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 13 
Abstract 14 
 15 
The dengue virus affects millions of people every year worldwide, causing large epidemic outbreaks that disrupt 16 
people’s lives and severely strain healthcare systems. In the absence of a reliable vaccine against it or an 17 
effective treatment to manage the illness in humans, most efforts to combat dengue infections have focused on 18 
preventing its vectors, mainly the Aedes aegypti mosquito, from flourishing across the world. These mosquito-19 
control strategies need reliable disease activity surveillance systems to be deployed. Despite significant efforts to 20 
estimate dengue incidence using a variety of data sources and methods, little work has been done to understand 21 
the relative contribution of the different data sources to improved prediction. Additionally, scholarship on the 22 
topic had initially focused on prediction systems at the national- and state-levels, and much remains to be done at 23 
the finer spatial resolutions at which health policy interventions often occur. We develop a methodological 24 
framework to assess and compare dengue incidence estimates at the city level, and evaluate the performance of a 25 
collection of models on 20 different cities in Brazil. The data sources we use towards this end are weekly 26 
incidence counts from prior years (seasonal autoregressive terms), weekly-aggregated weather variables, and 27 
real-time internet search data. We find that both random forest-based models and LASSO regression-based 28 
models effectively leverage these multiple data sources to produce accurate predictions, and that while the 29 
performance between them is comparable on average, the former method produces fewer extreme outliers, and 30 
can thus be considered more robust. For real-time predictions that assume long delays (6-8 weeks) in the 31 
availability of epidemiological data, we find that real-time internet search data are the strongest predictors of 32 
dengue incidence, whereas for predictions that assume short delays (1-3 weeks), in which the error rate is halved 33 
(as measured by relative RMSE), short-term and seasonal autocorrelation are the dominant predictors. Despite 34 
the difficulties inherent to city-level prediction, our framework achieves meaningful and actionable estimates 35 
across cities with different demographic, geographic and epidemic characteristics. 36 
 37 
 38 
Author Summary 39 
As the incidence of infectious diseases like dengue continues to increase throughout the world, tracking their 40 
spread in real time poses a significant challenge to local and national health authorities. Accurate incidence data 41 
are often difficult to obtain as outbreaks emerge and unfold, both due the partial reach of serological surveillance 42 
(especially in rural areas), and due to delays in reporting, which result in post-hoc adjustments to what should 43 
have been real-time data. Thus, a range of ‘nowcasting’ tools have been developed to estimate disease trends, 44 
using different mathematical and statistical methodologies to fill the temporal data gap. Over the past several 45 
years, researchers have investigated how to best incorporate internet search data into predictive models, since 46 
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these can be obtained in real-time. Still, most such models have been regression-based, and have tended to 1 
underperform in cases when epidemiological data are only available after long reporting delays. Moreover, in 2 
tropical countries, attention has increasingly turned from testing and applying models at the national level to 3 
models at higher spatial resolutions, such as states and cities. Here, we develop machine learning models based 4 
on both LASSO regression and on random forest ensembles, and proceed to apply and compare them across 20 5 
cities in Brazil. We find that our methodology produces meaningful and actionable disease estimates at the city 6 
level with both underlying model classes, and that the two perform comparably across most metrics, although the 7 
ensemble method produces fewer outliers. We also compare model performance and the relative contribution of 8 
different data sources across diverse geographic, demographic and epidemic conditions. 9 
 10 
 11 
 12 
Introduction 13 
 14 
The incidence of dengue has risen dramatically over the past few decades. With an estimated 100-400 million 15 
infections each year, dengue threatens roughly 3.9 billion people in 128 countries and poses a growing health and 16 
economic problem throughout the tropical and sub-tropical world.1 As climate change and urbanization intensify, 17 
the geographic range of dengue is expected to spread even further.2 Though the disease often manifests 18 
asymptomatically, severe cases can lead to hemorrhage, shock and death.3 In Brazil, which we examine in this 19 
paper, dengue has been endemic since 1986, and is today considered to be experiencing a “hyperendemic 20 
scenario,” in which both fatalities and severe cases are rising.4, 5 In the decades since 1986 over 40% of all 21 
dengue deaths in the country have been taken place in the Southeast region, but mortality from the disease has 22 
been reported in all but two of Brazil’s states. 23 
 24 
Health services have strained to address the burden of dengue morbidity and mortality, in the regions where it is 25 
endemic, through a variety of means. Without a reliable vaccine or an effective treatment to manage the illness in 26 
humans, one effort, promoted by the World Health Organization (WHO), has aimed to achieve better early case 27 
detection. By focusing on improving epidemiological surveillance and attaining more timely identification of 28 
outbreaks, public health officials hope that preventive measures to reduce the spread of the disease can be used 29 
more effectively (vector control methods include, for example, the distribution of mosquito nets). However, 30 
effective real-time tracking of the spread of dengue – let alone prediction – has proven difficult. This is 31 
particularly evident in sprawling countries like Brazil, in which health resources are spread thin over a vast range 32 
of localities in which dengue is endemic. Governments typically rely on clinic-based reporting for case counts, 33 
but in Brazil (as in other countries) this information is often lagged in time and subject to post-hoc revisions, thus 34 
limiting the potential effectiveness of interventions.6,7 Thus, the development of data-informed tools for dengue 35 
surveillance which provide accurate case counts in real-time has increasingly become a priority. 36 
 37 
The transmission dynamics of dengue and the time scales at which they occur lend themselves to tracking 38 
patterns of infection. In tropical environments, Aedes aegypti and Ae. albopictus mosquitoes can transmit dengue 39 
viruses within a week of infection. Once infected by a mosquito, a person can become ill within a week, and 40 
show symptoms for up to 10 days (other mosquitos can subsequently pick up dengue from an infected person 41 
within a 5-day window).8, 9 A range of external conditions have also been shown to affect dengue transmission. 42 
Among these are precipitation, temperature and other seasonal weather patterns, which influence the spread of 43 
the disease by affecting the development and lifespan of the dengue-carrying mosquitos.10, 11,12, 13, 14 Additional 44 
factors include the human population density in a given town or region, as well as the degree to which various 45 
mosquito control efforts have been implemented by local health authorities.15, 16 46 
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Harnessing these various factors, a large number of models have been developed over the years in the attempt to 1 
forecast or nowcast dengue incidence (that is, to either predict future case counts or to accurately estimate current 2 
counts in real time). These range from compartmental mechanistic models, based on a set of differential 3 
equations, to statistical autoregressive models such as Seasonal Autoregressive Integrated Moving Average 4 
(SARIMA), which leverage both seasonal patterns and recent trends to produce disease estimates, to models 5 
based on various machine learning techniques.17, 18, 19, 20, 21 Over the past few years, search activity on internet 6 
search engines has increasingly been explored as a potential data source for these models. As internet access in 7 
the developing world increased, researchers have shown the potential of applying user activity data from search 8 
engines and social media to make predictive estimates of dengue incidence levels.29,34 9 
 10 
However, much of the work in this field has been done at the national or state levels, with models estimating 11 
disease incidence over vast geographical swaths with highly varying local conditions and rates of disease.22 At 12 
the city level, smaller population sizes and fewer reliable data sources makes modelling disease rates more 13 
technically challenging, as previous work at this resolution has shown.23 Still, while national- and state-level 14 
estimates are no doubt helpful, estimating incidence at the city-level can be uniquely useful to local and national 15 
health administrators (as well as to international health organizations) – for example, in guiding a more granular 16 
distribution of resources such as mosquito nets. In recent years, more attempts have been made to fill this gap 17 
and models for estimating disease incidence at the city level in a number of tropical countries have been 18 
developed.21, 23 In Brazil, a joint effort by academics and health officials has produced “InfoDengue,” a system 19 
for dengue surveillance at the city level which has been running since 2015.24 Using weather time-series data, 20 
case reports and information from social networks, InfoDengue produces a risk map and dengue incidence 21 
estimates. 22 
 23 
Delays and inaccuracies in reported disease surveillance data are some of the key difficulties in detecting and 24 
monitoring epidemics, and a number of approaches, such as Bayesian hierarchical modelling and constrained P-25 
spline smoothing, have been used by researchers in the attempt to account for these delays and the uncertainty 26 
they introduce.25, 26, 27 Other efforts to mitigate the effect of delays in reporting have sought to incorporate novel 27 
real-time data sources, such as Twitter activity, in order to improve nowcasting model performance.22 More 28 
recently, a comparative study has found that dengue incidence forecasts tended to do well in situational 29 
awareness late in the season, whereas early season forecasts needed improvement, and suggested the use of 30 
multiple-model ensemble approaches to improve accuracy, an approach that had previously shown promise.28, 29 31 
When recently applied to data from Vietnam, this “superensemble” approach to probabilistic seasonal dengue 32 
forecasting was indeed shown to be more accurate, on average, than the models that comprised it.30 Another 33 
approach shown to improve forecasting performance in urban areas, in both mechanistic models and artificial 34 
neural networks, has been to incorporate human mobility data as features.31 35 
 36 
 37 
Our contribution. We seek to to estimate dengue activity at the city level up to 8 weeks ahead of the publication 38 
of epidemiological reports, and to identify the degree to which different sources of data contribute to the 39 
performance of these models. In examining cities with a range of demographic and geographic characteristics, as 40 
well as varying epidemic histories, we hope to point to the specific circumstances in which different data sources 41 
and the underlying models leveraging them perform best – and thus to suggest which model set-ups be used in 42 
practice in the future, in different epidemic scenarios. In order to achieve those goals, we extend methodological 43 
frameworks previously used for flu surveillance. We assess the predictive performance of a collection of models 44 
by comparing their estimates, produced in a strictly out-of-sample fashion (only using information that would 45 
have been available at the time of prediction), with the subsequently observed dengue incidence. The underlying 46 
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statistical methods we compare are both regression-based (LASSO) and non-parametric ensembles (Random 1 
Forest), and the data sources we leverage for these estimates are: (a) weekly incidence counts from prior years 2 
(seasonal autoregressive terms), (b) weather measurements, and (c) real-time dengue-related Google Search 3 
Trends data. We evaluate the performance in tracking dengue in 20 cities in Brazil and highlight the conditions in 4 
which this framework achieves more accurate predictions. Our results show that despite the difficulties inherent 5 
to predictions at the city level, our framework achieves meaningful, actionable estimates, and highlights the 6 
conditions in which our models perform most accurately. Finally, we find that our approach is capable of 7 
identifying whether or not an upcoming season will experience an epidemic with accuracies above 75%, up to 8 8 
weeks ahead of available reports. 9 
 10 
 11 
Materials and Methods: 12 
 13 
Data 14 
 15 
We used three distinct sources of information for our study: (a) historical dengue incidence from Brazil’s 16 
Ministry of Health, (b) Google search frequencies of dengue-related queries, aggregated at the state-level, for the 17 
states in which the 20 chosen cities are located, and (c) Weather data, obtained from the Modern-Era 18 
Retrospective analysis for Research and Applications, Version 2 (MERRA-2).32 19 
 20 
We analyzed weekly dengue activity in 20 cities in Brazil: Aracaju, Barra Mansa, Barretos, Barueri, Belo 21 
Horizonte, Eunápolis, Guarujá, Ji Paraná, Juazeiro do Norte, Manaus, Maranguape, Parnaiba, Rio de Janeiro, 22 
Rondonópolis, Salvador, Santa Cruz do Capibaribe, São Gonçalo, São Luís, São Vicente, Sertãozinho, and Três 23 
Lagoas. We chose these Brazilian cities based on several criteria. First, they all had populations over 100,000 by 24 
July 2016 (the end of the time range we examined) and varied widely in population size above that threshold. 25 
Second, the cities were all chosen to be “dengue endemic” locations, experiencing between 7 and 10 epidemic 26 
years between 2001 and mid-2016 (following the definition of the Brazilian Ministry of Health, an epidemic year 27 
is one in which the number of confirmed cases of dengue fever exceeds 100 per 100,000 persons33). Finally, they 28 
were chosen from a wide geographic range of 13 different states in Brazil and have a wide range of population 29 
densities, both of which are epidemiological factors known to influence disease dynamics. For the full summary 30 
of the demographic and geographic characteristics of the different cities, see Table B in the S1 text. 31 
 32 
Epidemiological data. Weekly dengue case counts from January 2010 to July 2016 were obtained from the 33 
Ministry of Health of Brazil directly. We confirmed that the ministry-reported annual totals, which are based on a 34 
combination of PCR testing and syndromic diagnosis by local physicians and other health practitioners, match 35 
the sum of case counts over each year at the state level (as can be found on the DataSUS service). Nevertheless, 36 
this observable data from reported cases likely underestimates the total number of cases, due to non-37 
comprehensive testing, as well as cases that were diagnosed but ultimately not reported. This effect might vary 38 
through time and across different geographies. 39 
 40 
Online search volume data. Weekly Google search frequencies for dengue-related queries were obtained from 41 
Google Trends (www.google.com/trends) using the Google Health Trends API. The Google Trends API was 42 
accessed using the gtrends-tools interface (https://github.com/fl16180/gtrends-tools). The search terms were 43 
downloaded at the state-level, for the states in which each of the 20 cities is located (Google Trends data at the 44 
city-level are not currently available in Brazil). 45 
 46 
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For online search term selection, we initially sought to use Google Correlate (www.google.com/correlate), which 1 
is designed to identify search terms correlating highly with a given time series. This method has been used in the 2 
past with success.34 However, since most of the search terms returned by Google Correlate for our time series of 3 
dengue incidence were unrelated to dengue, and since it was discontinued in the course of our work (in 4 
December of 2019), we instead used the Google Trends (www.google.com/trends) tool to identify queries which 5 
are highly correlated with the term ‘dengue’ (a feature enabled by the Google Trends interface). In order to 6 
ensure the model was robust and generalizable, we ignored terms unrelated to dengue, and verified the terms 7 
with a native Portuguese speaker. The weekly aggregated search frequencies of these terms were then 8 
downloaded within the time period of interest. Importantly, since we intended the method to generalize to states 9 
and cities across Brazil, we used the same terms for the 20 cities. The query terms are presented in Table A in S1 10 
text. 11 
 12 
Weather data. Weather data were collected from MERRA-2 (Modern Era Retrospective-analysis for Research 13 
and Applications). The MERRA-2 data are publicly available through the Global Modeling and Assimilation 14 
Office (GMAO) at NASA Goddard Space Flight Center. For each of the 20 cities, daily weather indicators from 15 
Jan 1 2000 to Dec 31 2016 were created, with the following features: mean daily 2-meter air temperature (K), 16 
precipitation (mm), mean daily wind speed (m/s), and 2-meter specific humidity (kg/kg, dimensionless). We 17 
calculated the total accumulated rainfall in a day (mm) as the sum of hourly precipitation (kg/m2/hr, which is 18 
equivalent to mm/hr) over the 24-hour period. These data were then aggregated into weekly reports, in the range 19 
of dates between January 2010 and July 2016, to align with the epidemiological dengue incidence data. 20 
 21 
The weather data were produced at a naive resolution of 0.5 x 0.625 degrees, which works approximately to a 22 
~50 square km grid cell. Attributing these data to a specific city, then, involved overlaying the rectangular grid of 23 
weather data onto a spatial file outlining city boundaries, and taking the weighted average of grid cells covering 24 
the city boundary. Given the modelled nature of the MERRA-2 data, the data are never missing (there is full 25 
temporal coverage in the range of dates studied).  26 
 27 
 28 
Methods 29 
Our model draws on a range of data sources that have been used in the multivariate linear regression modeling 30 
framework ARGO (AutoRegressive model with GOogle search queries as exogenous variables), previously used 31 
to track flu incidence using flu-related Google searches.35 But the underlying machine learning methodology in 32 
our model differs fundamentally, and we extend other aspects of previous models significantly. We introduce 33 
Random Forest-based prediction in addition to previously tested L1-based (LASSO) regularized regression 34 
models. This new model was used to combine information from historical dengue case counts and dengue-related 35 
Google search frequencies, as well as weather data, with the goal of estimating dengue activity at different time 36 
ranges ahead of the publication of official health reports. 37 
 38 
At a high level, our models are re-trained each week on data available at the time of prediction in order to 39 
estimate an out-of-sample nowcast of dengue incidence for that week. The weekly generated training sets 40 
consisted of a growing time-window which contained incidence data from time points up to 8, 6, 3 or 1 weeks 41 
prior to the time of estimation. The minimal time-window used for a single point prediction contained 52 weekly 42 
data points (a full year), and the maximal time-window contained over 300, when estimating some of the final 43 
points in our range (in mid-2016). This growing window approach allowed the model to constantly improve its 44 
predictive ability by taking into account an ever-larger sample of the relationship between internet search 45 
behavior, weather, and dengue activity. An alternative approach, using a moving window of a constant size, 46 
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proved to perform less well in most cases in our preliminary analyses. The initial target training data thus 1 
consisted of the 80 weekly case counts between January 1 2011 (the first point at which we had a full year of 2 
historical data) and June 30 2012, and this gradually expanding window of training data was used for point 3 
predictions 1, 3, 6 and 8 weeks in the future (see figure 3 for an illustration of this). For completeness in our 4 
modeling approaches, we also incorporated information on dengue activity from one, two and three years before 5 
the time-to-prediction, to test if long-term seasonal activity would improve performance as the literature has 6 
suggested.15, 29 7 
 8 
Model formulation and assessment. Our models were based on the assumption that when there are more 9 
dengue cases, more dengue-related searches will be observed. This is formalized mathematically via a hidden 10 
Markov model, as explained in Yang et al, 2015.29 11 
 12 
Assuming that epidemiological reports were available with different time delays ranging from 1 to 8 weeks, we 13 
constructed models that would only have access to the most recent information available at the time of 14 
prediction. Thus, our models incorporated historical information in the form of autoregressive features from the 15 
prior 52 weeks, if available, or from a reduced set depending on the assumed delay in the availability of 16 
epidemiological information. In other words, taking J to be the number of weeks for which we incorporate 17 
incidence data as autoregressive features, we defined four different set-ups: J8 = {8, 9, . . . , 52}, J6 = {6, 7, . . . , 18 
52}, J3 = {3, 4, . . . , 52}, J1 = {1, 2, . . . , 52}. For J8 the assumed delay in the receipt of epidemiological reports 19 
is 8 weeks, for J6 the assumed delay is 6 weeks, and so on. These choices of J capture the influence of short-term 20 
fluctuations, which has been shown to be strongly predictive for dengue case counts.29 21 
 22 
The effect of long-term seasonality is also considered, implicitly and explicitly, by the inclusion of our 23 
expanding training window strategy, which incorporates new training samples as more data is collected every 24 
week, and by explicitly including as predictors weeks 78, 104, and 156 whenever they were available (the case 25 
counts 1.5, 2 and 3 years before the point in time being estimated). Finally, we define K as the set of non-26 
autoregressive features being used in a given model set-up, which includes Google Trends data and weather data. 27 
 28 
 29 
 30 
 31 
Model parameter estimation 32 
 33 
LASSO Regression. The Least Absolute Shrinkage and Selection Operator (LASSO) is a linear regression 34 
technique that minimizes the residual sum of squares subject to a L1 norm.  35 
 36 
At a given time t, we estimate the log-transformed case counts 𝑦𝑡, 𝑦𝑡 = log (𝑐𝑡 + 1), to be 37 
 38 𝑦𝑡 =  𝛽0 + ∑ 𝛼𝑗𝑦𝑡−𝑗 + 𝑗 ∈𝐽 ∑ 𝑘𝑥𝑘,𝑡 + 𝜖𝑡 ,      𝜖𝑡  ∼   𝒩(0, 𝜎2)𝑘 ∈𝐾  39 

 40 
where 𝛼𝑗 and 𝑘 are the estimation coefficients for 𝑦𝑡−𝑗, the observed dengue counts j weeks before the time t for 41 
which counts are being estimated, and 𝑥𝑘,𝑡, a given non-autoregressive feature 𝑥𝑘  (such as a weather 42 
measurement or google trends search term) being used at time t in a given model set-up. 𝜇𝑦 is an intercept term 43 
and 𝜖𝑡 is the normally distributed error term. The L1 norm is a regularization technique that imposes a constraint 44 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2021. ; https://doi.org/10.1101/2020.10.21.20210948doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.21.20210948
http://creativecommons.org/licenses/by-nc-nd/4.0/


   7 

over 𝛼𝑗 and 𝑘, making the sum of the absolute value of the linear coefficients to not exceed a specific value (this 1 
value is a hyper-parameter, and is found via 5-fold cross validation). As a linear model, the coefficients 2 
associated with each feature are highly interpretable. L1 regularization also performs feature selection, zeroing 3 
out coefficients of features that contribute little to the predictions for each time window. 4 
 5 
Random Forests 6 
Random Forests are a classification and regression method based on decision trees, models which can be used to 7 
approximate complex non-linear functions via simple partitions of the feature space. However, large and 8 
complex decision trees are prone to overfitting and high variance. This can be amended by using Random 9 
Forests, a form of bagging (“bootstrap aggregating”) in which multiple trees are trained on random samples of 10 
the training data – and then for a given input, the output is the averaged output of those trees.36, 37 To ensure the 11 
ensemble of decision trees is independent, for each split of each tree a random subset of predictors P’ is selected 12 
from the full set of predictors P. Finally, Random Forests have the advantage of being relatively interpretable, as 13 
widely accepted methods exist for calculating the relative importance of predictors in a “trained” forest (see [v], 14 
as well as 38). Still, they are not as intuitively interpretable as simple decision trees or linear models, in which one 15 
can more explicitly infer how the response variable changes in response to specific changes in features X. 16 
 17 
 18 
All statistical analyses were performed with Python version 3.6.4 using Jupyter notebooks, using the statistical 19 
and machine learning libraries NumPy, Pandas, and Scikit-Learn. For both the LASSO regression and random 20 
forest-based models, the hypermeters (such as the alpha constant for LASSO or the maximum depth of the 21 
random forest) were set to the default values in the Scikit-Learn libraries, which were found to perform most 22 
consistently across our experiments. 23 
 24 
 25 
 26 
Benchmark Models and Feature Sets 27 
To our knowledge, few previous attempts were made to forecast or “nowcast” dengue incidence at the city level 28 
in Brazil. One such instance, which harnessed data from twitter to make estimates at both the country and city 29 
levels, found that tweets were useful for both forecasting and nowcasting dengue cases at the city level, though 30 
the association between the two was not as strong as at the country level.25, 39 Another such study focused on 31 
applying time-series analysis comparatively between two particular cities, Recife and Goiania, which have 32 
populations of a similar size.40 The Brazilian health authorities themselves typically release case counts 2-4 33 
weeks after the fact, and frequently correct these figures substantially weeks after the initial publication. Thus, 34 
there was no clear external baseline with which to compare our results. 35 
 36 
To evaluate performance with different assumptions about the availability of data and the relative contributions 37 
of various features, we constructed a number of internal benchmarks. First, we compared four different feature 38 
sets from our data sources: one solely with Google Trends data (which we label GT), a second solely with 39 
autoregressive data (AR), a third which included both (AR + GT), and a fourth that also took into account the 40 
weather data of each week and the week prior to it (AR + GT + W). In this way, we could assess the impact of 41 
each of the data sources at predictions with different models from different time horizons. 42 
 43 
Second, we compared our two statistical methodologies, regression-based (LASSO) and non-parametric 44 
ensemble (Random Forest), and assessed how they performed relative to one another across the different feature 45 
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sets and from different time horizons. In particular, we assessed the Random Forest model against the regression 1 
methodologies, which have been much better studied in the context of disease incidence nowcasting applications. 2 
 3 
More generally, we evaluated which models and which data sources perform best at each time point with each 4 
methodology, while also summarizing performance across these in order to determine which methodology and 5 
feature set were most robust, and which led to the strongest performance across the board. 6 
 7 
Model assessment  8 
We generated model estimates over the period between January 2011 and July 2016 with all of our models for 9 
each of the 20 cities, as selected following the previously described procedure. We used the following metrics to 10 
assess the performance of our models: root mean square error (RMSE), relative RMSE (R-RMSE), the R-squared 11 
coefficient of determination (R2) and the Pearson correlation coefficient. These were computed for the entire 12 
prediction period, over weekly intervals. 13 
 14 
For each model, we also tested four variants based on simulating how recently the last official dengue case count 15 
report was received (denoted as 1, 3, 6, and 8-weeks before the “current,” predicted dengue report). Since the 16 
time delay between official case count reports is variable, it is important to assess how robust the models are to 17 
varying availability of autoregressive information. 18 
 19 
Finally, to analyze more fully the long-term influence that historical dengue activity has on the future dynamics 20 
of outbreaks, we compared our selected AR model with an enhanced AR model, which included additional 21 
seasonal autoregressive features characterizing historical dengue activity (occurring up to 3 years in the past). 22 
Our results, which can be seen in Figure A and Table C of the S1 text, were effective in some cities but not in 23 
others, and so were not incorporated into the final model. 24 
 25 
Utilizing dengue activity point estimates to predict an incoming epidemic in Brazil 26 
 27 
Building on the primary model for nowcasting real-time dengue incidence, we also tested our ability to predict, 28 
as a binary task, whether or not an epidemic would occur as a dengue season unfolds. More specifically, for each 29 
of the 20 cities, we assessed whether the cumulative number of dengue cases (that is, both the available reported 30 
epidemic observations and the disease estimates produced by our models) crossed a specified threshold value, 31 
referred to as the epidemic threshold, on a weekly basis. As the assumed delay in the availability of “observed” 32 
epidemiological information is up to 8 weeks, we substituted the 8 most recent weekly “missing” reports using 33 
our dengue point-estimates, and aggregated them along with the current ”observed” available information as to 34 
increase our ability to predict a potential epidemic every week. Specifically, if the cumulative number of cases 35 
for a given time interval 𝑡𝑒 exceeded the epidemic threshold value, we labelled the interval as epidemic. If it did 36 
not, we labelled it as non-epidemic. If our model using our substituted point estimates successfully predicted an 37 
epidemic within a dengue season as defined by the cumulative official case counts, we considered that season as 38 
a true positive. If the model did not predict an epidemic during all its weekly assessments and this remained 39 
consistent with the official epidemiological data, we considered that case a true negative. We generated the 40 
binary classification dataset by dividing the historical dengue activity time-series of each city into 52-week time 41 
intervals. These time intervals empirically center the high dengue activity periods, and keep the inter-outbreak 42 
activity (seasons with low dengue activity) at the start and the end of each interval. For each time interval, the 43 
cumulative dengue activity was calculated: from 0 in the first week, 𝑡0, to the total number of cases at week 52, 44 
or 𝑡52. 45 
 46 
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Given that the distribution of epidemic and non-epidemic intervals depends on the selection of the epidemic 1 
threshold – we tested and repeated our task using a range of values consistent with the standard thresholds 2 
reported in the literature, from 100/100,000 to 300/100,000. 3 
 4 
 5 
Results 6 
When assuming short delays in the receipt of real dengue case count reports, we found that our models accurately 7 
estimated dengue incidence in 19 out of the 20 cities, across varying population sizes and local conditions. In the 8 
models in which the autoregressive case counts were included as features, a delay of one week in the receipt of 9 
real data resulted in an average error rate of under 0.5 relative RMSE. In this scenario, the model based only on 10 
Google Trends (GT) features underperforms relative to the ones in which autoregressive data were included, with 11 
performance around 0.85 in relative RMSE (see Fig 1 and Fig 2). 12 
 13 
When longer delays in the availability of epidemiological data are assumed, the LASSO-based model slightly 14 
outperformes the Random Forest-based models, and the best-performing feature set is GT. This advantage 15 
narrows in scenarios which assume shorter delays, of 1-3 weeks in advance, in which cases the two underlying 16 
methodologies tend to perform comparably. The Random Forest-Based model, however, is more robust to 17 
changes in features and assumptions about the availability of real-time epidemiological data. It also tends to 18 
produce fewer outlying, extreme values (see Fig 1 and Fig 2). 19 
 20 
As assumed delays in the availability of epidemiological data grow smaller, performance improves across the 21 
board, with lower RMSE and higher Pearson correlation observed in all models. For predictions that assume very 22 
short delays in the availability of epidemiological data, short-term and seasonal autocorrelation were key to 23 
improving estimates and captured a substantial amount of dengue variability. For predictions that assume longer 24 
delays, the real-time Google search trends data captured the most substantial amount of dengue variability. To 25 
highlight these effects, we examine a number of cities in the figures below, and focus on the model that tended to 26 
be most robust across different feature sets: the underlying RF methodology, with AR + GT feature set. In Fig 3, 27 
we show nowcasts in four cities using this model: Sao Luis, Belo Horizonte, Barra Mansa and Maranguape. 28 
These cities were chosen based on their different population sizes, peak epidemic rates, and weather patterns, and 29 
so demonstrate the comparative behaviour of the model across this range of demographic and geographic 30 
characteristics, as well as their epidemic histories (see Table B in S1 text for specific demographic and 31 
geographic statistics in each of the 20 cities). 32 
 33 
To highlight performance at a more granular level and to allow comparisons between the different metrics, 34 
feature sets and the availability of epidemiological data, we focus on one of these, the city of Barra Mansa in the 35 
State of Rio de Janeiro. Barra Mansa was chosen because its density, area and population size are all close to the 36 
median of the 20 cities, and because its performance metrics and changes in the relative importance across model 37 
set-ups demonstrate some of the trends observed elsewhere (see Table 1). Data from all 20 cities are available at 38 
this resolution in S2 spreadsheet. 39 
 40 
We also use the Barra Mansa to show the change in the relative importance of different predictors over time (see 41 
Fig 4). We observe that with an assumed delay of 8 weeks in the receipt of epidemiological data, Google search 42 
trends data tended to capture the greatest amount of variability, with some small amount also captured by some 43 
of the weather and autoregressive terms (Fig 4, left). With an assumed delay of 1 week in the availability of 44 
epidemiological data, however, the vast majority of the variability is captured by the first few autoregressive 45 
terms (Fig 4, right). 46 
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In our analysis of the determinants of success of nowcasting at the city level, we find that long-term estimates 1 
tend to be more accurate when a city’s population is larger and when past dengue incidence has been relatively 2 
regular (see Fig 5, top right). We also plot success against the size and location of the city in Brazil (Fig 5, top 3 
left), and show that the decrease in prediction error, as the assumed delay in real-time information grows smaller, 4 
is consistent across the 20 cities (Fig 5, bottom). 5 

Finally, in the binary prediction task, in which we tried to predict in advance whether or not an epidemic would 6 
occur as a dengue season unfolds, we generated retrospective out-of-sample predictions using both the LASSO 7 
and the Random Forest methodologies, between October 5 of 2012 and July 31 of 2017, for the 20 cities in 8 
Brazil. The total number of time intervals generated were 60 (3 per city). To measure our model’s ability to 9 
predict an epidemic year, we utilized the standard definition of accuracy. We also measured the time difference 10 ∆𝑡 (in number of weeks) between 𝑡𝑝, the week when our models nowcasted a dengue epidemic, and 𝑡𝑒 , the week 11 
in which the cumulative cases cross the epidemic threshold value. ∆𝑡 is only measured for true positives (that is, 12 
in cases where 𝑡𝑝 occurred earlier than 𝑡𝑒). These metrics are summarized in Figure B in the S1 Text. Figure C 13 
in the S1 Text shows the distribution of epidemic and non-epidemic time intervals as a function of the epidemic 14 
threshold value. As the value of the epidemic threshold rises, the number of intervals classified as epidemic 15 
reduces, given the number of cumulative cases does not cross the threshold anymore. 16 
 17 
Our results for the binary task show that our models are capable of successfully predicting epidemics, reaching 18 
accuracy values between .75 and .90, depending on the methodology and the type of information incorporated in 19 
the model. Lasso models achieve this with assumed delays in availability of “observed” epidemiological 20 
information of 5 to 7 weeks, whereas Random Forest-based models perform well with an assumed delay of up to 21 
9 weeks. The choice of epidemic threshold does not affect these results. 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
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Figure 1. Performance across cities, as measured by Pearson Correlation and Relative RMSE. The colour of each box indicates the 1 
feature set used, and the x-axis notes the assumed delays in the receipt of epidemiological information. Each box shows the interquartile 2 
range of the metric for a given set-up (of feature set, assumed delay, and underlying model), while the whiskers show the rest of the 3 
distribution. Points beyond the whiskers in either direction are determined to be outliers 4 
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Figure 2: A comparison of Random Forest- and Lasso-based model performance. The mean is taken across the different cities, with the 1 
fill range of delays in availability of epidemiological information (from eight weeks, AR8, to one week, AR1) and the different feature 2 
sets (AR, GT AR+GT, AR+GT+W) shown. 3 
 4 
 5 

 6 
 7 
 8 

 9 
 10 
Figure 3. Dengue case estimates for 4 cities with different characteristics, as the delay in receipt of epidemiological data grows shorter. 11 
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Table 1 Performance of dengue incidence prediction models from different time horizons, for the time period between January 2011 and July 1 
2016, in the city of Barra Mansa, State of Rio de Janeiro, Brazil. Each time horizon is examined across all four possible features sets: 2 
autoregressive terms alone (AR), autoregressive terms together with Google Trends data (AR+GT) and with weather data (AR+GT+W), as 3 
well as google trends data alone (GT). Numbers in bold represent the best performance for a given model and autoregressive lag across each of 4 
the metrics. This corresponds to the lowest value for the RMSE, relative RMSE and R^2 metrics, and the highest value for the Pearson 5 
correlation metric. 6 
 7 

Model AR Lag Features RMSE Relative RMSE R^2 Pearson Correlation 

Lasso Regression 8 weeks AR 28.425 0.897 0.009 0.188 

    GT 23.606 0.745 0.317 0.563 

    AR+GT 23.828 0.752 0.304 0.555 

    AR+GT+W 24.67 0.778 0.254 0.505 

  6 weeks AR 26.65 0.845 0.122 0.355 

    GT 23.546 0.746 0.315 0.562 

    AR+GT 22.615 0.717 0.368 0.608 

    AR+GT+W 23.039 0.73 0.344 0.587 

  3 weeks AR 19.264 0.615 0.536 0.733 

    GT 21.581 0.689 0.418 0.649 

    AR+GT 18.859 0.602 0.556 0.752 

    AR+GT+W 18.789 0.6 0.559 0.753 

  1 week AR 12.485 0.4 0.804 0.897 

    GT 20.229 0.649 0.485 0.703 

    AR+GT 12.259 0.393 0.811 0.901 

    AR+GT+W 12.222 0.392 0.812 0.901 

Random Forest 8 weeks AR 26.382 0.832 0.146 0.508 

    GT 21.061 0.664 0.456 0.68 

    AR+GT 23.355 0.737 0.331 0.596 

    AR+GT+W 22.514 0.71 0.378 0.631 

  6 weeks AR 24.625 0.781 0.251 0.591 

    GT 22.203 0.704 0.391 0.642 

    AR+GT 22.055 0.699 0.399 0.664 

    AR+GT+W 21.154 0.671 0.447 0.678 

  3 weeks AR 18.332 0.585 0.58 0.776 

    GT 21.07 0.673 0.445 0.676 

    AR+GT 17.613 0.562 0.612 0.793 

    AR+GT+W 19.354 0.618 0.532 0.749 

  1 week AR 11.047 0.354 0.846 0.92 

    GT 19.408 0.622 0.526 0.729 

    AR+GT 11.027 0.354 0.847 0.924 

    AR+GT+W 11.844 0.38 0.823 0.91 

 8 
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Figure 4: Change in the relative importance of different predictors over time. Barra Mansa, Random Forest model with full feature set 1 
(autoregressive epidemiological data, google trends data, and weather data). Left: An assumed delay of 8 weeks in the availability of 2 
epidemiological data. Right: An assumed delay of 1 week in the availability of epidemiological data. 3 
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Figure 5: The determinants of success of nowcasting at the city level (random forest model, AR+GT feature set). Top left. City success, 1 
plotted on spatial map. The diameter of the circles reflects the size of the population, and a darker shade of blue indicates greater accuracy. 2 
Top Right. The effect of population size and dengue signal consistency on accuracy of predictions (averaged across the 20 cities). Bottom. 3 
Change in prediction accuracy (relative RMSE) as the delay in the receipt of epidemiological data grows shorter. 4 
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Discussion 1 
 2 
Despite the difficulties inherent to predictions at finer spatial resolutions, our results show that our models and 3 
methodological framework for nowcasting dengue succeed at the city level and achieve accurate estimates. The 4 
conditions in which a given model set-up and chosen set of data sources perform best varies. While the LASSO-5 
based model has a slight edge at predictions that assume a longer delay in the availability of epidemiological 6 
information, the random forest-based model produces fewer estimates with extremely high or low values, and 7 
can thus be considered more consistent and robust than the LASSO-based model (see and compare relative 8 
RMSE scores in Fig 1 and in Fig 2). One possible reason for this is that tree-based models like random forests 9 
can capture non-linear relationships, which likely exist between at least a few of our features and dengue 10 
incidence counts. In the binary task, our outbreak detection addresses the concern that a simple majority-class 11 
predictor could achieve very high accuracy, by strongly outperforming the baseline, and see Fig B in the S1 text 12 
(in which the baseline is plotted as the grey line). 13 
 14 
The predictive power of the different sources of information (epidemiological data, Google search data, and 15 
weather) used in this study varied depending on the expected delays of epidemiological data reports. For 16 
predictions that assume very short delays in the availability of epidemiological data, short-term and seasonal 17 
autocorrelation were key to improving estimates and captured a substantial amount of dengue variability while 18 
reducing the error rates, as measured by the R2 and relative RMSE metrics, respectively. For predictions that 19 
assume longer delays, the real-time Google search trends data captured the most substantial amount of dengue 20 
variability (see Fig 4). This is intuitively to be expected: the longer the span of time that has elapsed since 21 
observed data was available, the more useful the real-time proxy of Google Search Trends data becomes. Google 22 
Search Trends data also proved to be extremely effective in cases of sudden outbreaks, particularly when the 23 
scale was large enough. Such was the case with Barueri, a city in the state of São Paulo, in which there was a 24 
sharp spike in the number of dengue cases in 2015, well above peak incidence in previous years. In this instance, 25 
the feature set containing Google Search Trends data alone (GT) led to the most accurate performance at all time 26 
horizons, even when the assumed delay of epidemiological data was just a single week (see S1 text, appendix). 27 
 28 
Weather data did not appear to have contributed significantly to the performance of the models (in the 29 
AR+GT+W set-up). This accords with previous work conducted on dengue case estimation, at the state level in 30 
Mexico, in which there was no significant uplift when temperature, relative humidity and precipitation were 31 
included in addition to the autoregressive terms.15 It seems, then, that for productionized autoregressive models 32 
deployed in real-time, the inclusion of weather data in addition to the case data and Google Trends data might 33 
not warrant the additional investment, if obtaining that data is in some circumstances is complex or expensive 34 
(this does not hold, of course, for models that are primarily dependent on climatic variables). 35 
 36 
As noted above, we found that long-term estimates tend to be more accurate when a city’s population is larger 37 
and when past dengue incidence has been relatively regular (See Fig 5, top right). As Google Search Trends 38 
data can only be collected at the state level in Brazil, it is reasonable that its relevance to nowcasts made at the 39 
city level is higher in cases where the examined city’s population makes up a significant proportion of the state’s 40 
population, as in Rio de Janeiro, for example (or in cases where different cities in the state exhibit similar dengue 41 
incidence patterns). We also note that performance varies within a given city and model set-up, as the training 42 
window grows larger. As we can observe in figure 2, when predicting the first outbreak in a city’s epidemic, the 43 
estimates sometimes appear to lag the real counts by a week or so. Generally speaking, as the training window 44 
grows longer performance accuracy improves – but if outbreaks later in a city’s epidemic history are 45 
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significantly weaker, the estimates sometimes overshoot, appearing to have “overlearned” the association 1 
between features and target from the previous outbreaks. In both the predictive and bi 2 
 3 
Finally, though in some cities with certain characteristics the models perform better than in others, they tend to 4 
adapt quite well to the specific patterns of each city (lags, peak size of outbreak, etc.) after a period of training on 5 
a city’s past incidence data. Our framework contributes to the sparse but growing literature of infectious disease 6 
prediction models. Our results indicate that the lessons learned from dengue nowcasting in data-rich 7 
environments and at the country level can be generalized and tailored to track dengue in environments with 8 
significantly smaller populations, poorer data and a weaker disease signal. These insights can be leveraged 9 
towards future improvements in city-level nowcasting of infectious disease incidence. 10 
 11 
On the whole, then, by accurately assessing suspected disease trends ahead of traditional disease surveillance 12 
systems – both in estimating case counts and in the binary task, in which performance significantly outstripped 13 
the baseline – this work can enable decision-makers to better plan for and implement dengue mitigation policies. 14 
These include scheduling education and mosquito control programs, informing supply chain efforts for medical 15 
supplies, and warning of outbreaks that are expected to be particularly severe. In particular, we hope the insights 16 
into the varying importance of features and the relative performance of model classes will be useful, as these 17 
vary in different circumstances – from the temporal offset at which real data is received by health professionals, 18 
to the variance in the geographic and demographic characteristics of the location being estimated.  19 
 20 
 21 
Further Work 22 
One epidemiological feature to be included as input in future models is dengue incidence in proximate cities. 23 
Recent work has shown that certain geographical regions of Brazil have become increasingly vulnerable to 24 
dengue as transport infrastructure and other means of transportation to them has improved.4 Modelling this effect 25 
– for example, with cellular data, estimated volume of transportation, or simply with distance metrics – could 26 
improve estimates further, particularly for regions in which past observed case counts are less accurate or entirely 27 
unavailable. With the regression-based LASSO model, one naïve assumption that the relationship between the 28 
features and outcome variables is linear. This assumption is unlikely to be accurate (certainly across all 29 
variables), thus hampering model performance. But it could be that adding interaction and polynomial terms 30 
(which could then be narrowed down with a method like PCA) would improve LASSO performance, making it 31 
as robust as the Random Forest-based model, which does not assume linearity. 32 
 33 
An additional promising direction is to design a composite model. This would take into account the finding that 34 
different feature sets, as well as the different underlying methodologies (LASSO and RF), led to the best 35 
performances in different cities and from different time lags. A composite model would incorporate these 36 
different sub-models and feature sets, and make use of them at the most fitting instances based on findings from 37 
the training data (for example, Google Search Trends data could be used as the feature set when making 38 
estimates that assume longer delays in the availability of observed case data). This could be constructed either 39 
explicitly based on rules or implicitly, and see the previously cited work on superensembles. To our knowledge, 40 
while superensembles have been used to estimate dengue incidence at the province level (in Vietnam), they have 41 
yet to be applied at the city level.29, 30 42 
 43 
Finally, more refined hyperparameter tuning can lead to significant increases in performance for any one of the 44 
models and features sets set out above. There is a growing literature on efficient hyperparameter tuning 45 
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techniques with ever-lower runtimes, and code libraries in which they are implemented could be easily deployed 1 
to increase the above models’ accuracy and reduce their error rates (including on custom metrics). 2 
 3 
 4 

Limitations 5 
The weather data were produced at a naive resolution of 0.5 x 0.625 degrees, which works approximately to a 6 
~50 square km grid cell. Attributing these data to a specific city, then, involved overlaying the rectangular grid of 7 
weather data onto a spatial file outlining city boundaries, and taking the weighted average of grid cells covering 8 
the city boundary. Thus, there are some data fluctuations that come from grid cells that partially cover the ocean, 9 
or different altitudes/mountains. More generally, the approximations in data modelled and assimilated from 10 
MERRA tend to lead to less noise than weather station data (precisely because it is modelled) – so there are 11 
tighter but potentially less accurate oscillations in the time series. 12 
 13 
Google Search Trends data are only currently available at the state level in Brazil. Were they to be made 14 
available at finer spatial resolutions, such as the city level (as they currently are in the United States) it is 15 
expected that performance would improve. This effect is likely to be particularly significant when making 16 
predictions that assume greater delays in the availability of epidemiological data, in which the Google Search 17 
Trends data were the most important features driving the forecast. Additionally, the process of selecting the 18 
Google search terms being tracked can be fine-tuned in the future, resulting in features that account for more of 19 
the variability in Dengue incidence. 20 
 21 
It is likely that across the different cities we examined, different data collection methods are practiced, and that 22 
local public health officials have also introduced various health policy interventions. Both of these will have 23 
affected the consistency of the data across the 20 cities we examined, and will have introduced a degree of 24 
uncertainty. More generally, given that many cases are asymptomatic and that many symptomatic cases never get 25 
officially reported means that the “true” data are limited in scope to begin with. Thus, a central assumption of 26 
nowcasting studies such as this is that the reported, official dengue case counts (whether at the city level or at 27 
other resolutions) are at least a useful approximation of the underlying “true” incidence – and thus that estimating 28 
these reported counts is worthwhile.  29 
 30 
Finally, it should be noted that the data we use have been subjected to “backfill.” That is, the dengue counts for a 31 
given week on which we trained our models are likely to have been subjected to post-hoc adjustments after they 32 
were initially reported in real-time. As such, this is a retrospective analysis, in which we use the finalized data, 33 
due to lack of availability of the original. In our experience, though, machine learning methods tend to learn 34 
patterns of missingness (for example, in flu forecasts), and so we expect it is likely that will be able to adapt to 35 
real-time predictions based on non-final data which has not been back-filled.41 36 
 37 
 38 
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Supporting Information 2 
 3 
S1 Text. Supporting information text. This file includes: (1) Query terms used for Google Trends as Table A; (2) 4 
Demographic and geographic properties of chosen 20 Brazilian cities in Table B; (3) Dengue activity estimation 5 
using historical seasonality as Figure A, Figure B, Figure C, Table C and Table D. (4) Model performance across 6 
feature sets, cities and lags in the receipt of epidemiological information. 7 

 8 
S2 Text. Measures of nowcasting performance across all models, features sets, and cities. 9 
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