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Dengue Fever is an increasingly serious public health concern both in Brazil and globally. In
the absence of a universal vaccine or specific treatments, prevention relies on vector control and
disease surveillance. Accurate and early forecasts can help reduce the spread of the disease. In
this study, we develop a model to predict the number of Dengue Fever cases in Brazilian cities one
month ahead. We compare different machine learning approaches as well as different sets of input
features based on epidemiological and meteorological data. We find that different models work best
in different cities, and a random forests model trained on data of historical Dengue cases performs
best overall. It produces lower aggregate errors than a seasonal näıve baseline model, Gradient
Boosting Regression, feed-forward Neural Networks, and Support Vector Regression. Predictions
on an unseen test set are on average within 11.5 cases for the median city. Mean absolute errors on
the hold-out test set are reduced to 10.8 for the median city when selecting the optimal combination
of algorithm and input features for each city individually.

I. INTRODUCTION

Dengue Fever is a serious public health concern, bur-
dening individuals’ lives and national economies. It is a
mosquito-borne infectious disease that affects 100 to 400
million people each year [1]. Half of the world’s popula-
tion and 129 countries are at risk of infection [2].

Brazil is home to about half of all reported cases of
Dengue infection in the Americas. In the three decades
after 1986, when official national reporting began, over
eleven million suspected cases and over five thousand con-
firmed deaths were reported. Both infection and fatality
rates increased over this period. The Southeastern and
Northeastern regions are particularly affected, but nearly
all states counted Dengue-related deaths. Several out-
breaks have occurred, primarily due to re-introduction of
one of the four Dengue serotypes. In 2007, the serotype
DENV-2 re-emerged, causing an epidemic that dispro-
portionately affected children, who accounted for over
half of the epidemic’s deaths [3]. Besides human cost,
Dengue has a significant impact on the Brazilian econ-
omy. During the 2013 outbreak alone, the economic bur-
den was estimated at three hundred million USD [4].

The disease burden is expected to rise in light of global
changes in climate [5], increasing deforestation, and dis-
ruption of natural ecological systems [6–9]. In Brazil
specifically, deforestation has been linked to a recent out-
break of the Zika virus [10], which is transmitted by the
same mosquito species as Dengue Fever. Another impor-
tant risk factor in Brazil is the high number of hydro-
electric dams, which also alter local ecological and social
systems [11] and whose construction is correlated with

reemergence of Malaria and other diseases [7, 12].

There is no vaccine against Dengue and few treatment
options exist. Prevention relies on vector control, which
underscores the importance of disease surveillance [13].
To best inform public health decisions such as resource
allocation, disease forecasts need to be available early and
at a granular geo-spatial resolution, while maintaining a
high level of accuracy. Yet Dengue Fever is difficult to
predict. Infection with one of the four Dengue serotypes
provides lifetime immunity to that serotype as well as
temporary cross-immunity to other serotypes, resulting
in irregular periodicity of outbreaks. Dengue incidence
is also influenced by a wide range of factors, including
climate conditions, human mobility [14], and land use
[15]. The relationship between Dengue and climate in
particular has been extensively studied, and associations
have been found with rainfall [16, 17], climate change
[5, 18], temperature [16, 17, 19, 20], extreme weather
events such as El Niño and La Niña [16, 20], humid-
ity [19], atmospheric pressure [20], and sea surface tem-
peratures [17, 21]. These factors may have nonlinear,
context-specific, and time-variant effects on disease inci-
dence, which poses another challenge to disease model-
ing.

The existing literature on Dengue covers a range of
forecasting approaches, including both theoretical and
data-centric methods. The classical epidemiological ap-
proach is compartmental modeling, which assesses the
evolution of the number of infectious individuals and
other compartments within a population (for example
[22, 23]). Agent-based models simulate the actions of in-
dividuals, and can provide geo-spatial estimates of the
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spread of disease. They are helpful in assessing the po-
tential impacts of different public policies that may alter
individual behaviors or environmental conditions, such as
the release of sterile mosquitoes (for example [24, 25]).
Yet these theoretical models tend to require significant
knowledge of the disease, hosts, and transmission pro-
cesses for parameter estimation. Statistical time series
forecasting tools, such as the Seasonal Autoregressive In-
tegrated Moving Averages (SARIMA) model, employ a
more data-centric approach and leverage the highly auto-
correlated nature of Dengue Fever to predict future inci-
dence (for example [26, 27]).

Machine learning models take advantage of the increas-
ing measurement capacity and public availability of epi-
demiological and other data sources, and often incorpo-
rate novel big data streams, such as social media activity,
mobile phone data, or search engine queries. Their ad-
vantage relative to other forecasting approaches is their
ability to estimate parameters directly from the data.
Neural networks in particular have demonstrated a pow-
erful forecasting ability for diseases such as Malaria [28],
Influenza [29], and Covid-19 [30].

Machine learning models have also been applied to
forecast Dengue Fever in different contexts, often incor-
porating climate data. Baquero et al (2018) [31], for
example, compare the performance of machine learning
and statistical models to forecast the number of Dengue
cases in the city of São Paulo in Brazil. In [32], Dengue
risk is assessed even more granularly in Rio de Janeiro,
another Brazilian city. The authors use Convolutional
Neural Networks (CNN) based on aerial and street view
images to predict Dengue risk at the neighborhood level,
which is correlated with the real incidence rate. The lit-
erature shows that the most effective machine learning
model for Dengue prediction varies across contexts, such
as data inputs or location. In [33], the authors use epi-
demiological, climate and Baidu search data to forecast
the number of Dengue cases in Guangdong province in
China. They compare several different algorithms, and
achieve the best results with a Support Vector Regres-
sion (SVR) model. Xu et al. (2020) [34] developed a
recurrent neural network model with a Long Short-Term
Memory (RNN-LSTM) layer to predict Dengue in 20 Chi-
nese cities. Their RNN-LSTM model outperforms a SVR
model. They also show the utility of a recent develop-
ment in machine learning research called transfer learn-
ing, where the model is trained on data from a city with
many Dengue cases and then used to predict cases in a
different city with fewer cases.

In this study, we assess the potential of different ma-
chine learning models in predicting Dengue Fever one
month ahead in over two hundred Brazilian cities. We
compare different algorithms, including decision tree en-
semble approaches, neural networks, support vector re-
gression, and a seasonal näıve baseline. We also compare
different sets of meteorological and epidemiological fea-
tures to better understand the predictive contribution of
different variables. The best model for each city was se-

lected using expanding time series cross-validation and
tested on a hold-out test set. Best performance was
achieved by the random forests algorithm. While cli-
mate variables improved predictions in some cities, the
most important predictors across all cities were histori-
cal Dengue case counts. Our model outperforms existing
comparable approaches by achieving a lower forecast er-
ror for São Paulo than [31].

II. MATERIALS AND METHODS

A. Data

We use official government sources for epidemiological
and meteorological variables. Monthly Dengue cases are
reported for each Brazilian municipality in the Sistema
de Informação de Agravos de Notificação (SINAN) data
system [35] for the years spanning 2007-2017. The In-
stituto Nacional de Meteorologia (INMET) provides me-
teorological data for weather stations across Brazil [36].
Daily data is collected from 1/1/2005 until 31/12/2017 in
accordance with the availability of epidemiological data
from SINAN. Daily climate records are aggregated to
monthly time series using both the mean and standard
deviation to account for the overall quantity as well as
the variability in climate. The included variables are (i)
rainfall, (ii) maximum temperature, (iii) minimum tem-
perature, (iv) relative median temperature, (v) insola-
tion, which is the amount of solar energy reaching the
earth, (vi) rate of evaporation (Piche), (vii) median rel-
ative humidity, and (viii) median wind speed.
We merge the two data sources using the coordinates

of the weather stations and the geographic boundaries
of the municipalities. After removal of missing data, the
combined dataset covers 234 municipalities. Data is split
into a training set (9 years, Jan 2007 - Dec 2015) and
a hold-out test set (2 years, Jan 2016- Dec 2017). The
data is normalized to have a mean of zero and a standard
deviation of one. The normalization is performed using
the training data only. During cross-validation, the mean
and standard deviation are computed separately on each
training fold.

B. Feature Selection

We compare four different sets of input features, two of
which are selected näıvely, and two of which are selected
using relationship metrics.

• The first set contains only the past eleven lags of
Dengue cases.

• The second set of features also includes eleven
months of all climate variables in addition to eleven
months of Dengue cases. As we use eight different
climate variables, aggregated to monthly time se-
ries using two statistics, and eleven lags of each, we
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have a total of 187 epidemiological and meteorolog-
ical features.

• We compare two feature selection approaches to
reduce the relatively high dimensionality of in-
puts. The third set of features is determined us-
ing a causal approach to feature selection based on
the PCMCI causal discovery algorithm. A total
of seven features are selected at significance level
α = 0.05.

• The fourth set of features is made up of the vari-
ables that are most strongly correlated with the
number of Dengue cases. The number of features
is fixed to seven, so as to allow for direct compari-
son with the PCMCI approach.

PCMCI [37] is a two-stage causal discovery algorithm
for high-dimensional time series data. In the first stage,
using a modified version of the PC algorithm [38] called
PC1, iterative conditional independence tests are per-
formed to identify relevant conditions for all variables.

For each variable X
j
t with the set of parents P̂(Xj

t ), the

variable Xi
t−τ is removed from P̂(Xj

t ) if Xi
t−τ ⊥⊥ X

j
t |S,

where S = P̂(Xj
t )\{X

i
t−τ}, cannot be rejected at a given

significance level αPC . Different kinds of independence
tests can be performed at this stage, including the par-
tial correlation test (ParCorr), which was implemented in
this study. The second stage of PCMCI filters out false
positives from each variable’s set of parents using the mo-
mentary conditional independence (MCI) test (formula
1):

Xi
t−τ 6⊥⊥ X

j
t |P̂(X

j
t )\{X

i
t−τ}, P̂(X

i
t−τ ) (1)

MCI assesses whether a variable X
j
t is independent

of any of the parents, Xi
t−τ , identified during the PC1

stage, conditional on both the remaining set of its par-

ents, P̂(Xj
t )\{X

i
t−τ} and the (time-shifted) parents of

Xi
t−τ , i.e. P̂(X

i
t−τ ).

C. Prediction

We compare the following forecasting algorithms. As a
baseline, we implement a seasonal näıve model (s-näıve)
[39], which predicts the number of cases y in a given
month t to be equal to the number of cases that occurred
in the same month of the previous year: ŷt = yt−12. We
compare the baseline to the following machine learning
algorithms.
Random Forests (RF) [40] uses an ensemble of deci-

sion trees to make predictions. Each tree is grown by
selecting a subset of observations in the training set with
replacement (bootstrap aggregating, i.e. bagging) and
then determining their best split based on a random sub-
set of features using the Mean Squared Error (MSE) as
splitting criterion.

Another tree-based ensemble approach is Gradient
Boosting Regression (GBR) [41]. As with RF, final pre-
dictions are determined by the combined results of sev-
eral decision trees. Unlike RF, GBR builds trees one at
a time, applying boosting at each iteration. Boosting is
the process of giving a higher weight to examples that
are difficult to predict, thus incentivizing the model to
improve its forecasts for the examples it predicted incor-
rectly previously.
Support Vector Regression (SVR) [42, 43] is a statis-

tical learning technique that first transforms the input
space using a kernel function, and then fits a linear func-
tion on the data. We use the radial basis function as the
kernel. SVR is ǫ-insensitive, meaning errors of absolute
magnitude up to ǫ are ignored, but errors that fall out-
side this range are minimized, while at the same time
maintaining flatness of the fitted function (equation 2):

minimize:
1

2
‖w‖2 + C

l
∑

i=1

(ξi + ξ∗i )

subject to: yi − 〈w, xi〉 − b ≤ ǫ+ ξi

〈w, xi〉+ b− yi ≤ ǫ+ ξ∗i

ξi, ξ
∗

i ≥ 0

(2)

where w are weights, C is a constant to determine the
flatness, (xi, yi) are the pairs of training feature vectors
and corresponding targets, ξi, ξ

∗

i measure the cost of er-
rors that is greater than |ǫ|, and b is the bias constant
[44, 45].
Finally, we implement a multi-layer perceptron (MLP)

neural network, comparing different architectures of up
to three layers with up to 128 hidden units. Feed-forward
neural networks consist of two stages. First, in the for-
ward propagation step (equation 3), each neuron trans-
forms inputs xj to activations ak using a set of weights
w and biases b as well as a nonlinear activation function
g:

zk =
m
∑

j=1

wkjxj

ak = g(zk + bk)

(3)

where wkj is a matrix of weights, bk is the bias vector,
and g is the activation function.
The activations are passed as inputs to the neurons in

the next layer of the network until they reach the final
layer. The output of the last layer is a prediction ŷ,
which is compared to the true training labels using a loss
function.
During the backpropagation stage, the network pa-

rameters are adjusted to minimize the prediction errors.
Learning consists of iteratively updating the weights and
biases in the network using gradient descent as follows
(equation 4):

θ = θ − α
dL

dθ
(4)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.17.430949doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.430949
http://creativecommons.org/licenses/by-nc-nd/4.0/


4

where θ is the parameter to be updated, L is the loss,
and α is the learning rate [46]. We use a Rectified Lin-
ear Unit (ReLU) activation function, Adam optimization
function, 500 epochs, learning rate of 0.001, MSE loss
function, and minibatch size of 200 observations. To
avoid overfitting our predictions to the training exam-
ples, we implement L2 regularization with a parameter
of 0.2.
We tested a range of hyperparameters for each of the

machine learning algorithms, which is presented in table
I.

TABLE I. Hyperparameters

Algorithm Hyperparameter Values

RF number of trees: [50, 100, 150, 200]

maximum tree depth: [2,3,6, None]

GBR number of trees: [50, 100, 150, 200]

maximum tree depth: [2,3,6, None]

MLP number of layers: [1, 2, 3]

number of units per layer: [32, 64, 128]

SVR epsilon: [0.01, 0.05, 0.1, 0.2]

D. Model Evaluation

We use the Root Mean Square Error (RMSE) (equa-
tion 5) and the Mean Absolute Error (MAE) (equation
6) for model evaluation and selection:

RMSE =

√

√

√

√

1

N

N
∑

i=1

(ŷi − yi)2 (5)

MAE =
1

N

N
∑

i=1

|ŷi − yi| (6)

where N is the total number of observations, ŷ are the
predicted values, and y are the actually observed number
of cases.
Models are selected using expanding time series cross-

validation (CV). As we are working with sequence data,
we cannot implement traditional CV, which would in-
volve randomly shuffling the data to split it into training
and validation sets. Instead, we maintain the chronolog-
ical order of the data, by shifting our validation fold for
each iteration of CV. We begin with one year of training
data (year 2007) and the following year of validation data
(year 2008). We then shift the validation fold to the next
year (2009) and use all previous observations for training
(years 2007-08). This shifting process is repeated until

TABLE II. Optimal hyperparameters selected using CV

Algorithm Feature set(s) Hyperparameter values

RF only Dengue, number of trees: 50

Correlation maximum tree depth: None

with Climate number of trees: 200

maximum tree depth: 6

PCMCI number of trees: 100

maximum tree depth: 6

GBR all number of trees: 200

maximum tree depth: 2

MLP only Dengue architecture: (32,32)

with Climate,

Correlation architecture: (32)

PCMCI architecture: (64)

SVR only Dengue,

PCMCI,

Correlation epsilon: 0.05

with Climate epsilon: 0.01

GBM MLP rf svr_rbf
0

20

40

60

80

100

120

140
fs

Correlation
PCMCI
only Dengue
with Climate

FIG. 1. Distribution of algorithm and feature set among best
model per city (lowest MAE)

the full training data is covered, resulting in eight sepa-
rate validation folds. The validation error of each city is
computed as an average across the eight folds.

III. RESULTS

At the validation stage, we use expanding time se-
ries CV to select the optimal hyperparameters for each
model, and compare the relative performance of each
combination of algorithm and feature set. The selected
hyperparameter values vary across the sets of input fea-
tures and are presented in table II.
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TABLE III. Validation errors

MAE RMSE

mean median mean median

Algorithm Feature Set

GBM Correlation 39.0 8.8 68.1 13.6

PCMCI 38.7 8.9 67.6 13.9

only Dengue 38.3 8.9 67.3 13.5

with Climate 41.4 9.7 72.5 15.6

MLP Correlation 44.0 12.1 74.6 17.7

PCMCI 41.7 12.4 71.2 18.7

only Dengue 48.2 13.0 78.6 18.3

with Climate 53.8 22.7 89.9 32.0

RF Correlation 37.4 8.9 67.4 15.4

PCMCI 38.8 8.5 67.9 14.2

only Dengue 37.2 8.6 67.3 15.5

with Climate 42.6 9.6 73.5 15.6

SVR Correlation 54.6 15.1 90.5 18.0

PCMCI 54.6 15.3 90.4 18.8

only Dengue 55.3 14.9 90.5 17.7

with Climate 53.0 14.8 91.1 19.9

s-näıve 80.8 14.1 206.4 31.2

Lowest errors are highlighted.

TABLE IV. Test set errors

MAE RMSE

mean median mean median

Model

RF (only Dengue) 59.4 11.5 133.7 23.8

City-specific 62.2 10.8 129.9 18.8

s-näıve 174.4 17.3 324.7 30.4

Lowest errors are highlighted.

The Random Forests (RF) algorithm performed best
on the validation folds, especially with only Dengue in-
puts. This combination of algorithm and feature set had
the lowest errors across all cities according to the mean
MAE and RMSE. For the median city, this resulted in a
RMSE of 15.5 and predictions on average within 8.6 cases
(table III). PCMCI feature selection gave the lowest me-
dian MAE in combination with the RF algorithm. The
lowest median RMSE was achieved by the GBR model
trained on only Dengue inputs. When selecting a single
model for each city, RF was chosen most frequently (fig-
ure 1). This result holds regardless of the error metric
chosen as the minimizing criterion.

The models selected on the validation sets are trained
on the full training set and evaluated on the hold-out test
set. The best overall model, the RF algorithm trained
only on Dengue inputs, predicts Dengue Fever with a
MAE of 11.5 for the median city on unseen data (ta-
ble IV). Performance is improved slightly when selecting
different combinations of algorithms and input features
for each city individually, resulting in a MAE of 10.8
cases for the median city, as well as lower mean and me-
dian RMSE. Both approaches significantly outperform
the näıve baseline forecast.
Qualitatively, the model is able to capture different

kinds of time series, as illustrated in three sample cities
in figure 2. São Paulo experiences annual Dengue out-
breaks, though the total number of cases differs across
years. Some years (e.g. 2014-16) have much larger peaks
than the other years. Sorocaba is a special case of this sit-
uation, where there is a single dominant outbreak across
the whole time series, with low numbers of cases in the
remaining years. Belém has a more irregular time se-
ries of Dengue cases, with multiple outbreaks per year
and strong variation in the intensity of outbreaks. In all
three cases, the models capture the qualitative changes
well, both when selecting the best model for the specific
city and when using the best model overall.

IV. DISCUSSION

We compared machine learning algorithms and input
feature sets, and show that a Random Forests model
trained on eleven lags of historical Dengue cases is effec-
tive at forecasting Dengue one month ahead in over 200
Brazilian cities. This model had the lowest aggregate er-
ror across cities according to two metrics and was most
often chosen as the best-performing model for individual
cities.
In some cities, errors on unseen data can be reduced

even further by adopting a city-specific approach and se-
lecting one of the other machine learning models. Our
study therefore finds that there is no universal model
that has the lowest errors in all cities, confirming recent
findings in other geographic contexts [47]. However, the
increase in the aggregated errors is relatively low when
choosing a single model across all cities, and may be jus-
tified when considering the increased computational cost
of estimating separate models. The most appropriate
approach will depend on the intended use case, such as
allocating public health resources across cities or devel-
oping an early warning system for outbreaks in a specific
location.
This study demonstrates the potential of machine

learning models to forecast Dengue Fever in Brazil. Our
model outperforms existing comparable approaches by
achieving a lower forecast error for São Paulo than [31].
Given our data and context, decision tree approaches
perform better than neural networks. This finding con-
tributes to better understanding of the role of neural net-
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FIG. 2. Predictions for sample cities

works in Dengue forecasting, which have not been studied
as extensively as other machine learning algorithms [48].
Some limitations of this study must also be consid-

ered. We use officially reported statistics of suspected
cases, which may include those that are later confirmed
to be erroneous. For example, it has been shown that
Dengue can be confused with other diseases, such as Zika
virus. A study that tested 77 biological samples of a sus-
pected Dengue outbreak near Pernambuco in Northeast-
ern Brazil found that over 40 percent of the patients had
actually contracted Zika virus [49]. Therefore, the data
and resulting analysis must be viewed in light of these
limitations.
A drawback of the machine learning models used in

this study is the lack of explainability of the drivers of
disease spreading. Effective disease prevention requires
an understanding of the causes in addition to the ex-
pected number of cases. We can assess the importance
of different features for Dengue prediction (e.g. using
random forests feature importance or Shapley values),
but this would not tell us anything about interventions
- which kinds of policies could effectively reduce the dis-
ease burden. Detailed exploration of the local drivers in
each city can help inform public health policies aimed at
suppressing these drivers.

A benefit of using causal discovery for feature selection
is the potential for better understanding of the causes of
Dengue outbreaks. PCMCI and other causal discovery
methods, however, rely on strong assumptions that may
limit this benefit in the context of our study. Specifically,
PCMCI requires (i) causal sufficiency, (ii) the Causal
Markov Condition, and (iii) the Faithfulness assumption
[37]. Inferences from the PCMCI analysis must be made
carefully when the fulfilment of these assumptions is not
proven. For example, the number of both true positives
as well as false positives may increase when the station-
arity assumption is violated or in the case of long time
series [50]. In this study, we use seasonal data and did
not include all variables shown to be linked to Dengue
Fever, such as human mobility [14] or land use [15]. This
does not affect the PCMCI algorithm’s ability to improve
predictions, but limits potential causal interpretations.
Future work may expand the types of input variables
and causal discovery algorithms used to get a better un-
derstanding of potential causes of Dengue in Brazilian
cities.
In summary, our results show that although Dengue

forecasting is of paramount importance, the prediction
of the number of cases is not simple and the impact of
climate variables depends on the city. A range of fac-
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tors beyond climate may affect disease spreading. In-
deed, since Brazil is among the most unequal countries
in the world, it is expected that social indices play a
fundamental role in the prediction. Thus, future work
may investigate whether social and economic variables
can improve dengue forecasting and show which ones are
the most important for prediction. In this way, it will
be possible to propose methods for epidemic predictions

based on the reduction of poverty, carbon emissions, and
deforestation.
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