
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3023177, IEEE

Transactions on Software Engineering

1

Predicting Defective Lines Using a
Model-Agnostic Technique

Supatsara Wattanakriengkrai, Patanamon Thongtanunam, Chakkrit Tantithamthavorn,

Hideaki Hata, and Kenichi Matsumoto

Abstract—Defect prediction models are proposed to help a team prioritize source code areas files that need Software Quality

Assurance (SQA) based on the likelihood of having defects. However, developers may waste their unnecessary effort on the whole file

while only a small fraction of its source code lines are defective. Indeed, we find that as little as 1%-3% of lines of a file are defective.

Hence, in this work, we propose a novel framework (called LINE-DP) to identify defective lines using a model-agnostic technique, i.e.,

an Explainable AI technique that provides information why the model makes such a prediction. Broadly speaking, our LINE-DP first

builds a file-level defect model using code token features. Then, our LINE-DP uses a state-of-the-art model-agnostic technique (i.e.,

LIME) to identify risky tokens, i.e., code tokens that lead the file-level defect model to predict that the file will be defective. Then, the

lines that contain risky tokens are predicted as defective lines. Through a case study of 32 releases of nine Java open source systems,

our evaluation results show that our LINE-DP achieves an average recall of 0.61, a false alarm rate of 0.47, a top 20%LOC recall of

0.27, and an initial false alarm of 16, which are statistically better than six baseline approaches. Our evaluation shows that our

LINE-DP requires an average computation time of 10 seconds including model construction and defective identification time. In

addition, we find that 63% of defective lines that can be identified by our LINE-DP are related to common defects (e.g., argument

change, condition change). These results suggest that our LINE-DP can effectively identify defective lines that contain common defects

while requiring a smaller amount of inspection effort and a manageable computation cost. The contribution of this paper builds an

important step towards line-level defect prediction by leveraging a model-agnostic technique.

Index Terms—Software Quality Assurance, Line-level Defect Prediction

✦

1 INTRODUCTION

SOftware Quality Assurance (SQA) is one of software
engineering practices for ensuring the quality of a soft-

ware product [26]. When changed files from the cutting-
edge development branches will be merged into the release
branch where the quality is strictly controlled, an SQA team
needs to carefully analyze and identify software defects in
those changed files [1]. However, due to the limited SQA
resources, it is infeasible to examine the entire changed files.
Hence, to spend the optimal effort on the SQA activities,
an SQA team needs to prioritize files that are likely to have
defects in the future (e.g., post-release defects).

Defect prediction models are proposed to help SQA
teams prioritize their effort by analyzing post-release soft-
ware defects that occur in the previous release [16, 26, 55, 59,
77, 80]. Particularly, defect prediction models leverage the
information extracted from a software system using product
metrics, the development history using process metrics, and
textual content of source code tokens. Then, the defect mod-
els estimate defect-proneness, i.e., the likelihood that a file
will be defective after a software product is released. Finally,
the files are prioritized based on the defect-proneness.

• S. Wattanakriengkrai, H. Hata, and K. Matsumoto are with Nara Institute
of Science and Technology, Japan.
E-mail: {wattanakri.supatsara.ws3, hata, matumoto}@is.naist.jp.

• P. Thongtanunam is with the University of Melbourne, Australia.
E-mail: patanamon.t@unimelb.edu.au.

• C. Tantithamthavorn is with Monash University, Australia.
E-mail: chakkrit@monash.edu.

To achieve effective SQA prioritization, defect prediction
models have been long investigated at different granularity
levels, for example, packages [43], components [82], mod-
ules [44], files [43, 53], methods [28], and commits [45]. How-
ever, developers could still waste an SQA effort on manually
identifying the most risky lines, since the current prediction
granularity is still perceived as coarse-grained [87]. In ad-
dition, our motivating analysis shows that as little as 1%-
3% of the lines of code in a file are actually defective after
release, suggesting that developers could waste their SQA
effort on up to 99% of clean lines of a defective file. Thus,
line-level defect prediction models would ideally help the
team to save a huge amount of the SQA effort.

In this paper, we propose a novel line-level defect predic-
tion framework which leverages a model-agnostic technique
(called LINE-DP) to predict defective lines, i.e., the source
code lines that will be changed by bug-fixing commits to
fix post-release defects. Broadly speaking, our LINE-DP
will first build a file-level defect model using code token
features. Then, our LINE-DP uses a state-of-the-art model-
agnostic technique (i.e., LIME [69]) to explain a prediction
of which code tokens lead the file-level defect model to
predict that the file will be defective. Finally, the lines that
contain those code tokens are predicted as defective lines.
The intuition behind our approach is that code tokens that
frequently appeared in defective files in the past may also appear
in the lines that will be fixed after release.

In this work, we evaluate our LINE-DP in terms of (1)
predictive accuracy, (2) ranking performance, (3) compu-
tation time, and (4) the types of uncovered defects. We
also compare our LINE-DP against six baseline approaches

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3023177, IEEE

Transactions on Software Engineering

2

that are potential to identify defective lines based on the
literature, i.e., random guessing, a natural language pro-
cessing (NLP) based approach, two static analysis tools
(i.e., Google’s ErrorProne and PMD), and two traditional
model interpretation (TMI) based approaches using logistic
regression and random forest. The evaluation is based on
both within-release and cross-release validation settings.
Through a case study of 32 releases of 9 software systems,
our empirical evaluation shows that our LINE-DP achieves
an average recall of 0.61, a false alarm rate of 0.47, a top
20%LOC recall of 0.27, and an initial false alarm of 16 which
are significantly better than the baseline approaches. The
average computation time (including the model construc-
tion and line identification time) of our LINE-DP is 10.68
and 8.46 seconds for the within-release and cross-release
settings, respectively. We find that 63% of the defective lines
identified by our LINE-DP are categorized into the common
defect types. Our results lead us to conclude that leveraging
a model-agnostic technique can effectively identify and rank
defective lines that contain common defects while requiring
a manageable computation cost. Our work builds an impor-
tant step towards line-level defect prediction by leveraging
a model-agnostic technique.

Novelty Statement. To the best of our knowledge, our
work is the first to use the machine learning-based defect
prediction models to predict defective lines by leveraging a
model-agnostic technique from the Explainable AI domain.
More specifically, this paper is the first to present:

• A novel framework for identifying defective lines
that uses a state-of-the-art model-agnostic technique.

• An analysis of the prevalence of defective lines.
• The benchmark line-level defect datasets are avail-

able online at https://github.com/awsm-research/
line-level-defect-prediction.

• A comprehensive evaluation of line-level defect pre-
diction in terms of predictive accuracy (RQ1), rank-
ing performance (RQ2), computation cost (RQ3), and
the types of uncovered defects (RQ4).

• A comparative evaluation between our framework
and six baseline approaches for both within-release
and cross-release evaluation settings.

Paper Organization. The rest of our paper is organized
as follows: Section 2 introduces background of software
quality assurance and defect prediction models. Section 3
presents a motivating analysis. Section 4 discusses the re-
lated work. Section 5 describes our framework. Section 6
describes the design of our experiment. Section 7 presents
the results of our experiment. Section 8 discusses the limita-
tion and discloses the potential threats to validity. Section 9
draws the conclusions.

2 BACKGROUND

In this section, we provide background of software quality
assurance and defect prediction models.

2.1 Software Quality Assurance

Software Quality Assurance (SQA) is a software engineering
practice to ensure that a software product meets the qual-
ity standards, especially for the life-impacting and safety-
critical software systems. Thus, SQA practices must be

Implementing a feature

or major changes

SQA Activities:  

Code Reviews +

Automated CI tests

Changes in

Source files

+

Reviewed changes are

merged into the project

software repository

During the development cycle

SQA Activities:  
More stages of tests, fixing major

bugs, stabilize all changes

Release a software

Release preparation

Fig. 1: An overview of SQA activities in the Software Engi-
neering workflow [1].

embedded as a quality culture throughout the life cycles
from planning, development stage, to release preparation so
teams can follow the best practices to prevent software de-
fects. Figure 1 illustrates a simplified software engineering
workflow that includes SQA activities [1].

2.1.1 SQA activities during the development stage

During the development stage, new features and other
code changes are implemented by developers. Such code
changes (or commits) must undergo rigorous SQA ac-
tivities (e.g., Continuous Integration tests and code re-
view) prior to merge into the main branch (e.g., a master
branch) [24]. Since these commit-level SQA activities are
time-consuming, Just-In-Time defect prediction has been
proposed to support developers by prioritizing their limited
SQA effort on the most risky code changes that will intro-
duce software defects during the development cycle (i.e.,
pre-release defects) [45, 61]. Nevertheless, JIT defect predic-
tion only early detects defect-inducing changes, rather than
post-release defects (i.e., the areas of code that are likely
to be defective after a release). Despite the SQA activities
during the development cycle (e.g., code reviews), it is still
possible that software defects still slip through to the official
release of software products [81, 82]. Thus, SQA activities
are still needed during the release preparation.

2.1.2 SQA activities during the release preparation

During the release preparation, intensive SQA activities
must be performed to ensure that the software product is
of high quality and is ready for release, i.e., reducing the
likelihood that a software product will have post-release
defects [1, 58]. In other words, the files that are changed
during the software development need to be checked and
stabilized to ensure that these changes will not impact the
overall quality of the software systems [32, 50, 65]. Hence,
several SQA activities (e.g., regression tests, manual tests)
are performed [1]. However, given thousands of files that
need to be checked and stabilized before release, it is in-
tuitively infeasible to exhaustively perform SQA activities
for all of the files of the codebase with the limited SQA
resources (e.g., time constraints), especially in rapid-release
development practices. To help practitioners effectively pri-
oritize their limited SQA resources, it is of importance to

https://github.com/awsm-research/line-level-defect-prediction
https://github.com/awsm-research/line-level-defect-prediction

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3023177, IEEE

Transactions on Software Engineering

3

identify what are the most defect-prone areas of source
code that are likely to have post-release defects.

Prior work also argued that it is beneficial to obtain
early estimates of defect-proneness for areas of source code
to help software development teams develop the most
effective SQA resource management [57, 58]. Menzies et
al. mentioned that software contractors tend to prioritize
their effort on reviewing software modules tend to be fault-
prone [55]. A case study at ST-Ericsson in Lund, Sweden by
Engström et al. [17] found that the selection of regression
test cases guided by the defect-proneness of files is more
efficient than the manual selection approaches. At the Tizen-
wearable project by Samsung Electronics [46], they found
that prioritizing APIs based on their defect-proneness in-
creases the number of discovered defects and reduces the
cost required for executing test cases.

2.2 Defect Prediction Models

Defect prediction models have been proposed to predict
the most risky areas of source code that are likely to have
post-release defects [16, 55, 59, 77, 80, 89, 90]. A defect
prediction model is a classification model that estimates the
likelihood that a file will have post-release defects. One of
the main purposes is to help practitioners effectively spend
their limited SQA resources on the most risky areas of code
in a cost-effective manner.

2.2.1 The modelling pipeline of defect prediction models

The predictive accuracy of the defect prediction model
heavily relies on the modelling pipelines of defect prediction
models [4, 22, 56, 73, 74, 76, 78]. To accurately predicting
defective areas of code, prior studies conducted a com-
prehensive evaluation to identify the best technique of the
modelling pipelines for defect models. For example, feature
selection techniques [23, 39, 40], collinearity analysis [37–
39], class rebalancing techniques [75], classification tech-
niques [22], parameter optimization [4, 21, 77, 80], model
validation [79], and model interpretation [36, 37]. Despite
the recent advances in the modelling pipelines for defect
prediction models, the cost-effectiveness of the SQA re-
source prioritization still relies on the granularity of the
predictions.

2.2.2 The granularity levels of defect predictions models

The cost-effectiveness of the SQA resource prioritization
heavily relies on the granularity levels of defect prediction.
Prior studies argued that prioritizing software modules at
the finer granularity is more cost-effective [28, 43, 61]. For
example, Kamei et al. [43] found that the file-level defect
prediction is more effective than the package-level defect
prediction. Hata et al. [28] found that the method-level
defect prediction is more effective than file-level defect
prediction. Defect models at various granularity levels have
been proposed, e.g., packages [43], components [82], mod-
ules [44], files [43, 53], methods [28]. However, developers
could still waste an SQA effort on manually identifying the
most risky lines, since the current prediction granularity
is still perceived as coarse-grained [87]. Hence, the line-
level defect prediction should be beneficial to SQA teams to
spend optimal effort on identifying and analyzing defects.

0.01%

0.1%

1%

10%

100%

Activemq

Camel
Derby

Groovy
Hbase

Hive
Jruby

Lucene
Wicket

A
 p

ro
p
o
rt

io
n
 o

f
lin

e
s
 i
n
 a

 f
ile

Line−level Method−level

Fig. 2: The proportion of lines in a file that are inspected
when using the line-level and method-level defect predic-
tion models.

3 MOTIVATING ANALYSIS

In this section, we perform a quantitative analysis in order
to better understand how much SQA effort could be spent
when defect-proneness is estimated at different granular-
ities. It is possible that developers may waste their SQA
effort on a whole file (or a whole method) while only a small
fraction of its source code lines are defective.

An illustrative example. Given that a defective file f

has a total lines of 100, all 100 lines in the file will require
SQA effort if the defect-proneness is estimated at a file
level. However, if the defect-proneness is estimated at a
method level, only lines in a defective method m (i.e.,
the method that contains defective lines) will require SQA
effort. Assuming that this defective method has 30 lines, the
required SQA effort will be 30% of the effort required at a
file level. If the defect-proneness is estimated at a line level,
only defective lines will require SQA effort. Assuming that
there are 5 defective lines in this file, the required SQA effort
will be only 5% of the effort required at a file level.

Approach. To quantify possible SQA effort when the
defect-proneness is estimated at the file, method, or line
levels, we measure the proportion of defect-prone lines. To
do so, we first extract defective lines, i.e., the lines in the
released system that were removed by bug-fixing commits
after release (see Section 6.2).1 Then, for each defective file,
we measure the proportion of defect-prone lines at the line
level, i.e., #DefectiveLines

LOCf
, where LOCf is the total number

of lines in a defective file f . We also identify defective
methods, i.e., methods in the defective file f that contain
at least one defective line. Then, we measure the proportion

of defect-prone lines at the method level, i.e.,
∑

m∈M LOCm

LOCf
,

where LOCm is the number of lines in a defective method
m and M is a set of defective methods in the defective file
f . Finally, we examine the distributions of the proportion
of defective lines across the 32 studied releases of the nine
studied systems.

1. Note that in this analysis, we only focus on the defective lines in
the defective files, i.e., the files that are only impacted by bug-fixing
commits.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3023177, IEEE

Transactions on Software Engineering

4

Results. We find that as little as 1.2% - 2.5% of the
lines in a defective file are defective. Figure 2 shows the
distributions of the proportion of defect-prone lines in a
defective file. We find that at the median, 1.2% to 2.5% of
lines in the defective files are defective lines, i.e., the lines
that actually impacted by bug-fixing commits. Moreover, we
observe that 21% (Hive) - 46% (Camel) of defective files have
only one single defective line. As we suspected, this result
indicates that only a small fraction of source code lines in the
defective files are defective. This suggests that when using
file-level defect prediction, developers could unnecessarily
spend their SQA effort on 97% - 99% of clean lines in a
defective file.

Furthermore, Figure 2 presents the distributions of the
proportion of defect-prone lines when using method-level
prediction. At the median, the defective methods account
for 14% - 32% of lines in a defective file. This suggests that
in our studied releases, the proportion of defect-prone lines
predicted at the method level is still relatively larger than
those defect-prone lines predicted at the line level. Hence, a
more fine-grained approach to predict and prioritize defective lines
could substantially help developers to reduce their SQA effort.

4 RELATED WORK

In this section, we discuss the state-of-the-art techniques
that identify defect-prone lines, i.e., static analysis ap-
proaches and NLP-based approaches. We also discuss the
challenges when using machine learning to build line-level
defect prediction models.

4.1 Static Analysis

Static analysis is a tool that checks source code and reports
warnings (i.e., common errors such as null pointer de-
referencing and buffer overflows) at the line level. Various
static analysis approaches are proposed including heuris-
tic rule-based techniques (e.g., PMD [12]), complex algo-
rithms [20], and hybrid approaches like FindBugs2 which
incorporates the static data-flow analysis and the pattern-
matching analysis. A static analysis tool could potentially be
used to predict and rank defect-prone lines [85]. However,
Kremenek et al. [48] argued that Static Bug Finder (SBF)
often reported false warnings, which could waste develop-
ers’ effort. Several studies proposed approaches to filter and
prioritize warnings reported by SBF [29, 30, 48, 49, 70]. Re-
cently, Rahman et al. [64] found that the warnings reported
by a static analysis tool can be used to prioritize defect-
prone files. However, they found that their studied static
analysis tools (i.e., PMD and FINDBUGS) and the file-level
defect prediction models provide comparable benefits, i.e.,
the ranking performance between the defect models and
static analysis tools is not statistically different. Yet, little
has is known about whether the line-level defect prediction
is better than a static analysis or not.

4.2 NLP-based Approaches

With a concept of software naturalness, statistical language
models from Natural Language Processing (NLP) have been

2. http://findbugs.sourceforge.net/

used to measure the repetitiveness of source code in a soft-
ware repository [33]. Prior work found that statistical lan-
guage models can be leveraged to help developers in many
software engineering tasks such as code completion [68, 84],
code convention [5], and method names suggestion [6].
Generally speaking, language models statistically estimate
the probability that a word (or a code token) in a sentence
(or a source code line) will follow previous words. Instead
of considering all previous words in a sentence, one can use
n-gram language models which use Markov assumptions to
estimate the probability based on the preceding n−1 words.
Since the probabilities may vary by the orders of magnitude,
entropy is used to measure the naturalness of a word while
considering the probabilities of the proceeding words. In
other words, entropy is a measure of how surprised a model
is by the given word. An entropy value indicates the degree
that a word is unnatural in a given context (i.e., the preceding
n− 1 words).

Recent work leverages the n-gram language models
to predict defect-prone tokens and lines [67, 88]. More
specifically, Wang et al. [88] proposed an approach (called
Bugram) which identifies the defective code tokens based
on the probabilities estimated by n-gram models. To eval-
uate Bugram, Wang et al. manually examined whether the
predicted tokens are considered as true defects based on
specific criteria such as incorrect project specific function
calls and API usage violation. On the other hand, Ray et
al. [67] examined the naturalness of defective lines (i.e.,
lines that are removed by bug-fixing commits) based on
the entropy of probabilities that are estimated by n-gram
models. Ray et al. also found that ranking the files based
on an average entropy of lines is comparable to ranking
source files based on the probability estimated by the file-
level defect prediction models. However, little is known
about whether ranking defect-prone lines based on entropy
is better than a line-level defect prediction model or not.

4.3 Challenges in Machine Learning-based

Approaches

The key challenge of building traditional defect models at
the line level is the design of hand-crafted software metrics.
The state-of-the-art software metrics (e.g., code and process
metrics) are often calculated at the class, file, and method
levels [28, 63]. Extracting those features at the line level is
not a trivial task since one would need to acquire accurate
historical data for each line in the source code files. In the
literature, the finest-grained defect prediction models are
currently at the method level [28].

Instead of using hand-crafted software metrics, prior
work directly uses semantic features of source code to
build defect prediction models [7, 14, 35, 89, 90]. For ex-
ample, Wang et al. [89] automatically generate semantic
features from source code using a deep belief network and
train a file-level defect prediction model using traditional
classification techniques (e.g., Logistic Regression). Despite
the success of using semantic features for file-level defect
prediction, the size of the training datasets is still highly-
dimensional and sparse (i.e., there is a large number of
tokens and a large number of files). Given a huge amount
of source code lines (e.g., 75K+ lines), it is likely infeasible

http://findbugs.sourceforge.net/

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3023177, IEEE

Transactions on Software Engineering

5

A ML model

Training files

(a set of feature vectors)

Building machine
learning models

Traditional model
interpretation

Importance

features ()

A ML model

Training files

(a set of feature vectors)

Building machine
learning models

Model-agnostic
technique

Testing files

(a set of feature vectors)

Importance
features ()

Fig. 3: An illustrative comparison between traditional model
interpretation and model-agnostic techniques.

and impractical to build a line-level defect prediction model
using semantic features within a reasonable time. To demon-
strate this, we built a line-level defect prediction model
using the smallest defect dataset (i.e., 230,898 code tokens
and 259,617 lines of code) with the simplest ML learning
algorithm (i.e., Logistic Regression) with semantic features
(e.g., the frequency of code tokens). Our preliminary analy-
sis shows that the model building with the smallest defect
dataset still takes longer than two days.3 Hence, using
semantic features for line-level defect prediction remains
challenging.

5 MODEL-AGNOSTIC-BASED LINE-LEVEL DEFECT

PREDICTION

Similar to prior work [16, 55, 59, 77, 80, 89, 90], the key
goal of this work is to help a software development team
develop an effective SQA resource management by priortiz-
ing the limited SQA effort on the most defect-prone areas
of source code. Rather than attempting to build a line-level
defect model, we hypothesize that a prediction of a file-level
defect model can be further explained to identify defect-
prone lines. Recently, model-agnostic techniques have been
proposed to provide a local explanation for a prediction of
any machine learning algorithms. The fundamental concept
of the local explanation is to provide information why the
model makes such a prediction. Unlike the traditional model
interpretation techniques (TMI) like variable importance for
random forest [9] or the coefficients analysis for logistic
regression models [27], the model-agnostic techniques can
identify important features for a given file by estimating
the contribution of each token feature to a prediction of
the model. Figure 3 illustrates the difference of important
features that are identified by the TMI and model-agnostic
techniques. The key difference is that the TMI techniques
will generate only one set of important features based on the
models that are trained on a given training dataset, while the
model-agnostic technique will generate a set of important
features for each testing file.

To leverage the model-agnostic techniques to identify
defect-prone lines, we propose a Model Agnostic-based
Line-level Defect Prediction framework (called LINE-DP).

3. The detail is provided in Appendix (Section 10.1).

Algorithm 1: LIME’s algorithm [69]

Input : f is a prediction model,
x is a test instance,
n is a number of randomly generated
instances, and
k is a length of explanation

Output: E is a set of contributions of features on the
prediction of the instance x.

1 D = ∅

2 for i in {1, ..., n} do
3 di = GenInstAroundNeighbourhood(x)
4 y′i = Predict(f, di)
5 D = D ∪ 〈di, y

′
i〉

6 end
7 l = K-Lasso(D, k)
8 E = get coefficients(l)
9 return E

To do so, we first use source code tokens of a file as features
(i.e., token features) to build a file-level defect model. Then,
we generate a prediction for each testing file using the file-
level defect model. Then, we use a state-of-the-art model-
agnostic technique, i.e., Local Interpretable Model-Agnostic
Explanations (LIME) [69] to generate an explanation for a
prediction of the file-level defect models. More specifically,
given a testing file, LIME will identify important token
features that influence the file-level defect model to predict
that the testing file will be defective. Finally, we rank the
defect-prone lines based on LIME scores instead of the
defect-proneness of files. Our intuition is that code tokens
that frequently appeared in defective files in the past may
also appear in the lines that will be fixed after release.

Figure 4 presents an overview of our framework. Be-
low, we provide the background of the Local Interpretable
Model-agnostic Explanations (LIME) algorithm and de-
scribe the details of our proposed framework.

5.1 Local Interpretable Model-agnostic Explanations

(LIME)

LIME is a model-agnostic technique that aims to mimic the
behavior of the predictions of the defect model by explain-
ing the individual predictions [69]. Given a file-level defect
model f() and a test instance x (i.e., a testing file), LIME
will perform three main steps: (1) generating the neighbor
instances of x; (2) labelling the neighbors using f(); (3)
extracting local explanations from the generated neighbors.
Algorithm 1 formally describes the LIME algorithm. We
briefly describe each step as follows:

1) Generate neighbor instances of a test instance x. LIME
randomly generates n synthetic instances surrounding
the test instance x using a random perturbation method
with an exponential kernel function on cosine distance
(cf. Line 3).

2) Generate labels of the neighbors using a file-level
defect model f . LIME uses the file-level defect model
f to generate the predictions of the neighbor instances
(cf. Line 4).

3) Generates local explanations from the generated
neighbors. LIME builds a local sparse linear regres-

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3023177, IEEE

Transactions on Software Engineering

6

Defect

Dataset

To
ke
n_
1

To
ke
n_
2

To
ke
n_
N

…

File_A.java

File_B.java

File_C.java

Bag-of-Tokens

feature vectors

Building file-

level defect

models

Identifying defect-

prone lines

Files of Interest

(Testing files)

Identified defect-
prone lines

File-Level

Defect
Model

Extracting

features

Ranking

defect-prone

lines

Most risky

Least risky

Fig. 4: An overview of our approach of localizing defective lines.

sion model (K-Lasso) using the randomly generated
instances and their generated predictions from the file-
level defect model f (cf. Line 7). The coefficients of the
K-Lasso model (l) indicate the importance score of each
feature on the prediction of a test instance x according
to the prediction model l (cf. Line 8).

The importance score (e) of each feature in E ranges from
-1 to 1. A positive LIME score of a feature (0 < e ≤ 1)
indicates that the feature has a positive impact on the
estimated probability of the test instance x. On the other
hand, a negative LIME score of a feature (−1 ≤ e < 0)
indicates that the feature has a negative impact on the
estimated probability.

5.2 Our LINE-DP Framework

Figure 4 presents an overview of our Model Agnostic-
based Line-level Defect Prioritization (LINE-DP) frame-
work. Given a file-level defect dataset (i.e., a set of source
code files and a label of defective or clean), we first extract
bag-of-token features for each file. Then, we train traditional
machine learning techniques (e.g., logistic regression, ran-
dom forest) using the extracted features to build a file-level
defect model. We then use the file-level defect model to
estimate the probability that a testing file will be defective.
For each file that is predicted as defective (i.e., defect-prone
files), we use LIME to identify and rank defect-prone lines
based on the LIME scores. We describe each step below.

(Step 1) Extracting Features

In this work, we use code tokens as features to represent
source code files. This will allow us to use LIME to identify
the tokens that lead the file-level defect models to predict
that a given file will be defective. To do so, for each source
code file in defect datasets, we first apply a set of regular
expressions to remove non-alphanumeric characters such
as semi-colon (;), equal sign (=). As suggested by Rahman
and Rigby [66], removing these non-alphanumeric charac-
ters will ensure that the analyzed code tokens will not be
artificially repetitive. Then, we extract code tokens in the
files using the Countvectorize function of the Scikit-
Learn library. We neither perform lowercase, stemming,
nor lemmatization (i.e., a technique to reduce inflectional
forms) on our extracted tokens, since the programming
language of our studied systems (i.e., Java) is case-sensitive.
Thus, meaningful tokens may be discarded when applying
stemming and lemmatization.

After we extract tokens in the source code files, we use a
bag of tokens (BoT) as a feature vector to represent a source

Identified defect-prone lines

File-Level Defect

Prediction Model

A File of Interest

(Testing file)

LIME

oldCurrent

current

node

closure

Defective

(LIME Score >0)

Clean

(LIME score < 0)

0.8

0.1

-0.3

-0.7

Ranking tokens based on

LIME scores

Mapping tokens

to lines

if(closure != null){

 Object oldCurrent = current;

 setClosure(closure, node);
 closure.call();

 current = oldCurrent;
}

if(closure != null){

 Object oldCurrent = current;

 setClosure(closure, node);
 closure.call();

 current = oldCurrent;
}

Fig. 5: An illustrative example of our approach for identify-
ing defect-prone lines.

code file. A bag of tokens is a vector of frequencies that
code tokens appear in the file. To reduce the sparsity of the
vectors, we remove tokens that appear only once.

(Step 2) Building File-Level Defect Models

We build a file-level defect model using the feature vectors
extracted in Step 1. Prior work suggests that the perfor-
mance of defect models may vary when using different
classification techniques [22]. Hence, in this work, we con-
sider five well-known classification techniques [22, 77, 80],
i.e., Random Forest (RF), Logistic Regression (LR), Support
Vector Maching (SVM), k-Nearest Neighbours (kNN), and
Neural Networks (NN). We use the implementation of
Python Scikit-Learn package to build our file-level defect
models using default parameter settings. Based on the pre-
dictive performance at the file level, we find that the file-
level defect models that use Logistic Regression can iden-
tify actual defective files relatively better than other four
classification techniques, achieving a median MCC value of
0.35 (within-release) and 0.18 (cross-release).4 We consider
that the accuracy of our file-level defect models is sufficient
since prior study reported that a file-level prediction model
typically has an MCC value of 0.3 [71]. Hence, in this paper,
our LINE-DP is based on a file-level defect model that uses
Logistic Regression.

(Step 3) Identifying Defect-Prone Lines

For the defect-prone files predicted by our file-level defect
models (a probability > 0.5), we further identify defect-
prone lines using LIME [69]. Figure 5 provides an illus-
trative example of our approach. Given a defect-prone file,
we use LIME to compute LIME scores, i.e., an importance
score of features (code tokens). We identify the tokens that
have a positive LIME scores as risky tokens. For example,

4. We provide complete evaluation results of the file-level defect
models in Appendix (Section 10.2).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3023177, IEEE

Transactions on Software Engineering

7

in Figure 5, node and current have a LIME score of 0.8
and 0.1, respectively. Hence, these two tokens are identified
as risky tokens. Then, we define a defect-prone line as
the line that contains at least one of the risky tokens. For
example, in Figure 5, the lines that are marked by star
polygon contain node and current. Therefore, these three
lines are identified as defect-prone lines.

Considering all positive LIME scores may increase false
positive identification. Therefore, in this paper, we use
top-20 risky tokens ranked based on LIME scores when
identifying defect-prone lines. The number of top risky
tokens (k) is selected based on a sensitivity analysis where
10 ≤ k ≤ 200.5

(Step 4) Ranking Defect-Prone Lines

Once we identify defect-prone lines in all predicted de-
fective files, we now rank defect-prone lines based on the
number of the top-20 risky tokens that appear in the defect-
prone lines. The intuition behind is that the more the risky
tokens that a line contains, the more likely the line will
be defective. For example, given two defect-prone lines
l1 = {A,B,C,D} and l2 = {C,D,E, F,G}, where A − G

denote code tokens and tokens A, B and E are the top-20
risky tokens. Then, line l1 should be given a higher priority
than line l2 as l1 contains two risky tokens and l2 contains
only one risky token.

6 EXPERIMENTAL SETUP

In this section, we describe our studied software systems,
an approach to extract defective lines, baseline approaches,
evaluation measures, and validation settings.

6.1 Studied Software Systems

In this work, we use a corpus of publicly-available defect
datasets provided by Yatish et al. [91] where the ground-
truths are labelled based on the affected releases. The
datasets consist of 32 releases that span 9 open-source
software systems from the Apache open source software
projects. Table 1 shows a statistical summary of the studied
datasets. The number of source code files in the datasets
ranges from 731 to 8,846, which have 74,349 - 567,804 lines
of code, and 58,659 - 621,238 code tokens.

6.2 Extracting Defective Lines

We now describe an approach for extracting defective lines.
Similar to prior work [64, 67], we identify that defective lines
are those lines that were changed by bug-fixing commits. Figure
6 provides an illustrative example of our approach, which
we describe in details below.

Identifying bug-fixing commits: We first retrieve bug re-
ports (i.e., the issue reports that are classified as “Bug” and
that affect the studied releases) from the JIRA issue tracking
systems of the studied systems. We then use the ID of
these bug reports to identify bug-fixing commits in the Git
Version Control Systems (VCSs). We use regular expressions
to search for the commits that have the bug report IDs

5. We provide the results of our sensitivity analysis in Appendix
(Section 10.3)

#BUG-1234 for

release 5.0.0

VCS

Fixing #BUG-1234

- +

Git Diff

R
el

ea
se

 5
.0

.0

Released System

Rele
ase d

ate

Fixing #BUG-1235

- +

Git Diff

#BUG-1235 for

release 5.0.0

Fig. 6: An illustrative example of our approach for extracting
defective lines.

in the commit messages. Those commits that have the ID
of a bug report are identified as bug-fixing commits. This
technique allows us to generate a defect dataset with fewer
false positives than using a defect-related keyword search
(like “bug”, “defect”) which lead to a better performance of
defect prediction models [63, 91].

Identifying defective lines: To identify defective lines,
we first examine the diff (a.k.a. code changes) made by
bug-fixing commits. We use the implementation of PyDriller
package to extract such information from Git reposito-
ries [72]. Similar to prior work [64, 67], the lines that were
modified by bug-fixing commits are identified as defective
lines. We only consider the modified lines that appear in the
source files at the studied release. Other lines that are not
impacted by the bug-fixing commits are identified as clean
lines. Similar to Yatish et al. [91], we also identify the files
that are impacted by the bug-fixing commits as defective files,
otherwise clean.

6.3 Baseline Approaches

In this work, we compare our LINE-DP against six ap-
proaches, i.e., random guessing, two static analysis tools,
an NLP-based approach, and two traditional model inter-
pretation (TMI) based approaches. We describe the baseline
approaches below.

Random Guessing. Random guessing has been used
as a baseline in prior work [64, 67]. To randomly select
defect-prone lines, we first use the file-level defect model to
identify defect-prone files. Then, instead of using LIME to
compute a LIME score, we assign a random score ranging
from -1 to 1 to each token in those defect-prone files. The
tokens with a random score greater than zero are identified
as risky tokens. Finally, the line is identified as defect-prone
lines if it contains at least one of the top-20 risky tokens
based on the random scores. We then rank defect-prone lines
randomly similar to prior work [67].

Static Analysis. Prior work shows that a static analysis
tool can be used to identify defect-prone lines [25, 42, 47,
64, 66, 67]. Habib and Pradel [25] found that static bug
detectors are certainly worthwhile to detect real-world bugs.
Hence, we use two static analysis tools, i.e., PMD [12] and
ErrorProne [2] as our baseline approaches.

PMD: We use PMD [12] which is often used in previous
research [42, 47, 64, 66, 67]. We did not use FINDBUGS since
prior studies [66, 67] show that the performance of PMD

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3023177, IEEE

Transactions on Software Engineering

8

TABLE 1: An overview of the studied systems.

System Description #Files #LOC #Code Tokens %Defective Files Studied Releases
ActiveMQ Messaging and Integration Patterns 1,884-3,420 142k-299k 141k-293k 2%-7% 5.0.0, 5.1.0, 5.2.0, 5.3.0, 5.8.0
Camel Enterprise Integration Framework 1,515-8,846 75k-485k 94k-621k 2%-8% 1.4.0, 2.9.0, 2.10.0, 2.11.0
Derby Relational Database 1,963-2,705 412k-533k 251k-329k 6%-28% 10.2.1.6, 10.3.1.4, 10.5.1.1
Groovy Java-syntax-compatible OOP 757-884 74k-93k 58k-68k 2%-4% 1.5.7, 1.6.0.Beta 1, 1.6.0.Beta 2
HBase Distributed Scalable Data Store 1,059-1,834 246k-537k 149k-257k 7%-11% 0.94.0, 0.95.0, 0.95.2
Hive Data Warehouse System for Hadoop 1,416-2,662 290k-567k 147k-301k 6%-19% 0.9.0, 0.10.0, 0.12.0
JRuby Ruby Programming Lang for JVM 731-1,614 106k-240k 72k-165k 2%-13% 1.1, 1.4, 1.5, 1.7
Lucene Text Search Engine Library 805-2,806 101k-342k 76k-282k 2%-8% 2.3.0, 2.9.0, 3.0.0, 3.1.0
Wicket Web Application Framework 1,672-2,578 106k-165k 93k-147k 2%-16% 1.3.0.beta1, 1.3.0.beta2, 1.5.3

and FINDBUGS are comparable. PMD is a static analysis tool
that identifies common errors based on a set of predefined
rules with proven properties. Given a source code file, PMD
checks if source code violates the rules and reports warnings
which indicate the violated rules, priority, and the corre-
sponding lines in that file. Similar to prior work [66, 67],
we identify the lines reported in the warnings as defect-prone
lines. We rank the defect-prone lines based on the priority
of the warnings where a priority of 1 indicates the highest
priority and 4 indicates the lowest priority.

ErrorProne (EP): Recently, major companies, e.g.,
Google, use ErrorProne to identify defect-prone lines [2].
ErrorProne is a static analysis tool that builds on top of a
primary Java compiler (javac) to check errors in source code
based on a set of error-prone rules. ErrorProne checks if a
given source code file is matched error-prone rules using all
type attribution and symbol information extracted by the
compiler. The report of ErrorProne includes the matched
error-prone rules, suggestion messages, and the correspond-
ing lines in the file. In this experiment, we identify the
corresponding lines reported by ErrorProne as defect-prone
lines. Since ErrorProne does not provide priority of the
reported errors like PMD, we rank the defect-prone lines
based on the line number in the file. This mimics a top-
down reading approach, i.e., developers sequentially read
source code from the first to last lines of the files.

NLP-based Approach. Ray et al. [67] have shown that
entropy estimated by n-gram models can be used to rank
defect-prone files and lines. Hence, we compute entropy for
each code token in source code files based on the probability
estimated by n-gram models. In this work, we use an imple-
mentation of Hellendoorn and Devanbu [31] to build cache-
based language models, i.e., an enhanced n-gram model that
is suitable for source code. We use a standard n-gram order
of 6 with the Jelinek-Mercer smoothing function as prior
work demonstrates that this configuration works well for
source code [31]. Once we compute entropy for all code
tokens, we compute average entropy for each line. The
lines that have average entropy greater than a threshold
are identified as defect-prone lines. In this experiment, the
entropy threshold is 0.7 and 0.6 for the within-release and
cross-release validation settings, respectively.6 Finally, we
rank defect-prone lines based on their average entropy.

Traditional Model Interpretation (TMI)-based Ap-
proach. TMI techniques can be used to identify the impor-
tant features in the defect models [8]. However, the TMI
techniques will provide only one set of important features

6. The sensitivity analysis and its results are described in Appendix
(Section 10.4).

for all files of interest, e.g., testing files (see Figure 3). Nev-
ertheless, ones might use TMI techniques to identify defect-
prone lines like our LINE-DP approach. Hence, we build
TMI-based approaches using two classifcation techniques:
Logistic Regression (TMI-LR) and Random Forest (TMI-RF)
as our baseline approaches.

TMI-LR: To identify defect-prone lines using the TMI-
based approach with Logistic Regression (LR), we examine
standardized coefficients in our logistic regression models.
Unlike the simple coefficients, the standardized coefficients
can be used to indicate the contribution that a feature
made to the models regardless the unit of measurement,
which allows us to compare the contribution among the
features [52]. The larger the positive coefficient that the
feature has, the larger the contribution that the feature made
to the model. To examine standardized coefficients, we use
the StandardScalar function of the Scikit-Learn Python
library to standardize the token features. Then, we use the
coefficient values of the standardized token features in the
logistic regression models to identify risky tokens. More
specifically, the tokens with a positive coefficient are identi-
fied as risky tokens. Then, for the testing files, we identify
the lines as defect-prone lines when those lines contain at
least one of the top-20 risky tokens based on the coefficient
values. Finally, we rank the defect-prone lines based on the
number of the top-20 risky tokens that appear in the defect-
prone lines similar to our LINE-DP approach.

TMI-RF: To identify defect-prone lines using the TMI-
based approach with Random Forest (RF), we examine
feature importance in the model, i.e., the contribution of
features to the decision making in the model. The larger
the contribution that a feature (i.e., a token) made to the
model, the more important the feature is. To do so, we
use the feature_importances_ function of the Scikit-
Learn Python library which is the impurity-based feature
importance measurement. We identify defect-prone lines
based on the feature importance values of the tokens. In
this experiment, the top-20 important token features are
identified as risky tokens. Then, for the testing files, the lines
are identified as defect-prone lines if they contain at least one
of the top-20 important token features. Similar to our LINE-
DP approach, we rank the defect-prone lines based on the
number of the top-20 important token features that appear
in the defect-prone lines.

6.4 Evaluation Measures

To evaluate the approaches, we use five performance mea-
sures preferred by practitioners [87], i.e., recall, false alarm
rate, a combination of recall and false alarm rate, initial

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3023177, IEEE

Transactions on Software Engineering

9

false alarm, and Top k%LOC Recall.7 In addition, we use
Matthews Correlation Coefficients (MCC) to evaluate the
overall predictive accuracy which is suitable for the unbal-
anced data like our line-level defect datasets [8, 71]. Below,
we describe each of our performance measures.

Recall. Recall measures the proportion between the
number of lines that are correctly identified as defective and
the number of actual defective lines. More specifically, we
compute recall using a calculation of TP

(TP+FN) , where TP

is the number of actual defective lines that are predicted as
defective and FN is the number of actual defective lines
that are predicted as clean. A high recall value indicates that
the approach can identify more defective lines.

False alarm rate (FAR). FAR measures a proportion be-
tween the number of clean lines that are identified as defec-
tive and the number of actual clean lines. More specifically,
we measure FAR using a calculation of FP

(FP+TN) , where

FP is the number of actual clean lines that are predicted
as defective and TN is the number of actual clean lines
that are predicted as clean. The lower the FAR value is, the
fewer the clean lines that are identified as defective. In other
words, a low FAR value indicates that developers spend
less effort when inspecting defect-prone lines identified by
the an approach.

A combination of recall and FAR. In this work, we
use Distance-to-heaven (d2h) of Agrawal and Menzies [4]
to combine the recall and FAR values. D2h is the root
mean square of the recall and false alarm values (i.e.,
√

(1−Recall)2+(0−FAR)2

2) [3, 4]. A d2h value of 0 indicates
that an approach achieves a perfect identification, i.e., an
approach can identify all defective lines (Recall = 1) without
any false positives (FAR = 0). A high d2h value indicates
that the performance of an approach is far from perfect, e.g.,
achieving a high recall value but also have high a FAR value
and vice versa.

Top k%LOC Recall. Top k%LOC recall measures how
many actual defective lines found given a fixed amount
of effort, i.e., the top k% of lines ranked by their defect-
proneness [34]. A high value of top k%LOC recall indicates
that an approach can rank many actual defective lines at
the top and many actual defective lines can be found given
a fixed amount of effort. On the other hand, a low value
of top k% LOC recall indicates many clean lines are in the
top k% LOC and developers need to spend more effort to
identify defective lines. Similar to prior work [43, 53, 64, 67],
we use 20% of LOC as a fixed cutoff for an effort.

Initial False Alarm (IFA). IFA measures the number of
clean lines on which developers spend SQA effort until
the first defective line is found when lines are ranked
by their defect-proneness [34]. A low IFA value indicates
that few clean lines are ranked at the top, while a high
IFA value indicates that developers will spend unnecessary
effort on clean lines. The intuition behinds this measure is
that developers may stop inspecting if they could not get
promising results (i.e., find defective lines) within the first
few inspected lines [60].

7. Note that we have confirmed with one of the authors of the survey
study [87] that top k%LOC Recall is one of the top-5 measures, not top
k%LOC Precision as reported in the paper.

Matthews Correlation Coefficients (MCC). MCC mea-
sures a correlation coefficients between actual and predicted
outcomes using the following calculation:

TP × TN − FP × FN
√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(1)

An MCC value ranges from -1 to +1, where an MCC value
of 1 indicates a perfect prediction, and -1 indicates total
disagreement between the prediction

6.5 Validation Settings

In this paper, we perform both within-release and cross-
release validation settings. Below, we describe each of our
validation settings.

Within-release setting. To perform within-release val-
idation, we use the stratified 10×10-fold cross validation
technique for each release of the studied systems. To do so,
we first randomly split the dataset of each studied release
into 10 equal-size subsets while maintaining the defective
ratio using the StratifiedShuffleSplit function of
the Scikit-Learn Python library. The stratified k-fold cross
validation tends to produce less bias for estimating the pre-
dictive accuracy of a classification model than the traditional
10-fold cross validation [79]. For each fold of the ten folds,
we use it as a testing dataset and use the remaining nine
folds to train the models (e.g., the file-level defect models,
n-gram models). To ensure that the results are robust, we
repeat this 10-fold cross-validation process 10 times, which
will generate 100 performance values. Finally, we compute
an average of those 100 values to estimate the performance
value of the approach.

Cross-release setting. To mimic a practical usage sce-
nario of defect prediction models to prioritize SQA effort,
we use the cross-release setting by considering a time factor
(i.e., the release date) when evaluating an approach. The
goal of this validation is to evaluate whether an approach
can use the dataset of the past release (k − 1) to identify
defect-prone lines in the current release (k) or not. More
specifically, we use the dataset of release k − 1 to train the
models (e.g., the file-level defect models, n-gram models).
Then, we use the dataset of the release k as a testing
dataset to evaluate the approaches. For example, we build
the models using the dataset of ActiveMQ 5.0.0 and use
the dataset of ActiveMQ 5.1.0 to evaluate the models. We
perform this evaluation for every pair of the consecutive
releases of a studied system. For 32 studied releases shown
in Table 1, we have 23 pairs of consecutive releases for our
cross-release validation.

6.6 Statistical Analysis

We now describe our approaches to analyze the perfor-
mance of our LINE-DP against each baseline approach.

Performance Gain. To determine whether our LINE-
DP is better than the baseline approaches, we compute the
percentage of the performance difference between our LINE-
DP and each of the baseline approaches using the following
calculation:

%PerformanceDiff =

∑

(PerfLINE-DP − Perfbaseline)
∑

Perfbaseline
(2)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3023177, IEEE

Transactions on Software Engineering

10

A positive value of the percentage difference indicates that
the performance of our LINE-DP is greater than the baseline
approaches, while a negative value indicates that the perfor-
mance our LINE-DP is lower than the baseline approaches.

Statistical Test. We use the one-sided Wilcoxon-signed
rank test to confirm the statistical difference. More specifi-
cally, we compare the performance of our LINE-DP against
each baseline approach (i.e., LINE-DP vs Random, LINE-DP
vs PMD). We use a Wilcoxon signed-rank test because it
is a non-parametric statistical test which performs a pair-
wise comparison between two distributions. This allows us
to compare the performance of our LINE-DP against the
baseline approach based on the same release for the within-
release setting (or the same train-test pair for the cross-
release setting). We use the wilcoxsign_test function of
the R coin library. We also measure the effect size (r) i.e., the
magnitude of the difference between two distributions using
a calculation of r = Z√

n
where Z is a statistic Z-score from

the Wilcoxon signed-rank test and n is the total number of
samples [83]. The effect size r > 0.5 is considered as large,
0.3 < r ≤ 0.5 is medium, and 0.1 < r ≤ 0.3 is small,
otherwise negligible [18]. We did not use the commonly-
used Cohen’s D [11] and Cliff’s δ [51] to measure the effect
size because both methods are not based on the assumption
that the data is pairwise.

7 EVALUATION RESULTS

In this section, we present the approach and results for each
of our research questions.

(RQ1) How effective is our LINE-DP to identify defective

lines?

Motivation. Our preliminary analysis shows that only 1%-
3% of lines in a source code file are defective (see Section
3), suggesting that developers could waste a relatively large
amount of their effort on inspecting clean lines. Prior work
also argues that it may not be practical when predicting
defects at the coarse-grained level even if the defect models
achieve high accuracy than fine-grained granularity level
of predictions [28]. Thus, a defect prediction model that
identifies defect-prone lines (i.e., lines that are likely to be
defective after release) would be beneficial to an SQA team
to focus on the defect-prone lines. Hence, in this RQ, we
set out to investigate how well our LINE-DP can identify
defective lines.

Approach. To answer our RQ1, we use our LINE-DP and
six baseline approaches (see Section 6.3) to predict defective
lines in the given testing files. We evaluate our LINE-DP
and the baseline approaches using the within-release and
cross-release validation settings. To measure the predictive
accuracy, We use Recall, False Alarm Rate (FAR), Distance-
2-heaven (d2h), and the Matthews Correlation Coefficients
(MCC) (see Section 6.4). We did not specifically evaluate the
precision of the approaches because the main goal of this
work is not to identify exact defective lines, but instead to
help developers reduce the SQA effort by scoping down
the lines that require SQA. Moreover, focusing on maxi-
mizing precision values would leave many defective lines
unattended from SQA activities.

Finally, we perform a statistical analysis to compare
the performance between our LINE-DP and the baseline
approaches (see Section 6.6). More specifically, we use the
one-sided Wilcoxon signed-rank test to confirm whether the
recall and MCC values of our LINE-DP are significantly
higher than the baseline approaches; and whether the FAR
and d2h values of our LINE-DP are significantly lower than
the baseline approaches.

Results. Figure 7a shows that at the median, our LINE-
DP achieves a recall of 0.61 and 0.62 based on the within-
release and cross-release settings, respectively. This result
indicates that 61% and 62% of actual defective lines in a
studied release can be identified by our LINE-DP. Figure 7b
also shows that our LINE-DP has a FAR of 0.47 (within-
release) and 0.48 (cross-release) at the median values. This
result suggests that when comparing with the traditional
approach of predicting defects at the file level, our LINE-DP
could potentially help developers reduce SQA effort that
will be spent on 52% of clean lines, while 62% of defective
lines will be examined.

Figure 7a shows that our LINE-DP achieves the most
promising results, compared to the six baseline approaches
for both within-release and cross-release settings. Moreover,
Table 2 shows that the recall values of our LINE-DP are
44%-4,871% (within-release) and 18%-6,691% (cross-release)
larger than the recall values of the baseline approaches.
The one-sided Wilcoxon signed-rank tests also confirm the
significance (p-value < 0.01) with a medium to large effect
size.

On the other hand, Figure 7b shows that our LINE-DP
has a FAR value larger than the baseline approaches. Table 2
shows that only the NLP-based approach that has a FAR
value 15% larger than our LINE-DP for the cross-release
setting. The lower FAR values of the baseline approaches
because of the lower number of lines that are predicted as
defective. Indeed, at the median, 0 - 77 of lines in a file are
predicted as defective by the baseline approaches, while 90
- 92 of the lines are predicted as defective by our LINE-DP.
Intuitively, the fewer the predicted lines are, the less likely
that the technique will give a false prediction. Yet, many
defective lines are still missed by the baseline approaches
according to the recall values which are significantly lower
than our LINE-DP. Hence, the performance measures (e.g.,
distance-to-heaven) that concern both aspects should be
used to compare the studied approaches.

Figure 7c shows that, at the median, our LINE-DP
achieves a median d2h value of 0.44 (within-release) and
0.43 (cross-release), while the baseline approaches achieve
a median d2h value of 0.52 to 0.70. Table 2 shows that
our LINE-DP have the d2h values 16%-37% (within-release)
and 15%-37% lower than the baseline approaches. The one-
sided Wilcoxon-signed rank tests also confirm the statistical
significance (p-value < 0.001) with a large effect size. These
results indicate that when considering both the ability of
identifying defective lines (i.e., recall) and the additional
costs (i.e., FAR), our LINE-DP outperforms the baseline
approaches.

Table 2 also shows that our LINE-DP also achieves MCC
significantly better than the baseline approaches. The one-
sided Wilcoxon-signed rank tests also confirm the statistical
significance (p-value < 0.001) with a medium to large ef-

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3023177, IEEE

Transactions on Software Engineering

11

0.00

0.25

0.50

0.75

Within−release Cross−release

R
e

c
a

ll
Line−DP
Random

NLP
PMD

EP
TMI−LR

TMI−RF

(a) Recall

0.0

0.2

0.4

0.6

Within−release Cross−release

F
a

ls
e

 A
la

rm
 R

a
te

 (
F
A

R
)

Line−DP
Random

NLP
PMD

EP
TMI−LR

TMI−RF

(b) False Alarm

0.3

0.4

0.5

0.6

0.7

Within−release Cross−release

D
is

ta
n

c
e

 t
o

 H
e

a
ve

n
 (

d
2

h
)

Line−DP
Random

NLP
PMD

EP
TMI−LR

TMI−RF

(c) Distance-to-Heaven

−0.1

0.0

0.1

0.2

Within−release Cross−release

M
a
tt
h
e
w

s
 C

o
rr

e
la

ti
o
n
 C

o
e
ff
ic

ie
n
t(

M
C

C
)

Line−DP
Random

NLP
PMD

EP
TMI−LR

TMI−RF

(d) Matthews Correlation Coef-
ficients

Fig. 7: Distributions of Recall, FAR, D2H, and MCC values of our LINE-DP and the baseline approaches.

TABLE 2: A comparative summary of the predictive accuracy between our LINE-DP and the baseline approaches. The bold
text indicates that our LINE-DP is better than the baseline approaches.

Within-release validation
LINE-DP vs Recall ր FAR ց d2h ց MCC ր

Baseline %Diff Eff. Size (r) %Diff Eff. Size (r) %Diff Eff. Size (r) %Diff Eff. Size (r)
Random 260% L∗∗∗ 298% ◦ -26% L∗∗∗ 91% M∗∗

PMD 4,871% L∗∗∗ 4,712% ◦ -37% L∗∗∗ 1,411% M∗∗∗

EP 240% L∗∗∗ 250% ◦ -25% L∗∗∗ 264% M∗∗∗

NLP 44% M∗∗∗ 4% ◦ -16% L∗∗∗ 484% L∗∗∗

TMI-LR 1,225% L∗∗∗ 4,112% ◦ -35% L∗∗∗ -9% ◦
TMI-RF 180% L∗∗∗ 173% ◦ -23% L∗∗∗ 80% M∗∗∗

Cross-release validation
LINE-DP vs Recall ր FAR ց d2h ց MCC ր

Baseline %Diff Eff. Size (r) %Diff Eff. Size (r) %Diff Eff. Size (r) %Diff Eff. Size (r)
Random 243% L∗∗∗ 303% ◦ -25% L∗∗∗ 72% M∗∗

PMD 6,691% L∗∗∗ 5,159% ◦ -37% L∗∗∗ 2,754% L∗∗∗

EP 226% L∗∗∗ 254% ◦ -25% L∗∗∗ 149% M∗∗

NLP 18% M∗∗ -12% L∗∗∗ -15% L∗∗∗ 914% L∗∗∗

TMI-LR 5,079% L∗∗∗ 5,966% ◦ -37% L∗∗∗ 639% L∗∗∗

TMI-RF 190% L∗∗∗ 163% ◦ -24% L∗∗∗ 308% M∗∗∗

Effect Size: Large (L) r > 0.5, Medium (M) 0.3 < r ≤ 0.5, Small (S) 0.1 < r ≤ 0.3, Negligible (N) r < 0.1

Statistical Significance: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, ◦p ≥ 0.05

fect size. Figure 7d shows that at the median, our LINE-
DP achieves an MCC value of 0.05 (within-release) and
0.04 (cross-release), while the baseline approaches achieve
an MCC value of -0.01 - 0.02 (within-release) and -0.01 -
0.03 (cross-release). These results suggest that our LINE-
DP achieves a better predictive accuracy than the baseline
approaches.

Nevertheless, our LINE-DP still achieves a relatively low
MCC value. This is because our LINE-DP still produces
high false positives, i.e., many clean lines are predicted as
defective. Given a very small proportion of defective lines
(i.e., only 1% - 3%) in a file, it is challenging to identify
exact defective lines without any false positives. Moreover,
the main goal of this work is not to identify exact defective
lines, but instead to help developers reduce the SQA effort
by scoping down the lines that require SQA. Then, focusing
on minimizing false positives may leave many defective
lines unattended from SQA activities. Considering the d2h
value, we believe that our LINE-DP is still of value to
practitioners (i.e., achieving a relatively high recall given
the false positives that the approach produced).

(RQ2) How well can our LINE-DP rank defective lines?

Motivation. One of the key benefits of defect prediction is
to help developers perform a cost-effective SQA activity by

priortizing defect-prone files in order to uncover maximal
defects with minimal effort [28, 43, 53, 61]. In other words,
an effective prioritization should rank defective lines to the
top in order to help developers find more defects given the
limited amount of effort. Thus, we set out to investigate
the ranking performance of LINE-DP. More specifically, we
evaluate how many defective lines can be identified given
the fixed amount of effort (i.e., Top k%LOC Recall) and how
many clean lines (i.e., false positives) will be unnecessarily
examined before the first defective line is found (i.e., Initial
False Alarm). The intuition behinds is that developers may
stop following a prediction if they could not get promising
results (i.e., find defective lines) given a specific amount of
effort or within the first few inspected lines [60].

Approach. To answer our RQ2, we rank the defect-
prone lines based on our approach (see Section 5.2) and
the baseline approaches (see Section 6.3). To evaluate the
ranking performance, we use top k%LOC recall and Ini-
tial False Alarm (IFA) (see Section 6.4). Top k%LOC recall
measures the proportion of defective lines that can be iden-
tified given a fixed amount of k% of lines. Similar to prior
work [43, 53, 64, 67], we use 20% of LOC as a fixed cutoff
for an effort. IFA counts how many clean lines are inspected
until the first defective line is found when inspecting the
lines ranked by the approaches. We evaluate the ranking

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3023177, IEEE

Transactions on Software Engineering

12

TABLE 3: A comparative summary of the ranking perfor-
mance between our LINE-DP and the baseline approaches.
The bold text indicates that our LINE-DP is better than the
baseline approaches.

Within-release validation
LINE-DP vs. Recall@Top20% ր IFA ց

Baseline %Diff Eff. Size (r) %Diff Eff. Size (r)
Random 53% M∗∗∗ -23% ◦

PMD 46% M∗∗∗ -55% M∗∗∗

EP 18% S∗ -50% M∗∗∗

NLP 91% M∗∗∗ -94% L∗∗∗

TMI-LR 22% M∗∗ -43% ◦
TMI-RF 11% S∗ -70% M∗∗∗

Cross-release validation
LINE-DP vs. Recall@Top20% ր IFA ց

Baseline %Diff Eff. Size (r) %Diff Eff. Size (r)
Random 42% L∗∗∗ -51% M∗

PMD 22% M∗ -82% L∗∗∗

EP 17% M∗ -78% L∗∗∗

NLP 68% M∗∗∗ -99% L∗∗∗

TMI-LR 19% M∗ -29% ◦
TMI-RF 17% M∗ -89% M∗∗∗

Effect Size: Large (L) r > 0.5, Medium (M) 0.3 < r ≤ 0.5,

Small (S) 0.1 < r ≤ 0.3, Negligible (N) r < 0.1

Statistical Significance: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, ◦p ≥ 0.05

0.00

0.25

0.50

0.75

Within−release Cross−release

R
e

c
a

ll_
2

0

Line−DP
Random

NLP
PMD

EP
TMI−LR

TMI−RF

(a) Recall@Top20%LOC

0

100

200

300

400

500

Within−release Cross−release

In
it
ia

l
F

a
ls

e
 A

la
rm

Line−DP
Random

NLP
PMD

EP
TMI−LR

TMI−RF

(b) Initial False Alarm

Fig. 8: Distributions of Initial False Alarm values and a
proportion of defective lines found at the fixed effort (i.e.,
20% of lines) of our LINE-DP and the baseline approaches.

performance based on both within-release and cross-release
settings. Similar to RQ1, we use the one-sided Wilcoxon
signed-rank test to confirm whether the top 20%LOC recall
values of our LINE-DP are significantly higher than the
baseline approaches; and whether the IFA values of LINE-
DP are significantly lower than the baseline approaches.

Results. Figure 8a shows that, at the median, our LINE-
DP achieves a recall of 0.27 (within-release) and 0.26 (cross-
release) if top 20% of the total lines are examined. On the
other hands, the baseline approaches achieve a lower top
20%LOC recall with a median of 0.17 - 0.22. Table 3 shows
that the top 20%LOC recall values of our LINE-DP are
22% - 91% (within-release) and 19% - 68% (cross-release)
larger than those of the baseline approaches. The one-sided
Wilcoxon-signed rank tests also confirm the statistical signif-
icance (p-value < 0.05) with a medium to large effect size.
These results suggest that our LINE-DP can rank defective
lines better than the baseline approaches.

Figure 8b shows that at the median, our LINE-DP has
a median IFA value of 16 (within-release) and 9 (cross-
release), while the baseline approaches have a median IFA
value of 10 - 517 (within-release) and 26 - 403 (cross-release).

0 5 10 15 20 25

LINE-DP

PMD

EP

NLP

TMI-LR

TMI-RF

10.68

7.63

3.44

26.85

0.89

11.15

Computational time (seconds)

(a) With-release setting

0 2 4 6 8 10 12 14

LINE-DP

PMD

EP

NLP

TMI-LR

TMI-RF

8.46

5.74

2.16

13.39

0.9

6.29

Computational time (seconds)

Model construction time Defect-prone lines identification time

(b) Cross-release setting

Fig. 9: The average computation time (seconds) of our
approach and baseline approaches.

Table 3 also shows that the IFA values of our LINE-DP
are 23%-94% (within-release) and 29%-99% smaller than the
baseline approaches. The one-sided Wilcoxon-signed rank
tests confirm the statistical significance (p-value < 0.05) with
a medium to large effect size for our LINE-DP against Static
Analysis and NLP-based approaches. These results suggest
that when using our LINE-DP, fewer clean lines will be
inspected to find the first defective line.

(RQ3) How much computation time is required to predict

defective lines?

Motivation. Fisher et al. [19] raise a concern that the in-
creased complexity of data analytics may incur additional
computation cost of building defect prediction models. Yet,
many practitioners [19] still prefer simple and fast solutions,
but accurate. Thus, we set out to investigate the compu-
tational cost of identifying defective lines of our LINE-DP
when compared to other approaches.

Approach. To address RQ3, we measure the computa-
tion time of the model construction and the identification
of defect-prone lines for each approach. We measure the
computation time for both within-release and cross-release
settings. For the within-release setting, we measure an av-
erage computation time for 10×10-folds of all 32 studied
releases. Similarly, we measure an average computation
time for 23 pairs of the consecutive releases for the cross-
release validation setting. The computational time is based
on a standard computing machine with an Intel Core i9
2.3GHz and 16GB of RAM. Then, we report the statistical
summary of the distribution of the computation time of each
step for all studied defect datasets.

Results. Figure 9 presents the average computation time
for the model construction and the identification of defect-

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3023177, IEEE

Transactions on Software Engineering

13

prone lines for a given test file. The results show that
the average computation time for our LINE-DP is 10.68
and 8.46 seconds for the within-release and cross-release
settings, respectively. Figure 9 also shows that the NLP-
based approach takes the computation times 251% (26.8510.68)
and 158% (13.398.46) longer than our LINE-DP, indicating that
our LINE-DP makes a line-level prediction faster than the
NLP-based approach. Although Figure 9 shows the static
analysis tools (i.e., PMD and ErrorProne) and the TMI-
based approaches take shorter time than our LINE-DP, the
additional computational time of our LINE-DP should still
be manageable when considering the predictive accuracy of
defective lines.

(RQ4) What kind of defects can be identified by our LINE-

DP?

Motivation. The key motivation of RQ4 is to qualitatively
analyze the types of defects that our LINE-DP can identify.
This analysis will provide a better understanding of the
cases for which our LINE-DP can predict defective lines.
Hence, we set out to examine the defective lines that our
LINE-DP can and cannot identify.

Approach. We first identify a defective code block, i.e.,
consecutive lines that are impacted by bug-fixing commits.
We examine a code block because it provides a clearer
context and more information than a single defective line.
Then, we examine the hit defective blocks, i.e., the code
blocks of which all the defective lines can be identified by
our LINE-DP; and the missed defective blocks, i.e., the code
blocks of which none of the defective lines can be identified
by our LINE-DP.

In this RQ, we conduct a manual categorization based on
the cross-release setting because this setting mimics a more
realistic scenario than the within-release setting. We obtain
6,213 hit blocks and 5,024 missed blocks from the dataset
of 23 consecutive pairs across nine studied systems. Since
the number of studied code blocks is too large to manually
examine in its entirety, we randomly select a statistically
representative sample of 362 hit blocks and 357 missed
blocks for our analysis. These sample sizes should allow us
to generalize the conclusion about the ratio of defect types
to all studied code blocks with a confidence level of 95% and
a confidence interval of 5%.8

We categorize a defect type for the sampled code blocks
based on how the defect was fixed in the bug-fixing com-
mits. We use a taxonomy of Chen et al. [10] which is
summarized in Table 4. To ensure a consistent understand-
ing of the taxonomy, the first four authors of this paper
independently categorize defect types for the 30 hit and
30 missed defective blocks. Then, we calculate the inter-
rater agreement between the categorization results of the
four coders using Cohen’s kappa. The kappa agreements
are 0.86 and 0.81 for the hit and missed blocks, respectively,
indicating that the agreement of our manual categorization
is “almost perfect” [86]. Finally, the first author of this paper
manually categorized the remaining blocks in the samples.

Results. Table 5 shows the proportion of defect types
for the defective code blocks that can be identified by

8. https://www.surveysystem.com/sscalc.htm

TABLE 4: A brief description of defect types.

Type Description
Call change Defective lines are fixed by modifying calls

to method.
Chain change The chaining methods in the defective

lines are changed, added, or deleted.
Argument change An argument of a method call in the defec-

tive lines are changed, added, or deleted.
Target change A target that calls a method is changed in

the defective lines.
Condition change A condition statement in the defective

lines is changed.
Java keyword change A Java keyword in the defective lines is

changed, added, and deleted.
Change from field to
method call

A field assessing statement in the defective
lines is changed to a method call state-
ment.

Off-by-one A classical off-by-one error in the defective
lines.

TABLE 5: Defect types in our samples.

Defect type Hit Miss
Argument change 116 (32%) 70 (20%)
Condition change 64 (18%) 13 (3%)
Call change 16 (4%) 46 (13%)
Java keyword change 16 (4%) 12 (3%)
Target change 13 (4%) 36 (10%)
Chain change 5 (1%) 2 (1%)
Others 132 (37%) 178 (50%)
Sum 362 (100%) 357 (100%)

our LINE-DP (i.e., hit defective blocks) and that cannot be
identified by our LINE-DP (i.e., missed defective blocks).
The result shows that the majority types of defects for the hit
defective blocks are argument change (32%) and condition
change (18%), which account for 50% of the sampled data.
Furthermore, Table 5 shows that 63% of the hit defective
blocks can be categorized into the common defect types,
while the remaining 37% of them are categorized as others.
These results indicate that our LINE-DP can predict defect-
prone lines that contain common defects.

On the other hand, Table 5 shows that the call changes
and the target changes appear in the missed defective blocks
more frequent than the hit defective blocks. Nevertheless,
we observe that the defects in the missed defective blocks
require a more complex bug fixing approach than the hit
defective blocks. Table 5 also shows that 50% of the missed
defective blocks cannot be identified in the common de-
fect types. These results suggest that while our LINE-DP
can identify the common defects (especially the argument
changes and the condition changes), our LINE-DP may miss
defects related to call changes, target changes, and other
complex defects.

Furthermore, we observe that code tokens that fre-
quently appear in defective files tend to be in the defective
lines that will be fixed after the release. This is consis-
tent with our intuition that code tokens that frequently
appeared in defective files in the past may also appear
in the lines that will be fixed after release. For example,
“runtime.getErr().print(msg);” is a defective line
where “runtime” is identified as a risky token by our
LINE-DP. We observe that 90% of defective files (3033) in
the training dataset contain “runtime” token. Moreover,
“runtime” is one of the 10 most frequent tokens in defec-

https://www.surveysystem.com/sscalc.htm

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3023177, IEEE

Transactions on Software Engineering

14

tive files in the training dataset. Another example is that
two out of three files that contain the “filterConfig”
token are defective files in our training dataset. Then,
our LINE-DP identifies “filterConfig” as a risky token
for “super.init(filterConfig)” which was eventu-
ally fixed after the release. We provide examples of hit
and missed defective blocks and their risky tokens for each
defect type in Appendix (Section 10.5).

8 DISCUSSION

In this section, we discuss the limitation of our approach
and possible threats to the validity of this study.

8.1 Limitation

The limitation of our LINE-DP is summarized as follow.
Our LINE-DP will produce many false positive pre-

dictions when common tokens become risky tokens. Our
RQ2 shows that our LINE-DP has a false alarm rate (FAR)
value larger than the baseline approaches. We observe that
our LINE-DP will produce many false positive predictions
when the common tokens (e.g., Java keywords or a generic
identifier) are identified as risky tokens. This work opts
to use a simple approach to select risky tokens, i.e., using
top-k tokens based on a LIME score where k is selected
based on the distance-to-heaven value. Future work should
investigate an alternative approach to identify risky tokens,
while lessening the interference of the common keywords.

Nevertheless, when considering all of the evaluation
aspects other than false positives (i.e., recall, false alarm
rate, d2h, the Top20%LOC Recall, Initial False Alarm), the
empirical results show that LINE-DP significantly outper-
forms the state-of-the-art techniques that predict defective
lines (i.e., NLP, ErrorProne, PMD). More specifically, our
RQ1 shows that our LINE-DP achieves a more optimal
predictive accuracy (i.e., a high recall with a reasonable
number of false positives) than other techniques which not
only produce few false positives but also achieve a low
recall value. Our RQ2 shows that given the same amount
of effort (20% of LOC), our LINE-DP can identify more
defective lines (i.e., Top20%LOC recall) than these state-
of-the-art techniques. Our RQ3 shows that our LINE-DP
requires additional computation time of 3 seconds (8.46s
- 5.74s) and 6 seconds (8.46s - 2.16s) compared to PMD
and ErrorProne, respectively (see Figure 9b). These results
suggest that based on the same amount of SQA effort, our
LINE-DP can help developers identify more defective lines
than the state-of-the-art techniques with small additional
computation time. Thus, these findings highlight that our
LINE-DP is a significant advancement for the development
of line-level defect prediction in order to help practition-
ers prioritize the limited SQA resources in the most cost-
effective manner.

Our LINE-DP depends on the performance of the file-
level defect prediction model. The results of RQ2 and RQ3
are based on the file-level defect prediction models using the
Logistic Regression technique. It is possible that our LINE-
DP will miss defective lines if the file-level defect model
misses defective files. In other words, the more accurate the
file-level defect model is, the better the performance of our

LINE-DP. Hence, improving the file-level defect model, e.g.,
optimizing the parameters [80] or using the advanced tech-
niques (e.g., embedding techniques [62]), would improve
the performance of our LINE-DP.

Recent studies have shown that deep learning and em-
bedding techniques can improve the predictive accuracy
of file-level defect models [6, 15, 62, 92]. However, the
important features of the embedded source code identified
by a model-agnostic technique cannot be directly mapped
to the risky tokens. Hence, future work should investigate
deep learning techniques to build accurate file-level models
and/or techniques to utilize the embedded source code to
identify risky tokens.

Our LINE-DP cannot identify defective lines that in-
clude only rare code tokens. During our manual catego-
rization of RQ5, we observe that the defective lines that our
LINE-DP has missed sometimes contain only tokens that
rarely appear in the training dataset. This work uses a vector
of token frequency as a feature vector to train the file-level
model. Hence, future work should investigate an approach
that can weight the important keywords that rarely appear
in order to improve the predictive accuracy of our LINE-DP.

8.2 Threats to Validity

We now discuss possible threats to the validity of our
empirical evaluation.

Construct Validity. It is possible that some defective
lines are identified as clean when we construct the line-level
defect datasets. In this work, we identify that bug-fixing
commits are those commits that contain an ID of a bug
report in the issue tracking system. However, some bug-
fixing commits may not record such an ID of a bug report in
the commit message. To ensure the quality of the dataset, we
followed an approach suggested by prior work [13, 91], i.e.,
focusing on the issues that are reported after a studied re-
lease; labelled as bugs; affected only the studied release; and
already closed or fixed. Nevertheless, additional approaches
that improve the quality of the dataset (e.g., recovering
missing defective lines) may further improve the accuracy
of our results.

The chronological order of the data may impact the
results of prediction models in the context of software
vulnerability [41]. To address this concern, we use the defect
datasets where defective files are labelled based on the
affected version in the issue tracking system, instead of
relying the assumption of a 6-month post-release window.
In addition, we also perform an evaluation based on the
cross-release setting which considers a time factor, i.e., using
the past release (k − 1) to predict defects in the current
release (k).

Internal Validity. The defect categorization of the qual-
itative analysis was mainly conducted by the first author.
The result of manual categorization might be different when
perform by others. To mitigate this threat, a subset of
defect categorization results are verified by the other three
authors of this paper. The level of agreement among the
four coders is 0.86 and 0.81 for a subset of hit and missed
defective blocks, respectively, indicating a perfect inter-rater
agreement [86].

External Validation. The results of our experiment are
limited to the 32 releases of nine studied software systems.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3023177, IEEE

Transactions on Software Engineering

15

Future studies should experiment with other proprietary
and open-source systems. To foster future replication of our
study, we publish the benchmark line-level datasets.

9 CONCLUSIONS

In this paper, we propose a line-level defect prediction
framework (called LINE-DP) to identify and prioritize de-
fective lines to help developers effectively prioritize SQA
effort. To the best of our knowledge, our work is the first
to use the machine learning-based defect prediction models
to predict defective lines by leveraging a state-of-the-art
model-agnostic technique (called LIME). Through a case
study of 32 releases of 9 software systems, our empirical
results show that:

• Our LINE-DP achieves an overall predictive ac-
curacy significantly better than the baseline ap-
proaches, with a median recall of 0.61 and 0.62 and
a median false alarm of 0.47 and 0.48 for the within-
release and cross-release settings, respectively.

• Given a fixed amount of effort (i.e., the top 20% of
lines that are ranked by our LINE-DP), 26% and
27% of actual defective lines can be identified for
the within-release and cross-release settings, respec-
tively. On the other hand, only 17% - 22% of actual
defective lines can be identified when ranking by the
baseline approaches. Furthermore, fewer clean lines
(false positives) will be examined to find the first
defective line when ranking by our LINE-DP.

• The average computation time of our LINE-DP
is 10.68 and 8.46 seconds for the within-release
and cross-release settings, respectively. On the other
hand, the baseline approaches take 0.89 to 26.85
seconds to identify defective lines.

• 63% of the defective lines that our LINE-DP can iden-
tify are categorized into the common defect types.
More specifically, the majority defects that can be
identified by our LINE-DP are related to argument
change (32%) and condition change (18%).

The results show that our LINE-DP can effectively iden-
tify defective lines that contain common defects while re-
quiring a smaller amount of SQA effort (in terms of lines of
code) with a manageable computation time. Our work sheds
the light on a novel aspect of leveraging the state-of-the-
art model-agnostic technique (LIME) to identify defective
lines, in addition to being used to explain the prediction of
defective files from defect models [36]. Our framework will
help developers effectively prioritize SQA effort.

ACKNOWLEDGEMENT

C. Tantithamthavorn was partially supported by the Aus-
tralian Research Council’s Discovery Early Career Re-
searcher Award (DECRA) funding scheme (DE200100941)
and a Monash-FIT Early Career Researcher Seed Grant.

REFERENCES

[1] B. Adams and S. McIntosh, “Modern release engineer-
ing in a nutshell–why researchers should care,” in
SANER, 2016, pp. 78–90.

[2] E. Aftandilian, R. Sauciuc, S. Priya, and S. Krishnan,
“Building useful program analysis tools using an ex-
tensible java compiler,” in SCAM, 2012, pp. 14–23.

[3] A. Agrawal, W. Fu, D. Chen, X. Shen, and T. Menzies,
“How to ”dodge” complex software analytics,” TSE,
vol. PP, 2019.

[4] A. Agrawal and T. Menzies, “Is “better data” better
than “better data miners”?: on the benefits of tuning
smote for defect prediction,” in ICSE, 2018, pp. 1050–
1061.

[5] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learn-
ing natural coding conventions,” in FSE, 2014, pp. 281–
293.

[6] ——, “Suggesting accurate method and class names,”
in FSE, 2015, pp. 38–49.

[7] U. Alon, M. Zilberstein, O. Levy, and E. Yahav,
“Code2vec: Learning distributed representations of
code,” PACMPL, vol. 3, 2019.

[8] D. Bowes, T. Hall, M. Harman, Y. Jia, F. Sarro, and
F. Wu, “Mutation-Aware Fault Prediction,” in ISSTA,
2016, pp. 330–341.

[9] L. Breiman, “Random forests,” Machine learning, vol. 45,
no. 1, pp. 5–32, 2001.

[10] Z. Chen, S. J. Kommrusch, M. Tufano, L. Pouchet,
D. Poshyvanyk, and M. Monperrus, “Sequencer:
Sequence-to-sequence learning for end-to-end program
repair,” TSE, 2019.

[11] J. Cohen, Statistical power analysis for the behavioral sci-
ences. Routledge, 2013.

[12] T. Copeland, PMD applied. Centennial Books Arexan-
dria, Va, USA, 2005, vol. 10.

[13] D. A. da Costa, S. McIntosh, W. Shang, U. Kulesza,
R. Coelho, and A. E. Hassan, “A Framework for Eval-
uating the Results of the SZZ Approach for Identifying
Bug-introducing Changes,” TSE, vol. 43, no. 7, pp. 641–
657, 2017.

[14] H. K. Dam, T. Pham, S. W. Ng, T. Tran, J. Grundy,
A. Ghose, T. Kim, and C.-J. Kim, “Lessons learned
from using a deep tree-based model for software defect
prediction in practice,” in MSR, 2019, p. 46–57.

[15] H. K. Dam, T. Tran, T. T. M. Pham, S. W. Ng, J. Grundy,
and A. Ghose, “Automatic feature learning for predict-
ing vulnerable software components,” TSE, 2018.

[16] M. D’Ambros, M. Lanza, and R. Robbes, “An Extensive
Comparison of Bug Prediction Approaches,” in MSR,
2010, pp. 31–41.

[17] E. Engström, P. Runeson, and G. Wikstrand, “An em-
pirical evaluation of regression testing based on fix-
cache recommendations,” in ICST, 2010, pp. 75–78.

[18] A. Field, Discovering statistics using IBM SPSS statistics.
sage, 2013.

[19] D. Fisher, R. DeLine, M. Czerwinski, and S. Drucker,
“Interactions with big data analytics,” Interactions,
vol. 19, no. 3, pp. 50–59, 2012.

[20] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,
J. B. Saxe, and R. Stata, “Extended static checking for
java,” SIGPLAN Notices, vol. 37, no. 5, p. 234–245, 2002.

[21] W. Fu, T. Menzies, and X. Shen, “Tuning for Software
Analytics: Is it really necessary?” IST, vol. 76, pp. 135–
146, 2016.

[22] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3023177, IEEE

Transactions on Software Engineering

16

the Impact of Classification Techniques on the Perfor-
mance of Defect Prediction Models,” in ICSE, 2015, pp.
789–800.

[23] ——, “A Large-scale Study of the Impact of Feature
Selection Techniques on Defect Classification Models,”
in MSR, 2017, pp. 146–157.

[24] G. Gousios, M. Pinzger, and A. v. Deursen, “An Ex-
ploratory Study of the Pull-based Software Develop-
ment Model,” in ICSE, 2014, pp. 345–355.

[25] A. Habib and M. Pradel, “How many of all bugs do we
find? a study of static bug detectors,” in ASE, 2018, pp.
317–328.

[26] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell,
“A Systematic Literature Review on Fault Prediction
Performance in Software Engineering,” TSE, vol. 38,
no. 6, pp. 1276–1304, 2012.

[27] F. E. Harrell Jr, Regression Modeling Strategies : With
Applications to Linear Models, Logistic and Ordinal Regres-
sion, and Survival Analysis. Springer, 2015.

[28] H. Hata, O. Mizuno, and T. Kikuno, “Bug prediction
based on fine-grained module histories,” in ICSE, 2012,
pp. 200–210.

[29] S. Heckman and L. Williams, “On establishing a bench-
mark for evaluating static analysis alert prioritization
and classification techniques,” in ESEM, 2008, pp. 41–
50.

[30] S. S. Heckman, “Adaptively ranking alerts generated
from automated static analysis,” XRDS: Crossroads, The
ACM Magazine for Students, vol. 14, no. 1, p. 7, 2007.

[31] V. J. Hellendoorn and P. Devanbu, “Are deep neural
networks the best choice for modeling source code?” in
FSE, 2017, pp. 763–773.

[32] K. Herzig, “Using pre-release test failures to build early
post-release defect prediction models,” in ISSRE, 2014,
pp. 300–311.

[33] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu,
“On the naturalness of software,” in ICSE, 2012, pp.
837–847.

[34] Q. Huang, X. Xia, and D. Lo, “Supervised vs unsuper-
vised models: A holistic look at effort-aware just-in-
time defect prediction,” in ICSME, 2017, pp. 159–170.

[35] T. Jiang, L. Tan, and S. Kim, “Personalized defect pre-
diction,” in ASE, 2013, pp. 279–289.

[36] J. Jiarpakdee, C. Tantithamthavorn, H. K. Dam, and
J. Grundy, “An empirical study of model-agnostic tech-
niques for defect prediction models,” TSE, 2020.

[37] J. Jiarpakdee, C. Tantithamthavorn, and A. E. Hassan,
“The Impact of Correlated Metrics on Defect Models,”
TSE, 2019.

[38] J. Jiarpakdee, C. Tantithamthavorn, A. Ihara, and
K. Matsumoto, “A Study of Redundant Metrics in
Defect Prediction Datasets,” in ISSREW, 2016, pp. 51–
52.

[39] J. Jiarpakdee, C. Tantithamthavorn, and C. Treude,
“AutoSpearman: Automatically Mitigating Correlated
Software Metrics for Interpreting Defect Models,” in
ICSME, 2018, pp. 92–103.

[40] ——, “The impact of automated feature selection tech-
niques on the interpretation of defect models,” EMSE,
2020.

[41] M. Jimenez, R. Rwemalika, M. Papadakis, F. Sarro,

Y. Le Traon, and M. Harman, “The importance of
accounting for real-world labelling when predicting
software vulnerabilities,” in ESEC/FSE, 2019, pp. 695–
705.

[42] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge,
“Why don’t software developers use static analysis
tools to find bugs?” in ICSE, 2013, pp. 672–681.

[43] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto,
B. Adams, and A. E. Hassan, “Revisiting common
bug prediction findings using effort-aware models,” in
ICSME, 2010, pp. 1–10.

[44] Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto,
and K.-i. Matsumoto, “The effects of over and under
sampling on fault-prone module detection,” in ESEM,
2007, pp. 196–204.

[45] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan,
A. Mockus, A. Sinha, and N. Ubayashi, “A Large-Scale
Empirical Study of Just-In-Time Quality Assurance,”
TSE, vol. 39, no. 6, pp. 757–773, 2013.

[46] M. Kim, J. Nam, J. Yeon, S. Choi, and S. Kim,
“REMI: Defect prediction for efficient API testing,” in
ESEC/FSE, 2015, pp. 990–993.

[47] S. Kim and M. D. Ernst, “Which warnings should i fix
first?” in ESEC/FSE, 2007, pp. 45–54.

[48] T. Kremenek, K. Ashcraft, J. Yang, and D. Engler, “Cor-
relation exploitation in error ranking,” in FSE, 2004, p.
83–93.

[49] T. Kremenek and D. Engler, “Z-ranking: Using statis-
tical analysis to counter the impact of static analysis
approximations,” in Static Analysis, 2003, pp. 295–315.

[50] Lucidchart, Release management process, 2020 (accessed
July 23, 2020), https://www.lucidchart.com/blog/
release-management-process.

[51] G. Macbeth, E. Razumiejczyk, and R. D. Ledesma,
“Cliff’s Delta Calculator: A Non-parametric Effect Size
Program for Two Groups of Observations,” Universitas
Psychologica, vol. 10, pp. 545–555, 2011.

[52] L. Massaron and A. Boschetti, Regression Analysis with
Python. Packt Publishing Ltd, 2016.

[53] T. Mende and R. Koschke, “Effort-aware defect predic-
tion models,” in CSMR, 2010, pp. 107–116.

[54] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald,
“Problems with precision: A response to” comments
on’data mining static code attributes to learn defect
predictors’”,” TSE, vol. 33, no. 9, pp. 637–640, 2007.

[55] T. Menzies, J. Greenwald, and A. Frank, “Data Mining
Static Code Attributes to Learn Defect Predictors,” TSE,
vol. 33, no. 1, pp. 2–13, 2007.

[56] T. Menzies and M. Shepperd, ““bad smells” in software
analytics papers,” IST, vol. 112, pp. 35 – 47, 2019.

[57] N. Nagappan and T. Ball, “Static analysis tools as early
indicators of pre-release defect density,” in ICSE, 2005,
pp. 580–586.

[58] ——, “Use of Relative Code Churn Measures to Predict
System Defect Density,” ICSE, pp. 284–292, 2005.

[59] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig,
and B. Murphy, “Change Bursts as Defect Predictors,”
in ISSRE, 2010, pp. 309–318.

[60] C. Parnin and A. Orso, “Are automated debugging
techniques actually helping programmers?” in ISSTA,
2011, pp. 199–209.

https://www.lucidchart.com/blog/release-management-process
https://www.lucidchart.com/blog/release-management-process

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3023177, IEEE

Transactions on Software Engineering

17

[61] L. Pascarella, F. Palomba, and A. Bacchelli, “Fine-
grained just-in-time defect prediction,” JSS, vol. 150,
pp. 22–36, 2019.

[62] M. Pradel and K. Sen, “Deepbugs: A learning approach
to name-based bug detection,” PACMPL, vol. 2, p. 147,
2018.

[63] F. Rahman and P. Devanbu, “How, and Why, Process
Metrics are Better,” in ICSE, 2013, pp. 432–441.

[64] F. Rahman, S. Khatri, E. T. Barr, and P. Devanbu, “Com-
paring static bug finders and statistical prediction,” in
ICSE, 2014, pp. 424–434.

[65] M. T. Rahman and P. C. Rigby, “Release stabilization
on linux and chrome,” IEEE Software, vol. 32, no. 2, pp.
81–88, 2015.

[66] M. Rahman, D. Palani, and P. C. Rigby, “Natural soft-
ware revisited,” in ICSE, 2019, pp. 37–48.

[67] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli,
and P. Devanbu, “On the Naturalness of Buggy Code,”
in ICSE, 2016, pp. 428–439.

[68] V. Raychev, M. Vechev, and E. Yahav, “Code completion
with statistical language models,” ACM Sigplan Notices,
vol. 49, no. 6, pp. 419–428, 2014.

[69] M. T. Ribeiro, S. Singh, and C. Guestrin, “”why should
I trust you?”: Explaining the predictions of any classi-
fier,” in SIGKDD, 2016, pp. 1135–1144.

[70] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum,
and G. Rothermel, “Predicting accurate and actionable
static analysis warnings: an experimental approach,” in
ICSE, 2008, pp. 341–350.

[71] M. Shepperd, D. Bowes, and T. Hall, “Researcher Bias:
The Use of Machine Learning in Software Defect Pre-
diction,” TSE, vol. 40, no. 6, pp. 603–616, 2014.

[72] D. Spadini, M. Aniche, and A. Bacchelli, “Pydriller:
Python framework for mining software repositories,”
in ESEC/FSE, 2018, pp. 908–911.

[73] C. Tantithamthavorn, “Towards a Better Understand-
ing of the Impact of Experimental Components on
Defect Prediction Modelling,” in ICSE-DS, 2016, pp.
867–870.

[74] C. Tantithamthavorn and A. E. Hassan, “An Experience
Report on Defect Modelling in Practice: Pitfalls and
Challenges,” in ICSE-SEIP, 2018, pp. 286–295.

[75] C. Tantithamthavorn, A. E. Hassan, and K. Matsumoto,
“The Impact of Class Rebalancing Techniques on The
Performance and Interpretation of Defect Prediction
Models,” TSE, 2019.

[76] C. Tantithamthavorn, S. McIntosh, A. E. Hassan,
A. Ihara, and K. Matsumoto, “The Impact of Misla-
belling on the Performance and Interpretation of Defect
Prediction Models,” in ICSE, 2015, pp. 812–823.

[77] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and
K. Matsumoto, “Automated Parameter Optimization
of Classification Techniques for Defect Prediction Mod-
els,” in ICSE, 2016, pp. 321–332.

[78] ——, “Comments on “Researcher Bias: The Use of Ma-
chine Learning in Software Defect Prediction”,” TSE,
vol. 42, no. 11, pp. 1092–1094, 2016.

[79] ——, “An Empirical Comparison of Model Validation
Techniques for Defect Prediction Models,” TSE, vol. 43,
no. 1, pp. 1–18, 2017.

[80] ——, “The Impact of Automated Parameter Optimiza-

tion on Defect Prediction Models,” TSE, 2018.
[81] P. Thongtanunam, S. McIntosh, A. E. Hassan, and

H. Iida, “Investigating code review practices in defec-
tive files: An empirical study of the qt system,” in MSR,
2015, p. 168–179.

[82] ——, “Revisiting Code Ownership and its Relationship
with Software Quality in the Scope of Modern Code
Review,” in ICSE, 2016, pp. 1039–1050.

[83] M. Tomczak and E. Tomczak, “The need to report
effect size estimates revisited. An overview of some
recommended measures of effect size.” Trends in Sport
Sciences, vol. 21, no. 1, pp. 19–25, 2014.

[84] Z. Tu, Z. Su, and P. Devanbu, “On the localness of
software,” in FSE, 2014, pp. 269–280.

[85] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C.
Gall, and A. Zaidman, “How developers engage with
static analysis tools in different contexts,” EMSE, 2019.

[86] A. J. Viera and J. M. Garrett, “Understanding interob-
server agreement: the kappa statistic,” Family Medicine,
vol. 37, pp. 360–363, 2005.

[87] Z. Wan, X. Xia, A. E. Hassan, D. Lo, J. Yin, and X. Yang,
“Perceptions, expectations, and challenges in defect
prediction,” TSE, 2018.

[88] S. Wang, D. Chollak, D. Movshovitz-Attias, and L. Tan,
“Bugram: Bug detection with n-gram language mod-
els,” in ASE, 2016, pp. 708–719.

[89] S. Wang, T. Liu, J. Nam, and L. Tan, “Deep Semantic
Feature Learning for Software Defect Prediction,” TSE,
2018.

[90] S. Wang, T. Liu, and L. Tan, “Automatically Learning
Semantic Features for Defect Prediction,” in ICSE, 2016,
pp. 297–308.

[91] S. Yathish, J. Jiarpakdee, P. Thongtanunam, and C. Tan-
tithamthavorn, “Mining Software Defects: Should We
Consider Affected Releases?” in ICSE, 2019, pp. 654–
665.

[92] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and
X. Liu, “A novel neural source code representation
based on abstract syntax tree,” in ICSE, 2019, pp. 783–
794.

Supatsara Wattanakriengkrai is a Master’s
student at the Department of Information Sci-
ence, Nara Institute of Science and Technol-
ogy, Japan. She received her BS degree in In-
formation and Communication Technology from
Mahidol University, Thailand, in 2019. Her main
research interests are Empirical Software Engi-
neering, Mining Software Repositories, and Soft-
ware Quality Assurance. Contact her at wat-
tanakri.supatsara.ws3@is.naist.jp.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3023177, IEEE

Transactions on Software Engineering

18

Patanamon Thongtanunam is a lecturer at the
School of Computing and Information Systems,
the University of Melbourne, Australia. She re-
ceived PhD in Information Science from Nara
Institute of Science and Technology, Japan. Her
research interests include empirical software en-
gineering, mining software repositories, software
quality, and human aspect. Her research has
been published at top-tier software engineering
venues like International Conference on Soft-
ware Engineering (ICSE) and Journal of Trans-

action on Software Engineering (TSE). More about Patanamon and her
work is available online at http://patanamon.com.

Chakkrit Tantithamthavorn is a 2020 ARC DE-
CRA Fellow and a Lecturer in Software Engi-
neering in the Faculty of Information Technol-
ogy, Monash University, Melbourne, Australia.
His current fellowship is focusing on the de-
velopment of “Practical and Explainable Ana-
lytics to Prevent Future Software Defects”. His
work has been published at several top-tier soft-
ware engineering venues, such as the IEEE
Transactions on Software Engineering (TSE),
the Springer Journal of Empirical Software En-

gineering (EMSE) and the International Conference on Software Engi-
neering (ICSE). More about Chakkrit and his work is available online at
http://chakkrit.com.

Hideaki Hata is an assistant professor at the
Nara Institute of Science and Technology. His
research interests include software ecosystems,
human capital in software engineering, and soft-
ware economics. He received a Ph.D. in in-
formation science from Osaka University. More
about Hideaki and his work is available online at
https://hideakihata.github.io/.

Kenichi Matsumoto is a professor in the Grad-
uate School of Science and Technology at the
Nara Institute of Science and Technology. His re-
search interests include software measurement
and software processes. He received a Ph.D. in
information and computer sciences from Osaka
University. He is a Senior Member of the IEEE
and a member of the IEICE and the IPSJ. Con-
tact him at matumoto@is.naist.jp.

http://patanamon.com
http://chakkrit.com
https://hideakihata.github.io/

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Wattanakriengkrai, S;Thongtanunam, P;Tantithamthavorn, C;Hata, H;Matsumoto, K

Title:
Predicting Defective Lines Using a Model-Agnostic Technique

Date:
2022-05-01

Citation:
Wattanakriengkrai, S., Thongtanunam, P., Tantithamthavorn, C., Hata, H. & Matsumoto, K.
(2022). Predicting Defective Lines Using a Model-Agnostic Technique. IEEE Transactions on
Software Engineering, 48 (5), pp.1480-1496. https://doi.org/10.1109/TSE.2020.3023177.

Persistent Link:
http://hdl.handle.net/11343/267356

License:
CC BY

http://hdl.handle.net/11343/267356
CC%20BY

