1): GM12878
(lympho-blastoid)10, HeLa-S3 (cervical adenocarcinoma)10, and
K562 (chronic myelogenous leukemia)29. By using false discovery
rate (FDR) ≤0.05 and paired-end tag (PET) number ≥2, we

identified 51,966, 16,783, 13,076 high-confidence chromatin loops
for GM12878, HeLa, and K562, respectively (Supplementary
Table 2). A significant fraction of loops was found to be cell-type-
specific (67.9%, 26.2%, and 21.5% of loops in GM12878, HeLa,
and K562, respectively (Fig. 1a)). Of note, the GM12878 library
has higher sequencing depth, which may contribute to the higher
number of identified loops and cell-type-specific loops (Supple-
mentary Table 2 and Supplementary Fig. 1a).

To elucidate what contributes to this plasticity, we compared
the CTCF-binding sites identified in ChIA-PET data sets across
the three cell lines. We found that only 36% of CTCF binding sites
are constitutive (i.e., “+++”, Fig. 1b), consistent with previous
reports22,23. Besides cell-type-specific binding sites, rewiring of
shared binding sites also contributes and accounts for 24–44% of
the cell-type-specific loops (Fig. 1c and Supplementary Fig. 1b).

Cell-type-specific loops contribute to gene regulation. Loops
shared among different cell types exhibit significantly higher
interaction strength than the cell-type-specific loops (Supple-
mentary Fig. 1c), questioning whether the latter are biologically
relevant. To address this question, we asked whether these loops
are involved in gene regulation.

First, we found that cell-type-specific loops harbor a sig-
nificantly higher ratio of tandem CTCF motif orientation
compared to shared loops (Supplementary Fig. 1d). This suggests
their involvement in gene regulation, given that tandem loops
exhibit more regulatory potential than convergent ones10.

Second, we asked whether cell-type-specific Super-Enhancers
(SEs)31,32 are associated with cell-type-specific loops. SEs regulate
cell identity, development, and cancer31–33, and CTCF was shown
to play a critical role in their hierarchical organization34.
Motivated by these findings, we first carried out Disease Ontology
analysis on SEs for each cell type using GREAT35, confirming that
they are linked with the corresponding disease origin (Supple-
mentary Fig. 1e). Next, we compared SEs in HeLa and K562 and
identified three sets: HeLa-specific, common, and K562-specifc.
HeLa-specific SEs are preferentially associated with HeLa-specific
loops, compared to common SEs (Fig. 1d, left panel). Similarly,
K562-specific SEs are preferentially associated with K562-specific
loops compared to common SEs (Fig. 1d, left panel). The same
conclusion was reached when we compared GM12878 vs HeLa as
well as GM12878 vs K562 (Fig. 1d, central and right panels).
Taken together, cell-type-specific SEs are more likely to be
associated with loops specific to that cell type, suggesting the
functional significance of cell-type-specific loops.

Third, we examined how cell-type-specific loops are asso-
ciated with gene expression changes. We found that genes
associated with cell-type-specific loops have higher expression
levels in the respective cell type. In contrast, there is no
significant difference in expression for genes associated with
shared loops (Supplementary Fig. 1f). Consistently, differen-
tially expressed genes (DEGs) between the three cell types are
significantly associated with cell-type-specific loops (Supple-
mentary Fig. 1g). Ingenuity Pathway Analysis (IPA)36 revealed
that DEGs between HeLa and K562 categorized based on loop
association are enriched in distinct canonical pathways (Fig. 1e).
Similar results were obtained in pairwise comparisons between
GM12878 and the other two cell lines (Supplementary Fig. 1h,
i). For instance, Fig. 1f illustrates the loop architecture and
epigenomic features of ROR2, which encodes a receptor
involved in non-canonical Wnt signaling with a significant
role in human carcinogenesis37,38. ROR2 is highly expressed in
K562 compared to HeLa, and these CTCF-mediated loops are
present only in K562. The up-regulation of ROR2 expression is
associated with a concomitant decrease of H3K27me3 and
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increase in H3K36me3 in the region, as well as the appearance
of a K562-specific SE in the gene body.

Altogether, cell-type-specific CTCF-mediated loops are pre-
valent and may play a significant role in the transcriptional
programs of cell-type-specific genes. Therefore, we sought to

develop a computational approach to infer the CTCF-mediated
loops.

An ensemble learning method to predict CTCF-mediated
loops. We employed a random forest classifier, a tree-based
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ensemble learning method, to predict CTCF-mediated loops. This
classification method takes into consideration the complex
interactions among features and is robust against overfitting39–41.
The pipeline, named Lollipop, aims to find an optimized com-
bination of genomic and epigenomic features to distinguish
interacting from non-interacting pairs of CTCF sites. The schema
of the pipeline is shown in Fig. 2a. The trained model can be used
to predict CTCF-mediated loops in the same or a different cell
type.

For training purposes, the positive and negative loops were
derived from ChIA-PET data sets10,29. To ensure confident
labeling of positive loops, we used stringent criteria (FDR ≤ 0.05
and at least two PETs connecting the two anchors). Negative

loops were constructed by random pairing of CTCF binding sites
and were five times as abundant as the positive loops. Additional
rules to select negative loops included: (a) lack of PET in the
ChIA-PET data set and (b) absence in the list of identified
interactions from the Hi-C experiments (see methods for details).

A total of 77 features were derived from genomic and
epigenomic data sets (Fig. 2a). Genomic features include loop
length and features defined at the CTCF-binding sites, including
CTCF motif orientation, strength, and sequence conservation. We
included loop length because it is an inherent determinant of
contact frequency between two genomic regions42, and motif
orientation pattern because CTCF anchors preferentially adopt a
convergent motif orientation9. Epigenomic features include
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Fig. 2 Illustration of the Lollipop pipeline. a Schematic of the Lollipop pipeline. In training data, positive loops were generated from high-confidence

interactions identified from ChIA-PET, and negative loops were random pairs of CTCF-binding sites without interactions in ChIA-PET or significant contact

in Hi-C data set. A diverse set of features, generated from genomic and epigenomic data, was used to characterize the interactions. A random forests

classifier distinguished interacting CTCF-binding sites from non-interacting ones. The performance of resulting classifier was then evaluated. Trained

model can be used to scan the genome and predict de novo CTCF-mediated loops in the same or a different cell type. b Illustration of local, in-between, and

flanking features

Fig. 1 CTCF-mediated loops exhibit cell-type-specificity. a Venn diagram of CTCF-mediated loops identified from ChIA-PET experiments in GM12878,

HeLa, and K562. b Heat map of CTCF-binding sites in GM12878, HeLa, and K562 cells. Each row represents a CTCF-binding event identified in ChIA-PET in

at least one cell type. The binding sites are divided into seven groups based on the presence (+) or absence (−) of CTCF binding. Color shows the log2-

transformed value of reads per kilobase per million reads (RPKM). c Cell-type-specific CTCF binding and rewiring between common CTCF-binding sites

contribute to cell-type-specific loops. d Cell-type-specific Super-Enhancers (SEs) are enriched with cell-type-specific loops. Top: Venn diagram of SEs in

pairwise comparison of cell types. Bottom: Number of cell-type-specific loops associated with cell-type-specific and shared SEs. P-values were calculated

by Chi-square test. The GM12878 ChIA-PET data set was down-sampled to 15% of the original size so that the number of identified loops matched those of

the other ChIA-PET data sets. The down sampling and further analysis was repeated 10 times and the 95% confidence intervals were shown. e Canonical

pathway enrichment analysis of differentially expressed genes associated with K562-specific, HeLa-specific, and shared CTCF-mediated loops,

respectively. Color bar represents −log10 (P-value). f Genome browser snapshot of ROR2 locus. ROR2 is expressed and associated with CTCF-mediated

loops in K562 but not in HeLa. Expression of ROR2 in K562 is associated with a concomitant decrease of H3K27me3 and increase of H3K36me3 within the

gene body, as well as the appearance of a K562-specific SE. The ChIP-Seq and RNA-seq signals are represented in RPKM values
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chromatin accessibility, a variety of histone modifications, and
architectural proteins CTCF and Cohesin (RAD21). For the use
of DNase-seq and ChIP-seq data sets, three types of features were
used: (a) local features defined at the anchors, (b) in-between
features defined over the loop region, and (c) flanking features
defined over the region from the loop anchor to the nearest
CTCF-binding event outside the loop (Fig. 2b). The use of the in-
between features was motivated by a recent study43 showing that
signals over the loop regions were more important in predicting
promoter–enhancer interactions than signals at anchors. In
addition, given the insulator role of CTCF, we reasoned that
the potential imbalance of signal intensities on the two sides of
CTCF anchors might contribute to the prediction. Therefore, we
used the DNase and ChIP-seq signals on the flanking regions as
features. Finally, we also included gene expression within the
looped region (see Methods for details).

Performance assessment within individual cell types. We
employed receiver operator characteristic (ROC) and
precision–recall (PR) curves with 10-fold cross-validation to
assess the performance of Lollipop. To account for possible bias
introduced by random partitioning of training data, we per-
formed five iterations for cross-validation and reported the mean
performance. For evaluation of Lollipop’s performance, two
methods were used for comparison. Both methods are inspired by
the finding that the CTCF motifs in anchors preferentially adopt
convergent orientation:9,10 (a) The naïve method, which pairs a
CTCF-bound motif that resides on the forward strand to the

nearest downstream CTCF-bound motif that resides on the
reverse strand (Supplementary Fig. 2a); (b) The Oti method44,
which iteratively applies the naïve method to CTCF-binding sites
selected by different signal intensity thresholds (see Supplemen-
tary Fig. 2b for illustration and Methods for details). By doing so,
the Oti method identifies more loops than the naïve method and
partially recovers the nested structure of some CTCF-mediated
loops.

Figure 3a, b shows that Lollipop achieved an area under ROC
curve (AU-ROC) value of ≥0.97 and area under PR curve (AU-
PR) value of ≥0.86 in all cell lines. Compared to other methods,
Lollipop achieved similar or higher precision and superior recall.
The latter can be partially attributed to the failure of naïve and
Oti methods to capture tandem loops or loops without CTCF
motif on anchors, which account for a significant fraction of
CTCF-mediated loops (64% for GM12878, 61% for HeLa, 49%
for K562). We then independently evaluated Lollipop’s perfor-
mance on convergent and non-convergent loops. Even on
convergent loops, Lollipop achieved a superior recall score with
a precision score comparable to those of the naïve and Oti
methods (Fig. 3c). Furthermore, Lollipop also performed well in
predicting non-convergent loops (Fig. 3d). In summary, Lollipop
can account for the complexity of loop structures by integrating
genomic and epigenomic features and outperforms methods that
only consider the convergent CTCF motif orientation.

Identification of determinants of CTCF-mediated loops. Con-
sidering that convergent motif orientation does not suffice to
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identify CTCF-mediated loops, we ranked features that sig-
nificantly improve the performance, by measuring the mean
decrease in impurity during training the random forests classi-
fier45. We found that the average binding intensity of CTCF and
Cohesin (RAD21) at the loop anchors are the most important
features (Fig. 4a and Supplementary Fig. 3a), suggesting that sites
with stronger CTCF and Cohesin binding are more likely to

become anchors (Supplementary Fig. 3b), and consistent with the
observation that that these proteins are important for chromatin
interactions14,15. In agreement with previous results, loop length
and motif orientation pattern were among the top features9,42.
The list also includes features defined within loop regions, among
which gene expression was of particular interest. Regions inside
positive loops exhibit significantly lower gene expression levels
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compared to negative loops (Fig. 4b). This finding is supported by
similar trends exhibited by histone marks for active gene bodies
H3K79me2 and H3K36me3 (Supplementary Fig. 3c). Another
interesting feature is the standard deviation of CTCF and Cohesin
binding at the anchors (Fig. 4a). We therefore examined the
relative fluctuation, defined as standard deviation divided by
average intensity, of CTCF and Cohesin on anchor pairs of the
positive and negative loops. As shown in Fig. 4c and Supple-
mentary Fig. 3d, anchor-pair CTCF and RAD21 have significantly
lower relative fluctuation in positive loops than in negative loops.

While CTCF binding at anchors is clearly critical for looping,
formation of a loop requires wiring (i.e., physical interaction)
between specific pair of anchors. We therefore asked what
features contribute to the wiring. To this end, we considered
negative loops to be random pairings of actual anchors, and then
reanalyzed feature importance. As shown in Supplementary
Fig. 3e, length, motif orientation, and expression are strongly
contributing, whereas CTCF and Cohesin binding at anchors
become much less important. It is worth noting that more in-
between features showed up on the list, compared to those in
Fig. 4a and Supplementary Fig. 3a.

As the features employed are correlated (Fig. 4d and
Supplementary Fig. 3f), the feature importance scores might be
skewed. To validate the ranking of feature importance, we applied
the Recursive Feature Elimination (RFE) method to evaluate the
performance of the recursively reduced feature set. The results are
consistent with the feature ranking from the mean decrease
impurity (Supplementary Table 3). Last, performance evaluation
under different feature sets suggests that near-optimal perfor-
mance can be achieved by using ~16 features (Fig. 4e). These
features include those derived from CTCF and RAD21 binding,
loop length, CTCF motif orientation, gene expression, as well as
epigenetic features (Supplementary Table 3). Of note, CTCF-
binding intensity and motif contain non-redundant information,
and Lollipop performs reasonably well when features derived
from CTCF and Cohesin ChIP-seq data are not available
(Supplementary Fig. 3g).

Performance assessment across cell types. Having demonstrated
Lollipop’s superior performance within individual cell types, we
next used the model trained in one cell type to make predictions
and assessment in another cell type (see Methods for details).
This is more realistic and challenging, as a large number of
CTCF-mediated loops are cell-type-specific. In all three cell types
Lollipop achieved AU-PR ≥ 0.80 and AU-ROC ≥ 0.94 (Fig. 5a and
Supplementary Fig. 4a), only moderately lower than its perfor-
mances within individual cell types (Fig. 3a, b) and out-
performing motif-orientation-based methods (Fig. 5a and
Supplementary Fig. 4a). Furthermore, when evaluated on cell-
type-specific loops, Lollipop achieved slightly lower performance
(AU-PR ≥ 0.72 and AU-ROC ≥ 0.93) (Fig. 5b and Supplementary

Fig. 4b), suggesting that Lollipop predicts cell-type-specific loops
reasonably well.

Given that a loop consists of a pair of anchors and the wiring
between them, we then dissected Lollipop’s predictive power on
anchors and wiring, respectively. For assessment of anchor
prediction, we evaluated Lollipop by comparing the anchor usage
of the predicted loops with that of loops identified from ChIA-
PET in the target cell type. For assessment of wiring prediction,
we constructed negative loops by random pairing of actual
anchors in the target cell type (see Methods for details). Figure 5c,
d show the PR curves demonstrating that Lollipop performed
reasonably well in both, and better in predicting anchors than in
predicting wiring. The results of ROC (Supplementary Fig. 4c, d)
are consistent with those of PR.

Evaluation of de novo predictions of CTCF-mediated loops.
After training Lollipop in individual cell types, we then applied it
to scan the genome of the same cell type to make de novo
genome-wide predictions. Lollipop predicted 67,920, 38,688, and
32,430 loops in GM12878, HeLa, and K562, respectively. Notably,
the number of predicted loops in GM12878 is much larger than
those of the other two cell types, due to the much larger number
of loops identified by ChIA-PET in GM12878 (see the last col-
umn of Supplementary Table 2). These loops were used in
training the model and thus affect the number of predicted loops.
Indeed, if we down-sample the GM12878 ChIA-PET library to
15% so that the number of called loops is on par with those in
K562 and HeLa (Supplementary Table 2), the number of pre-
dicted loops is comparable to the number of predictions in K562
and HeLa.

The predicted loops can be classified into three categories
according to the levels of support from ChIA-PET data (see
Methods for details): “Significant” (FDR ≤ 0.05 and PET num-
ber ≥ 2), “With evidence” (FDR > 0.05 or PET number= 1), and
“No support” (PET number= 0). If the prediction stringency is
increased, higher percentage of predicted loops finds support in
ChIA-PET data and higher percentage falls into the “Significant”
category (Supplementary Fig. 5a). Moreover, loops in the
“Significant” and “With evidence” categories are more likely to
have convergent motifs (Supplementary Fig. 5b).

As shown in Supplementary Fig. 5c, a large fraction of the
predicted loops (48%, 73%, and 77% for GM12878, HeLa, and
K562, respectively) were not supported by ChIA-PET under the
stringent criterion of FDR ≤ 0.05 and PET ≥ 2 used for defining
positive loops. However, if we relaxed the stringency to PET
number ≥1 in ChIA-PET, the fraction of predicted loops not
supported by ChIA-PET was significantly reduced to 24%, 42%,
and 50% in GM12878, HeLa, and K562, respectively. Similar
result can be obtained with the down-sampled GM12878 library
(Supplementary Fig. 5d). This observation raises the question of
whether the predicted loops with less or no ChIA-PET support

Fig. 4 Identification of features with predictive power. a Ranking of predictive importance of the top 20 features in the model trained in GM12878 cells.

Predictive importance is measured by mean decrease impurity in the training process. “avg” and “std” represent the mean and standard deviation of the

signal intensity on both anchors. “_left” and “_right” represent the flanking features while “_in-between” is the signal intensity within the loop.

b Distributions of average gene expression levels within negative and positive loops. The positive and negative loops were defined in the training data, with

loops not containing promoters excluded from the analysis. Center lines, boxes, and whiskers of the box plot represent the median value, first/third

quartiles, and 1.5 interquartile range of the samples, respectively (same below). P-value <1e-300 for GM12878 and HeLa, P-value= 1.3e-271 for K562,

Mann–Whitney U-test. c Distribution of the relative fluctuations of CTCF and RAD21 binding intensities on paired anchors of negative and positive loops in

GM12878 cells. Relative fluctuation was defined as the ratio of standard deviation to mean intensity of anchor pairs. In both cases, P-value <1e-300,

Mann–Whitney U-test. d Heat map of feature correlations in GM12878. On anchors, active histone marks are highly correlated. Along the loop regions,

active histone marks and expression exhibit strong correlation. In addition, RAD21, CTCF, and DNase hypersensitive sites are strongly correlated.

Spearman’s rank correlation and hierarchical clustering were used. e Recursive Feature Elimination analysis on feature reduction. Left: AU-ROC; right: AU-

PR. Bars represent the 95% confidence intervals from five runs
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are indeed false positives. To address this question, we carried out
the following computational and experimental evaluations on
those predicted loops without any ChIA-PET support.

First, we used the published Hi-C contact matrices for
GM12878 and K562 (ref. 9) (see Methods for details) to evaluate
the loops in the “No support” category, and found that they have
significantly higher contact frequencies than pairs of randomly

chosen genomic loci (Fig. 6a). For fair comparison, the control
regions were sampled to have a length distribution matching
those of the target loops. Notably, loops in the “With evidence”
and “Significant” categories are also supported by Hi-C data and
exhibit higher contact frequencies than the loops in the “No
support” category (Supplementary Fig. 5e). Second, we randomly
selected two such cases and performed 3C experiments
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Fig. 5 Performance evaluation of Lollipop across cell types. a Across-cell-type performance evaluation using PR curves. In each subplot, “cell A to cell B”

applies the model trained from cell-type A to the data of cell-type B. For comparison, the performance of the naïve and Oti methods in each cell type were

represented by diamonds and circles, respectively. b Across-cell-type performance evaluation on cell-type-specific loops using PR curves. c Performance

evaluation of anchor prediction using PR curve. d Performance evaluation of wiring prediction using PR curve. The dash lines in a–d represent baseline

performance
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(Supplementary Fig. 5f). Figure 6b shows the sequence of the
ligation junctions from the long-range interactions (PRKAG2-
KMT2C and PDE6A-PDGFRB) in HeLa. 3C-qPCR further
confirmed the contact frequency of the PRKAG2-KMT2C loop
in respect to neighboring HindIII fragments (Supplementary
Fig. 5g).

Having shown that the predicted loops lacking ChIA-PET
support could be real, we sought to understand why they were not
observed in ChIA-PET. To this end, we performed scaling
analysis in the ChIA-PET data of GM12878 cells, which received
higher sequencing coverage compared to K562 and HeLa cells
(Supplementary Table 2). Specifically, we used the 15% down-
sampled GM12878 ChIA-PET library to identify loops with the
same approach employed for the full data set, and trained a

classifier. We then applied this classifier to make genome-wide
predictions. Of the 33,206 predicted loops, 11,954 are without any
support from the down-sampled ChIA-PET data set. However,
46% of these loops find support in the full ChIA-PET library, and
20% of these loops even find significant support (Fig. 6c). Taken
together, the scaling analysis suggests that insufficient sequencing
depth contributes to the presence of predicted loops lacking
support in ChIA-PET.

To evaluate the robustness of the model prediction against
training data, we compared the genome-wide predictions in
GM12878 derived from the HeLa and K562 models. The looping
probabilities of all potential loops in GM12878 predicted from
HeLa and K562 models are concordant (Supplementary Fig. 5h).
Moreover, the predicted loops from HeLa and K562 models
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Fig. 6 Validation of predicted CTCF-mediated interactions. a CTCF-mediated loops predicted by Lollipop but lacking ChIA-PET support exhibit significantly

higher contact frequency than background in Hi-C experiments. P-values were calculated using Mann–Whitney U-test. b Validation of two loops predicted

by Lollipop, but not present in the HeLa ChIA-PET data set. Left: schematic of PRKAG2-KMT2C (chr7: 151560677–151843260; top) and PDE6A-PDGFRB

loop (chr5: 149312517–149547724; bottom). Right: Sanger sequencing confirmation of the ligation junctions. Shaded areas in the right panels indicate the

HindIII ligation junctions. c Scaling analysis of loop prediction. Loops predicted using a model trained on the down-sampled (to 15%) GM12878 data, but

lacks support in the down-sampled data (i.e., the yellow slice in Supplementary Fig. 5d) are evaluated by the full ChIA-PET data. Forty-six percent of these
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significantly overlap (Supplementary Fig. 5i). Taken together,
genome-wide de novo predictions from models trained from
different cell types are congruent.

Topological properties of CTCF-mediated interaction network.
To better understand these interactions, we took a systems
approach to visualize and analyze the CTCF-mediated interac-
tions. We constructed the CTCF-mediated interaction network by
denoting the anchors as nodes and the long-range interactions as
edges. As exemplified in Fig. 7a, where the interaction network on
chromosome 1 (visualized using Graph-tool) is shown, the
CTCF-mediated interactions form a disconnected network
encompassing many linear-polymer-like components. This is
dramatically different from the RNA-PolII-mediated interaction
network46, which is dominated by one scale-free connected
graph46. This dramatic difference in topological structure is also
manifested in the degree distributions (Supplementary Fig. 6),
where the distribution for RNA PolII exhibits a fatter tail.

It is worth noting that the degrees of connection among the
anchors vary. We therefore examined CTCF hubs, anchors
involved in multiple interactions. Ranking anchors according to
the degrees of connection, we defined hubs as those among the
top 10% anchors and non-hubs as the bottom 10% (see Methods

for details), and identified 2905, 2145, and 1820 hubs for
GM12878, HeLa, and K562, respectively. Subsequent comparison
between hubs and non-hub nodes revealed that hubs are (a) more
conserved across cell types than non-hubs (Fig. 7b), likely because
they serve as the structural foci of genome organization in the
nucleus; (b) characterized by significantly higher binding affinity
for CTCF and Cohesin (Fig. 7c); and (c) associated with distinct
biological functions. Gene ontology analysis35 showed that the
hubs are preferentially associated with immunology-related
functions in GM12878 and K562 cells, but not in HeLa cells
(Fig. 7d), consistent with the cellular origin of these cell lines. For
example, the hubs in GM12878 and K562 cells that are of
hematopoietic origin were significantly associated with antigen
binding, and the GM12878 hubs were significantly associated
with the MHC (major histocompatibility complex) and MHC
class II (MHC-II) genes, which are essential for immune system.
This result is consistent with an important role for CTCF in
controlling MHC-II gene expression47,48. To explore the
mechanistic basis of the enrichment of cell-type-specific functions
of hubs, we examined the enrichment of transcription factor
motifs at the hubs using SeqPos49. We found that the enrichment
pattern is cell-type-specific (Supplementary Fig. 6b), suggesting
CTCF hubs may be associated with distinct sets of transcription
factors in different cell types. Notably, ZFX, ARNT, and MZF1
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Fig. 7 Topological properties of the CTCF-mediated interaction network and their association with biological functions. a Visualization of the CTCF-

mediated interaction network of chromosome 1 in GM12878 cells. Each node represents an anchor, with color representing the degrees of connection. Each

edge represents an interaction. b Overlap of predicted hubs and non-hubs among each cell type. Hubs are more conserved than non-hubs. c Distribution of

the binding affinity of architectural proteins, CTCF (top) and RAD21 (bottom), on predicted hubs and non-hubs. P-values <1e-300 for all cases,

Mann–Whitney U-test. d Functional enrichment analysis of hubs using GREAT. The x-axis represents the binomial P-values
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are only enriched in GM12878 and K562 cells, consistent with
their roles in the development of hematopoietic system50–52.

Discussion
Here we showed that CTCF-mediated chromatin interactions
exhibit extensive variations across cell types. These cell-type-
specific interactions are functionally important, as they are linked
to DEGs and cell-type-specific SEs contributing to cell identity.
However, genome-wide profiling of CTCF-mediated interactions
is available in a very limited number of cell types and conditions,
as experimental approaches remain challenging and costly.
Therefore, we developed Lollipop, a machine-learning frame-
work, to make genome-wide predictions of CTCF-mediated loops
using widely accessible genomic and epigenomic features. Using
computational as well as experimental validations, we demon-
strated that Lollipop performed well within and across cell types.
Analysis of the machine-learning model revealed features asso-
ciated with CTCF-mediated loops, and shed light on the rules
underlying CTCF-mediated chromatin organization.

While previous studies focused on the significance of conserved
CTCF binding at TAD boundaries or loop anchors, our study
showed a significant proportion of CTCF-mediated interactions
are cell-type-specific. Based on our analysis, both lineage-specific
recruitment of architectural proteins and alternative wiring
among available anchor sites contribute to the establishment of
cell-type specificity. Although the process of establishing cell-
type-specific loops is not well understood, it is conceivable that
multiple factors combine to orchestrate a cell-type-specific
chromatin context to promote the formation of a loop.

The convergent orientation of CTCF motifs at loop anchors is
a prominent feature of CTCF-mediated interactions9,10, as it is
also manifested by our model. However, model comparison
demonstrated that motif orientation alone is limited in its pre-
dictive power, and inclusion of other features significantly
improved the performance. Interestingly, we found that features
for the loop regions, which are away from the anchors, contribute
significantly to the predictive power, consistent with findings in
enhancer–promoter interaction predictions43. Specifically, gene
expression exhibits distinct distributions over positive loop
regions compared to negative loops (Fig. 4b, and Supplementary
Fig. 4c), which may be attributed to the enhancer-blocking role of
CTCF loop anchors.

In evaluating our predictions, we showed that false-positive
loops could be due to mislabeling in the testing data. As advances
in experimental protocols and continuous decreases in sequen-
cing cost would result in better training data in reference cell
types, it is likely that the performance of Lollipop would further
improve. Since CTCF plays a major role in defining regulatory
domains, results obtained from our approach can potentially be
used as constraints in predicting enhancer–promoter interactions,
which remains a major challenge. Overall, CTCF-mediated
chromatin interactions are critical for genome organization and
function, and our study provides a computational tool for the
exploration of the 3D organization of the genome.

Methods
Identification of CTCF-mediated loops from ChIA-PET data. We employed
ChIA-PET2 (v0.9.2)30 to identify CTCF-mediated loops. Briefly, ChIA-PET2
involves linker filtering, PET mapping, PET classification, binding-site identifica-
tion, and identification of long-range interactions. In the step of linker filtering, one
mismatch was allowed in identifying reads with linkers. After linker removal, only
reads with at least 15 bp in length were retained for further analysis for GM12878
and HeLa (read length= 150 bp). For K562, the read length was shorter (36 bp),
therefore reads with at least 10 bp in length were retained for further analysis. In
other steps, default values for parameters were used. Only uniquely mapped reads
were kept, and PETs were de-duplicated. Significant loops were identified with false

discovery rate (FDR) ≤ 0.05 (ref. 53). We further required that they are supported
by at least two PETs.

We only considered long-range interactions whose lengths are less than 1
million bp (mb), for two reasons. First, the vast majority of loops (93.2% for
GM12878, 97.3% for HeLa, 98.1% for K562) are less than 1 mb long. Similar
observations were previously made10. Second, insulated neighborhoods, previously
defined as CTCF-mediated loops that are co-bound by cohesin and contain at least
one gene, were found to range from 25 to 940 kb (refs. 6,16) (reviewed in ref. 13).

Comparison of CTCF-mediated loops among cell types. An anchor is considered
as shared by two cell types if the respective genomic regions delineating this anchor
overlap in the two cell types. The loops shared by all three cell types were defined as
GM12878 loops shared by both K562 and HeLa.

Analysis of CTCF-binding sites in three cell types. CTCF peaks were deter-
mined by MACS2 (ref. 54) in the ChIA-PET2 pipeline. A binding site was defined
as the peak summit ± 500 bp. The binding sites in the three cell types were classified
into seven groups according to the overlapping pattern. Binding intensity for each
site was represented by the log2 (RPKM) value over the summit+ 2 kb region. For
each group, the binding sites were ordered in descending order according to
binding intensity in a prioritized manner. Namely, CTCF-binding sites present in
GM12878 were ordered by their binding strength in GM12878; CTCF-binding sites
not present in GM12878 were ordered by binding strength in Hela and then in
K562 accordingly. Seaborn (V0.7.1, [http://seaborn.pydata.org]) was used to gen-
erate the heat map.

SE analysis. SEs are defined as stretches of chromatin that cluster multiple
enhancers decorated with H3K27ac31. They were identified by the Ranking
Ordering of Super-Enhancers algorithm (ROSE32,33), using H3K27ac ChIP-Seq
data as input and default parameters. Identified SEs were then uploaded to
Genomic Regions Enrichment of Annotations Tool (GREAT) V3.0.0 (ref. 35) for
GO analysis (Supplementary Fig. 1e). If an SE in one cell type does not overlap with
any SEs in a different cell type, it is deemed as an SE specific to that cell type. If an
SE in one cell type overlaps with an SE in the other cell type by at least 1 bp, it is
called a shared SE. We then counted the number of cell-type-specific loops asso-
ciated with each type of SEs. If a loop overlaps with an SE by at least 1 bp, we
considered the loop associated with the SE. The comparison between Hela and
K562 is shown in Fig. 1d. For comparison between GM12878 and another cell type,
the 15% down-sampled GM12878 ChIA-PET data set was used so that the number
of loops identified matched those from the ChIA-PET data sets of the other two cell
types (see Supplementary Table 2). Then analysis identical to that in Fig. 1d was
carried out. The down sampling and follow-up analysis were repeated 10 times to
ensure reproducibility, and 95% confidence intervals were shown in the Fig. 1d.

Association of gene expression with CTCF-mediated loops. Each cell-line has
two RNA-Seq replicates. Cufflinks V2.2.1 (ref. 55) with default parameters (q-value
= 0.05) was used to identify the DEGs.

To test the effects of cell-type-specific loops on gene expression (Supplementary
Fig. 1f), we identified genes associated with cell-type-specific and shared loops in
pairwise comparisons of cell types. A gene is associated with a loop if its promoter
region (TSS ± 2 kb) is inside the loop.

For comparison between HeLa and K562 in Supplementary Fig. 1g, a DEG was
deemed to be associated with HeLa-specific loops if it is within one or more HeLa-
specific loops but not within any K562-specific loops. If a DEG is covered only by
one or more shared loops, this DEG is deemed to be associated with shared loops.
Following the criteria described above, we obtained three sets of DEGs respectively
associating with HeLa-specific loops, shared loops, K562-specific loops. These three
sets of DEGs were then subject to GO analysis using “Ingenuity Pathway
Analysis”36. The GO terms whose P-values are no less than 1e-3 in all three gene
sets were then removed. The result is shown in Fig. 1e. Color key represents the
−log10 (P-value) value. For comparison between GM12878 and another cell type
(Supplementary Fig. 1h, i), the GM12878 ChIA-PET library was first randomly
down-sampled to 15% of the original size so that the number of loops identified
matched those of the ChIA-PET libraries from the other two cell types. For
Supplementary Fig. 1g, non-DEG genes were those with the least significant
expression changes as ranked by P-value, with group size matching to that of the
corresponding DEG group.

Identification of CTCF motif occurrences. The position frequency matrix of
CTCF for human was downloaded from Jaspar 2016 ([http://jaspar.genereg.net])56.
CTCF motif occurrences were identified by the FIMO package (V4.11.1 (ref. 57))
with the P-value <1e-5. In total, 110,879 motif occurrences were identified.

Preparation of training data. Positive loops were identified using the ChIA-PET2
pipeline with FDR ≤ 0.05 and IAB ≥ 2, with loop length restricted to be in the range
of 10 kb to 1 mb. The choice of the lower limit of 10 kb is because the ChIA-PET-
identified loops with length below 10 kb are likely caused by self-ligation in library
preparation25. The reason for the upper limit of 1 mb was given above. Negative
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loops were constructed by random pairing of CTCF-binding sites, with loop length
ranging from 10 kb to 1 mb. The number of negative interactions was chosen to be
five times that of the positive interactions. To ensure accurate labeling, we further
required that the negative loops (1) do not receive any ChIA-PET support and (2)
are not present in the CTCF-mediated interactions identified from the Hi-C
experiments9.

Feature calculation. Genomic features include motif strength, motif orientation,
conservation score, and loop length. Motif strength represents how similar the
underlying sequence is to the CTCF consensus motif. The motif strength score was
provided by FIMO57. The motif strength score of a CTCF-binding site (summit ±
1000 bp) was represented by the strength of the motif occurrence within the site. If
a CTCF-binding site has more than one motif occurrences, the highest score was
used. If there is no motif occurrence, 0 would be assigned. The feature of motif
orientation was represented by the following rule: If neither anchor has CTCF
motif, we assigned a value of 0; If one anchor has no motif and the other has one or
more than one motifs, we assigned a value of 1; if both anchors have one or more
motif occurrences, the orientation of each anchor was determined by the orien-
tation of its strongest motif occurrence. Divergent orientation would be assigned a
value of 2, tandem orientation a value of 3, and convergent orientation a value of 4.
For conservation, we used the 100 way phastCons score downloaded from UCSC
([http://hgdownload.cse.ucsc.edu/goldenpath/hg19/phastCons100way])58. The
conservation score of a CTCF-binding site was defined as the mean value of the
conservation score of each nucleotide in the summit ± 20 bp region.

Functional genomic features include chromosome accessibility profiled by
DNase-Seq, histone modifications, CTCF and Cohesin binding profiles profiled by
ChIP-Seq, and gene expression profiled by RNA-Seq. DNase-Seq and ChIP-Seq
data were de-duplicated and then subject to pre-processing to remove noise as
follows. For DNase-Seq data, peaks were downloaded from ENCODE29. For ChIP-
Seq data, SICER (V1.1)59 was used to identify enriched regions with FDR 1e-5. For
histone modifications with diffused signal (H3K27me3, H3K36me3, H3K9me3,
H3K79me2), window size= 200 bp, gap size= 600 bp were used. For other ChIP-
Seq libraries, window size= gap size= 200 bp were used. For both DNase-Seq and
ChIP-Seq, only reads located on signal-enriched regions were used for feature
calculation. For RNA-Seq data, gene expressions were calculated using Cufflinks55

with default parameters. Each data set was characterized by three types of features:
local features, in-between features, and flanking features, as illustrated in Fig. 2b.
Local features are defined around anchors, represented by the signal intensity
(RPKM value) over the CTCF summit position ± 2 kb region. In-between features
are represented by the average signal intensity (RPKM value) over a presumed loop
region. The value of the expression feature is defined as the average FPKM value of
the genes whose promoters are located inside the presumed loop (i.e., total
expression divided by the number of genes). The flanking features are represented
by the RPKM value over the region from the loop anchor to the nearest CTCF-
binding event identified in the CTCF ChIP-Seq.

Implementation of the naïve method and the Oti method. The naïve method is
implemented by pairing a CTCF-bound motif that resides on the forward strand to
the nearest downstream CTCF-bound motif that resides on the reverse strand
(Supplementary Fig. 2a). The Oti method was introduced in ref. 44. It ranked all the
active motif sites in terms of CTCF peak strength in descending order. First, all
active motif sites were used to construct loops by the naïve method. Then, the same
procedure was repeated for the top 80%, top 60%, top 40%, and top 20% active
motif sites. The loops constructed in different rounds were then pooled together.
The Oti method is illustrated in Supplementary Fig. 2b.

Performance evaluation within individual cell types. In Fig. 3c, d, the perfor-
mance was evaluated at the looping probability cut-off of 0.5.

Evaluation of feature importance. Predictive importance scores of features were
obtained from the attribute of “feature_importances“ of the trained random forest
classifier60. After ranking, the top 20 features were visualized in Fig. 4a and Sup-
plementary Fig. 3a. The correlation matrix was subject to hierarchical clustering, as
shown in Fig. 4d and Supplementary Fig. 3f. RFE method was used to validate the
analysis of the feature importance. After each iteration, model performance was
evaluated in terms of AU-ROC curve and AU-PR curve. The performance vs
feature number was plotted in Fig. 4e.

For feature importance analysis of wiring prediction (Supplementary Fig. 3e),
negative data were prepared as follows: the anchors of positive loops were used to
construct negative loops by random pairing. The number of negative loops was set
to be three times that of positive loops. Other procedures on construction of
negative loops were the same as described in the section of “Preparation of training
data”. Positive data remained unchanged.

Performance evaluation across cell types. In the across-cell-type performance
evaluation, the model trained in cell-type A was applied to cell-type B, using
training data prepared in B for evaluation of performance.

In the across-cell-type performance evaluation of cell-type-specific loops, the
positive loops used for evaluation are loops specific to the target cell type. The

negative loops are random pairings of CTCF-binding sites and are five times as
abundant as the positive loops (Fig. 5b and Supplementary Fig. 4b).

For evaluation of anchor prediction, the anchors of positive loops in cell-type B
were labeled positive, while the anchors belonging only to negative loops in cell-
type B were labeled negative. The anchors of predicted loops were compared with
positive and negative labels for evaluation of anchor prediction. This evaluation
was repeated under different thresholds of looping probability to generate the PR
and ROC curves (Fig. 5c and Supplementary Fig. 4c).

For evaluation of wiring prediction, the anchors of positive loops in cell-type B
were used to construct negative loops by random pairing. The model trained in
cell-type A was then applied to the training data of cell-type B for evaluation
(Fig. 5d and Supplementary Fig. 4d).

Computational evaluation of predicted CTCF-mediated loops. A model trained
in a cell type was used to predict loops genome-wide in the same cell type. Pre-
dicted loops were then compared with loops identified from ChIA-PET data sets
and categorized into three groups. “Significant” loops denote those supported by
ChIA-PET under the stringent criterion of FDR ≤ 0.05 and PET ≥ 2. “With evi-
dence” loops denote those supported by ChIA-PET reads but do not meet the
stringent criterion mentioned above. “No support” loops denote those without any
support from ChIA-PET (Supplementary Fig. 5a, c).

For down sampling of ChIA-PET library in GM12878 cells, the ChIA-PET
library was first randomly down-sampled to 15% of the original size, followed by
loop identification using ChIA-PET2 and preparation of training data. Trained
model was used to make genome-wide predictions. The predicted loops were
categorized into three groups by comparing with loop calls using the down-
sampled library, as described above. The result was shown in Supplementary
Fig. 5d.

For evaluation of predicted loops using Hi-C data (Fig. 6a, Supplementary
Fig. 5e), 10 kb resolution Hi-C contact matrices for GM12878 and K562 (ref. 9)
were used for validation. The contact matrices were normalized by Knight and Ruiz
(KR) normalization vector9. For each cell type, we collected contact frequencies
from the contact matrix for the predicted loops. As a control, we chose a set of
random pairings of genomic locations as anchors with matching size and length
distribution. We then collected the contact frequencies of this control set. The two
contrasting distributions of contact frequencies are shown. HeLa cell was not
included in this analysis because the Hi-C library and Hi-C derived contact matrix
are not available.

For scaling analysis in GM12878 cells, predicted loops belonging to the “No
support” group in the down-sampled ChIA-PET library (yellow slice in
Supplementary Fig. 5d) were compared with the loops identified using the full
GM12878 ChIA-PET library and categorized into three groups, as shown in Fig. 6c.

Chromosome Conformation Capture. The loops used for experimental validation
were randomly selected from the loops predicted by Lollipop but not observed in
ChIA-PET in HeLa cells, as described above. HeLa cells were purchased from
ATCC (#CCL-2). They were tested for mycoplasma and were found negative. For
the 3C assay, cells were fixed and nuclei were prepared as in ref. 61. Nuclei were
permeabilized with SDS, and subsequently DNA was digested overnight with
HindIII in situ. The next day, the samples were diluted 10-fold in T4 ligation buffer
and proximity ligation took place at 16 °C for 4 h and continued at room tem-
perature for 45 min. Reverse crosslinking was performed overnight by Proteinase K
treatment. Next, samples were treated with RNase A for 1 h, and 3C DNA library
was extracted and purified using phenol–chloroform. The digestion efficiency, as
well as the quality and quantity of 3C libraries, was assessed before downstream
analyses. The Q5 Taq polymerase (NEB) was used for PCR reactions using the
following protocol: 98 °C 30 s, 35 cycles [98 °C 10 s, 70 °C 15 s, 72 °C 10 s], 72 °C 2
min. Reactions were run on 2% agarose gels and analyzed using the ImageLab
software (BioRad). Bands were extracted and sequenced (Eurofins) to confirm
specificity of primers and loop identity. Data points plotted are the averages of
duplicates ± SD from two independent library preparations. Primers (KMT2C: U2,
U1, L, D1, D3, D4, R (from upstream to downstream); and PDGFRB: L, R) were
designed using a uni-directional strategy62 and sequences are provided in Sup-
plementary Table 4.

Analysis of CTCF-mediated interaction network. To construct CTCF-mediated
interaction network, we used nodes to represent anchors and edges to represent
loops. Graph-tool (V2.22 [https://graph-tool.skewed.de]) was used for visualization
of networks (Fig. 7a). In identification of hubs, anchors were ranked according to
the degrees of connection in descending order. Anchors with the same degrees of
connection were further ranked according to CTCF-binding intensity in des-
cending order. The top 10% anchors were defined as hubs, while the bottom 10% as
non-hubs.

For functional enrichment analysis of hubs (Fig. 7d), hubs were uploaded to
GREAT (V3.0.0)35 for functional enrichment analysis. The whole set of CTCF
anchors was used as background. The GO terms in “Molecular Functions” with P-
value <1e-4 in each cell type were shown.
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Code availability. Lollipop is publicly available in [https://github.com/ykai16/
Lollipop].

Data availability
GM12878 and HeLa ChIA-PET data were downloaded from the Gene Expression

Omnibus (GEO) with accession number GSE72816 (ref. 10). K562 ChIA-PET data were

downloaded from ENCODE29 with accession number ENCLB559JAA. High-resolution

genome-wide Hi-C contact matrices were obtained from GEO with accession number

GEO63525 (ref. 9). DNase-Seq, ChIP-Seq, and RNA-Seq data were downloaded from

ENCODE and were aligned to hg19. The accession numbers for the data used in this

study were summarized in Supplementary Table 1.
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