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Many missense substitutions are identified in single nucleotide polymorphism (SNP) data and large-scale random
mutagenesis projects. Each amino acid substitution potentially affects protein function. We have constructed a
tool that uses sequence homology to predict whether a substitution affects protein function. SIFT, which sorts
intolerant from tolerant substitutions, classifies substitutions as tolerated or deleterious. A higher proportion of
substitutions predicted to be deleterious by SIFT gives an affected phenotype than substitutions predicted to be
deleterious by substitution scoring matrices in three test cases. Using SIFT before mutagenesis studies could
reduce the number of functional assays required and yield a higher proportion of affected phenotypes. SIFT
may be used to identify plausible disease candidates among the SNPs that cause missense substitutions.

Identifying substitutions that affect protein function is
of major interest for those studying proteins and their
implications in disease. Disease-causing mutations
tend to occur in structurally and functionally impor-
tant sites, and a significant fraction of polymorphism
sites are located in these regions (Sunyaev et al. 2000).
It is estimated that each person is heterozygous for
24,000–40,000 amino acid-altering substitutions (Car-
gill et al. 1999). Predicting substitutions at these sites as
deleterious or neutral may help identify disease-
associated alleles. A recent single nucleotide polymor-
phism (SNP) study used an amino acid substitution
scoringmatrix, BLOSUM62, to classify each amino acid
substitution caused by a SNP in a coding region as con-
servative or nonconservative (Cargill et al. 1999). How-
ever, use of a substitution scoring matrix may be inap-
propriate for predicting whether an amino acid substi-
tution will affect a protein’s function or structure
because it generalizes and does not incorporate infor-
mation specific to the protein of interest.

Substitution scoring matrices, such as BLOSUM62,
have not been tested against experimental data for
their ability to predict protein-altering substitutions.
The BLOSUM62 matrix, like most matrices, is intended
for database searching and pairwise alignment (Heni-
koff and Henikoff 1992), which is a different task than
predicting deleterious substitutions. Substitution ma-
trix scores are typically calculated from a log odds ratio
of target frequencies, obtained by counting pairs of
aligned amino acids, with the background frequencies
of the amino acids. Substitutions to a more abundant
amino acid have a lower score relative to a less abun-
dant amino acid because the background frequency is
lower for the less abundant amino acid. However, the
overall abundance of an amino acid is irrelevant when
considering whether an amino acid change is toler-

ated. On average, 14 out of the 19 possible substitu-
tions for a given amino acid have negative scores from
the BLOSUM62 matrix and are deemed nonconserva-
tive by Cargill et al. (1999). If nonconservative substi-
tutions are predicted to be deleterious, then many sub-
stitutions will be predicted to affect phenotype. How-
ever, proteins actually contain many positions that
have a high degree of plasticity in accommodating
amino acid substitutions, as shown in previous muta-
genesis studies (Bowie and Sauer 1989; Climie et al.
1990; Huang et al. 1992; Markiewicz et al. 1994).
Therefore, experimentally testing all changes deemed
nonconservative by a substitution matrix would be
time-consuming and wasteful because of this overpre-
diction, especially for large-scale studies such as exami-
nation of nonsynonymous SNPs (Lander 1996; Irizarry
et al. 2000) or in genome-wide random mutagenesis
projects (Bentley et al. 2000; Chen et al. 2000; McCal-
lum et al. 2000).

Given a protein query, aligned sequences from the
protein’s family give position-specific information,
which a substitution scoring matrix lacks. Residues
that are conserved completely in the protein family are
expected to be important for function, and even a
conservative substitution at one of these residues may
affect protein function. A substitution matrix may
underestimate the severity of deleterious substitutions
at these crucial positions. At some positions, any
amino acid change can be tolerated in the protein
if these positions are not involved in protein func-
tion or structure. Because these are expected to be neu-
tral substitutions, one might expect amino acids in
these positions of a protein alignment to be diverse.
Therefore, the accuracy for predicting the phenotype
that results from an amino acid substitution based on
sequence alignment of protein family members should
be better than using a generalized substitution scoring
matrix.

SIFT is a sequence homology-based tool that sorts
intolerant from tolerant amino acid substitutions and
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predicts whether an amino acid substitution at a par-
ticular position in a protein will have a phenotypic
effect. SIFT predicts the phenotype resulting from a
substitution more accurately than substitution scoring
matrices for three data sets. In some exceptional cases,
a substitution is predicted by SIFT to be neutral but
experimentally does have a deleterious effect; these
can be accounted for by query-specific interactions
that are not conserved among the protein family mem-
bers.

RESULTS

Rationale
SIFT takes a query sequence and uses multiple align-
ment information to predict tolerated and deleterious
substitutions for every position of the query sequence.
SIFT is a multistep procedure that, given a protein
sequence, (1) searches for similar sequences, (2)
chooses closely related sequences that may share simi-
lar function, (3) obtains the multiple alignment of
these chosen sequences, and (4) calculates normalized
probabilities for all possible substitutions at each posi-
tion from the alignment. Substitutions at each position
with normalized probabilities less than a chosen cutoff
are predicted to be deleterious; those greater than or
equal to the cutoff are predicted to be tolerated.

To test the procedure against experimental data,
we chose unbiased data sets in which mutagenesis was
performed throughout the entire protein, and both
wild-type and negative phenotypes were assayed.
There were only three data sets that we could find in
the literature that fit the above criteria: LacI (Mar-
kiewicz et al. 1994; Suckow et al. 1996), HIV-1 protease
(Loeb et al. 1989), and bacteriophage T4 lysozyme
(Rennell et al. 1991). The scarcity of unbiased data sets
indicates how difficult characterization of mutant pro-
teins on a large scale can be.

The goal of the prediction program is to identify
less severe but nonetheless affected phenotypes as
well as null phenotypes from wild-type. Therefore,
phenotypes that exhibited weakened activity in the
functional assays were grouped with loss-of-func-
tion phenotypes. SIFT and substitution scoring matri-
ces, BLOSUM55, BLOSUM62, and BLOSUM80, were
tested for the ability to predict these substitutions as
deleterious. SIFT parameters used on the HIV-1 prote-
ase and bacteriophage T4 lysozyme data sets were the
same as those determined to work well for the LacI
mutation data, so SIFT analysis can be generalized to
any protein for which homologous sequences are avail-
able.

Comparison of SIFT with BLOSUM62 Predictions on
LacI Mutation Data
LacI is a DNA-binding protein that normally represses

transcription of the lac operon. Upon binding of a
�-galactoside sugar inducer, LacI no longer binds to
DNA, thus allowing the organism to use lactose as an
energy source. Positions in the Escherichia coli lac re-
pressor gene were mutated individually to amber non-
sense codons (Markiewicz et al. 1994; Suckow et al.
1996). In each mutant, nonsense suppressor tRNAs
that would insert 1 of 13 different amino acids at the
engineered amber codon had been introduced so that
>4000 amino acid substitutions were analyzed. Using a
�-galactosidase colorimetric assay, each protein with a
single amino acid substitution had been tested for its
ability to (1) repress transcription at the lac operator
and (2) cease repression upon binding of IPTG, the
inducer sugar. More than 50% of the sites were gener-
ally tolerant to substitutions, and the regions that were
sensitive to amino acid replacements were primarily at
the DNA and inducer binding sites and at the dimer
interface (Pace et al. 1997). We compared predictions
from SIFT and the substitution scoring matrices with
the resulting phenotypes from the substitutions exam-
ined in the mutagenesis studies.

For SIFT to predict on LacI substitutions, it must
first select sequences related to the repressor. Combin-
ing the results of sequences found in the SWISS-PROT/
TrEMBL 38 protein database (Bairoch and Apweiler
2000) and in the translated microbial genomes, SIFT
found 55 sequences similar to LacI. Those chosen from
SWISS-PROT/TrEMBL were annotated as belonging to
the LacI family of transcriptional regulators. Although
the chosen sequences are generally involved in tran-
scriptional repression relieved by an inducer, the
operators and inducers that interact with these pro-
teins are different from that of LacI. For example,
RBSR_ECOLI represses the ribose operon and relieves
repression by addition of ribose. Another selected se-
quence, PURR_HAEIN, binds to the PUR operator in
the presence of guanine and loses affinity for the op-
erator without the corepressor. With this collection of
proteins, overall structure is expected to be conserved,
but not necessarily residues involved in binding DNA
or inducer.

The collection of LacI-related sequences was used
to measure the correlation between sequence conser-
vation and tolerance to substitutions. To predict
whether an amino acid substitution is deleterious
based on sequence homology, the degree of conserva-
tion at a position should be correlated positively with
the number of deleterious substitutions at this posi-
tion. From information theory (Schneider et al. 1986),
conservation can be measured at each position and
ranges from zero bits at a position equally represented
by all 20 amino acids to 4.3 bits at an invariant posi-
tion. Strongly conserved positions are expected to be
unable to tolerate most substitutions, whereas weakly
conserved positions are expected to tolerate more sub-
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stitutions (see Fig. 1 for an example). Conservation was
calculated for each position using an alignment of the
55 chosen sequences. The Pearson correlation coeffi-
cient between conservation and the number of delete-
rious substitutions determined experimentally at each
position is 0.550. This is a conservative estimate be-
cause proteins in the alignment bind to different in-
ducers and operators, so that positions important for
inducer and DNA binding may not necessarily be con-
served throughout the protein sequences. Also, the ex-
perimental data contain only 12 or 13 substitutions at
each position, whereas up to 20 amino acids are repre-
sented in the alignment. The high correlation between
experimental mutation data and conservation sup-
ports the idea that we can predict from sequence data
whether a given substitution affects protein function
or structure.

SIFT made predictions from the LacI sequence
alignment (Fig. 2A) and showed higher total and ex-
perimental prediction accuracy over BLOSUM62 (Fig.
2B), as summarized in Table 1. SIFT predicted 1747
out of the 2254 (78%) experimentally tolerated substi-

tutions. For substitutions with an affected phenotype,
SIFT correctly predicted 989 of 1750 (57%) of these
accurately. Amino acid substitutions with BLOSUM62
scores �0 are classified as conservative substitutions
(Cargill et al. 2000) and occur more or as frequently
than expected by chance in a database of alignments;
these substitutions are predicted as tolerated. Substitu-
tions with negative scores are classified as nonconser-
vative changes (Cargill et al. 2000), and these changes
are observed less frequently than expected by chance;
these substitutions are predicted as deleterious.
BLOSUM62 predicted 84% (1475/1750) of the delete-
rious changes because many of its amino acid substi-
tution scores are negative (Fig. 2B, positions 1–50).
BLOSUM62 predicted only 31% of the tolerated sub-
stitutions accurately and performed poorly in regions
that can tolerate many substitutions (Fig. 2B, positions
101–150). This substitution scoring matrix alone did
not distinguish between conserved and variable posi-
tions, mispredicting substitutions as deleterious at tol-
erant positions. BLOSUM80 and BLOSUM45 were also
tested for prediction and performed poorly compared

to SIFT in a similar manner to
BLOSUM62 (data not shown).
Because SIFT uses sequence-
specific information, it can dis-
tinguish between the conserved
and variable positions to get
better prediction performance.

The total number of cor-
rectly predicted substitutions by
SIFT exceeds that of BLOSUM62
by 14% (Table 1, difference in
total prediction accuracies). Of
substitutions predicted to be
deleterious by SIFT, 66% will
yield a deleterious phenotype
experimentally by the �-galac-
tosidase assay (Table 1, experi-
mental prediction accuracy). In
comparison, only 49% of the
substitutions predicted to be
deleterious by BLOSUM62 will
yield a deleterious phenotype
experimentally. A higher pro-
portion of substitutions pre-
dicted to be deleterious will
give deleterious phenotypes ex-
perimentally if SIFT, rather
than BLOSUM62, is used for
prediction. The number of sub-
stitutions predicted to be del-
eterious is smaller for SIFT
(1496) than for BLOSUM62
(3033). Not only does SIFT pre-
dict more accurately, but also

Figure 1 Sequence conservation corresponds to intolerant positions. (Top) Sequence logo
representation (Schneider and Stephens 1990) of the LacI multiple alignment for positions 5–38,
a region involved in binding DNA. At each position, the stack of letters indicates which amino
acids appear in the alignment, and the total height of the stack is a measure of conservation.
(Bottom) Number of substitutions deleterious to LacI function at the corresponding positions
(Markiewicz et al. 1994; Suckow et al. 1996). Positions with high conservation, such as 19–23,
do not tolerate substitutions. Positions with low conservation, such as 26–28, can tolerate most
substitutions. Positions 17 and 18 appear diverse in the alignment but cannot tolerate most
substitutions. The side chains of these residues are involved in DNA-specific recognition (Chu-
prina et al. 1993) that is not conserved among the paralogous sequences.
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the number of predicted deleterious substitutions is
smaller. These numbers indicate that if SIFT-predicted
deleterious substitutions rather than BLOSUM62-
predicted deleterious substitutions are used as a guide
for conducting experiments on mutant proteins, then
(1) fewer experiments would have to be performed,
and (2) a higher proportion of the experiments will
yield affected phenotypes.

Although SIFT does well at most positions, it
misses predicting substitutions involved in LacI-
specific recognition. There are 158 positions that can-
not tolerate six or more substitutions, yet SIFT pre-
dicted 56 of them to tolerate more than half of the

deleterious substitutions. The side chains at four of
these positions are involved in DNA-binding contacts
(Fig. 1, positions 17–18; Fig. 2A, double helices); the
side chains at nine other positions participate at the
dimer interface (Fig. 2A, double cylinders; Chuprina et
al. 1993; Bell and Lewis 2000). Other specific contacts
might involve IPTG binding, but these are unknown
because the structure solved for this complex had low
resolution so that side-chain interactions could not be
identified (Lewis et al. 1996). Nevertheless, of the 158
positions that do not tolerate six or more substitutions,
there are 31 positions (20%) where at least six of the
substitutions cannot respond to the inducer IPTG. If

Figure 2
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the 56 positions that were mispredicted as tolerant to
substitutions were distributed randomly, then one
would expect approximately 11 (0.20 � 56) positions
to coincide with the positions sensitive to inducer. In-
stead, 20 positions (36%) were observed to coincide
with inducer-sensitive positions, indicating that many
SIFT mispredictions of intolerant positions to be tol-
erant are due to lack of conservation in the alignment.

SIFT mispredicts when the alignment does not reflect
the constraints on the individual protein.

SIFT’s prediction is based on paralogous se-
quences in the LacI family. Although these sequences
share a similar function to LacI, they do not have the
same DNA operators or sugar inducers. Residues in-
volved directly in LacI repressor’s function may not be
conserved throughout the alignment. Such positions

Figure 2 (Continues on following page)

Predicting Deleterious Amino Acid Substitutions

Genome Research 867
www.genome.org



will appear variable in an alignment of paralogous se-
quences and cannot be identified as important from
sequence alone. The lack of conservation at these po-
sitions leads SIFT to miss these intolerant positions.

There are well conserved positions in the align-
ment that can tolerate substitutions according to the
�-galactosidase assay. A substitution occurring at one
of these positions will be predicted to affect protein
function, although experimentally it will have no ef-
fect; this would be a false positive in a functional assay.
Interestingly, a majority of the positions with high
false positive error cluster at one face on the C-terminal
subdomain (red residues in Fig. 3). The structure of the
core tetramer does not implicate this face to be in-
volved in tetramerization (Friedman et al. 1995), and
other repressors in the alignment function as dimers.

Perhaps this C-terminal face is involved in as yet un-
discovered interaction.

Comparison of SIFT with BLOSUM62 Predictions
on HIV-1 Protease Mutation Data
HIV-1 protease cleaves the gag and gag-pol polyproteins
into mature products and is therefore necessary for
AIDS virus maturation. HIV protease must recognize
nine nonhomologous sites within the HIV polypro-
teins. Loeb and his colleagues (1989) tested the effect
of 336 single missense mutations in HIV-1 protease.
Mutations were generated by random mutagenesis, se-
quenced, and then scored for their ability to process
the Pol precursor. Missense mutants were placed in one
of three categories: (1) wild-type, (2) intermediate, for
which both processed and unprocessed products were

Figure 2 (A) SIFT predictions for substitutions in LacI. The effects of 12–13 substitutions at each position were assayed (Markiewicz et
al. 1994; Suckow et al. 1996). The number of substitutions above the X-axis are those that gave a wild-type phenotype; the number of
substitutions below the X-axis gave an affected phenotype. SIFTmakes a prediction for every possible substitution, but only substitutions
predicted correctly by SIFT are depicted here and are colored in black. Gray bars above the x-axis indicate false positive error; these
substitutions were predicted to be deleterious by SIFT, when experimentally they gave wild-type phenotype. Gray bars below the x-axis
indicate true negative error; these substitutions were predicted to be neutral, but in fact gave an affected phenotype. Amino acid side
chains that have been identified as involved in interactions (Chuprina et al. 1993; Bell and Lewis 2000) are labeled as follows: (double
helix) those that interact with DNA, (double cylinders) those participating in the dimer interface. (Hexagons) Positions having six or more
substitutions that are unable to respond to the inducer (Markiewicz et al. 1994; Pace et al. 1997). Many of the intolerant positions that
were predicted to tolerate substitutions correspond to these query-specific positions. (Asterisks) Positions that can tolerate at least six
substitutions, but SIFT predicted more than half of these substitutions as deleterious. The consensus sequence and the original query
sequence, LACI_ECOLI, are shown. (B) BLOSUM62 prediction for substitutions in LacI for positions 1–50 and 101–150. BLOSUM62
performs well in the DNA-binding region (residues 1–50) because this region cannot tolerate many substitutions. However, in a region
that tolerates substitutions, such as positions 101–150, BLOSUM62 performs poorly, predicting many experimental false positives (large
gray bars above the X-axis).
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observed, and (3) negative, for which no mature pro-
cessed products were produced by the protease. SIFT
and three substitution matrices from the BLOSUM se-
ries were tested for their ability to predict substitutions
with intermediate and negative phenotypes as delete-
rious and substitutions with wild-type phenotype as
tolerated.

The predictions returned by SIFT under default pa-
rameters are more accurate than those of BLOSUM62
for HIV-1 protease (Table 1). Because the TrEMBL da-
tabase may contain mutant HIV-1 protease sequences,
which are not necessarily functional, sequences were
chosen from the SWISS-PROT database. Thirty-eight
proteases were chosen, with the most distantly related
sequence being 30% identical to the query sequence.
SIFT performed better than BLOSUM62 for predicting
both neutral and deleterious substitutions (Table 1).
Out of 215 substitutions predicted by SIFT to be del-
eterious, 85% give an affected phenotype (Table 1,
experimental prediction accuracy) using the protease
assay by Loeb et al. (1989).

Although the total prediction accuracy of SIFT ex-
ceeds that of BLOSUM62 by 8% (Table 1), performance
can be improved further by basing predictions on an
alignment of sequences with similar substrate specific-
ity. The SIFT alignment contained protease sequences
from the Rous sarcoma virus (RSV) and avian myelo-
blastosis virus (AMV), which differ from each other in
only one residue. Although their structures are very
similar to HIV-protease (Wlodawer et al. 1989), AMV

has been shown to have substrate specificity distinct
from human HIV protease (Tomasselli et al. 1990).
Also, the SIFT alignment of RSV and AMV with HIV-1
protease did not match the structural alignment (Wlo-
dawer et al. 1989) at some positions. These specificity
differences andmisalignments may have reduced SIFT
performance. Therefore, RSV and AMV protease se-
quences were removed, so that the remaining 36 se-
quences in the alignment are proteases from humans
and simians. SIV protease has substrates homologous
to HIV protease and has been shown to cleave HIV-1
polyprotein substrate in a manner similar to HIV-1
(Grant et al. 1991). Thus, prediction based on this
alignment should not be confounded by substrate-
specific residues as much as prediction based on the
alignment containing RSV and AMV protease se-
quences. Indeed, SIFT performance based on the
alignment without RSV and AMV protease sequences
was 3% better than SIFT performance on the align-
ment with these sequences (Table 1). BLOSUM80 and
BLOSUM45 were also tested for prediction and per-
formed poorly compared with SIFT (data not shown).
The prediction accuracy for deleterious substitutions
increased when AMV and RSV proteases were excluded
because residues important for substrate specificity
may be conserved in the alignment of human and sim-
ian viral proteases. Prediction for neutral substitutions
decreases only slightly, which indicates that the re-
maining protease sequences are diverse enough for pre-
diction.

Table 1. Summary of Prediction Results for SIFT and BLOSUM62

Test set Method

Tolerant
prediction
accuracy

Deleterious
prediction
accuracy

Total
prediction
accuracy

Experimental
prediction
accuracy

LacI* n = 4004 SIFT 78% (1747/2254) 57% (989/1750) 68% (2736/4004) 66% (989/1496)
BLOSUM62 31% (696/2254) 84% (1475/1750) 54% (2171/4004) 49% (1475/3033)

HIV-1 Protease n = 336 Automated SIFT 70% (78/111) 82% (184/225) 78% (262/336) 85% (184/217)
SIFT without RSV,

avian sequences
68% (75/111) 88% (197/225) 81% (272/336) 85% (197/233)

BLOSUM62 63% (70/111) 73% (165/225) 70% (235/336) 80% (165/206)
Bacteriophage T4 SIFT 59% (817/1377) 72% (460/638) 63% (1277/2015) 45% (460/1020)

Lysozyme n = 2015 BLOSUM62 30% (406/1377) 85% (542/638) 47% (948/2015) 36% (542/1513)

The effect of 4004 substitutions was assayed for LacI (Markiewicz et al. 1994; Pace et al. 1997), 336 substitutions for HIV-1 protease
(Loeb et al. 1989), and 2015 substitutions for bacteriophage T4 lysozyme (Rennell et al. 1991). These three data sets are used to test
prediction performance. Tolerant prediction accuracy is the number of substitutions correctly predicted to have no effect divided by
the total number of substitutions that gave a wild-type phenotype under experimental test conditions. Subtracting the numerator
from the denominator gives the number of substitutions that have been predicted to be deleterious but gave a wild-type phenotype
under experimental conditions. Deleterious prediction accuracy is the number of substitutions correctly predicted to have an effect on
the protein divided by the number of substitutions that affected protein. Subtracting the numerator from the denominator gives the
number of substitutions that were predicted to have wild-type phenotype but gave a deleterious phenotype under experimental
conditions. Total prediction accuracy is the total number of substitutions correctly predicted divided by the total number of substi-
tutions. Experimental prediction accuracy is the number of substitutions that were experimentally shown to affect protein function
divided by the number of substitutions predicted to affect function. For the biologist investigating substitutions predicted to have a
deleterious effect, the experimental prediction accuracy reflects the proportion of predictions that will yield affected phenotypes
experimentally.
*SIFT offers prediction for positions 5–329 of the LacI repressor because fewer than half of the sequences are represented at positions
1–4 and 330–360.

Predicting Deleterious Amino Acid Substitutions

Genome Research 869
www.genome.org



We examined the literature to account for mispre-
dictions at some positions. Several intolerant positions
that SIFT predicted to tolerate substitutions cluster to-
gether in region 35–40. Residues 36–46 show large
structural deviations and are implicated in HIV prote-
ase adaptation to binding of the substrates (Prabu-
Jeyabalan et al. 2000), so that errors at these residues
could be accounted for by substrate specificity. In gen-
eral, SIFT predicts better than substitution matrices on
HIV-1 protease mutation data; with careful selection of
sequences and comparison of structures, performance
can be improved further.

Comparison of SIFT with BLOSUM62 Predictions
on Bacteriophage T4 Lysozyme Mutation Data
The final test case, which uses mutation data from bac-
teriophage T4 lysozyme, shows that SIFT can improve
prediction remarkably when only one homologous se-
quence is available. Bacteriophage T4 produces a
soluble lysozyme that breaks up bacterial cell walls late
in the infection of E. coli. Bacteriophage T4 lysozyme
was subjected to a mutagenesis study using amber sup-
pressor tRNAs (Rennell et al. 1991). Similar to the LacI
results, approximately half of the positions could tol-

erate all tested substitutions. Lysozyme function was
assayed by plaque formation, and mutants were scored
by plaque size. Mutants with plaques the same size as
wild type were scored as wild-type. Intermediate phe-
notypes were scored for mutants with smaller plaque
size. Mutants that produced no plaques were scored as
null. We tested whether SIFT could predict a mutant
with a wild-type phenotype as tolerated, and mutants
with either intermediate or null phenotypes as delete-
rious.

When using the automated procedure for choos-
ing similar proteins, the lysozyme amino acid se-
quence was unable to meet SIFT’s criteria for choosing
similar sequences. An error was returned to the user,
indicating that there were not enough sequences and
the user should examine the results manually. The
SIFT alignment had gaps occurring in regions corre-
sponding to secondary structure and in a core region
that is conserved among distant proteins (Monzingo et
al. 1996). Only VG05_BPT4, a tail-associated lysozyme
in bacteriophage T4, aligned well with bacteriophage
T4 soluble lysozyme (43% identity, 3% gaps). This pro-
tein is similar in function to the soluble lysozyme
because a tail-associated lysozyme mutant can substi-

Figure 3 (A) Structure of LacI as a homodimer (light and dark blue strands) with DNA (yellow strand). The N-terminal subdomain whose
interface is important for DNA binding and the allosteric mechanism is at the upper part of the figure; the C-terminal domain is at the
bottom. The 186 positions tolerant for six or more substitutions are colored in white on one monomer (Markiewicz et al. 1994; Suckow
et al. 1996). For 31 of these positions, >50% of the substitutions were predicted to affect phenotype according to SIFT when
experimentally they did not (see also Fig. 2, asterisks). These positions are shown as space-fill atoms in red. Noticeably, many of these
occurred at the bottom face of the C-terminal domain. This structure is 1EFA from PDB (Bell and Lewis 2000). (B) Same figure rotated 90°
about the Z-axis.
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tute for it (Kao and McClain 1980). The biological evi-
dence and the global pairwise alignment supported
VG05_BPT4 as a good candidate for SIFT prediction
on bacteriophage T4 lysozyme.

With sequence information from just the soluble
lysozyme query and VG05_BPT4, SIFT yields better
prediction results than BLOSUM62. Twice as many
neutral substitutions are predicted correctly when
compared with BLOSUM62 (59% vs. 30%), with a 13%
reduction in predicting deleterious substitutions so
that total prediction accuracy was 25% higher (Table
1). SIFT also performed better than BLOSUM80 and
BLOSUM45 (data not shown). There are many tolerant
positions predicted intolerant presumably due to bas-
ing the prediction on only two sequences. Some intol-
erant positions predicted incorrectly to tolerate substi-
tutions may be residues that specifically recognize bac-
terial cell wall composition, because the soluble
lysozyme destroys bacterial cell walls from the inside
whereas tail-associated lysozyme recognizes cell walls
from the outside (Mosig et al. 1989; Nakagawa et al.
1985). The performance on this mutation data set
shows that additional information from just a single
homologous sequence can yield better prediction re-
sults than predictions from substitution matrices.

DISCUSSION
SIFT is a novel tool that incorporates position-specific
information by using sequence alignment and is in-
tended specifically for predicting whether an amino
acid substitution affects protein function. For all three
test cases, SIFT had a higher number of correctly pre-
dicted substitutions than the substitution scoring ma-
trices. Moreover, a higher proportion of substitutions
predicted to be deleterious by SIFT had affected phe-
notypes in the experimental assays than substitutions
predicted to be deleterious by substitution matrices.
For all of the data sets, SIFT made fewer mispredic-
tions than the substitution matrices that a substitution
was deleterious when it was tolerated experimentally.
For two out of the three data sets, SIFT missed more
deleterious substitutions than the substitution scoring
matrices. Some of these errors were accounted by
query-specific interactions that are not conserved in
the family.

SIFT bases its predictions on sequence data alone
and does not depend on knowledge of protein struc-
ture or function. Substitutions in uncharacterized pro-
teins can be evaluated by SIFT only when homolo-
gous sequences are available. Although SIFT can
choose sequences automatically, better prediction re-
sults are obtained when a list of homologs is provided,
as seen with the HIV-protease mutation data. The ideal
set of sequences for SIFT prediction is well-aligned
orthologous sequences. Paralogs with distinct bio-
chemical functions will confound prediction at resi-

dues conserved only among the orthologs. However, as
protein databases grow with data from whole genome
sequencing, a larger number of orthologs will become
available and SIFT prediction should become more ac-
curate.

Surprisingly, few sequences are needed by SIFT to
observe improvement of prediction over a substitution
scoring matrix. In the case of lysozyme, we observed
that with only one sequence homologous to the test
protein, SIFT prediction is significantly better than us-
ing a generalized substitution scoring matrix for pre-
diction. This indicates that with only a single diverged
relative, SIFT can offer better prediction than a substi-
tution matrix.

Our results indicate that given a set of substitu-
tions to assay, those substitutions predicted to be del-
eterious by SIFT will yield a greater proportion of af-
fected phenotypes compared with substitutions judged
to be nonconservative by substitution scoring matri-
ces. Some of the substitutions predicted to be tolerated
by SIFT may in fact be deleterious; the LacI test case
showed that SIFT is unable to identify residues that
are important for function but have not been con-
served throughout the family. Positions predicted to be
intolerant by SIFT but which tolerate substitutions
according to the functional assay might be involved in
an unknown function that the assay does not detect.
In LacI, many of the conserved positions that tolerate
substitutions in the DNA- and sugar-binding assays oc-
cur together at an exposed face in the C-terminal sub-
domain. Because these residues have been conserved
among diverged but functionally related sequences,
this indicates that this C-terminal face may participate
in an as yet unknown interaction. Substitutions at con-
served positions, which still behave as wild-type in
functional assays, nevertheless may be involved in a
function in vivo for which the existing assays do not
test.

The majority of scores in log-odds substitution
scoring matrices are negative to prevent sequence
alignments from extending spuriously in database
searching (Altschul 1991). For example, on average, 14
out of the 19 possible substitutions for a given amino
acid have negative scores in BLOSUM62 and are clas-
sified as nonconservative changes (Cargill et al. 2000).
If functional assays are performed on substitutions
deemed nonconservative by substitution scoring ma-
trices, many of the deleterious mutants will be detected
simply because the matrix is dominated by negative
entries. This benefit of characterizing most of the del-
eterious substitutions when using matrix predictions
rather than SIFT’s comes at the cost of assaying sub-
stitutions that do not affect phenotype. If there are few
variants to characterize, or it is important to not miss
any variants that alter protein function, then charac-
terizing all substitutions or those with negative scores
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in a substitution matrix is a good strategy. However, in
large-scale projects in which many missense mutations
are generated, it is more important to minimize the
number of unnecessary experiments rather than to
identify all deleterious substitutions. Hence, SIFT will
be more efficient than substitution scoring matrices for
large-scale projects. Preliminary data show that SIFT
predicts 69% of more than 3500 disease-causing sub-
stitutions to be deleterious, indicating that SIFT may
be suitable for automated prediction on the genome
scale (data not shown).

Linkage disequilibrium and association studies
make use of polymorphism data to find genetic factors
that may cause or increase risk for a disease. Among the
markers identified in association or linkage disequilib-
rium studies, SIFT can predict which markers that
result in an amino acid change may themselves be the
cause of a deleterious effect on the protein. Because of
the amount of polymorphism data needed to conduct
linkage disequilibrium and association studies, a
plethora of missense mutations are being identified,
and some of the missense variants themselves are likely
to be involved in disease. Approximately half of the
gene lesions known to be responsible for human in-
herited disease are due to amino acid substitutions
(Cooper et al. 1998), showing that amino acid substi-
tutions play a large role in diseases. In a study on non-
synonymous SNPs in proteins for which structures
were known (Sunyaev et al. 2000), 45% of the missense
variants mapped to structurally and functionally im-
portant regions, and it was suggested that a large frac-
tion of nonsynonymous SNPs can have strong effects
on the encoded proteins. Sunyaev et al. (2000) studied
only 86 nonsynonymous SNPs because they relied on
structure for their analysis. Because SIFT uses se-
quence homology rather than protein structure, it
could potentially analyze a larger number of nonsyn-
onymous SNPs than studies based on protein structure
alone. In HGBASE (Brookes et al. 2000), a public data-
base of human sequence variants that may or may not
be involved in disease, there were 20,482 gene variants,
of which 3146 caused amino acid substitutions, as of
January 2000. It has been predicted that there will
eventually be ∼200,000 coding sequence variants
(Brookes et al. 2000), which suggests there may even-
tually be 30,000 missense variants in this database
alone. The sheer magnitude of missense variants ren-
ders it unfeasible to test all of these substitutions for
their effects on the proteins for which they code. Be-
cause SIFT is an automated, relatively quick proce-
dure, it can be used to predict which missense variants
are likely to be deleterious and thus hone in on which
ones are likely candidates for disease and which pro-
teins should be subjected to further investigation.

SIFT can also be applied to large-scale, reverse-
genetic projects in which mutations are introduced

randomly in the genome of an experimental organism,
altered genes are identified, and then the phenotype
for the resulting mutants ascertained (Bentley et al.
2000; Chen et al. 2000; McCallum et al. 2000). A ma-
jority of the mutations generated in the coding regions
by the chemical mutagens used in these large-scale
projects cause amino acid substitutions. The rate-
limiting stepmay be deciding whichmutants to pursue
for further study. The same dilemma arises when a
gene is targeted for random mutagenesis. If the pheno-
type of a deleterious mutant is unknown or difficult to
assay, SIFT can be used as a guide for which mutations
are likely to be deleterious to protein function and are
worth pursuing.

METHODS

Obtaining Sequences Related to a Protein of Interest
SIFT starts with a query protein sequence. Relying on the
observation that proteins in the same subfamily have high
conservation in conserved regions (Nevill-Manning et al.
1997), it selects sequences that are similar to the query se-
quence by adding the most similar sequence from a database
of protein sequences iteratively to the growing collection un-
til conservation in the conserved regions decreases. We use Rc

to measure the conservation at position c where
Rc = log220 � �20aa pcalog pca where pca is the frequency at
which amino acid a appears in position c (Schneider et al.
1986).

PSI-BLAST (Altschul et al. 1997) with parameters
�e 0.0001 and �h 0.002 is run for four iterations to collect a
pool of sequences similar to the query from a protein se-
quence database such as SWISS-PROT (Bairoch and Apweiler
2000). The sequences found by PSI-BLAST are then grouped
together if they are >90% identical in the regions aligned by
PSI-BLAST, and a consensus sequence is made for each group
by choosing the amino acid that occurs most frequently at
each position. Next, the motif-finding algorithm MOTIF
(Smith et al. 1990; Henikoff and Henikoff 1991) is used to find
conserved regions among the query sequence and consensus
sequences that were derived from at least two sequences. Con-
sensus sequences that were derived from only one sequence
are removed in the motif-finding step to increase efficiency.
Once the conserved regions in the query sequence have been
identified by MOTIF, these regions are extracted from the se-
quences aligned by PSI-BLAST. The conserved regions are
grouped together if they are >90% identical, and a consensus
sequence is made for each group. The conserved regions of the
query sequence and those consensus sequences >90% identi-
cal are converted to a PSI-BLAST checkpoint file. This check-
point file is the seed to which additional sequences will be
added.

The checkpoint file is given to PSI-BLAST to search
among the remaining conserved regions of the consensus se-
quences not included in the seed checkpoint file. The top hit
is added to the alignment corresponding to the seed check-
point file, and the conservation over the entire alignment of
conserved regions, �cRc, is calculated. If Rc is greater than or
equal to the Rc of the seed checkpoint file, then conservation
has not decreased by adding this consensus sequence. There-
fore, this consensus sequence is added to the alignment, and
the checkpoint file is rebuilt. The process repeats: The check-

Ng and Henikoff

872 Genome Research
www.genome.org



point file is used as a query for PSI-BLAST to search among
the conserved regions of the remaining consensus sequences,
and the decision to add the highest-scoring hit depends on
whether the hit does not decrease conservation. After this
process terminates, the sequences found in the initial PSI-
BLAST search that correspond to the consensus sequences in
the final checkpoint file are used in subsequent steps of pre-
diction. These sequences tend to align globally with the query
sequence and usually belong to a small clade within the query
protein’s family.

Position-Specific Probability Estimation
The multiple alignment of the query sequence with sequences
that were chosen as described in the previous paragraph is
extracted from the initial PSI-BLAST results. PSI-BLAST
alignments have been shown to be fairly accurate and long in
comparison to other sequence alignment tools (Sauder and
Dunbrack 2000). The alignment is converted into a position-
specific scoring matrix (PSSM; Gribskov et al. 1987). A PSSM is
an l � 20matrix where l is the length of the protein sequence.
Each matrix entry, pca, is the probability of amino acid a at
position c of the protein where c ranges from 1 to l and a is
any one of the 20 amino acids. The probability of amino acid
a appearing at position c is estimated by the following general
formula (Henikoff and Henikoff 1996).

pca =
Nc

�Nc + Bc�
* gca +

Bc

�Nc + Bc�
* fca ( 1)

Nc is set to the total number of sequences in the alignment
and gca is the sequence-weighted frequency that amino acid a
appears at position c in the alignment (Henikoff and Henikoff
1994). If an alignment position includes gaps, they are dis-
tributed among the amino acids as follows: If gc- is the fre-
quency of gaps observed at position c, then for all 20 amino
acids a, the count gca is incremented by 1/20 of gc-.

Because the observed sequences similar to the query are
only those available in the sequence database searched, pseu-
docounts fca are added to the observed counts for each amino
acid in each column of the alignment (Henikoff and Henikoff
1996). fca is calculated from a 13-component Dirichlet mix-
ture (Sjolander et al. 1996), and Bc is the total number of
pseudocounts. Thus, pca is a weighted average of the observed
amino acid frequencies in the alignment and estimated un-
observed frequencies. For SIFT, we wanted to give pseudo-
counts more weight relative to observed counts when the
amino acids present at a position are more diverse. To achieve
this, we chose Bc to be an exponential function of a weighted
diversity measure, Dc. Let the reference amino acid in a posi-
tion be the amino acid that appears with the highest fre-
quency and let ra be the rank that amino acid a has in an
ordered list from the highest to lowest score from a substitu-
tion matrix for the reference amino acid. (BLOSUM62 is used
to compute ra, but other substitution matrices should give
similar results). So ra = 1 for the reference amino acid. Then
Dc = �a (ra * gca). At an invariant position, we set Bc = 0, oth-
erwise Bc = exp(Dc).

Prediction
To automate SIFT, we wanted to apply one cutoff to all col-
umns of the PSSM calculated in the previous section. In the
most diverse alignment column possible, all 20 amino acids
might appear in a position with equal probability of 0.05 = 1/
20, whereas in a conserved position only two amino acids

might appear, one with probability 0.05 and the other with
0.95. But if, for example, 0.05 were chosen as a cutoff for pca

so that substitution to amino acid a in column c is predicted
to be deleterious if pca � 0.05, then substitution to any amino
acid would be predicted as deleterious in the column where
pca = 0.05 for all a, when this is obviously a very tolerant
column. So a cutoff cannot be applied to pca alone. Instead,
the pcas are normalized on the consensus amino acid in each
column, which is the amino acid with the highest pca. The
consensus amino acid may be different from the reference
amino acid defined in the previous section because pseudo-
counts are now included.

Positions with normalized probabilities <0.05 are pre-
dicted to be deleterious; those �0.05 are predicted to be tol-
erated. This cutoff was chosen for the LacI data set and then
used on the bacteriophage T4 lysozyme and HIV protease data
sets. A user may decide from examining the probability dis-
tribution whether a substitution with a probability near the
cutoff should be reclassified as deleterious if predicted toler-
ated, or vice versa.

Because protein alignment may not extend to the ends of
a protein, so that N- and C-terminal positions may contain
insufficient sequence information, we arbitrarily chose to pre-
dict at positions where >50% of the sequences were repre-
sented. Normalized probabilities and predictions are returned
for every position; a user can judge whether enough se-
quences are represented at the position to rely on the predic-
tion.

Availability
A sequence, related sequences, or a sequence alignment can
be submitted for SIFT prediction at the BLOCKS Web site:
http://blocks.fhcrc.org/∼pauline/SIFT.html. If a sequence is
submitted, related sequences are returned along with
SIFT predictions so that the user can manually refine the
sequences and the alignment and resubmit for prediction.
The LacI and HIV-1 protease alignments and results from
BLOSUM45 and BLOSUM80 predictions can also be obtained
at this site.
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