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Abstract

Background: We collected data from over 80 different cytotoxicity assays from Pfizer in-house work as well as

from public sources and investigated the feasibility of using these datasets, which come from a variety of assay

formats (having for instance different measured endpoints, incubation times and cell types) to derive a general

cytotoxicity model. Our main aim was to derive a computational model based on this data that can highlight

potentially cytotoxic series early in the drug discovery process.

Results: We developed Bayesian models for each assay using Scitegic FCFP_6 fingerprints together with the

default physical property descriptors. Pairs of assays that are mutually predictive were identified by calculating the

ROC score of the model derived from one predicting the experimental outcome of the other, and vice versa. The

prediction pairs were visualised in a network where nodes are assays and edges are drawn for ROC scores >0.60 in

both directions. We observed that, if assay pairs (A, B) and (B, C) were mutually predictive, this was often not the

case for the pair (A, C). The results from 48 assays connected to each other were merged in one training set of

145590 compounds and a general cytotoxicity model was derived. The model has been cross-validated as well as

being validated with a set of 89 FDA approved drug compounds.

Conclusions: We have generated a predictive model for general cytotoxicity which could speed up the drug

discovery process in multiple ways. Firstly, this analysis has shown that the outcomes of different assay formats can

be mutually predictive, thus removing the need to submit a potentially toxic compound to multiple assays.

Furthermore, this analysis enables selection of (a) the easiest-to-run assay as corporate standard, or (b) the most

descriptive panel of assays by including assays whose outcomes are not mutually predictive. The model is no

replacement for a cytotoxicity assay but opens the opportunity to be more selective about which compounds are

to be submitted to it. On a more mundane level, having data from more than 80 assays in one dataset answers,

for the first time, the question - “what are the known cytotoxic compounds from the Pfizer compound collection?”

Finally, having a predictive cytotoxicity model will assist the design of new compounds with a desired cytotoxicity

profile, since comparison of the model output with data from an in vitro safety/toxicology assay suggests one is

predictive of the other.

Background
A 2003 study estimated the cost of the research and

development of a drug up to the pre-approval point to

be over 800 million US dollars [1]. Toxicity is the reason

behind the withdrawal of over 90% of drugs from the

market and the failure of a third of drugs in phase I-III

clinical trials [2]. Because of the huge cost in research-

ing and developing a new drug, pharmaceutical

companies want to minimise the number of failures in

clinical trials and the number of withdrawals from the

market. One way to minimise the number of failures is

to ensure drugs are not toxic before they reach clinical

trials. This is done by screening compounds for toxicity

in the early stages of drug discovery and understanding

the mechanisms of toxicity to avoid designing toxic

drugs in the first place.

The general toxicity testing pipeline in the pharma-

ceutical industry begins with in vitro toxicology screen-

ing followed by in vivo studies [3]. The majority of

mandatory non-clinical toxicity investigations are in vivo
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[4]. Preclinical in vivo studies are used to determine

potential adverse effects of drugs, estimate safety mar-

gins [5], understand mechanisms of toxicity and decide

if compounds should be eliminated from the develop-

ment process [6]. At the moment no in vitro test for

acute oral toxicity has been approved by regulatory

agencies to be sufficient evidence to allow commence-

ment of clinical trials [4]. However, there are two man-

datory in vitro studies, genotoxicity and hERG assays,

that must be carried out before clinical trials can

commence.

In order to use in vivo and in vitro methods, com-

pounds must have already been synthesised and avail-

able in sufficient quantities. Moreover, the experimental

methods are time consuming and costly. For the time

being it is a requirement that in vitro and in vivo toxi-

city studies are carried out on all drug candidates before

they reach clinical trials. Development of a predictive

model allows in-silico screening of compounds in virtual

libraries, i.e. before any compounds are actually made.

In vitro cytotoxicity assays are often run in parallel to

primary cell-based activity screens in order to identify

hits that only appear to be active because of their cyto-

toxic effects [7,8]. These cytotoxicity assays are usually

run to triage compounds which appear active in a cell-

based primary assay against a target of interest. The

choice of cytotoxicity assay is not restrictive, with some

scientists choosing to re-use an assay from a previous

project, while others opt for the newest cytotoxicity

assay kits on the market. Cytotoxicity assays may be run

against cell lines from different species (e.g. human,

mouse, rat) and/or different cell types (e.g. skin, neuro-

nal, liver). The choice of cell line and/or species may be

aligned to those used in the primary target assay or be

more comparable to the in vitro toxicology assay which

it precedes. Assay methodologies vary widely (e.g. mea-

surements of mitochondrial activity, ATP concentra-

tions, and membrane integrity) but the basic principle is

to assess cell viability and/or proliferation. Endpoint

detection methods are similarly diverse, e.g. lumines-

cence, absorbance or fluorescence. Finally, the period of

cell incubation with compound varies from 2 hours in

acute studies to several days in some long term antiviral

assays. Again the length of incubation time may be

selected simply to parallel that of the primary assay.

The aim of this project was to develop a computa-

tional model which could be used to generate a general

“cytotoxicity score”. This could then be used as a service

to alert when a new synthesis is similar to a known

cytotoxic compound, and/or as a tool to give an indica-

tion of compound cytotoxicity. To make this model as

generally applicable as possible we tried to maximise the

coverage of chemical space in the training set by mer-

ging data from multiple assays. We see a general

cytotoxicity model as crucial in early stages of drug dis-

covery when typically chemical series are pursued for

which little cytotoxicity data is available and therefore

no opportunity exists to build a more accurate series-

specific model. Users could then access more informa-

tion to include cell line, species, compound dose and

incubation time details - and use this to triage their data

further. Finally, we plan to collaborate with safety collea-

gues to be able to identify the cytotoxicity assays which

are the best predictors of in vitro and clinical toxicity.

This would provide the potential to reduce compound

attrition since series with cytotoxic characteristics which

track with known toxicology profiles would not be

pursued.

Predicting toxicity is a challenging task because of the

complex biological mechanisms behind it. The results of

in vivo studies can be used to validate in vitro studies

[9]. As long as the in vitro methods used to generate

the data are successful at predicting in vivo outcomes,

then the in silico models built with that data should be

able to closely mimic the results of in vivo studies [9].

In this project, data from in vitro experiments will be

used alongside Bayesian learning to predict the cytotoxi-

city of compounds.

There are several examples of predicting cytotoxicity

from in vitro data in the literature, including the use of

neural networks [10], random forests [11], decision trees

and linear least squares [12]. The last example success-

fully predicts general cytotoxicity using in vitro results

from 59 different cell lines. In this work we will attempt

to predict general cytotoxicity using in vitro data gath-

ered using many different assay formats, we will also

compare our work with Guha and Schürer’s random

forests, as we can reproduce their models using our own

methods and the same publicly available datasets.

Bayesian learning is a popular and mature machine

learning method that can be used to classify molecules

in two sets e.g. active/inactive or toxic/non-toxic. It has

many applications in the pharmaceutical industry

including modelling biological activity [13-15], such as

kinase inhibitors [16] and hERG blockers [17,18],

enriching high throughput screening (HTS) data [19,20]

& docking results [21], predicting combinatorial library

protocols [22] and describing compound similarity [23].

Bayesian learning is used in this paper because of its

speed, safety with respect to over-fitting and its ability

for handling noisy data. The speed of Bayesian learning

scales linearly with the number of compounds, making

it a fast and efficient technique. No pre-selection of

descriptors is required prior to learning as only those

descriptors that correlate with activity will have a great

effect on learning and unimportant descriptors will not

lead to over-fitting. This also means that Bayesian learn-

ing performs well with noisy data, as is the case in this
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study which has a large amount of primary assay data

and an expected high number of false positives and

negatives.

Another advantage of Bayesian learning is that it does

not require the active/inactive ratio in the training set to

be balanced; instead, the assumption is that the ratio

present in the training set is representative of the ratio

in the set where predictions are to be made. Therefore

pre-processing to derive a training set with balanced

active/inactive data is not required.

We have used Bayesian learning with publicly available

and in-house cytotoxicity assay data to predict the cyto-

toxicity of compounds.

We start by discussing the use of Bayesian learning to

model cytotoxicity using publicly available data and the

validation of these methods. Next we describe the appli-

cation of these methods to a much larger Pfizer in-

house data set collected from multiple different assays.

Prediction networks, based on the ability of assay data

to predict the results of other assays are generated and

then used to select assay data suitable as a training set

for a general cytotoxicity model.

Results and Discussion
Modelling Public Data

Two publicly available cytotoxicity datasets were down-

loaded from PubChem [24]: “Scripps” which contained a

mixture of single point (percent inhibition) primary data

and IC50 confirmation data and “NCGC” which con-

tained only IC50 data [25]. These datasets have pre-

viously been used by Guha and Schürer to derive

Random Forest models [11]. For each data set, two ver-

sions of Bayesian models have been built using different

descriptors. The FCFP_6 models used FCFP_6 finger-

prints, AlogP, number of hydrogen bond donors, num-

ber of hydrogen bond acceptors, number of rotational

bonds and molecular fractional polar surface area as

descriptors. The BCI models used BCI-1052 structural

keys as descriptors, as used in the published Random

Forest models [11]. We were not able to calculate the

BCI fingerprints for all compounds therefore some com-

pounds were left out (11 from the NCGC data, 33 from

the Scripps IC50 data and 3800 from the Scripps per-

cent inhibition data). For each model, the data set was

split into 5 equal-sized random sets. The models were

built on 4 of these sets (80% of the data) and tested

with the remaining 20%. This process was repeated so

that 5 models were built, each tested on the set that was

left out of the training data. This is a technique known

as 5-fold cross-validation. For each validation a receiver

operating characteristic plot (ROC plot) and truth table

were generated. The models’ performance can be

assessed from the average ROC plot and truth table for

the 5 models.

Scripps IC50 Data

We built a Bayesian model with a potency cut-off of 5.5,

in accordance with Guha and Schürer [11]. This means

that all molecules with pIC50 > 5.5 were considered

cytotoxic. A ROC plot charts the false positive rate of a

model versus its true positive rate and represents the

cost-benefit trade-off [26]. The area under the curve is

the ROC score: the probability that the model will cor-

rectly identify an active molecule from a randomly

selected pair consisting of an active and an inactive

molecule. A perfect model will have a ROC score of 1

corresponding to 100% true positive (TP) rate, and 0%

false positive (FP) rate, while a random model will have

a ROC score of 0.5 as there is a 50% chance of correctly

classifying the active molecule from the pair. In Figure 1

the ROC scores for the 5 fold validation of the Scripps

FCFP and BCI models are shown. The average ROC

scores and standard deviations in the ROC score for the

FCFP_6 and BCI models are 0.70 ± 0.03 and 0.66 ±

0.05, respectively. These scores indicate the models are

poorly predictive and show no clear advantage or disad-

vantage for using either descriptor. The truth tables and

derived specificity/selectivity data in Tables 1 and 2

show that although the specificity is fairly high, the sen-

sitivity is rather poor, suggesting that the cut off for

cytotoxicity is too low. The published Random Forest

model by Guha and Schürer performed comparably to

the Bayesian model described here [11]. Their sensitivity

of 0.56 is comparable to our BCI model at 0.53 ± 0.10,

but the Random Forest model is better at predicting

inactivity with a specificity of 0.80 compared to the

value of 0.68 ± 0.03 we obtained. The Random Forest

model has a ROC score of 0.73. This is higher than the

average score achieved here (0.66 ± 0.05), although for

one of our five sets a close score of 0.72 was obtained,

this illustrates the need for multiple cross-validation.

The results here show that the performance of a model

depends on the training set, as different ROC scores

were obtained for each of the 5 validations. If the Ran-

dom Forest model had been cross-validated multiple

times an average closer to ours may have been obtained.

Scripps Percent Inhibition Data

In an attempt to increase the performance of their

model, Guha and Schürer added 10,000 molecules

classed as non-toxic from the Scripps percent inhibition

data set to the IC50 training set [11]. The reasoning

behind this was to emphasise the difference between the

two classes. We used a similar approach to improve our

model, but included the entire Scripps percent inhibi-

tion data set in the training set (59,780 measurements).

The Scripps percent inhibition data came from two

assays (PubChem AID 364 and 463). The cut-off value

above which a compound was considered toxic was
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calculated by taking the the average percent inhibition

of all compounds tested plus three times the standard

deviation. This equates to 39% in assay 364 and 30% in

assay 463. However, not all of these compounds were

available for submission to the corresponding IC50

assay and therefore some less active compounds were

submitted instead. Applying a cut-off to classify a com-

pound as toxic or non-toxic is arbitrary. There is no

expectation that the toxicity differs significantly between

a compound with a percent inhibition just above the

cut-off and one with a cut-off just below, especially

when taking into account the experimental error. The

optimal cut-off can be determined by the desire to see

as few false positives as possible in the IC50 confirma-

tion assay, for which there typically exists a resource

constraint limiting the number of compounds that can

be submitted. Choosing a high percent inhibition cut-off

like mean plus three standard deviations will limit the

number of hits and the false positives amongst them,

thereby ensuring a large proportion of compounds will

pass the confirmation assay. However, the cost of build-

ing a Bayesian model is independent on the cut-off, in

fact the cost of model building is low enough that the

optimal cut-off can be found by building multiple mod-

els and choosing the best model according to a prede-

fined metric. This idea was suggested by David Rogers

[27]. This method assumes that the actives found in the

IC50 confirmation assays are the true actives that can

be found in the entire data set. All 100 models with

percent inhibition cut-offs ranging from 1 to 100 were

built. For each model, the ROC score was calculated for

predicting the toxic compounds found in the IC50 assay

as positives (toxic) and all other compounds from the

HTS as negatives (non-toxic). In Figure 2 the ROC score

is plotted against the percent inhibition cut-off. The opti-

mum cut-off is 29% (ROC 0.89) for the FCFP_6 model

and 28% (ROC 0.77) for the BCI model. This is close to

the cut-off of 30% that was applied in assay 463, which is

not surprising since this assay contributed ~17 times as

many measurements as assay 364. However, the curves in

Figure 2 are nearly flat; a similarly predictive model can

be obtained using any cut-off between ~10% and ~80%.

This was also observed previously by Rogers, who specu-

lated that this could be used to exploit structure-activity

relationships (SAR) that exist mostly or entirely in the

region of low (below the cut-off) percent inhibition.

Bayesian modelling is biased towards compound sets dis-

playing clear SAR, i.e. actives that are part of a series of

chemically similar compounds. By lowering the cut-off

many random false positives will be included but, as long

as enough additional members of the various SAR series

are added, the model will improve or at least not deterio-

rate. The mean percent inhibition of all 59780 measure-

ments was 1.2% with a standard deviation of 9.8%. The

lower viable cut-off for toxicity (10%) is therefore close to

just one standard deviation from the mean. The FCFP_6

models clearly outperform the BCI models, which is not

unexpected since the FCFP_6 fingerprints contain far

more features than the BCI fingerprints and the FCFP_6

models were built using additional physical property

descriptors.

In Tables 3 and 4 the results are presented when the

Scripps percent inhibition models derived with opti-

mised cut-offs are applied to the IC50 data set. Models

were derived from percent inhibition data and evaluated

using IC50 data as in Table 1.
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Figure 1 ROC scores for the 5-fold cross validation of the Scripps IC50 FCFP_6 (left) and BCI (right) models. Minimum and maximum

ROC scores are shown.

Table 1 Truth table for 5-fold cross-validation of the

Scripps IC50 FCFP_6 and BCI models

Scripps IC50 FCFP_6 Model Scripps IC50 BCI Model

Experiment Cytotoxic Non-toxic Cytotoxic Non-toxic

Cytotoxic 21 ± 1.5% 16 ± 1.6% 20 ± 3.7% 17 ± 3.7%

Non-toxic 18 ± 0.9% 45 ± 0.9% 20 ± 2.1% 43 ± 2.1%
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The prediction accuracy of cytotoxic compounds

expressed by the sensitivity has increased markedly

compared to models derived previously from IC50 data:

but this was achieved at the cost of a decreased specifi-

city. In contrast, Guha and Schürer did not obtain an

appreciable difference in the sensitivity (or specificity)

when adding 10,000 non-toxic compounds to the train-

ing set [11]. The cost of the increased sensitivity in our

model is a much higher rate of false positives. However,

of the 484 compounds classified as non-toxic (pIC50 ≤

5.5), nearly half (231) could be classified as moderately

toxic since they possess an IC50 ≤ 10 μM (pIC50 ≥ 5).

The majority of these (151) are predicted as toxic by the

FCFP_6 model (model score >0). For the BCI model

similar numbers were obtained (463 compounds classi-

fied as non-toxic compounds, 223 moderately toxic, 136

with Bayesian score >0). Both Bayesian models derived

from the Scripps percent inhibition data are good at

picking compound series with toxicity issues but not as

good at differentiating which member of the series is

toxic and which one is not. This is illustrated in Table 5

where a series of 4 compounds is shown all of which

are predicted toxic. Only one of these (CID 659940)

actually has a pIC50 value above 5.5 but the toxic pre-

diction counts it as true active. The other three are

counted as false positive. However, it should also be

noted that Guha and Schürer lowered the pIC50 cut-off

for toxicity to 4.68 when they compared Scripps data

with NCGC data [11]. Our main aim is to derive a

model that highlights potentially problematic series

early on in the drug discovery process and in this con-

text one false positive such as compound 663916 which

is a very close analogue to the moderately cytotoxic

compound 664633 would not necessarily indicate failure

of the model. Indeed, a slightly higher false positive rate

could be considered an advantage when using the model

output as a compound triage tool for deleterious safety

effects.

NCGC Data

As with the Scripps IC50 data, 5-fold cross-validated

FCFP_6 and BCI Bayesian models were built from the

Table 2 Specificity and sensitivity of Scripps IC50 FCFP_6 and BCI models

Scripps IC50 FCFP_6 Model Scripps IC50 BCI Model

Cytotoxic (sensitivity) Non-toxic (specificity) Cytotoxic (sensitivity) Non-toxic (specificity)

Fraction correctly classified 0.57 ± 0.04 0.71 ± 0.01 0.53 ± 0.1 0.68 ± 0.03
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Figure 2 ROC score and percent inhibition cut-off for toxicity while training a Bayesian model. Each point represents a different model.

The ROC scores are calculated using all compounds from the percent inhibition data set with actives defined as pIC50 > 5.5.
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NCGC Jurkat IC50 data set. The cut-off for cytotoxicity

was set at pIC50 > 4.64 to enable comparison of our

results to Guha and Schürer [11]. In Figure 3 the ROC

plots for the 5-fold cross-validation are shown. The

average ROC scores and standard deviations in the ROC

score for the FCFP_6 and BCI models are 0.67 ± 0.07

and 0.65 ± 0.15, respectively, which indicates poor

model performance, similar to the results obtained for

the Scripps data. As was the case with the Scripps IC50

data, there is no appreciable difference between the BCI

and the FCFP_6 models apart from the much larger var-

iation of the ROC score for the BCI model. This can be

explained by the lower number of toxic molecules in

this dataset: with 5-fold cross validation there are on

average 12 toxic compounds present in each test set.

Tables 6 and 7 illustrate that the classification of cyto-

toxic molecules as expressed by the sensitivity is again

low, but the specificity is high.

The low sensitivities of the Scripps and NCGC IC50

models are not a result of the percentage of toxic com-

pounds in the data set since the Scripps IC50 set con-

tained 37% toxic compounds while the hit rate of the

NCGC set was much lower at 4.6%. Furthermore Guha

and Schürer have selected compounds in their training

sets to have a toxic/non-toxic ratio of 1/1 [11], yet they

also obtained models with low sensitivity. A compound

which is cytotoxic can be so via multiple mechanisms -

a fundamental difference when comparing with single

endpoint toxic mechanisms like hERG or P450 inhibi-

tion [17]. While for the latter category a single pharma-

cophore can be derived, this is not possible for

cytotoxicity as a model of cytotoxicity is in effect a col-

lection of models for each of the different toxicity

mechanisms that result in the measured endpoint. To

illustrate this point, even though the biological assay

data for the Scripps and NCGC compounds was actually

obtained from experiments using the same cell line (Jur-

kat) and measured cell viability determined by ATP con-

centration, the sensitivity of the NCGC model (0.32) is

much lower than the sensitivity of the Scripps IC50

model (0.57). The most likely explanation is that the

two compound sets act via different mechanisms to

achieve the same endpoint - a reduction in ATP levels.

This hypothesis is strengthened further upon examina-

tion of the different similarity distributions of both sets

of compounds. In Figure 4 the internal similarity of

toxic compounds is compared to the internal similarity

of non-toxic compounds. For each compound, the

FCFP_6 Tanimoto similarity scores were calculated ver-

sus all other compounds in the same class (toxic or

non-toxic) and the highest value was retained. The toxic

compounds in the Scripps IC50 set are more similar to

each other (average similarity 0.52) than the non-toxic

compounds (average similarity 0.44), while the opposite

is the case for the NCGC set (average similarity 0.33

toxic versus 0.59 non-toxic). The toxic compounds in

the NCGC set are less like each other than in the

Scripps set which makes prediction of toxicity more dif-

ficult for the NCGC set.

Cross Predictions Between Scripps And NCGC

In Figure 5 we show the results of using models derived

from the public datasets to cross-predict each other,

compared with predictions from Ref. [23] and from the

trivial “all toxic” and “all non-toxic” models.

Firstly, we tested the NCGC Jurkat IC50 models

(FCFP_6, toxicity cut-off pIC50 > 4.64) against the

Scripps IC50 dataset (FCFP_6, toxicity cut-off pIC50 >

5.5). The NCGC models don’t distinguish toxic from

non-toxic, as indicated by the quasi-random ROC scores

at 0.52 (the BCI model was no better at 0.50). In ref

[23], Guha and Schürer considered their NCGC model

predictive, but only after altering the fingerprint descrip-

tors (CATS2D) used to train the model, and applying a

different toxicity cut-off to the Scripps set, resulting in

640 out of 775 compounds being toxic (about 83%).

They did not report a ROC score, but a percentage of

correctly classified compounds (68%). This is shown in

Figure 5 together with the value of 61% we obtained

against the Scripps set with the original cut-off of 5.5.

The model in ref [23] had a high sensitivity (0.76) and a

low specificity (0.26); in effect the model was successful

Table 3 Truth table for Scripps percent inhibition FCFP_6 and BCI models

Scripps percent inhibition FCFP_6 model Scripps percent inhibition BCI model

Experiment Cytotoxic Non-toxic Cytotoxic Non-toxic

Cytotoxic 30 ± 3.4% 7 ± 1.7% 27 ± 2.6% 11 ± 0.7%

Non-toxic 41 ± 2.0% 22 ± 3.3% 40 ± 3.2% 23 ± 3.1%

Table 4 Specificity and sensitivity of Scripps percent inhibition FCFP_6 and BCI models

Scripps percent inhibition FCFP_6 model Scripps percent inhibition BCI model

Cytotoxic (sensitivity) Non-toxic (specificity) Cytotoxic (sensitivity) Non-toxic (specificity)

Fraction correctly classified 0.82 ± 0.05 0.35 ± 0.04 0.72 ± 0.03 0.37 ± 0.05
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by predicting most compounds to be toxic - possibly as

a consequence of forcing down the cut-off. The model

“all compounds are toxic” would have correctly classified

83% of the compounds. Our FCFP_6 model can be con-

sidered the reverse. With the original cut-off for toxicity

(pIC50 > 5.5) the sensitivity is low (0.08) and the specifi-

city is high (0.92); this model yielded a 61% correct clas-

sification by predicting the majority of compounds to be

non-toxic. The simplistic “all compounds are non-toxic”

model would have correctly classified 63% of the com-

pounds. As illustrates, the two trivial models would per-

form better than the models reported by Guha and

Schürer and ourselves, indicating that our models failed

at predicting each other. We also tried to predict the

NCGC outcomes by models from the Scripps dataset.

Again, the models derived from the Scripps IC50 could

not correctly classify the NCGC set, as shown by the

ROC scores of 0.51 (FCFP_6) and 0.40 (BCI). The ROC

scores improved to 0.60 (FCFP_6) and 0.51 (BCI) when

the Scripps percent inhibition models were used, but

not enough to indicate good predictive power. Figure 5

shows the percentage of correct prediction (65%) of the

FCFP_6 model.

We conclude that all attempts to predict NCGC from

Scripps or the reverse have failed. Guha and Schürer

derived bit spectra to show that the toxic class of the

NCGC IC50 set is equally similar to the toxic and non-

toxic class of the Scripps IC50 [11]. This was used to

explain the failed prediction of Scripps results by a

model generated from the NCGC data. In Figure 6 the

FCFP_6 similarity distribution is shown between the

toxic compounds from the NCGC set compared to the

toxic and non-toxic compounds from the Scripps IC50

and percent inhibition sets. The NCGC toxic set is dis-

similar to both the Scripps IC50 toxic and non-toxic

compounds. When the NCGC toxic compounds are

compared to the larger Scripps percent inhibition set,

the similarity to the non-toxic compounds has increased

slightly, partly due to the disproportionally larger num-

ber of non-toxic compounds in this set. The NCGC

Table 5 Example series of compounds which are all predicted to be toxic (Scripps percent inhibition FCFP_6 model

score >0).

CID 663916 664633 664724 659940

pIC50 <4.40 (non-toxic) 5.24 (moderate toxic) 4.84 (non-toxic) 5.64 (toxic)

Score 36.80 28.77 41.14 42.45

Only one is truly toxic as defined by Guha and Schürer [11], but two still have a measurable pIC50. All of these were hits in the percent inhibition assay (min

percent inhibition was 53% obtained for 664724).
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toxic compounds are also dissimilar to this larger

Scripps set, which explains why a model derived from

the latter is also not predictive for NCGC.

Since both assay formats were similar and we

observed an increase in predictive power when all

Scripps percent inhibition data were included, in all like-

lihood the NCGC and Scripps assays should be predic-

tive for each other if there is sufficient overlap in

chemical space. To test this hypothesis we merged the

NCGC and Scripps IC50 sets into one set of 2103 com-

pounds of which 345 are labelled cytotoxic. As with the

separate NCGC and Scripps IC50 sets we built a Baye-

sian model with 5-fold cross validation. In Figure 7 the

ROC plots are shown for the unified models built with

FCFP_6 and BCI fingerprints. These models perform

much better than the previous models from the indivi-

dual NCGC or Scripps IC50 sets: the ROC score using

the FCFP_6 fingerprints is 0.82 ± 0.02 and 0.75 ± 0.05

for the BCI fingerprints. These results clearly show that

merging these two datasets has been synergistic, and

therefore corroborates the hypothesis that it is only the

lack of overlap in chemical space preventing better pre-

diction scores in the separate models. However, the

improvement in predictive power is unbalanced. The

unified model is worse in finding the cytotoxic com-

pounds that originated from the NCGC set (9 true posi-

tives for the unified FCFP_6 model versus 16 for the

NCGC model), but better in identifying the true posi-

tives originating from the Scripps set (218 versus 161).

The unified model identifies more true positives (and

better ROC scores) because the number increased more

in the Scripps set than it decreased in the NCGC set.

Merging the sets is equivalent to adding more inactives

to the Scripps set since the hit rate of NCGC is much

lower at 4.7% compared to Scripps at 37%. In Bayesian

statistics the probability of a compound being cytotoxic

is compared to the baseline occurrence of cytotoxicity,

mixing data sets with significantly different baseline hit

rates will potentially yield unbalanced models as

observed here.

Modelling Pfizer Data

The results obtained modelling the Scripps and NCGC

sets using naïve Bayesian were comparable to the result

obtained by Guha and Schürer using Random Forest

models. Since Bayesian models do not need rebalancing

of training sets with toxic/non-toxic ratios far from 1/1

we decided to use Bayesian models to analyse Pfizer

data. We consistently obtained better results using

FCFP_6 fingerprints than with BCI fingerprints and

therefore decided to subsequently only use FCFP_6 fin-

gerprints. We concluded from modelling the Scripps

data that Bayesian models can improve if all percent

inhibition data are used to augment the data set and

that a much lower cut-off can be used than is typically

applied by the experimenter. The Pfizer data set con-

tains results from 33 assays with percent inhibition data

and 52 assays with IC50 data. These data have been

obtained by Pfizer and its multiple legacy companies

and not surprisingly a variety of assay formats have

been applied. We developed assay meta data collection

tools for the biological assays to focus on the factors

most likely to influence cytotoxicity (e.g. cell-line, incu-

bation time, dose, endpoint detection method). Exten-

sive data profiling was applied to generate a well

characterised data set (Pfizer dataset collection and

profiling - Methods).

Many of the Pfizer assays were selectivity assays, aimed

at removing “actives” from the primary assay where the

activity was in fact due to cytotoxicity or another non-spe-

cific event. Since the compounds submitted to these assays

had already shown activity in a cell-based assay, they are

not true random subsets of the Pfizer file and the expected

toxic hit rate is closer to the Scripps IC50 set (37%) than

to the Scripps percent inhibition set (1.4%). The cytotoxi-

city assay collection also covered different % inhibition

and IC50 dose ranges. A particular cut off may give 20%

actives in one assay, but 100% actives in another. There-

fore to enable cross-assay comparison, the top 20% of

compounds (by activity or pIC50) were considered active

so that every assay would have the same hit rate. For an

assay with a normal distribution this would equal mean

plus (just under) one standard deviation. Modelling the

Scripps percent inhibition data has shown that including

this many actives in the training set can still yield a predic-

tive model. An important feature of Bayesian learning is

that it is not sensitive to the ratio of actives in the dataset;

the ROC scores in Figure 2 illustrate this point: essentially

the same model is obtained from the Scripps percent inhi-

bition data, whether the cut-off for activity is set to 10% or

to 80% or to any value in between. This advantage of

Bayesian learning means we can pragmatically define the

Table 6 Truth table for the 5-fold cross-validation of the

NCGC IC50 FCFP_6 and BCI models

NCGC IC50 FCFP_6 model NCGC IC50 BCI model

Experiment Cytotoxic Non-toxic Cytotoxic Non-toxic

Cytotoxic 1.5 ± 0.3 3.3 ± 1.2 1.7 ± 0.6 2.9 ± 1.4

Non-toxic 8.7 ± 2.0 86.6 ± 2.8 13.5 ± 1.8 81.9 ± 2.3

Table 7 Specificity and sensitivity of the NCGC IC50

FCFP_6 and BCI models

NCGC IC50 FCFP_6
Model

NCGC IC50 BCI
Model

Cytotoxic Non-toxic Cytotoxic Non-toxic

Fraction correctly
classified

0.32 ±
0.06

0.91 ±
0.02

0.41 ±
0.20

0.86 ±
0.02
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top 20% of compounds as toxic without decreasing the

quality of the model.

Our aim was to derive one generally applicable cyto-

toxicity model and it was therefore tempting to integrate

all data into one training set, hoping for a synergy in

predictive power similar to that observed when the

NCGC and Scripps IC50 sets were combined. We

decided to take a more systematic approach and to only

include data sets leading to models that are predictive

for at least one other data set.

For each assay with at least 10 toxic molecules, a

Bayesian model was derived and the ROC scores were

calculated predicting the outcome of each of the other

assays. To visualise connections between data sets pre-

diction networks were created. (see Prediction Net-

works - Methods)

Prediction Networks

In a prediction network the nodes represent data from

different assays, and the size of the node is proportional

to the number of molecules in the corresponding data

set. Nodes are considered predictive if the model yields

a ROC score greater than or equal to 0.60. Two nodes

are connected if the data at one node can be used to
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Figure 4 Histograms of FCFP_6 Tanimoto internal similarity distribution. Toxic (red) and non-toxic (blue) compounds are shown for the

Scripps IC50 set (left) and NCGC IC50 set (right). For each compound, the highest similarity score was kept to any other compound in the same

(toxic/non-toxic) class. In the Scripps set the toxic compounds are on average more similar to each other than the non-toxic compounds. In the

NCGC set the opposite is the case, toxic compounds do resemble each other less than non-toxic compounds. Similar distributions were

obtained with BCI fingerprints. A similarity of 1 does not necessarily imply compounds are identical

Figure 5 Illustration of cross-predictive power for a number of models derived from public datasets. Trivial models ("All compounds are

clean” and “All compounds are toxic”) are compared to models developed in this study ("This study”) and in reference [11] ("Ref[11]“). Arrows

indicate the direction of prediction. The percentage shown below each arrow is the percentage of correctly classified compounds: (true positives

+ true negatives)/all. The toxicity cutoff of the Scripps dataset (b) was defined in ref[11] resulting in 83% toxic compounds. Toxic and non-toxic

sets are shown in red and green, respectively.
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build a predictive model for the cytotoxicity of the

molecules at the other node. The nodes are only con-

nected if predictions are bi-directional.

The percent inhibition and IC50 prediction networks

are shown in Figures 8 and 9 respectively. The edges

connecting the nodes have an arrow indicating the

direction of the prediction from the training set to the

test set. The width of the edges is proportional to the

ROC score. Differences in distances between nodes have

no meaning. In both networks there is one main cluster

of nodes connected to each other, showing that most

models derived from these assays are predictive for at

least one other model. As described previously, the

Scripps and NCGC IC50 data sets were not mutually

predictive and their nodes are not connected to each

other or indeed to any other node (nodes 53 and 54 in

Figure 9). However, the Scripps and NCGC nodes are

connected to other assays in the percent inhibition pre-

diction network (nodes 33 and 34 in Figure 8). This

situation also occurs with other assays in the prediction

networks, the assay pair (A.B) are mutually predictive,

and pair (B,C) is also mutually predictive, but (A,C) is

not as with the Scripps and NCGC data sets, this could

be due to a lack in overlap in chemical space between

assays A and C. Although there is enough overlap

between (A,B) and (B,C) for the pairs to be mutually

predictive, the pair (A,C) are too far apart in chemical

space to be predictive. The nodes in the IC50 network

are more inter-connected than in the percent inhibition

network. This is not surprising since a higher percentage

of true actives can be expected in the IC50 set com-

pared to the percent inhibition set if the first is the fol-

low up for the latter. Even with multiple mechanisms

leading to toxicity, each of which coming with a differ-

ent pharmacophore, the true actives are expected to be

more like each other than random compounds and

cross prediction should be easier.

One Predictive Cytotoxicity Model

Although further investigation is required to determine

why some assays are predictive of each other and some

are not, it is worth examining the effect of utilising the
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Figure 6 FCFP_6 Tanimoto similarity between the toxic compounds from NCGC and the Scripps compounds. In the Scripps data set,
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Figure 7 Comparison of ROC plots for models derived using different fingerprints. ROC plots of the 5 fold cross-validated NCGC/Scripps
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Figure 8 Prediction network of percent inhibition models. Nodes represent assays with arbitrary assay number. Node size is proportional to

number of molecules in assay. The presence of edges between two nodes indicates that a model from one set is predictive for the other and

vice versa. All data sets are Pfizer assays except for 33 (Scripps) and 34 (NCGC). Assays with fewer than 10 actives were removed.

Figure 9 Prediction network of IC50 models. Nodes represent assays, with arbitrary assay number. Node size is proportional to number of

molecules in assay. The presence of edges between two nodes indicates that a model from one set is predictive for the other and vice versa.

All data sets are Pfizer assays except for 53 (NCGC) and 54 (Scripps). Assays with fewer than 10 actives were removed.
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information gained from our prediction networks to

derive one predictive cytotoxicity model. The 17 con-

nected assays in the percent inhibition prediction net-

work were combined into a training set to derive the

percent inhibition cytotoxicity model. The same was

done for the 31 connected screens in the IC50 predic-

tion network to derive the IC50 cytotoxicity model. The

models were derived with the same descriptors and defi-

nition of cytotoxicity as the models built when con-

structing the prediction networks. These models were

evaluated using a 5-fold cross-validation method as

before. The ROC scores from the cross validation are

shown in Table 8. The models have good ROC scores

and the variance in ROC score between each cross-vali-

dation is also much smaller than that observed for the

earlier Scripps and NCGC models.

These results show that using a prediction network

allows appropriate assay data to be selected to construct

a training set to derive a predictive model. It appears

that using data from a diverse set of assays and employ-

ing a prediction network to select assays for inclusion in

the combined model is a powerful approach. The next

step was to see if these two cytotoxicity models can be

combined to give an overall predictive cytotoxicity

model. A test set was created containing 10% of the

molecules from the percent inhibition model training

set and 10% of the molecules from the IC50 model

training set. The two models were re-trained with the

remaining 80% of molecules. Both the percent inhibition

and IC50 cytotoxicity models were tested with the new

test set. The Bayesian scores for the compounds in each

assay were plotted against each other to see if there was

a positive correlation between the two models. The

scores were binned and for each bin a pie diagram was

generated showing the percentage of cytotoxic mole-

cules (Figure 10). The majority of cytotoxic molecules

are at high Bayesian scores in both the percent inhibi-

tion and IC50 cytotoxicity models. As both models

score cytotoxic compounds highly and there is a positive

correlation, the two models can be combined. The train-

ing sets for the percent inhibition and IC50 cytotoxicity

models are combined to give a new training set used to

derive a predictive cytotoxicity model. The ROC score

for the 5-fold cross-validated model is 0.842 ± 0.002,

between the ROC scores of the IC50 and the percent

inhibition models. This is a good model with little

variance in performance between the 5 test sets.

Although merging the two models does not produce a

model better than the two separate models, its enrich-

ment is still high and it creates a neater tool for predict-

ing cytotoxicity, rather than having to use two models.

The merged model also covers a larger area of chemical

space making it more general than the individual

models.

The merged model was also validated with a set of 87

drugs approved by the FDA since 2000. Approved drugs

for obvious reasons are assumed to be non-cytotoxic;

however we assumed the 11 drugs with an anti-cancer

indication to be cytotoxic. Figure 11 shows the ROC

plot for the predictive cytotoxicity model when validated

with this set of drug compounds. The ROC score is

0.84, which means the model performed well at distin-

guishing cytotoxic drugs from other drugs.

In addition, to investigate translation of cytotoxicity

score to toxic effects, ~11,000 compounds which had

been tested in a Pfizer in vitro toxicity/safety assay were

tested in silico through the cytotoxicity prediction

model. Examining the in vitro toxicity/safety data, at

high Bayesian scores (Figure 12) there are proportionally

more toxic compounds (with IC50 < 50 uM), than at

the lower Bayesian scores - i.e. the activity distribution

of toxic compounds with IC50 < 50 uM, centres to the

right of the inactives distribution (IC50 > 50 uM), which

has a lower average Bayesian score. There is therefore a

good indication that compounds flagged as active in the

in vitro toxicity/safety assay would have been identified

as cytotoxic by the model.

Cytotoxicity can also be related to the descriptors used

to derive the model. After the FCFP_6 fingerprints, the

descriptor which has the largest impact on the Bayesian

score is AlogP. Compounds having AlogP between 3.7

and 34 are given a high probability of being toxic by the

model, the probability of being toxic increases at the

higher end of the range. Compounds with AlogP below

3.3 are given a low probability of being toxic, generally

the lower the AlogP the lower the probability of being

toxic. There is one exception where an AlogP in the

range of 34 to 63 gives a non toxic compound, but

there is only one example of such a compound occur-

ring, therefore this is an anomalous result. These are

also unusually high values for logP; therefore AlogP is

an unreliable estimate of logP for these compounds.

Compounds with a high logP are lipophilic and can

therefore easily cross cell membranes, their tendency to

preferentially bind with proteins rather than remain in a

polar solvent making them more likely to have non-spe-

cific intracellular effects. Molecular weight is the next

most important descriptor. The model gives a low prob-

ability of a molecule being toxic if its molecular weight

is below 370. Higher molecular weights give a high

Table 8 ROC scores from the 5-fold cross-validation of

the models derived from the predictive assays

Model ROC score

Percent inhibition cytotoxicity model 0.846 ± 0.003

IC50 cytotoxicity model 0.836 ± 0.002

Merged Percent inhibition/IC50 model 0.842 ± 0.002
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probability of toxicity. A molecule’s lipophilicity will

increase as its mass increases; therefore it is not surpris-

ing that heavier compounds have a higher probability of

being cytotoxic. The polar surface area and the number

of hydrogen bond donors and acceptors also show how

cytotoxicity is dependent on the lipophilicity of the

compounds.

The number of rotatable bonds also has a positive

correlation with cytotoxicity score. This is to be

expected, since a flexible molecule can adopt a greater

number of conformations, allowing it to bind to many

different sites, possibly leading to unwanted effects.

Typically molecules with a large number of rotatable

bonds also have a higher molecular weight - which is

again correlated with logP.

The observed correlation of lipophilicity and related

properties with cytotoxicity is not surprising as this has

also been observed in studied linking in vivo toxicity[28]

and bioavailability to physiochemical properties[29].

Conclusions
There is a wealth of data from cytotoxicity assays avail-

able both publicly and within pharmaceutical companies

that can be used to derive predictive models. Here, a

predictive Bayesian model has been derived from public

and in-house Pfizer data.

During the development of this model the need for

multiple-fold cross-validations has been reinforced, as

this gives the most accurate validation results. A method

for cut-off optimisation has also been shown to provide

an appropriate definition of cytotoxicity to build a suc-

cessfully predictive model. Prediction networks have

been used to make informed decisions on which data

sets should be included in the training set and have

identified the need for more detailed examinations of

what makes two data sets predictive of each other. The

prediction networks identified assay data that could be

used to derive predictive models. These assays were

combined into one training set that produced a

Figure 10 Correlation of Bayesian scores of a test set calculated from the IC50 and percent inhibition models. The test set consisted of

10% of the molecules from the percent inhibition cytotoxicity model training set and the IC50 cytotoxicity model training set. The Bayesian

scores are binned to get 16 bins. The pies represent the number of molecules within those bins with size proportional to the number of

molecules. Red segments represent the proportion of non-cytotoxic molecules and blue segments represent the proportion of cytotoxic

molecules. A similar plot (not shown) was obtained using all of the data in the training set.
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successful predictive cytotoxicity model with a ROC

score of 0.842 ± 0.002.

The data indicate that some assays are highly predictive

of each other. We speculated that this may because they

shared common assay conditions (cell line, species, incu-

bation time, detection method etc.). To investigate this

further, more networks were created in Cytoscape to

incorporate the assay conditions available. However no

clear relationship between these factors and cytotoxicity

could be demonstrated. This does not necessarily rule

out a relationship as there was little overlap in assay con-

ditions between data sets, and only a few compounds

have been tested in more than one assay. To study this

hypothesis further, the prediction network method

should be repeated with a dense matrix of assays span-

ning diverse experimental conditions and compounds

tested against all assays. This information can be repre-

sented in the network and any assay relationships

between predictive data sets will become apparent.

Although there are gaps in the understanding of

why the combination of assay data used to derive the

predictive cytotoxicity model works, the model is still

an extremely useful tool and also supports previous

evidence in the literature that toxicity is related to

lipophilicity. This model could be used to triage hits

from primary cell-based screens for cytotoxicity,

rather than running parallel cytotoxicity assays. The

model predictions track well with the in vitro safety/

toxicology assay we examined, but the applicability of

the model as a tool to help identify toxic molecules

early on in the drug discovery pipeline would be

increased if its output could be compared with more

in vitro assays of this type. Once more is understood

on what makes a data set predictive, this knowledge

can be utilised to derive a more accurate predictive

model. Modelling methods described in this paper are

not limited to cytotoxicity; they can also be used

when predicting other molecular properties, or com-

pound activities.

Experimental Methods
Data sets

Cytotoxicity assay data from publicly available sources

and Pfizer in-house screening data were used to train
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Figure 11 Validating the predictive cytotoxicity model with a set of 87 FDA-approved drug compounds. ROC plot generated from a

range of FDA approved drugs
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the Bayesian models. Four data sets were used covering

172,506 compounds from 89 assays and contain a mix-

ture of percent inhibition and IC50 data (Table 9).

Pfizer dataset collection and profiling

We conducted a gap analysis on the original dataset to

identify those protocols where a substantial proportion

of the assay experimental conditions was missing or

inconsistent, which was the case for some legacy proto-

cols. Examination of the full assay documents and direct

contact with the biologists involved allowed us to gener-

ate a list of 82 assays with comprehensive coverage of

the assay experimental parameters.

Assay endpoint detection methods were classified as

Fluorescence emission, Luminescence, RNA quantifi-

cation and Absorbance. The assay technologies

included dye binding, flow cytometry, formazan dye

formation, luciferase, PCR, and Resorufin dye forma-

tion. Data was used from a variety of species -

Human, Hamster, Mouse, Pig, Rat, and Monkey - and

a total of 34 different cell lines across all of the assays.

To standardize the data and improve confidence in the

model, the cell lines were re-classified according to

their tissue origin (blood, skin, colon, cervix, ovary,

lung, kidney, breast, foreskin, liver, aorta, brain, con-

nective tissue, muscle, and nerve). Incubation times

were standardised to a base unit of hours - our obser-

vations indicate that a wide range of incubation peri-

ods are used in cytotoxicity screens (2 hours to 145

hours) and they can vary within the same tissue type,

or assay technology.
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Figure 12 Distribution of cytotoxicity scores generated from Pfizer model (combined IC50 and Pct inhibition). A range of compounds

tested in an in vitro toxicity/safety assay. Actives (red), having IC50 < 50 μM, inactives (blue) with IC50 > 50 μM.

Table 9 Summary of the 4 data sets used to build Bayesian models to predict cytotoxicity

Data set Source Description No. of
assays

No. of
compounds

IC50 Percent
inhibition

Scripps PubChem, AID
364, 463, 464

T-Cell (Jurkat) proliferation data containing a mixture of percent
inhibition and IC50 measurements

3 60503 768 59735

NCGC PubChem, AID
426

T-Cell (Jurkat) proliferation data containing IC50 measurements 1 1277 1277 0

Pfizer percent
inhibition

Pfizer Percent inhibition data from a variety of different cytotoxicity
assays

33 83284 0 83284

Pfizer IC50 Pfizer IC50 data from a variety of different cytotoxicity assays 52 28492 28492 0
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In addition to assay profiling and classification we

analysed the percent inhibition and IC50 results for

each assay to determine whether these results could be

included in our models. Wherever we could not identify

the convention used to distinguish cytotoxic compounds

we decided to remove this data from further analysis.

The assays where we could not reliably differentiate

between true actives, artefacts and different naming con-

ventions were likewise excluded.

To allow the model to make appropriate comparisons,

data from the remaining HTS assays was examined to

ensure there was the expected normal distribution

around zero % inhibition. Assays were excluded from

further analysis where this was not the case. Assay

results where the endpoint value violated the standard

business rules (e.g. zero or null) were also excluded. Sci-

tegic Pipeline Pilot was used to develop an automated

data cleaning tools to perform the tasks described in

this section. In addition, using curve fit descriptors and

quality parameters, we generated Spotfire plots and

screen data confidence scores [30] which enable interac-

tive exploration and assessment of the data quality.

These tools were used to refine the IC50 data set to a

list of 52 assays where the data, curve fits and endpoints

were reliable and well understood.

Bayesian Learning and Bayesian score

Pipeline Pilot[31,32] was used to perform all calcula-

tions. During the period of research versions 6.5, 7.0

and 7.5 were used, but there are no differences in the

components used in these versions. Bayesian learning is

based on Bayes’ rule for conditional probability which

gives the probability of an event A occurring given that

event B has already occurred. In a cytotoxicity context,

this is the probability of a compound being toxic, given

that it contains a particular descriptor. For each descrip-

tor, D, the probability of a molecule being toxic given it

contains descriptor D is calculated as P(Active|;D) =

AD/(AD+ID), where AD is the number of active com-

pounds containing descriptor D and ID is the number of

inactive compounds containing descriptor D. These

probabilities become unreliable as the number of mole-

cules containing descriptor D becomes small. Therefore

a Laplacian modified model is derived which takes into

account the different sampling frequencies of different

features by adding samples with the same hit rate as

observed in the training set.

Laplacian modified model

If we assume most features have no relationship to

activity then we would expect P(active|;D) to be equal

to the overall activity rate, P(active) = A/(A+I). If we

sample a feature K additional times, where K = 1/P

(active), we would expect P(active)K of these samples to

be active. Therefore the Laplace corrected probability of

a compound being active given a certain descriptor D, P

(Active|;D), is equal to (AD+P(active)*K)/((AD+ID)+K).

As (AD+ID) approaches 0 the feature probability con-

verges towards P(active) which is expected if it is

assumed the feature has no relationship to activity. The

Bayesian score calculated for a compound of unknown

class is calculated by multiplying the probabilities for

each descriptor contained in the compound; this score

represents the likeliness of the compound being active.

Model Building

Percent inhibition cut-off optimisation

The following method was used to find the best percent

inhibition value to use as the definition for cytotoxicity

for the molecules in the Scripps data set. The best cut-

off is the value that gives the highest ROC score when

used to build a model. The ROC score is the area under

the curve of the ROC plot for the model. This method

was originally suggested by David Rogers [27]. A set of

121 models was built, each with a different percent inhi-

bition cut-off as the definition for toxicity. The cut-offs

ranged from -20% to 100% in 1% increments. The ROC

score was calculated for each of these models and was

plotted against the corresponding cut-off. The optimum

cut-off is defined as the cut-off that yields the highest

ROC score. As 5-fold cross-validation is used to test the

models, the same method is also used in the cut-off

optimisation. The set of 121 models is trained on 80%

of the data and the ROC scores are calculated by testing

on the remaining 20% of the data. This is repeated 5

times using a different 20% to test the model each time.

When the ROC score is calculated the cytotoxic com-

pounds are defined as those that were labelled as active

in the original data extracted from PubChem. These

labels were assigned based on the percent inhibition or

IC50 values if available for the molecules. This proce-

dure was repeated twice. Once for the FCFP_6 finger-

prints and once for the BCI fingerprints.

Prediction networks

A major challenge for machine learning methods is to

understand the applicability domain of models. For

example a model trained on a particular data set may

perform well when cross-validated, but fail at classifying

compounds from a different data set. This research aims

to determine which assay data can be used to predict

the outcome of other assays and to understand any rela-

tionship between such data sets. To do this we have cre-

ated prediction networks.

The available Pfizer data were split into two cate-

gories: IC50 and percent inhibition data. This is because

IC50 data are often obtained as confirmations of pre-

vious data and are therefore enriched in hit rate but

with lower chemical diversity of compounds (as was the

case with the Scripps data). The hit rate for the Pfizer

assays was artificially set to 20%, but the chemical
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diversity has probably been artificially lowered by routi-

nely removing compounds with undesirable chemical

functional groups and/or physical properties. The

NCGC and Scripps data were included as well as sepa-

rate screens. There are no distinct percent inhibition

measurements available for NCGC, therefore we took

the percent inhibition at 9.2 μM from the full curve

data as a surrogate.

The Pfizer percent inhibition data set contains data

from 33 assays, A Bayesian model was derived for each

assay, giving a total of 28 models (5 of the assays con-

tained only 1 molecule so a model could not be trained).

Each of these models was then tested in turn with data

from the remaining assays not used to train the model.

Each of the models was also tested on the Scripps per-

cent inhibition and NCGC percent inhibition data sets,

and the Scripps percent inhibition and NCGC models

were be tested with each of the Pfizer percent inhibition

models. A text delimited file was created containing a

column for training set, a column for test set and a col-

umn for the ROC score when a model trained with the

training set, is tested with the test set. This file was

imported into Cytoscape v.2.6.1[33] where the predic-

tion networks were created.

The same method was applied to the 52 assays in the

Pfizer IC50 data set. A total of 45 models were pro-

duced as 7 of the assays only contained 1 molecule. The

Scripps IC50 and NCGC data sets were also included.

For all models built, FCFP_6 fingerprints, AlogP, num-

ber of hydrogen bond donors, number of hydrogen

bond acceptors, number of rotational bonds and mole-

cular fractional polar surface area were used as descrip-

tors. Since for most of the assays it had not been

recorded what constitutes as a cytotoxic outcome the

top 20% compounds (top percent inhibition or top

pIC50) of each assay were classed as toxic. For the

Scripps and NCGC data sets the definitions for toxicity

described above were used.

Two prediction networks were built, one for the Pfizer

percent inhibition data set and one for the Pfizer IC50

data set. Assays are represented in the network as

nodes, and the nodes are connected with an edge if a

model trained with the screen at the source node is suc-

cessful in predicting the cytotoxicity of the screen at the

target node as defined by a ROC score greater than

0.60. The networks are arranged using a spring-

embedded layout. A spring-embedded layout positions

nodes to give an aesthetically appealing layout. This is

done by replacing the nodes with rings and each edge

with a spring. The nodes are placed in an initial layout

then are let go so the springs force the nodes to move

to a minimal energy layout.
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