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Abstract

Greater availability of leaf dark respiration (Rdark) data could facilitate breeding efforts

to raise crop yield and improve global carbon cycle modelling. However, the availabil-

ity of Rdark data is limited because it is cumbersome, time consuming, or destructive to

measure. We report a non‐destructive and high‐throughput method of estimating

Rdark from leaf hyperspectral reflectance data that was derived from leaf Rdark mea-

sured by a destructive high‐throughput oxygen consumption technique. We gener-

ated a large dataset of leaf Rdark for wheat (1380 samples) from 90 genotypes,

multiple growth stages, and growth conditions to generate models for Rdark. Leaf Rdark

(per unit leaf area, fresh mass, dry mass or nitrogen, N) varied 7‐ to 15‐fold among

individual plants, whereas traits known to scale with Rdark, leaf N, and leaf mass per

area (LMA) only varied twofold to fivefold. Our models predicted leaf Rdark, N, and

LMA with r2 values of 0.50–0.63, 0.91, and 0.75, respectively, and relative bias of

17–18% for Rdark and 7–12% for N and LMA. Our results suggest that hyperspectral

model prediction of wheat leaf Rdark is largely independent of leaf N and LMA. Poten-

tial drivers of hyperspectral signatures of Rdark are discussed.
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1 | INTRODUCTION

The world's population is projected to rise by approximately 30%,

reaching 9.7 billion in 2050 (United Nations Department of Economic

and Social Affairs Population Division, 2015). This increase will cause

demand for staple food crops to double (Cassman, 1999; Tilman,

Balzer, Hill, & Befort, 2011). Doubling crop productivity to match

future demand will be challenging (Tilman, Cassman, Matson, Naylor,

& Polasky, 2002), a challenge exacerbated by climate change (Gold-

smith, Gunjal, & Ndarishikanye, 2004; Intergovernmental Panel on Cli-

mate Change, 2013; Xiao & Ximing, 2011). Addressing these

challenges will require the simultaneous pursuit of a broad range of

options (Godfray et al., 2010) including increasing yield per unit of

land, and identification and use of germplasm with better resilience

to global climate change.

Theoretically, increasing radiation use efficiency (RUE, increase in

biomass per unit absorbed radiation) provides a novel way to increase

potential yield. RUE could be increased by improving photosynthesis

by (a) altering crop canopy architecture to alter the distribution of

radiation capture between leaves (Loomis & Williams, 1969); (b)

introducing a carbon concentrating C4 mechanism into C3 plants

(Furbank, von Caemmerer, Sheehy, & Edwards, 2009); and (c) re‐

engineering Rubisco (Parry, Madgwick, Carvalho, & Andralojc,

2007). Another opportunity to increase RUE is to optimize mito-

chondrial respiration in the dark (Rdark). In all plants, energy from

Rdark drives biosynthesis, cellular maintenance, and active transport.

The respiratory pathway also provides intermediates that serves as

substrates for the synthesis of adenosine triphospahte (ATP), amino

acids, nucleic acids, fatty acids, and many secondary metabolites.

The efficiency of ATP synthesis per unit of CO2 released or O2 con-

sumed through the respiratory process varies, depending on engage-

ment of phosphorylating and nonphosphorylating pathways of

mitochondrial electron transport (Millar, Whelan, Soole, & Day,

2011; Vanlerberghe & McIntosh, 1997). Variations in the rate and

efficiency of leaf Rdark thus have the potential to influence biomass

accumulation and yields of crops (Hauben et al., 2009; Wilson &

Jones, 1982). Consequently, large datasets on leaf Rdark have poten-

tial application in various aspects of the crop production system,

including screening of germplasm in genetic resource collections

and in plant breeding; assessing the efficacy of agricultural manage-

ment programmes; and monitoring crop health. Of particular impor-

tance is the formation of comprehensive datasets that assess

genotype‐ and environment‐mediated variation in leaf Rdark under

controlled and field conditions.

Leaf respiration, defined as the nonphotorespiratory mitochondrial

CO2 evolution in the light (Rlight), is typically less than Rdark (Hurry

et al., 2005; Pärnik & Keerberg, 1995). Techniques for measuring Rlight,

including the Laisk (1977), Kok (1948), and mass spectrometry (Loreto,

Velikova, & Di Marco, 2001) approaches, are low throughput and

often challenging to correctly implement. Measuring Rdark is also slow

and cumbersome. To address the issue of low‐throughput methods to

measure leaf respiration, high‐throughput approaches have been

recently developed to estimate Rdark by measuring O2 consumption

(O'Leary et al., 2017; Scafaro et al., 2017; Sew et al., 2013). Sew

et al. (2013) employed a liquid‐phase oxygen‐sensitive fluorophore

technology, whereas Scafaro et al. (2017) and O'Leary et al. (2017)

used a faster, automated gas‐phase method; the latter system takes

only ~1–2 min per sample. Such high‐throughput measurements of

respiratory O2 uptake will be indicative of rates of CO2 efflux in leaves

where the primary respiratory substrate is sucrose and the latter is

fully oxidized to CO2 and H2O (Lambers, Chapin, & Pons, 2008). How-

ever, whereas these approaches enable rapid screening of large num-

bers of samples, all require destructive sampling of leaves, limiting

their utility for ongoing monitoring of leaf Rdark at the landscape scale.

In the current study, we outline a rapid non‐destructive technique—

using reflectance spectra—to estimate Rdark.

Instruments can measure electromagnetic radiation reflected from

vegetation surfaces spanning the visible (400–700 nm), near‐infrared

(NIR, 700–1300 nm), and shortwave infrared (SWIR, 1400–3000 nm)

spectral regions. When light falls on a leaf, it can be absorbed,

reflected, or transmitted. Light absorption by leaves in the visible

region is driven by electron transitions in pigments (including chloro-

phyll, carotenoids, and anthocyanins). In the NIR–SWIR spectral region

of 700–2400 nm, in contrast, light absorption is driven by the bending

and stretching of covalent bonds between hydrogen atoms and atoms

of carbon, oxygen, and nitrogen in water and other chemicals (Curran,

1989). Radiation reflected from leaves can provide information about

the internal composition of the leaf (Blackburn, 2007; Jacquemoud

et al., 1996; Jacquemoud & Baret, 1990). Reflectance over a broad

range of narrow and contiguous wavelength bands, termed

hyperspectral reflectance, is increasingly used to predict plant or crop

traits including water status (Gutierrez, Reynolds, & Klatt, 2010; Sims

& Gamon, 2003); photosynthetic metabolism (Ainsworth, Serbin,

Skoneczka, & Townsend, 2014; Barnes et al., 2017; Serbin, Dillaway,

Kruger, & Townsend, 2012; Silva‐Pérez et al., 2018); leaf mass per

area (LMA; (Asner et al., 2011; Asner & Martin, 2008; Ecarnot,

Compan, & Roumet, 2013); concentrations or contents of nitrogen

(N), lignin, and photosynthetic pigments (Martin & Aber, 1997;

Yendrek et al., 2017); and grain yield (Montesinos‐López,

Montesinos‐López, Crossa, et al., 2017; Montesinos‐López,

Montesinos‐López, Cuevas, et al., 2017; Weber et al., 2012).

Respiration rates at a standard temperature (25°C, Rdark
25),

whether expressed on a mass or area basis, are highly variable. Varia-

tion in Rdark
25 among genotypes and environments is predictable from

other leaf traits such as N concentration or content, LMA, and the car-

boxylation capacity of Rubisco at 25°C (Vc,max
25; Atkin et al., 2015;

Reich, Walters, Ellsworth, et al., 1998; Reich, Walters, Tjoelker,

Vanderklein, & Buschena, 1998; Ryan, 1991). Both N and LMA can

be predicted from hyperspectral reflectance data (Ecarnot et al.,

2013; Serbin et al., 2012; Silva‐Pérez et al., 2018). It is also possible

to predict Vc,max
25, but with lower accuracy and precision (Ainsworth

et al., 2014; Dechant, Cuntz, Vohland, Schulz, & Doktor, 2017;

Doughty, Asner, & Martin, 2011; Serbin et al., 2012; Silva‐Pérez

et al., 2018). The poorer ability to predict Vc,max
25 from leaf reflectance

compared with leaf N could be due to the absence of a direct absorp-

tion signal related to Vc,max
25, arising instead from a secondary

2134 COAST ET AL.



correlation with leaf N (Dechant et al., 2017). Both photosynthesis and

respiration are processes requiring numerous proteins (Evans, 1989a;

Evans & Terashima, 1988; Field & Mooney, 1986), which pose ATP

demands associated with protein synthesis and repair (Hachiya,

Terashima, & Noguchi, 2007) and functional linkages between photo-

synthetic and respiratory metabolism (Noguchi & Yoshida, 2008).

Although Rdark scales with N, LMA, and Vc,max, and these three param-

eters can each be predicted with various levels of confidence from

hyperspectral reflectance, we are aware of only one publication

predicting Rdark directly from reflectance spectra (see Doughty et al.,

2011). There might be limitations in prediction of a flux such as Rdark

from reflectance spectra compared with prediction of capacity of other

physiological processes, for example, Vc,max. This might be because

Rdark is a physiological process driven by enzymatic reactions that

dynamically adjust to short‐term (seconds to minutes) and long‐term

(hours to days) environmental changes, whereas the proteins under-

pinning metabolic capacity can be more stable over time. In addition,

respiratory enzymes may not exhibit distinct reflectance signatures

that would enable direct quantification as such. Estimation of leaf Rdark

may arise indirectly through secondary correlations with other leaf

traits, for example, leaf N and LMA, as already discussed for Vc,max
25

(Dechant et al., 2017). Here, we investigate the possibility that varia-

tions in Rdark can be well predicted from hyperspectral signatures.

Appropriate analytical tools for assessing plant traits using

hyperspectral reflectance data include partial least square regression

(PLSR; Wold, Sjöström, & Eriksson, 2001), which combines features

from principal component analysis and multiple regression, and

machine learning algorithms such as support vector machine regres-

sion (SVMR; Vapnik, 1995). One of the most commonly used analytical

tools in estimating plant traits from hyperspectral reflectance of leaves

is PLSR. Doughty et al. (2011) used PLSR to predict Rdark from leaf

hyperspectral reflectance collected from 149 species (r2 = 0.48,

RMSE = −0.52 μmol m−2 s−1; and for canopy Rdark r2 = 0.16,

RMSE = 0.58 μmol m−2 s−1). This encouraged us to see if the method

could be applied to wheat leaves.

To test the suitability of estimating leaf Rdark from hyperspectral

reflectance data, three experiments were conducted during which

we characterized leaf Rdark, hyperspectral reflectance, biochemical (N

content) and morphological (LMA) traits under different environmental

conditions and plant growth stages, using a diverse set of wheat

(Triticum aestivum L.) genotypes. We report on leaf respiration rates

and associated leaf traits of 1380 samples from 90 genotypes. The

varied conditions, growth stages, and genotypes were used to gener-

ate a wide range of Rdark values to robustly test different modelling

approaches. We used two independent analytical tools (PLSR and

SVMR) to investigate if:

1. Leaf Rdark can be well predicted from leaf hyperspectral reflectance

data.

2. Model predictions of leaf Rdark from spectral reflectance data can

be improved by using an alternative to PLSR, that is, SVMR.

Our study also provided an opportunity to assess the extent of geno-

typic and environment‐driven variation in leaf respiration rates of

commercial elite wheat lines, and the extent to which other traits such

as leaf N and LMA are predictors of wheat leaf Rdark values.

2 | MATERIALS AND METHODS

Three independent experiments were conducted to explore associa-

tions (or the absence thereof) between leaf reflectance spectra and

leaf Rdark in wheat. Two of the experiments (Experiments 1 and 2)

were undertaken in climate‐controlled glasshouses at the Australian

National University (ANU), Canberra, whereas a third (Experiment 3)

was conducted in a field‐based polytunnel at CSIRO Ginninderra

Experiment Station. Leaves of a diverse set of wheat genotypes

(between 3 and 70 per experiment, see Table S1 for list of genotypes)

were examined at different growth stages and under varied environ-

mental conditions (Table 1). The varied growth stages and environ-

mental conditions were used to generate a wide range of Rdark

values and to ensure a robust test of our approach of using leaf reflec-

tance spectra to predict leaf Rdark.

TABLE 1 Materials and growth environment for the different experiments

Experiment Location Genotypesa Zadoks growth scaleb Leaf sampled Day/night temperature (°C)

Light (PPFD, μmol m−2 s−1),

photoperiod

1 ANUc 3 13 Third true leaf (Leaf‐3) 21/16, 28/23, or 35/30 600–800 or 150–200, 12 hr

2 ANUc 70 13 and 61–69 Leaf‐3, leaf subtending the

flag leaf (Flag‐1) and flag

leaf

25/20 400–1200, 10–12 hr day−1

3 CSIROd 24 23–27 and 55–71 Leaf subtending Flag‐1,

Flag‐1, and flag leaf

27/12 ‐‐‐, 12–14 hr day−1

Note. PPFD: photosynthetic photon flux density; ‐‐‐: data not available.

aA list is provided in Table S1.

bZadoks et al. (1974).

cGlasshouse at Controlled Environment Facilities, Research School of Biology, Australian National University, Canberra, Australia.

dPolytunnel at CSIRO Ginninderra Field Station, North Canberra, Australia.
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2.1 | Glasshouse Experiment 1—Exploring

environment‐induced variation in leaf respiration

Experiment 1 was carried out at the ANU Controlled Environment

Facilities, Canberra, Australia. Three wheat genotypes, “Calingiri,”

“Halberd,” and “Janz,” were selected to represent a wide range of

average rates of Rdark; an earlier study screening 138 lines (grown in

controlled environment cabinets) showed twofold genotypic variation

in Rdark among the wheat lines, with Calingiri, Halberd, and Janz being

at high (0.79 μmol O2 m−2 s−1), mid (0.50 μmol O2 m−2 s−1), and low

(0.35 μmol O2 m−2 s−1) range of Rdark values, respectively (Scafaro

et al., 2017). Seeds were germinated on moist filter papers on March

9, 2016, with >95% germination achieved within 2 days. Five days

after germination (DAG; on March 16, 2016), seeds were transferred

into 2 L plastic pots (one seedling per pot) filled with Martins mix

(Martins Fertilizers Ltd, Yass, NSW Australia). The potting mix was

treated at 63°C for 1 hr prior to filling pots. The mix was enriched with

Osmocote® OSEX34 EXACT slow‐release fertilizer (Scotts Australia,

Bella Vista, NSW, Australia). The base of the plastic pots was perfo-

rated in several places to ensure proper drainage upon watering. Seed-

lings were watered twice daily, in the morning and late afternoon, to

avoid water deficit stress. The glasshouse was maintained at

12/12 hr day/night temperature of 28/23°C and ambient light condi-

tion. One‐week‐old seedlings were transferred to different treatments

as per the experimental design described below.

The experimental design was a split‐split plot with temperature,

light, and genotype, respectively as main, sub, and sub‐sub plots, rep-

licated six times. There were three growth temperatures (12/

12 hr day/night conditions of 21/16, 28/23, and 35/30°C), two light

intensities (photosynthetic photon flux density of 600–800 μmol m−2

s−1 [high light] and 150–200 μmol m−2 s−1 [low light, that is, 25% of

high light]), and three genotypes (Calingiri, Halberd, and Janz). The

temperature regimes were maintained by automated heating and

cooling systems. Changes in temperature occurred at 0700/1900 hr.

The prevailing ambient light was taken as high light and to achieve

low light a green mesh was placed over bespoke cages within which

plants were kept (see Figure S1). This mesh and cage arrangement

resulted in a 75% reduction of ambient light reaching the plants. Pho-

toperiod during that time of the year was ~12 hr day−1. Plants were

kept under these conditions for 3 weeks, at the end of which plants

were approximately at growth stage Z13 (seedling growth; Zadoks,

Chang, & Konzak, 1974). The most recently expanded leaf (the third

true leaf and henceforth designated as Leaf‐3) was measured at 35

and 36 DAG; the first three replicates at 35 DAG and the rest at 36

DAG. We used 108 plants/leaf samples for Experiment 1.

2.2 | Glasshouse Experiment 2—Variation in leaf

respiration among 70 genotypes

Experiment 2 was conducted in the same glasshouse facility as Exper-

iment 1. Seeds of 70 wheat genotypes (see Table S1 for list of geno-

types), a subset of the 138 genotypes used recently to validate a

technique for high‐throughput measurement of Rdark (Scafaro et al.,

2017), were used. The seeds were germinated and transferred into

2 L plastic pots filled with Martins mix as in Experiment 1. Seedlings

were transferred on June 9, 2016 (six DAG). Plant nutrition and

watering were as described for Experiment 1. The glasshouse was

maintained for three consecutive months at 12/12 hr day/night tem-

perature of 25/20°C with temperature changes at 0700/1900 hr.

Light measured as photosynthetic photon flux density at plant height

varied between 400 and 1200 μmol m−2 s−1 and photoperiod during

this experiment was 10–12 hr day−1.

The experimental design was a randomized complete block design

with four replicates. Due to space limitations, the four replicates were

split equally between two adjoining rooms in a glasshouse. Each repli-

cate, consisting of 70 genotypes, was placed on a bench in a glass-

house (n = 280 plants). Each glasshouse room had a pair of benches.

Leaf measurements were taken first at growth stage Z13 (seedling

growth; 24–27 DAG) from Leaf‐3 and then at growth stages Z61–69

(anthesis) from the leaf subtending the flag leaf (henceforth desig-

nated as Flag‐1; 67–70 DAG) and the flag leaf (81–85 DAG). For each

growth stage, measurements and sample collection were completed

within 4–5 days. Each of the four replicates required at least 1 day

for data collection. Total leaf samples used for Experiment 2 were 840.

2.3 | Polytunnel Experiment 3—Variation in leaf

respiration among 24 wheat genotypes

Seeds of 24 wheat genotypes (selected based on similarities in phenol-

ogy—height and days to anthesis, but contrasting for Vc,max and Rdark)

were used for this experiment. Seeds were sown at a rate of 250

grains m−2 on September 16, 2016, in field plots, under a polytunnel,

at CSIRO Ginninderra Experiment Station, Australian Capital Territory

(35° 12′S, 149° 06′E; 600 m asl). The soil was a yellow chromosol

(Isbell, 2002). Mean daily maximum/minimum air temperature

obtained from a weather station installed in a neighbouring polytunnel

from November to December was 27/12°C. A 30‐year (1981–2010)

average over the same period was 25/11°C, and from September to

December was 22/8°C (data from the closest Bureau of Meteorology

weather station). The photoperiod during the experiment was

12–14 hr day−1. Plants were kept well‐watered by drip irrigation and

fertilized optimally. The experiment was laid out as a row × column

design with 12 rows and 6 columns, with each block containing two

columns. As such, there were 72 plots, each block of 24 genotypes

replicated three times. Each plot consisted of 10 equally spaced 1 m

rows covering an area of 2.5 m2.

Measurements and sampling were at growth stages Z23–27 (tiller-

ing) and Z55–71 (inflorescence emergence, anthesis through milk

development). At both growth stages, three sampling events were car-

ried out on consecutive days. At growth stages Z23–27 (tillering), sam-

pling and measurements were on the last fully expanded leaf, with one

leaf measured from each plot each day for 3 days. The leaf sampled

varied between Leaf‐3 and the sixth true leaf (Leaf‐6), when counting

from the base of the plant. At growth stages Z55–71 (inflorescence
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emergence, anthesis through milk development), the flag leaf and Flag‐

1 were sampled on the first and second day, respectively, whereas on

the third day, the leaf subtending Flag‐1 (designated as Flag‐2) was

sampled. In total, 432 leaf samples were collected for Experiment 3.

2.4 | Measured traits—All experiments

Reflectance spectra were captured from the adaxial surface of leaves

using an ASD FieldSpec® 4 Full‐Range spectroradiometer (Analytical

Spectral Devices, Inc., Boulder, CO, USA) with spectral range 350–

2500 nm and a rapid data collection time of 0.1 s per spectrum. Data

from the full spectral range (350–2500 nm) was used for analysis.

Spectral resolution of the device was 3, 10, and 10 nm (full width at

half maximum) at 700, 1400, and 2100 nm, respectively. Sampling

intervals were 1.4 and 2 nm for the spectral regions 350–1000 and

1000–2500 nm, respectively. The device was fitted with an ASD fibre

optic cable and leaf clip. A mask attached to the leaf clip reduced the

width of the aperture through which leaf reflectance was recorded to

11.5 mm, enabling easier measurement of leaf widths down to 12 mm

(Silva‐Pérez et al., 2018). Leaf spectral reflectance was captured

between 1000 and 1400 hr from the adaxial surface and close to

the midpoint of the leaf. Each leaf was measured at one position, tak-

ing less than 20 s. An internal light source was used to illuminate a

white reference panel for calibration or a leaf placed in front of a black

panel during measurement. After measuring the reflectance spectrum,

the leaf was immediately detached near the ligule for subsequent

measurement of Rdark. Samples were temporarily stored in zip lock

bags with moist tissue paper or cotton balls and placed in Styrofoam

boxes partly filled with ice blocks/packs for transfer from

glasshouse/field to the laboratory. Rdark values were determined

within 24 hr of obtaining spectral reflectance values. Leaf sections of

~4 cm2, including the exact spot where the reflectance measurement

was taken from, were dissected from the whole leaf and used for

determination of other traits.

The dissected leaf section was weighed and exact area determined.

The ~4 cm2 leaf sections were placed in an automated Q2 O2‐sensor

(Astec Global, Maarssen, The Netherlands) to determine O2 consump-

tion rate following the method of Scafaro et al. (2017). Briefly, freshly

dissected leaf tissues were placed in 2 ml tubes and hermetically

sealed with specialized caps (Astec Global). The top surfaces of caps

contained a fluorescent metal organic dye, sensitive to O2 quenching.

The tubes were loaded onto racks, which individually accommodated

48 tubes, and racks placed on the Q2 O2‐sensor. Each rack was loaded

with two tubes filled with ambient air (designated 100% O2) and N2

(designated as 0% O2), for calibration of the Q2 O2‐sensor before

measurement was made. An automated robotic arm with fibre optic

fluorescence detection capability scanned the rows of tubes enabling

the quantification of O2 dependent decay in fluorescence signal. The

percent O2 relative to the air calibration tube was converted to abso-

lute values of Rdark in moles of O2 s−1. The Q2 O2‐sensor was set at

25°C and measurements taken at a frequency of 4 min over a 2 hr

period. However, values from the first 30 min were disregarded, as

they tend to be unstable—respiratory activity rapidly increased and

decreased during this period (Scafaro et al., 2017).

All leaf samples used for determination of Rdark were oven dried at

70°C for 48 hr (Experiments 1 and 2) or 60°C for 72 hr (Experiment

3), and then, LMA was determined. The same samples were then used

to determine leaf N content (%), by combustion using a Carlo‐Erba ele-

mental analyser (NA1500, Thermo Fisher Scientific, Milan, Italy). Area,

fresh mass, dry mass, and N content (per gram of leaf dry mass, Nmass,

or per squaremetre of leaf area,Narea) of the leaf section used for deter-

mination of Rdark were used to calculate Rdark per (a) square metre of

leaf area (Rdark_LA, μmol O2 mLA
−2 s−1); (b) gram of leaf fresh mass

(Rdark_FM, nmol O2 gFM
−1 s−1); (c) gram of leaf dry mass (Rdark_DM, nmol

O2 gDM
−1 s−1); and (d) gram of leaf Nmass (Rdark_N, nmol O2 gN

−1 s−1).

2.5 | Model development for prediction of leaf traits

from reflectance spectra

Different regression techniques, including PLSR and SVMR, have been

used to quantify relationships between spectral data and leaf/canopy

traits. But only PLSR has been used to predict leaf/canopy Rdark of 149

species (for prediction of leaf Rdark r2 = 0.48, RMSE = −0.52 μmol·m
−2·s−1; and for canopy Rdark r2 = 0.16, RMSE = 0.58 μmol·m−2·s−1;

Doughty et al., 2011), although not including wheat. The SVMR is con-

sidered a powerful regression technique (Thissen, Pepers, Üstün,

Melssen, & Buydens, 2004), in terms of model performance and pre-

diction accuracy. Therefore, we independently tested the different

models for leaf traits using these two regression techniques.

Prior to data analysis, a multiplicative correction module (ASD

Spectral Analysis and Management System [SAMS®] version 3.2)

was applied to the reflectance data at 1000 and 1800 nm to correct

for “jumps” observed in apparent reflectance at the intersections

between different detector ranges. As did Silva‐Pérez et al. (2018),

reflectance spectra with values greater than 0.7 between 800 and

1000 nm were treated as an outlier and removed.

Variation in foliar traits (including Rdark) and biochemical composi-

tion based on leaf optical properties were modelled using PLSR and

SVMR. The PLSR technique could be performed with either the con-

tinuous full‐spectrum data (Asner & Martin, 2008) or a predetermined

spectral subset (Bolster, Martin, & Aber, 1996). We initially applied the

PLSR model building approach of Serbin et al. (2012) and Wold et al.

(2001) to 90% of the dataset (training dataset). This works by

extracting latent variables (i.e. underlying factors or indices produced

by the observable variables that account for most of the variation in

the response) from sampled factors and responses. This step is analo-

gous but not identical to principal component regression. Then, the

extracted factors are applied in a set of regression equations and used

to construct predictions of the responses. PLSR models can suffer

from overfitting if the number of model components selected is sub-

optimal. To avoid overfitting, we selected the optimal number of

model components for the PLSR model by minimizing the root mean

squared error of prediction. The root mean squared error of prediction

was calculated by k‐fold cross validation. The optimal PLSR model was
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subsequently applied to estimate measured traits of the remaining

10% of dataset (test dataset). This was done independently for each

trait of interest.

Like our PLSR model, we initially built the SVMR model on 90% of

the dataset (training dataset) then subsequently used the built model

to estimate measured traits of the remaining 10% (test dataset). To

develop our SVMR models, we used the epsilon‐regression form of

SVMR and followed the recommendation of Hsu, Chang, and Lin

(2003). We chose the Gaussian (radial basis function) kernel type for

our model. The radial basis function is a general purpose kernel used

when there is no prior knowledge about the data. Then, we combined

this with a k‐fold (k = 10) cross validation approach that optimized for

model cost parameter (C) and kernel parameter (γ). Cost and kernel

parameters resulting in the best model fit, that is, highest squared

Pearson correlation (r2) on the training dataset, were selected. This

was then used to calculate validation statistics for the test dataset

(the remaining 10% of dataset not used for model building).

PLSR and SVMR analyses were carried out in the R statistical envi-

ronment (R Core Team, 2018) using the packages “pls” (Mevik,

Wehrens, & Liland, 2016) and “e1071” (Meyer, Dimitriadou, Hornik,

Weingessel, & Leisch, 2017), respectively. Model predictions for

90/10 training/test datasets were compared for PLSR and SVMR

and for all three experiments combined based on their r2, RMSE, and

relative bias (%). In addition, we undertook model validation by

predicting Rdark of individual or combined experiments using

hyperspectral‐based models built on individual experiments or various

combinations of experiments.

2.6 | Statistical analysis

Leaf Rdark, N, and LMA were subjected to analysis of variance after

tests for normality (Bartlett's test and visual assessment of Q–Q plot)

and homogeneity of variances (Shapiro–Wilk's test and plots of resid-

uals against fitted values). Outliers were identified and removed from

the dataset using theTukey's method; that is, values above and below

the 1.5*IQR (the interquartile range) were removed. Tukey's method

was chosen over the standard deviation method because it is indepen-

dent of the distribution of the data and is resistant to extreme values.

3 | RESULTS

3.1 | Leaf reflectance spectral properties

Leaf reflectance spectra varied substantially within and between

experiments (Figures 1 and S2). For example, reflectance at 400 nm

ranged between 0.04–0.07 (Experiment 1), 0.03–0.11 (Experiment

2), and 0.03–0.17 (Experiment 3, Figure S2). Across all experiments,

the largest range in leaf reflectance was in the NIR region. However,

the coefficient of variation (CV) of reflectance for this region was

the least (23%) compared with 33% for the SWIR and 32% for the vis-

ible regions. The wavelengths with the largest and smallest range of

reflectance were 1926 (79%) and 1076 nm (21%), respectively.

3.2 | Variation in leaf traits

Leaf Rdark_LA, Rdark_FM, and Rdark_DM across experiments were on aver-

age 0.73 μmol O2 mLA
−2 s−1, 4.05 nmol O2 gFM

−1 s−1, and 21.1 nmol

O2 gDM
−1 s−1, respectively, showing a sevenfold to ninefold variation

(Table 2). Leaf Rdark_N averaged 449 nmol O2 gN
−1 s−1 spanning a

15‐fold range of values (87–1260 nmol O2 gN
−1 s−1). The large range

in Rdark_N compared with other traits was also characterized by

~25% higher CV than Rdark_LA, Rdark_FM, or Rdark_DM (CV = 0.37 for

Rdark_N vs. 0.28–0.29 for others; Table 2). Leaf Nmass averaged

49.5 mg g−1 (CV = 0.28), Narea 0.87 g m−2 (CV = 0.21), and LMA

31.5 g m−2 (CV = 0.29) with twofold to fivefold variation (Table 2).

Table 2 provides a summary of leaf traits for each and all experiments

combined. Treatment or leaf level summaries and analysis of variance

results for Experiments 1, 2, and 3 are provided in Tables S2, S3, and

S4, respectively. Broadly, rates of Rdark were affected by growth irradi-

ance, with markedly lower rates in plants grown under low light com-

pared with those under high light, with inconsistent effects of growth

temperature Rdark (measured at 25°C; Table S2). Growth stage was

also found to have strong effects on Rdark, albeit with the differences

FIGURE 1 Mean (±standard deviation), minimum and maximum leaf reflectance (a) of wheat and spectral coefficients of variation (b) for three

experiments (Experiments 1, 2, and 3) combined
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between vegetative and reproductive varying depending on the units

that Rdark was expressed (Tables S3 and S4).

3.3 | Correlations of leaf respiration with other leaf

traits

Correlations of Rdark with leaf N and LMA were poor (r between −0.08

and 0.38), irrespective of the units that rates were expressed in

(Figure 2 and Table 3), with the exception being between Rdark_N and

leaf Nmass (r = −0.59). See Figure S3 for more detailed results of indi-

vidual experiments. The signs of the correlations of Rdark with leaf

Nmass and LMA differed, with Rdark having a negative association with

leaf Nmass, except for Rdark_DM, whereas Rdark had a positive associa-

tion with LMA, except for Rdark_DM. Leaf Nmass, Narea, and LMA corre-

lated significantly (P < 0.001) with one another albeit poorly (r = 0.12–

0.49; Figure 3, Table 3). Also, see Figure S4 for individual experiments.

3.4 | Predictions of leaf respiration and other traits

based on a subset of pooled experimental data (10%

test dataset)

We validated our models using a test dataset that consisted of 10% of

our pooled experimental data, which was not used in building the

models. Across experiments, predictions of leaf Rdark varied per unit

leaf area, DM and N (r2 = 0.50–0.63 for PLSR, Figure 4 and

r2 = 0.53–0.64 for SVMR, Table 4). Values of r2 were generally highest

for Rdark per leaf N and least when expressed per gram of leaf dry mass

(Table 4). Relative bias were between 16% and 18% (Table 4). Model

predictions of leaf Nmass, Narea, and LMA achieved r2 of 0.91, 0.60,

and 0.75, respectively, with PLSR (Figure 5). For SVMR, predictions

of Nmass, Narea, and LMA had r2 of 0.90, 0.79, and 0.72, respectively.

The corresponding relative bias were 7–12% for PLSR and 8–11%

for SVMR.

3.5 | Comparison of PLSR and SVMR

Performance of the PLSR model was comparable with that using

SVMR, with similar r2 and RMSE, and differences in relative bias under

2% (Table 4). A similar result (i.e. no clear indication that SVMR

outperformed PLSR) was obtained using a multimethod ensemble

developed by Feilhauer, Asner, and Martin (2015) and tested on either

the continuous full spectrum data or a spectral subset that was

selected based on weightings (Table S5; also see Text S1 for our

attempt to reduce model complexity and improve prediction using

the multimethod ensemble of Feilhauer et al., 2015). The presentation

of further results will therefore be limited to those from PLSR models

using the full spectral range.

3.6 | Cross‐predictions of leaf respiration and other

traits of experimental data

PLSR models built on one experiment were poor at predicting Rdark of

a different experiment (Figures 6 and S5). The best outcome was

predicting Rdark_LA for Experiment 1 using a model developed from

Experiment 2 (r2 = 0.33). Similarly, models built on single glasshouse

experiments were poor at predicting that of the field experiment and

vice versa. The best r2 for this method was 0.21, for a model built from

Experiment 3 predicting Rdark_DM for glasshouse Experiment 2. By

contrast, predictions of Rdark based on models built on a combination

of Experiments 1 and 2 or all three experiments were better than or

similar to models built on one experiment (Figures 6 and S5). For

example, a model developed on 90% of data comprising all three

experiments predicted (i.e. was validated on) Rdark_DM of the remaining

10% of data for each of Experiments 1, 2, and 3 with r2 of 0.20, 0.66,

and 0.61, respectively. This compares to r2 of 0.04, 0.61, and 0.45

when models were built with 90% of data solely from same experi-

ment and validated on the remaining 10%. Similar results were

obtained with Narea (Figures 7 and S6).

TABLE 2 Variation in leaf dark respiration (Rdark, per square metre of leaf area [LA], per gram of fresh mass [FM], dry mass [DM], or leaf nitrogen

[N]), nitrogen (per gram of DM, Nmass, or per square metre of LA, Narea), and leaf mass per area (LMA) of wheat genotypes

Experiment 1 Experiment 2 Experiment 3
All experiments

Trait Range Mean ± SD Range Mean ± SD Range Mean ± SD Mean (CV)

Leaf Rdark per unit

LA (μmol O2 mLA
−2 s−1) 0.18–1.04 0.50 ± 0.18 0.28–1.27 0.72 ± 0.18 0.26–1.27 0.83 ± 0.21 0.73 (0.28)

FM (nmol O2 gFM
−1 s−1) 0.82–5.24 2.62 ± 0.88 1.66–7.33 4.10 ± 1.07 1.19–7.25 4.30 ± 1.12 4.05 (0.29)

DM (nmol O2 gDM
−1 s−1) 5.26–32.05 17.96 ± 4.61 7.66–37.38 22.37 ± 6.09 5.17–35.40 19.22 ± 5.67 21.05 (0.29)

N (nmol O2 gN
−1 s−1) 86.6–540.4 293.7 ± 86.4 149.4–675.6 403.7 ± 85.2 144.0–1,260.5 599.5 ± 226.4 448.5 (0.37)

Other leaf traits

Nmass (mg g−1) 53.8–71.3 61.8 ± 3.5 33.6–77.1 55.8 ± 10.2 17.3–64.6 34.1 ± 7.8 49.5 (0.28)

Narea (g m−2) 0.50–1.41 0.86 ± 0.20 0.48–1.44 0.94 ± 0.17 0.32–1.44 0.74 ± 0.23 0.87 (0.21)

LMA (g m−2) 16.9–41.7 27.0 ± 6.2 17.2–57.8 33.0 ± 7.8 14.2–59.0 29.7 ± 11.6 31.5 (0.29)

Note. CV: coefficient of variation; SD: standard deviation; n = 105–107, 815–840, and 398–423 for Experiments 1, 2, and 3, respectively.
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4 | DISCUSSION

Our study has produced a large dataset of wheat leaf Rdark rates

(1380 samples), obtained from 90 genotypes, multiple growth stages

and grown under varying environmental conditions. We show that

leaf Rdark can be predicted from reflectance spectra with model r2

values of 0.50–0.63 and relative bias of 17–18%. PLSR model

predictions of leaf Rdark from spectral reflectance data were as good

as SVMR. Models predicting Rdark from leaf reflectance spectra gener-

ally performed better when trained on more diverse data, such as

genotype, growth stage, and growing conditions. Our ability to pre-

dict Rdark from reflectance spectra could arise from (a) indirect associ-

ation with other traits (e.g. Narea, Nmass, and LMA); (b) links with

spectral signatures of key photosynthetic components such as Vc,max

and/or Jmax whose variations are coupled with variations in Rdark;

and (c) spectral absorption features by respiratory substrates or com-

ponents in the respiratory system. These possibilities are discussed in

detail in Section 4.2.

4.1 | Variation in wheat leaf respiration and other

leaf traits

Wheat leaf Rdark varied enormously, irrespective of how it was

expressed. The sevenfold variation in wheat leaf Rdark_LA reported here

is higher than the modest twofold reported by Scafaro et al. (2017) for

wheat and by O'Leary et al. (2017) for Arabidopsis (Arabidopsis

thaliana L.). It is comparable with the tenfold variation for 899 species

covering plant functional types from the Arctic to the tropics (Atkin

et al., 2015). Variations reported here for wheat leaf N and LMA were

in line with other reports for wheat (Ecarnot et al., 2013; Martin et al.,

2018), other crops (Jullien, Allirand, Mathieu, Andrieu, & Ney, 2009),

and within natural ecosystems (Asner et al., 2014; Wright et al.,

2004). These variations were caused by genotypic, growth, and envi-

ronmental effects. For instance, the plot of leaf Rdark_DM versus Narea

(Figure 2c) showed distinct clusters of the vegetative and reproductive

stages of both Experiments 2 and 3. Also, the plot of Rdark_LA versus

Narea (Figure 2a) could be distinguished by Experiment, with higher

Rdark_LA per leaf Narea for Experiment 2 compared with Experiment 3.

The higher leaf Rdark per leaf Narea during growth stages Z13/Z23–27

(i.e. seedling growth/tillering) of Experiments 2 and 3 or of some geno-

types compared with others suggests greater relative allocation of leaf

N to metabolic processes than to structural properties (Evans, 1989a,

1989b; Harrison, Edwards, Farquhar, Nicotra, & Evans, 2009), higher

demand for respiratory products, and/or increase in ATP turnover

(Atkin & Tjoelker, 2003; O'Leary et al., 2017).

In natural ecosystems and even within species, individual plants

experiencing cold growth conditions can exhibit higher temperature‐

normalized rates of leaf Rdark than individuals of the same genotypes

growing in warmer habitats (Atkin, Scheurwater, & Pons, 2006;

Mooney, 1963; Oleksyn et al., 1998; Xiang, Reich, Sun, & Atkin,

2013). Cooler growth temperatures can induce increases in density

and ultrastructure of mitochondria (Armstrong, Logan, & Atkin, 2006;

Armstrong, Logan, O'Toole, Tobin, & Atkin, 2006; Miroslavov &

Kravkina, 1991) and increase capacity of individual mitochondria

(Armstrong, Logan, O'Toole, et al., 2006), both potentially contributing

to the variation in leaf Rdark. However, variations in leaf Rdark and other

leaf traits reported in this study were likely in response to a combina-

tion of factors, in addition to temperature. Other factors such as

growth irradiance and evaporative demand that differed among the

FIGURE 2 Relationships between Rdark_LA and (a) nitrogen content

per unit leaf area (Narea), (b) leaf dry mass per unit leaf area (LMA),

and (c) between Rdark_DM and nitrogen concentration per unit leaf dry

mass (Nmass). Pearson correlation coefficients (r) for data pooled from

Experiments 1, 2, and 3 are presented in the plots. For each of

Experiment 1 (red circles), Experiment 2 (blue triangles), and

Experiment 3 (purple squares), the respective r were −0.36, 0.36, and

0.40 for Rdark_LA versus Narea, −0.37, 0.33, and 0.33 for Rdark_LA versus

LMA, and −0.20, 0.63, and −0.10 for Rdark_DM versus Nmass
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experiments and play key roles in moderating leaf Rdark, N, and LMA

(Lusk, Reich, Montgomery, Ackerly, & Cavender‐Bares, 2008; Poorter,

Niinemets, Poorter, Wright, & Villar, 2009) may also have contributed.

4.2 | What underpins the ability to predict leaf

respiration from leaf reflectance?

Hyperspectral reflectance characteristics of leaves have been used to

predict LMA, leaf N, and photosynthetic traits. Extending this

approach to predict Rdark seemed plausible given that Rdark scales with

LMA (Wright et al., 2006), leaf N (Reich et al., 2008; Reich, Walters,

Ellsworth, et al., 1998; Ryan, 1991; Wright et al., 2004), and photosyn-

thesis (Bouma, De Visser, Van Leeuwen, De Kock, & Lambers, 1995;

O'Leary et al., 2017). Although the prediction of Rdark could in part

be related to N or LMA, in our study, clear and simple correlations

were not evident (Figure 2a,b). Predicting Rdark using multiple linear

regression against N and LMA only achieved r2 values up to 0.12

(Table S6) compared with 0.54 achieved with PLSR. Allocation of leaf

N to respiratory proteins, respiratory energy needed for protein turn-

over, and utilization of N in building thicker and denser leaves all link

Rdark to N and LMA. The weak relationship between Rdark, N, and

LMA when Rdark and N are expressed on an area basis is not uncom-

mon (Hirose & Werger, 1987; Reich, Walters, & Ellsworth, 1997;Reich,

Walters, Ellsworth, et al., 1998; Wright et al., 2004). Similar weak rela-

tionships have sometimes been observed between CO2 assimilation

rate and Narea (Reich & Walters, 1994). We also found weak relation-

ships between Rdark and Nmass, and between Rdark and LMA, which

contrasts with the general literature dominated by interspecific studies

(Reich, Walters, Ellsworth, et al., 1998; Wright et al., 2004). However,

reported relationships for intraspecific studies have been mixed (Byrd,

Sage, & Brown, 1992; Fan et al., 2017; Hirose & Werger, 1987). This

indicates a weak coupling of N, protein content, and leaf structure to

leaf Rdark within species such as wheat, which may be due to a range

of factors, including the extent to which the genotypes differed in

the degree of adenylate restriction (i.e. adenosine diphosphate (ADP)

concentrations and ADP/ATP ratios) of mitochondrial electron trans-

port (Hoefnagel & Wiskich, 1998).

Photosynthesis and Rdark are interrelated. The substrates for Rdark

required to power processes such as protein turnover and phloem

loading are provided by photosynthesis. Our ability to predict Rdark

might be an indirect reflection of photosynthesis. Considering that

the light saturated ambient rate of photosynthesis and the two major

determinants of photosynthetic performance—Vc,max and Jmax—can

also be predicted from leaf reflectance (Ainsworth et al., 2014; Barnes

et al., 2017; Dechant et al., 2017; Doughty et al., 2011; Heckmann,

TABLE 3 Pearson correlation coefficients matrix for leaf dark respiration (Rdark, per square metre of leaf area [LA], per gram of fresh mass [FM],

dry mass [DM], or leaf nitrogen [N]), nitrogen (per gram of DM, Nmass, or per square metre of LA, Narea), and leaf mass per area (LMA) of all three

experiments

Trait

Leaf Rdark per unit

Nmass

(mg g−1)

Narea

(g m−2)

LA (μmol

O2 mLA
−2 s−1)

FM (nmol O2

gFM
−1 s−1)

DM (nmol O2

gDM
−1 s−1)

N (nmol O2

gN
−1 s−1)

Rdark per unit LA

Rdark per unit FM 0.881***

Rdark per unit DM 0.529*** 0.451***

Rdark per unit N 0.684*** 0.587*** 0.457***

Nmass −0.290*** −0.270*** 0.377*** −0.592***

Narea 0.159*** 0.219*** 0.178*** −0.307*** 0.494***

LMA 0.268*** 0.347** −0.080** 0.111*** −0.230*** 0.118***

Note. Values are Pearson's p.

*P < 0.05. **P < 0.01. ***P < 0.001

FIGURE 3 Relationship between nitrogen content per unit leaf area

(Narea) and leaf dry mass per unit leaf area (LMA) for all three

experiments combined. Pearson correlation coefficients (r) for each of

Experiment 1 (red circles), Experiment 2 (blue triangles), and

Experiment 3 (purple squares) were 0.78, 0.22, and −0.19,

respectively. For all bivariate relationships between traits across all

experiments, see Table 3
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Schlüter, & Weber, 2017; Serbin et al., 2012; Silva‐Pérez et al., 2018;

Yendrek et al., 2017), one possibility is that variations in Rdark are

coupled to variations in Vc,max and/or Jmax and that the ability to pre-

dict Rdark from leaf reflectance is, in part, due to spectral signatures of

key photosynthetic components. Dechant et al. (2017) reported that

the prediction of Vc,max
25 from leaf reflectance is a secondary one,

driven primarily by the prediction of leaf N. However, because the

prediction of Rdark here for wheat using Narea, LMA, or their

combination was poor (for Rdark_LA, highest r
2 = 0.12) compared with

the PLSR model (see Table S6 for multiple regression results for

Rdark_LA), our success in predicting Rdark indicates that there is addi-

tional information contained within the reflectance spectra associated

with Rdark.

Spectral signatures associated with Rdark could be related to respi-

ratory substrates or components in the respiratory system. These

could include (a) the abundance of sugars, organic acids and

adenylates (ATP and ADP); (b) abundance of respiratory enzymes with

distinct spectral properties; or (c) aspects of mitochondrial mass or

lipid composition. Both leaf starch and sugar content are correlated

with Rdark (Noguchi, 2005; O'Leary et al., 2017; Peraudeau et al.,

2015), and they have both been estimated from hyperspectral reflec-

tance within the range reported in this study (Curran, 1989; Ramirez

et al., 2015). Cytochrome c oxidase (COX) a respiratory protein com-

plex in the mitochondrial respiratory chain also exhibits spectral char-

acteristics (Appaix et al., 2000; Mason, Nicholls, & Cooper, 2014).

Connections between O2 consumption, COX, and spectral absorbance

in vegetables have been shown (Makino, Ichimura, Kawagoe, & Oshita,

2007; Makino, Ichimura, Oshita, Kawagoe, & Yamanaka, 2010), but

Umbach, Lacey, and Richter (2009) argued against a direct functional

link between alternative oxidase (AOX, another respiratory protein)

and floral reflectance, which probably also applies to leaf O2 consump-

tion, AOX, and reflectance. Another possibility is that the recent dis-

covery of an association between mitochondrial functions and cell

wall properties in plants (Hu et al., 2016) may indirectly link surface

reflectance with respiratory processes. The reliability of our model

prediction of Rdark (r2 = 0.50–0.63) was considerably less than that

for N (r2 = 0.91), which probably represents the fact that Rdark is deter-

mined by a complex and varied array of components. Clearly, further

research is required to understand the mechanistic basis underpinning

leaf Rdark estimation from spectral reflectance signatures, possibly by

using mutants, sampling at different times of the day, or treatments

which alter photosynthetic capacity, levels of respiratory substrates

and mitochondrial proteins.

4.3 | Model cross‐prediction improved with data

from other experiments

Our models, whether built on the whole spectrum (350–2500 nm) or

a selected subset of wavelengths, gave good predictions of Rdark and

other leaf traits for subsets of data not used to build the models.

However, predictions of leaf traits for one experiment based on

models built on a different experiment were poor (Figures 6, 7, S5,

FIGURE 4 Validation of partial least square regression model

prediction for Rdark_LA (a), Rdark_FM (b), Rdark_DM (c), and Rdark_N (d)

using 10% of pooled data from Experiment 1 (red circles), Experiment

2, (blue triangles) and Experiment 3 (purple squares) that were not

used in developing the model
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and S6). Poor model performance across experiments is not uncom-

mon. Silva‐Pérez et al. (2018) reported that models derived from

field‐grown aspen leaves (Populus tremuloides Michx.; Serbin et al.,

2012) gave poor predictions when applied to wheat leaves. The pre-

dictive performance of multivariate regression models may be

increased by training models with more diverse data. For example,

r2 for Experiment 3 Rdark_LA PLSR model, which was trained on just

Experiment 3 data, was significantly lower than predictions of the

same data using a model trained with data from all three experiments

(Figure 6). Development of a system for adding novel data to an

existing large spectral library for retraining models could prove to

be a large cost‐saving measure for large scale breeding trials and eco-

system management projects. This approach, called spiking, has been

successfully applied in other fields such as soil biochemistry (Guer-

rero et al., 2014, 2016; Guerrero, Zornoza, Gómez, & Mataix‐

Beneyto, 2010). Further research is needed, however, to determine

the minimum data from a novel source required to achieve good

model predictions of traits.

4.4 | Machine learning approaches to improve model

performance

To test if model prediction of Rdark could be improved by using alter-

natives to PLSR, we applied SVMR and compared the results with

those from PLSR. Our comparison suggests model prediction was

not limited by the use of PLSR. In addition, an independent compari-

son of PLSR with SVMR and random forest regression (RFR; Breiman,

2001) using a different modelling approach reported by Feilhauer et al.

(2015), namely, a multimethod ensemble, which included PLSR, SVMR,

and RFR, still showed PLSR was as good as the alternatives (Table S5;

Text S1). Heckmann et al. (2017) carried out a similar comparison of

model performance across a wider range of algorithms for predicting

crop trait from leaf reflectance and preferred PLSR models because

it yielded the highest predictive power.

The ensemble of Feilhauer et al. (2015), which used a multiplica-

tive aggregation of variable importance values of three models

(PLSR, SVMR, and RFR) for identification and selection of spectral

bands of importance, led to the selection of 173–271 wavelengths.

Model building using the selected wavelengths resulted in further

improvements in model fits and prediction accuracy. Serbin et al.

(2012), using a different method combined with PLSR, also reported

consistently good model prediction and accuracy with fewer wave-

lengths. This indicated that a large fraction of the wavelengths did

not provide predictive power in estimating Rdark, which is not

surprising given that leaf reflectance spectra are highly collinear, as

can be seen from both observations and leaf radiative transfer

models such as PROSPECT (Jacquemoud & Baret, 1990). Focusing

on specific wavelengths has numerous implications for downstream

practise, including in scaling from leaf to vegetation canopy

scale and in designing simpler sensors at key wavelengths (Serbin

et al., 2012).

4.5 | Prediction of Rdark based on O2 consumption or

CO2 evolution

During leaf respiration, the flux of O2 consumption relative to CO2

evolution depends on the substrate being metabolized (1 for carbohy-

drate and >1 for lipids). Importantly, 20–80% of daily fixed carbon is

released back into the atmosphere by whole‐plant Rdark (Poorter,

Remkes, & Lambers, 1990), with leaves accounting for ~50% of

whole‐plant Rdark (Atkin, Scheurwater, & Pons, 2007). It is possible to

measure Rlight or Rdark as CO2 evolution in an open flow through gas

exchange system using an infrared gas analyser. Alternatively, if one

wishes to measure O2 consumption, it is necessary to use a closed

system to enable a sufficiently large change in O2 concentration to

be detected. The large difference in concentration between CO2 and

O2 in air generally preclude simultaneous measurements of both with-

out specialised instrumentation (Beckmann, Messinger, Badger,

TABLE 4 Summary of PLSR and SVMR model performance for prediction of leaf dark respiration (Rdark, expressed per square metre of leaf area

[LA], per gram of fresh mass [FM], per gram dry mass [DM], and per gram leaf nitrogen [N]) and other target traits, including leaf nitrogen

(expressed per gram of DM and per square metre of LA) and leaf mass per unit area (LMA) across all experiments

Coefficient of determination (r2) Root mean square error (RMSE) Relative bias (%)

All experimenta PLSR (NCb) SVMR PLSR SVMR PLSR SVMR

Rdark LA (μmol O2 mLA
−2 s−1) 0.54 (23) 0.53 0.14 0.15 16.7 15.5

Rdark FM (nmol O2 gFM
−1 s−1) 0.55 (24) 0.53 0.79 0.80 17.0 18.1

Rdark DM (nmol O2 gDM
−1 s−1) 0.50 (23) 0.48 4.34 4.87 17.4 16.7

Rdark N (nmol O2 gN
−1 s−1) 0.63 (18) 0.64 102.4 103.8 18.2 17.0

Nmass (mg g−1) 0.91 (26) 0.90 4.15 4.35 7.1 8.0

Narea (g m−2) 0.60 (18) 0.62 0.13 0.13 11.8 11.1

LMA (g m−2) 0.75 (14) 0.72 4.53 5.05 11.3 10.8

Note. PLSR: partial least square regression; SVMR: support vector machine regression.

aModels were built on training datasets consisting of 90% of the experimental data and used to predict the remaining (test dataset of) 10%.

bNumber of components used.
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Wydrzynski, & Hillier, 2009). We chose to measure Rdark from O2

consumption as the rapid measurements allowed more material to

be sampled (O'Leary et al., 2017; Scafaro et al., 2017). Although we

only validated with data on Rdark derived from O2 consumption, our

high‐throughput approach can be adapted to measures of Rdark

derived from CO2 evolution in cases where sucrose is the predomi-

nant respiratory substrate and the respiratory quotient is unity

(Lambers et al., 2008).

FIGURE 5 Validation of partial least square regression model

prediction for nitrogen concentration per unit leaf dry mass (Nmass;

a), nitrogen content per unit leaf area (Narea; b), and leaf dry mass per

unit area (LMA; c), using 10% of pooled data from Experiment 1 (red

circles), Experiment 2 (blue triangles), and Experiment 3 (purple

squares) that were not used in developing the model

FIGURE 6 Coefficient of determination (r2) of partial least square

regression (PLSR) models used for prediction of leaf dark

respiration expressed per square metre of leaf area (Rdark_LA; a), per

gram of fresh mass (Rdark_FM; b), per gram of dry mass (Rdark_DM; c),

or per gram of leaf nitrogen (Rdark_N; d). PLSR models were trained

on 90% of data pooled from Experiments 1, 2, and 3 (black bars) or

Experiments 1 and 2 (grey bars) or from individual experiments

(Experiment 1 [vertical striped bars], Experiment 2 [white bars], or

Experiment 3 [dotted bars]) and validated on the test dataset

(remaining 10%). See Figure S5 for root mean squared error of PLSR

models for predictions of same traits
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5 | CONCLUSIONS

Using a diverse set of wheat genotypes measured at different growth

stages and grown under varied environmental conditions (light and

temperature, either in glasshouses or field settings), we have created

a large wheat leaf Rdark dataset and found that Rdark varied enor-

mously. Rdark can be predicted from leaf reflectance spectra, with r2

as high as 0.63 (when expressed per gram of Nwith RMSE = 102.4 nmol

O2 gN
−1 s−1 and relative bias = 18.2%). The performance of models

built to predict Rdark was similar for both PLSR and SVMR approaches.

Predictions were not tightly linked to the relationships between leaf

Rdark and LMA or leaf N. This finding highlights the potential for rapid

non‐invasive monitoring of various aspects of leaf energy metabolism

in wheat. Such advances will provide opportunities for large scale field

experiments to identify variants in wheat Rdark, specifically, and wheat

energy use efficiency more broadly.
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SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of the article.

Table S1. Genotypes used for study.

Table S2. Foliar traits of wheat genotypes for Experiment 1 under dif-

ferent growth irradiance and temperature conditions averaged for

three cultivars.

Table S3. Means, mean squares and F probabilities of ANOVAs for

foliar traits examined during Experiment 2 for different genotypes

and at different growth stages (GS).

Table S4. Means, mean squares and F probabilities of ANOVAs for

foliar traits examined during Experiment 3 for different genotypes

and at different growth stages (GS).

Table S5. Squared Pearson correlation (r2) for predictions of leaf dark

respiration (Rdark, expressed per metre of leaf area (LA), per gram of

fresh mass (FM) and dry mass (DM), and leaf nitrogen), nitrogen

(expressed per gram of DM and per metre of LA), and leaf mass per

unit area (LMA), across all experiments, by the three models using

either the continuous, full‐spectrum data (350‐2500 nm) or a spectral

subset selected based on coefficient weightings of a multi‐method

ensemble developed by Feilhauer et al. (2015).

Table S6. Summary of different trait‐based and reflectance‐based

regression models for leaf dark respiration expressed per square metre

of leaf area (Rdark_LA). Model predictors are either reflectance, or mea-

sured leaf traits – leaf nitrogen (expressed per gram of DM, Nmass; and

per metre of LA, Narea), and leaf mass per unit area (LMA). The coeffi-

cient of determination, r2, is shown for all models.

Figure S1 Display showing green mesh suspended by metal cages used

to achieve low light (photosynthetic photon flux density of 150~200

μmol m‐2 s‐1 i.e. 25% of ambient) intensity during Experiment 1.

Figure S2. Mean (± standard deviation), minimum and maximum leaf

reflectance (top panels) of wheat (a‐c) and spectral coefficients of var-

iation (d‐e) for Experiment 1 (left panels), Experiment 2 (middle panels)

and Experiment 3 (right panels).

Figure S3. Relationships between Rdark_LA and (a‐c) leaf nitrogen per

square metre of leaf area (Narea), (d‐f) leaf mass per area (LMA), and

(g‐i) between Rdark_DM and leaf nitrogen per gram of leaf dry mass

(Nmass) for Experiment 1 (left panels), Experiment 2 (middle panels)

and Experiment 3 (right panels). Pearson correlation coefficients (r)

for data pooled from Experiments 1, 2 and 3 were 0.16, 0.27 and
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0.38, respectively for Rdark_LA vs Narea, Rdark_LA vs LMA, and Rdark_DM vs

Nmass.

Figure S4. Relationship between leaf nitrogen (per square metre of

leaf area, Narea) and leaf mass per area (LMA) for Experiment 1 (a),

Experiment 2 (b) and Experiment 3 (c). For the pooled data Pearson

correlation coefficients (r) was 0.12 (P<0.001).

Figure S5. Root mean squared error (RMSE) of PLSR model used for

prediction of leaf dark respiration per square metre of leaf area

(Rdark_LA; a), per gram of fresh mass (Rdark_FM; b), per gram of dry mass

(Rdark_DM; c), or per gram of leaf nitrogen (Rdark_N; d). PLSR models

were trained on 90% of data pooled from Experiments 1, 2 and 3

(black bars) or Experiments 1 and 2 (grey bars) or from individual

experiments (Experiment 1 (vertical striped bars), Experiment 2 (white

bars), or Experiment 3 (dotted bars)) and validated on the test dataset

(remaining 10%).

Figure S6. Root mean squared error (RMSE) of PLSR model used for

prediction of leaf nitrogen per gram of DM (Nmass; a) or per square

metre of LA (Narea; b), and LMA (c). PLSR models were trained on

90% of data pooled from Experiments 1, 2 and 3 (black bars) or Exper-

iments 1 and 2 (grey bars) or from individual experiments (Experiment

1 (vertical striped bars), Experiment 2 (white bars), or Experiment 3

(dotted bars)) and validated on the test dataset (remaining 10%).

Text S1. Multi‐method ensemble
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