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Abstract

Background: Depression is a prevalent mental health challenge. Current depression assessment methods using self-reported
and clinician-administered questionnaires have limitations. Instrumenting smartphones to passively and continuously collect
moment-by-moment data sets to quantify human behaviors has the potential to augment current depression assessment methods
for early diagnosis, scalable, and longitudinal monitoring of depression.

Objective: The objective of this study was to investigate the feasibility of predicting depression with human behaviors quantified
from smartphone data sets, and to identify behaviors that can influence depression.

Methods: Smartphone data sets and self-reported 8-item Patient Health Questionnaire (PHQ-8) depression assessments were
collected from 629 participants in an exploratory longitudinal study over an average of 22.1 days (SD 17.90; range 8-86). We
quantified 22 regularity, entropy, and SD behavioral markers from the smartphone data. We explored the relationship between
the behavioral features and depression using correlation and bivariate linear mixed models (LMMs). We leveraged 5 supervised
machine learning (ML) algorithms with hyperparameter optimization, nested cross-validation, and imbalanced data handling to
predict depression. Finally, with the permutation importance method, we identified influential behavioral markers in predicting
depression.

Results: Of the 629 participants from at least 56 countries, 69 (10.97%) were females, 546 (86.8%) were males, and 14 (2.2%)
were nonbinary. Participants’ age distribution is as follows: 73/629 (11.6%) were aged between 18 and 24, 204/629 (32.4%) were
aged between 25 and 34, 156/629 (24.8%) were aged between 35 and 44, 166/629 (26.4%) were aged between 45 and 64, and
30/629 (4.8%) were aged 65 years and over. Of the 1374 PHQ-8 assessments, 1143 (83.19%) responses were nondepressed scores
(PHQ-8 score <10), while 231 (16.81%) were depressed scores (PHQ-8 score ≥10), as identified based on PHQ-8 cut-off. A
significant positive Pearson correlation was found between screen status–normalized entropy and depression (r=0.14, P<.001).
LMM demonstrates an intraclass correlation of 0.7584 and a significant positive association between screen status–normalized
entropy and depression (β=.48, P=.03). The best ML algorithms achieved the following metrics: precision, 85.55%-92.51%;
recall, 92.19%-95.56%; F1, 88.73%-94.00%; area under the curve receiver operating characteristic, 94.69%-99.06%; Cohen κ,
86.61%-92.90%; and accuracy, 96.44%-98.14%. Including age group and gender as predictors improved the ML performances.
Screen and internet connectivity features were the most influential in predicting depression.
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Conclusions: Our findings demonstrate that behavioral markers indicative of depression can be unobtrusively identified from
smartphone sensors’ data. Traditional assessment of depression can be augmented with behavioral markers from smartphones
for depression diagnosis and monitoring.

(JMIR Mhealth Uhealth 2021;9(7):e26540) doi: 10.2196/26540
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Introduction

Background
Depression is one of the most prevalent, complex, and
heterogeneous mental health challenges of our time. In 2020,
the World Health Organization (WHO) estimated that depression
has impacted 264 million people worldwide [1], and it is
projected to be the leading contributing factor to global disease
burden by 2030 [2]. In these individuals, depression inflicts
recurrent episodes of guilt, sadness, cognitive impairments,
suicidal ideation, and sleep disturbances [1,3-5]. Depression
increases the risk and medical costs of many medical disorders
such as stroke, Parkinson, or Alzheimer [6-11]. Depression is
treatable with psychotherapy and medication. Yet, in many
individuals with depression, it remains undiagnosed and
untreated due to barriers such as social stigma and inaccurate
assessment methods [1,3,12,13]. The ability to detect early
warning signs of depression, continuously and as effortlessly
as possible, by extending current assessment methods could
have a significant impact in mitigating or addressing depression
and its related negative consequences [3,10,11,14].

For the past 30 years, clinician-administered and self-reported
questionnaires remain the gold standard in the assessment and
diagnosis of depression [3,13]. However, the limitations of these
traditional depression assessment methods have been debated.
Such methods are applied sparingly (eg, a couple of times within
a year), thus missing out on the moment-by-moment behavioral
patterns of individuals between health assessments. Lastly,
self-reported appraisals are affected by memory and recall biases
in reconstructing past events and may be prone to socially
desirable reporting from individuals [12,15-17].

Today, smartphones and wearables offer a unique opportunity
to overcome limitations in traditional depression assessment
methods. Smartphones and wearables (eg, Fitbit, Oura Rings,
and smartwatches) have become ubiquitous in the global
population, they are inherently personal, and people are
continuously monitored through their embedded sensors (eg,
camera, accelerometer, global positioning system [GPS],
Bluetooth, and many more) [18,19]. Instrumenting smartphones
and wearables to capture in situ, fine-grained, and
moment-by-moment data sets with sensing apps [20-24] has
made it possible to passively collect data sets in naturalistic
settings. Inherent in these data sets are behavioral patterns:
routines, rhythms, activities, and interactions that are useful in
complementing traditional depression assessment methods, in
studying the mental health of individuals, and in developing
timely mental health interventions [14,22,25-28].

Related Work
A growing body of research in smartphone and wearable
sensing, human behavior modeling has improved our
understanding of the relationship between mental health and
biomarkers [3,20-22,26,27,29-31]. In medicine, biomarkers are
pathological, anatomical, or physiological characteristics that
are quantified and evaluated as indicators of a biological process
or a response to medical interventions [23]. Here, we define
biomarkers (or digital biomarkers) of mental health as
quantifiable behaviors (or features) extracted from smartphone
or wearable data that can be monitored and collected over time
to objectively assess mental health and effectiveness of
interventions. Monitoring these biomarkers’ fluctuations is
essential in the early detection and treatment of mental health
disorders [3,32]. For example, in Alzheimer disease, biomarkers
such as cognitive, sensory, and motor degeneration precedes
clinical diagnosis for about 10 or 15 years [32].

In the StudentLife study [22], for example, geolocation, sleep,
and activity-based biomarkers were extracted from a data set
collected from 48 students over 10 weeks. Significant
correlations were found between the following digital
biomarkers: sleep duration (r=–0.360), activity duration
(r=–0.388), traveled distance (r=0.338), and various mental
health symptoms. Similarly, Wang et al [3] collected data sets
with the StudentLife sensing app from 83 college students across
two 9-week terms. Significant correlations were found between
depression and accelerometer-based biomarkers (mean stationary
time, r=0.256) and screen usage–based biomarkers (mean unlock
duration, r=0.283). With an analysis of variance, a significant
difference in unlock duration (F=5.733) was found between
depressed and nondepressed groups. Saeb et al [33] in their
study of 40 participants for 2 weeks also found a statistically
significant correlation between depression and GPS
location–based biomarkers (ie, variance in locations visited,
[r=0.58] and regularity in 24-hour movement rhythm [r=0.63])
and phone usage–based biomarkers (ie, phone usage frequency
[r=0.54]).

Another promising source of biomarkers is wearable devices
[30].

Actigraphy-based biomarkers that quantify time sequences of
rest and active behaviors with accelerometer sensors are known
to be useful in predicting mood disorders such as depression
and bipolar disorder [34,35]. In a 2-week study on 23
participants, Jacobson et al [34] extracted biomarkers from data
sets collected with wrist-worn actigraph watches. A machine
learning (ML) model trained with these digital biomarkers could
predict the depression status of participants with high accuracy
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(ie, accuracy 89%, Cohen κ=0.773). In another 2-week study
[35] on 40 geriatric participants, accelerometer-based digital
biomarkers were extracted from wrist-worn actigraph watches.
With 4 ML models, the study found that these biomarkers could
predict depression with a high accuracy (ie, accuracy 0.910,
precision 0.929, and specificity 0.940). Other promising
biomarkers from wearable devices are heart rate variability,
which has been found to be consistently lower in patients with
psychiatric disorders, electrodermal activity, and skin
conductance [36,37].

Taken together, previous research has shown the potential of
quantifying human behavior from smartphones and wearables
data set as biomarkers. These biomarkers are insightful in
understanding depression.

Objectives
In this study, we aim to investigate the feasibility of predicting
depression using digital biomarkers quantified from a
smartphone data set. To this end, we explore the relationship
between digital biomarkers and depression severity with
statistical methods. We investigate whether depression can be
predicted with digital biomarkers using supervised ML
algorithms.

Methods

The Data Set
We utilized an existing data set collected in a longitudinal
observational study with the Carat app [21], derived from a
cohort of anonymous Android participants worldwide [38]. The
data set was collected from 843 participants between March
and August 2018 (~6 months).

The Carat app is a mobile sensing app, originally developed by
a team of researchers from the University of Helsinki and the
University of California, Berkeley, for smartphone energy
consumption research [21,39]. The Carat app is freely available
on mobile app stores and gives users personalized smartphone
battery consumption reports. Anonymous users worldwide who
install the Carat app may voluntarily be recruited to contribute
their data set to research.

The data set used in this study was a subset of the large-scale
crowdsourced Carat app data set from anonymous volunteers.
The study data set was collected for a multifaceted purpose,
which includes studying the relationship between smartphone
app usage and Big 5 personality traits [40]; studying the
similarities and differences in demographic, geographic, and
cultural factors of smartphone usage [38]; and mental health
research. The advertisement for the recruitment of participants
was sent as push notifications through the Carat app to 25,323
verified users (ie, users with matching time zone and mobile
country code) [38].

All participants in this data set are Android-based smartphone
users, who explicitly and voluntarily gave their consent from
their mobile devices after they were informed about the purpose
of the data collection, the data collection procedures, and
management of the data set. The data set does not contain
personally identifiable information, and was collected under

the institutional review board license from the University of
California, Berkeley and the University of Helsinki [21,40].

Mobile Sensing Variables Collected by Carat
Besides battery consumption data, the Carat Android app
unobtrusively collected participants’ time zone and
time-stamped data, including foreground app usage (ie, app the
participant has interacted with), internet connectivity (ie,
connected and disconnected states), and screen lock and unlock
logs. This data set was sampled at each 1% battery change (ie,
while charging or discharging) on the participants’ smartphone.
The Carat app also collected participant’s demographic
information, including age, gender, education, and occupation
via a self-report.

Mental Health Assessment
In addition to the mobile sensing and demographic variables,
depression severity was assessed by a self-report instrument.
Participants answered the 8-item Patient Health Questionnaire
(PHQ-8) [41] at 2-week intervals as specified by the PHQ-8
protocol. Although the depression assessments were
self-reported, the PHQ-8 is clinically validated for the
assessment of depression severity, has high internal consistency
(Cronbach α=.82), and has been used in several previous studies
[3,7,41]. PHQ-8 measures depression severity for the past 2
weeks with items such as “Little interest or pleasure in doing
things,” “Feeling down, depressed, or hopeless,” “Trouble
falling or staying asleep, or sleeping too much.” Each item of
the PHQ-8 is scored on a scale from 0 (Not at all) to 3 (Nearly
every day). The total PHQ-8 score ranges from 0 to 24, with a
score of 10 or more indicating major depression or other severe
forms of depression [41].

Data Inclusion and Exclusion
For each participant’s data set, we excluded days with at least
10 missing log intervals (ie, days where no data were logged
by the Carat app for at least 10% battery charging or discharging
periods). Next, we only included PHQ-8 responses from
participants with at least 8 days of data within the preceding 2
weeks of PHQ-8 response. Consequently, the final data
contained 629 participants, 1374 PHQ-8 responses with 13,898
days of participants’ data set.

Feature Engineering

Characterization of Data Set
Our data set is primarily categorized into screen status, internet
connectivity, and foreground app usage logs. For data
preprocessing, we converted the time stamps of the data set to
local date and time, using the participants’ time zone. We
computed digital biomarkers (herein features) by quantifying
the per-participant hourly and daily behavioral patterns (ie,
routines, irregularity, variability) from these data sets with
simple counts, SDs, entropy [6,14,25,42-45], and regularity
index [27,44] measures. All computed features were merged
per participant at the day level.

Entropy
We computed entropy to capture the degree of variability,
complexity, disorder, and randomness in the participant behavior
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states from screen status (ie, on and off states), internet
connectivity (ie, disconnected and connected states), and
foreground app (ie, the frequency of use per app) over a 24-hour
period of each day. Entropy was calculated using the Shannon
entropy [45] formula:

where N is the number of states and pi is the percentage of the
state i in the time series data. For example, a higher screen status
entropy reflects the fact that the participant’s screen on and off
pattern is more distributed between on and off states, albeit with
a high degree of uncertainty and complexity in the transition
between the screen on and off states in a 24-hour period.
Conversely, a lower screen status entropy reflects that fact that
the participant’s screen is much often in one state (on or off)
over a 24-hour period. In addition to entropy, we computed
normalized entropy as the entropy divided by log(N).

Regularity Index
Regularity index quantifies routines in participant behaviors by
capturing the similarity (or difference) in participant behaviors
between the same hours across different days. For internet
connectivity, for instance, the regularity index quantifies the
routineness of the participant’s internet connectivity behavior
at the same hours (eg, every 9 am) for all days. We determined
the hourly values as follows: for screen status, the modal screen
status for each hour; for internet connectivity, the modal
connectivity state for each hour; and for foreground app usage,
the number of distinct apps usage for each hour.

Following the regularity index computation method of Wang
et al [44], we computed the regularity index of the screen,
internet connectivity, and foreground app usage for days a and
b using the formula

where a and b are 2-day pairs, T=24 hours, and is the rescaled
(ie, between –0.5 and 0.5) value of hour t of day b. For each
day, we computed the average regularity index for all
combinations of that day and other days of the week.

Standard Deviation and Counts
The SD features capture the variance of daily behavior between
4-day epochs based on the hour of the day. We defined morning
as the 6-11th hour, afternoon as the 12-17th hour, evening as
the 18-23rd hour, and night as the 0-5th hour of the day. We
computed the count of each screen status, the count of each
internet connectivity status, and the count of foreground app
usage per day epoch. With these counts per day epoch, we
computed the SD per day.

We also computed the day level count of each screen status, the
count of each internet connectivity status, and the count of
foreground app usage. Additionally, we computed the count of
minutes until the first and last use of foreground app per day.

Correlation and Association Analysis
Before beginning the statistical analysis, we pooled (ie,
aggregated) the extracted features within the preceding 2 weeks
(ie, assessment window) of each PHQ-8 response from a
participant. The pooling is to ensure that the timelines of the
feature variables in the analysis are aligned with those of the
PHQ-8 assessment window. The pooling was done as follows:
for each PHQ-8 response, we pooled all entropy and regularity
index features by computing the average feature values for all
days within the PHQ-8 assessment window. Instead of average
values for SD, we took a different approach due to the additive
properties of SD measures. For SD features, we computed the
pooled SD [46,47].

For correlation analysis, we used the pooled data to quantify
the linear relationship between the features and depression
severity (ie, PHQ-8 responses). The correlations were computed
using the Pearson correlation coefficient. Full information
maximum likelihood [48-50] was used in the correlation analysis
to avoid biases introduced by missing data. We used the
Holm–Bonferroni [51] method to adjust the P values for multiple
testing, with a false discovery rate of 0.05.

For association analysis, we used the bivariate linear mixed
model (LMM) [8,44,52-55] to study the association between
the pooled features and the PHQ-8 response. The data set in
this study is a longitudinal data set with repeated measures from
the same individuals. Given this nested structure, the assumption
of normally and independently distributed residuals would be
violated in linear regression models. Hence, we opted for LMM,
which takes into account fixed and random variations in the
data set in respect of a grouping variable, the participant in this
case. LMM also reduces the likelihood of Type I error [56]. To
verify our decision for LMM, we computed the intraclass
correlation (ICC). ICC > 0.05 necessitates LMM.

In the LMM, we used multiple imputation to handle missing
data, taking into account the nested structure of the data set [57].
Using predictive mean matching for multilevel data [58], a total
of 20 imputed data sets were generated. We used Robin’s rule
[59] to pool the results of the LMM run with each imputed data
set. In the LMM analysis, all features were normalized to have
a 0 mean and a unit SD. To address multiple comparison
problems, we adjusted the P values in the LMM to control the
false discovery rate with the Benjamini–Hochberg procedure
[60,61]. Adjusted P value <.05 was considered to be significant.

Predictive Analysis With Machine Learning

Machine Learning Setup
We developed population-based supervised ML classifiers to
explore how the digital biomarkers/features predict the
depression state of an individual. We also explored whether
including participants’ self-reported demographics as features
would improve the ML classifier performance.

To this end, we used 5 supervised ML models: random forest
(RF), support vector machine (SVM) with radial basis function
(RBF) kernel, XGBoost (XGB) [62], K-nearest neighbor (KNN),
and logistic regression (LR). With the RBF kernel, an SVM
classifier, a linear classifier, can classify nonlinear data sets
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[63,64]. These algorithms have been used in previous work
[65-69] on mental health studies. We used the same pooled and
imputed data set from statistical analysis, but ensured that all
records are distinct. We labeled our data set with 2 classes,
based on PHQ-8 scoring guidelines, where PHQ-8 score ≥ 10
is depressed (label 1) and PHQ-8 score <10 is nondepressed
(label 0). We created 2 data sets for the ML modeling: (1) a
data set with PHQ-8 scores as labels, and digital
biomarkers/features as predictors, and (2) a second data set with
PHQ-8 scores as labels and digital biomarkers/features, age
group, and gender as predictors. The age group and gender
demographics were converted from categorical to numerical
data using one-hot encoding [63,70].

All the ML modeling was performed using stratified and nested
cross-validation [71,72]. The nested cross-validation is a
state-of-the-art procedure to prevent overfitting and
overestimation of the hyperparameters of the ML classifiers.
Stratified 10 folds in the outer cross-validation and stratified 3
folds in the inner cross-validation were used. With this approach,
for each iteration of the outer cross-validation, 1 stratified fold
was used as a testing data set. The remaining 9 stratified folds
were used for hyperparameter optimization in the inner
cross-validation.

The hyperparameter optimization in the inner cross-validation
was done with grid search over a grid of parameters, where all
combinations of hyperparameters are exhaustively considered.
We use the F1 (macro averaged) score to select the most
optimized hyperparameters.

Imbalanced Data Handling
It is worth noting that in the ML setup, we used stratified
sampling in the nested cross-validation. The stratified sampling
ensures the splitting of the data set into folds that have an equal
proportion of each class (ie, labels 1 and 0). However, the
proportion of each class is still dependent on its availability in
the data set. We handled class imbalance in the training data
set with the synthetic minority over-sampling technique
(SMOTE) [65,73,74], which generates synthetic data for the
minority class, resulting in a balanced training data set.

Feature Analysis
We used the permutation importance method [75,76] to compute
the importance of features. The permutation importance method
is model agnostic and computes the proportional decrease in a
model score when features are randomly shuffled. We used the
area under the curve (AUC) receiver operating characteristic as
the model in the permutation importance computation. We
computed the feature importance using the test set of the outer

cross-validation. For each ML classifier, we ranked the features
by the average feature importance computed across all 10 folds
of the outer cross-validation.

Model Evaluation
We created 2 baseline classifiers to benchmark the performance
of the ML classifiers. The first baseline is a random weighted
classifier (RWC) with 10,000 randomly generated predictions
based on a multinomial distribution of the nondepressed and
depressed classes. The second baseline is a decision tree (DT)
classifier trained using the same approach as the ML classifiers,
but with age group and gender as features. The performance of
the ML classifiers and baseline classifiers was measured using
the following performance metrics: accuracy, precision, recall,
AUC, F1 score, and Cohen κ. The precision, recall, and F1
scores were computed with an emphasis on predicting the
depressed score (ie, label 1).

Software
Data preprocessing and feature extraction pipeline were created
with Python (version 3.7.6) and R (version 4.0.2) programming
languages, using Snakemake [77] and RAPIDS [78] for
workflow management. All statistical analysis was performed
in R, with mice [79] package for multiple imputation, lmer4
[80] and lmerTest [81] packages for LMM, and psych [50]
package for computing correlation. All the ML was done in
Python, with scikit-learn [63], imbalanced-learn [33], and XGB
library [62,82].

Results

Participants’ Demographics
Self-reported demographic data from the 629 participants
included in our analyses show that 69/629 (10.97%) were
females, 546/629 (86.8%) were males, and 14/629 (2.2%) were
nonbinary or preferred not to disclose their gender.

For the participants’age distribution, 73/629 (11.6%) were aged
between 18 and 24, 204/629 (32.4%) were aged between 25
and 34, 156/629 (24.8%) were aged between 35 and 44, 166/629
(26.4%) were aged between 45 and 64, and 30/629 (4.8%) were
aged 65 years and over. The participants were distributed across
at least 56 different countries, including 91/629 (14.5%) from
unknown countries, 199/629 (31.6%) from the USA, 66/629
(10.5%) from Finland, 32/629 (5.1%) from Great Britain, 42/629
(6.7%) from Germany, and 29/629 (4.6%) from India. The data
set also has participants from varied educational and
occupational backgrounds. Table 1 provides summary statistics
of the 629 participants in this study.
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Table 1. Summary statistics of participants who were included in the data analysis (N=629).

Value, n (%)Variable

Age (years)

73 (11.6)18-24

204 (32.4)25-34

156 (24.8)35-44

166 (26.4)45-64

30 (4.8)≥65

Gender

69 (11.0)Female

546 (86.8)Male

14 (2.2)Other or Rather not tell

Education

9 (1.4)Elementary school/basic education

98 (15.6)High school/sixth form/other upper secondary level

5 (0.8)No education or rather not to tell

193 (30.7)Professional graduate degree/higher university degree (master’s or equivalent)

34 (5.4)Research graduate degree (PhD or equivalent)

228 (36.2)Undergraduate degree/lower university degree (bachelor’s or equivalent)

62 (9.9)Vocational school/trade school/other education leading to a profession

Occupation

1 (0.2)Agricultural forestry or fishery

14 (2.2)Clerical support

8 (1.3)Craft and trade or plant and machine operations

30 (4.8)Entrepreneur or freelancer

59 (9.4)Manager

34 (5.4)No suitable option or rather not to tell

227 (36.1)Professional

39 (6.2)Retired

29 (4.6)Sales or services

5 (0.8)Staying at home (eg, with kids)

74 (11.8)Student

90 (14.3)Technician or associate professional

19 (3.0)Unemployed or between jobs

Country

91 (14.5)Unknown

199 (31.6)USA

66 (10.5)Finland

32 (5.1)Great Britain

42 (6.7)Germany

16 (2.5)Canada

29 (4.6)India

154 (24.5)Othera
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aComprising 49 different countries with less than 15 participants, including South Africa, Morocco, Brazil, Philippines, Qatar, Japan, Russia, and
Denmark.

Smartphone Data and PHQ-8 Distribution
We had 1374 PHQ-8 responses. Table 2 presents the distribution
of participants and their corresponding number of responses in
the PHQ-8 data set. All PHQ-8 responses were collected every
2 weeks. At the minimum, 316/629 (50.2%) participants
responded 1 time to the PHQ-8 depression assessment, and at
the maximum, 1/629 (0.2%) participants responded 7 times.
The mean number of responses per participant is 2.18 (SD 1.57).

For the distribution of the PHQ-8 scores, 1143/1374 (83.19%)
responses were nondepressed scores (PHQ-8 score <10), while
231/1374 (16.81%) were depressed scores (PHQ-8 score ≥10).
The mean PHQ-8 score is 5.19 (SD 5.22; range 0-24).

The number of smartphone data set days was 13,898 for all 629
participants. Table 3 shows the distribution of participants and
their corresponding number of days in the smartphone data set.
The mean number of days per participant is 22.1 (SD 17.90;
range 8-86).

Table 2. Distribution of participants’ contribution to the PHQ-8a responses (N=629).

PHQ-8 responses, nParticipants, n (%)

1316 (50.2)

2129 (20.5)

357 (9.1)

447 (7.5)

540 (6.4)

639 (6.2)

71 (0.2)

aPHQ-8: 8-Item Patient Health Questionnaire.

Table 3. Distribution of participants’ smartphone data set days (N=629).

Participants, n (%)Days, n

364 (57.9)8-14

126 (20.0)15-28

53 (8.4)29-42

34 (5.4)43-56

29 (4.6)57-70

22 (3.5)71-84

1 (0.2)85-98

Features Engineered From Smartphone Data Set
In all, we computed 22 features from the smartphone data set.
All features were aggregated at the day level. For example, the
screen_offCount feature is the count of all screen off states
during the day. We summarize the engineered features in
Multimedia Appendix 1.

Correlation and Association Between Features and
Depression
We found a significant positive correlation between screen
status–normalized entropy and depression (r=0.14, P<.001).
We found no significant correlation between other screen, app,
and internet connectivity features and PHQ-8 depression score.
Multimedia Appendix 2 presents the full Pearson correlation
coefficients and adjusted P values, with the Holm–Bonferroni
method, between features and PHQ-8 depression score.

Regarding the association analysis, we found an ICC of 0.7584;
thus, 75.84% of the variations in the features are explainable
by the interindividual differences. We found a significant
positive association between screen status–normalized entropy
and depression (β=.48, P=.03). We found no significant
association between other screen, app, and internet connectivity
features and depression. Multimedia Appendix 2 presents the
results of the LMM analysis showing the estimates (β) and
adjusted P values calculated using the Benjamini–Hochberg
method.

Predicting Depression From Features
The overall performance of the ML classifiers trained with
features only (ie, with no demographics data set) is listed in
Table 4. Table 5 shows the ML classifier performance with the
features plus age group and gender data set as predictors. The
tuned hyperparameters of all ML classifiers are detailed in
Multimedia Appendix 3. The performance of all 10
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cross-validation folds of the features-only data set and that of
the feature plus demographics data set are detailed in Multimedia
Appendix 3. The performance of the DT and RWC baselines is
shown in Table 6.

As shown in Table 4, it is evident that nonlinear classifiers such
as XGB, RF, and KNN had superior performance in all metrics
than LR. SVM (ie, SVM with RBF kernel) also performed better
than LR.

In terms of precision, recall, and F1 scores, which were
computed with an emphasis on the predictive performance of
the positive label (ie, depressed score, PHQ-8 ≥ 10), XGB was
the best performing classifier, followed by RF and KNN. XGB,
RF, and KNN performed better than the RWC and DT baselines,
as shown in Table 6.

Likewise, with AUC and Cohen κ performance metrics, which
take into consideration both positive and negative labels (ie,
nondepressed score, PHQ-8 <10), XGB, RF, and KNN
classifiers had the best performance, as shown in Table 4. The
AUC and Cohen κ are not biased by imbalance labels.

As shown in Table 4, the worst performing classifier is LR.
Compared with the baseline classifiers in Table 6, the RWC
and DT baselines classifiers outperform the LR classifier in
terms of recall. The LR could predict the PHQ-8 depression
score barely better than the RWC and DT baselines in all other
performance metrics. The RWC baseline classifier also
outperformed the SVM classifier on the recall metrics.

When age group and gender were included with features as
predictors, we observed a general improvement in all
performance metrics for all classifiers, as shown in Table 5.
The SVM classifier had the most substantial improvement with
precision increasing by 18.48% and Cohen κ increasing by
19.3%. KNN had a 6.58% improvement in precision and a 5.1%
improvement in F1 score. RF and XGB classifiers had marginal
improvements in all performance metrics. The worst performing
classifier (ie, LR) had some gains in performance, but it could
still barely outperform the DT baseline classifier in Table 6 in
all performance metrics.

Table 4. Average and SDs of accuracy, precision, recall, F1, area under the curve, and Cohen κ metrics for 10-fold cross-validation, with features-only
data set as predictors.

KNNe, mean (SD)LRd, mean (SD)SVMc, mean (SD)XGBb, mean (SD)RFa, mean (SD)Metric

96.44 (0.52)59.27 (1.45)85.68 (1.16)98.14 (0.37)97.97 (0.37)Accuracy

85.55 (1.97)20.29 (1.25)51.98 (2.58)92.51 (1.25)92.50 (1.78)Precision

92.19 (2.24)57.25 (4.14)80.67 (2.36)95.56 (1.99)94.38 (1.86)Recall

88.73 (1.63)29.95 (1.87)63.20 (2.29)94.00 (1.21)93.41 (1.19)F1

94.69 (1.15)62.43 (2.22)89.47 (1.06)99.06 (0.54)98.83 (0.67)Area under the curve

86.61 (1.93)9.66 (2.38)54.83 (2.92)92.90 (1.43)92.21 (1.41)Cohen κ

aRF: random forest.
bXGB: XGBoost.
cSVM: support vector machine.
dLR: logistic regression.
eKNN: K-nearest neighbor.

Table 5. Average and SDs of accuracy, precision, recall, F1, area under the curve, and Cohen κ metrics for 10-fold cross-validation, with features, age
group, and gender data set as predictors.

KNNe, mean (SD)LRd, mean (SD)SVMc, mean (SD)XGBb, mean (SD)RFa, mean (SD)Metric

98.09 (0.26)60.37 (1.39)92.61 (0.46)98.56 (0.31)98.55 (0.40)Accuracy

92.13 (1.41)21.40 (1.20)70.46 (1.63)94.93 (1.08)95.65 (1.59)Precision

95.62 (1.56)60.00 (3.94)88.76 (3.19)95.62 (1.52)94.78 (1.59)Recall

93.83 (0.85)31.54 (1.78)78.52 (1.41)95.27 (1.03)95.20 (1.31)F1

97.07 (0.73)66.62 (3.06)95.45 (1.00)99.36 (0.33)99.01 (0.51)Area under the curve

92.69 (1.00)11.74 (2.28)74.13 (1.66)94.42 (1.21)94.34 (1.55)Cohen κ

aRF: random forest.
bXGB: XGBoost.
cSVM: support vector machine.
dLR: logistic regression.
eKNN: K-nearest neighbor.
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Table 6. Average and SDs of accuracy, precision, recall, F1, area under the curve, and Cohen κ metrics for the RWC and DT baselines.

DTb, mean (SD)RWCa, mean (SD)Metric

46.80 (3.77)25.80 (0.33)Accuracy

18.70 (0.66)15.21 (0.36)Precision

74.33 (4.71)84.79 (0.86)Recall

29.85 (0.75)25.80 (0.24)F1

62.94 (1.38)50.00 (0.47)Area under the curve

7.33 (1.26)0.00 (0.32)Cohen κ

aRWC: random weighted classifier; RWC metrics is the average and SD of 10,000 random predictions.
bDT: decision tree; DT metrics is the average for 10-fold cross-validation, with age group and gender only as features.

Feature Importance Analysis
We present the mean permutation feature importance in
predicting PHQ-8 depression score across the 10-fold
cross-validation with the top 3 performing ML classifiers (ie,
XGB, RF, and KNN) in Figures 1-3.

For the XGB classifier in Figure 1, the top 5 most important
features were the internet regularity index, screen on count,
screen regularity index, screen status entropy, and the screen
off count.

For the RF classifier in Figure 2, the top 5 most important
features were screen status–normalized entropy, screen
regularity index, screen off count SD, screen off count, and
internet regularity index.

Likewise, for the KNN classifier in Figure 3, the top 5 most
important features are the internet regularity index, screen
status–normalized entropy, screen regularity index, internet
status–normalized entropy, and the internet status entropy. As
shown in Figure 3 app entropy, count, distinct count, regularity
index, and count SD were less important to the KNN classifier.
Removing these less important features could further improve
the performance of the KNN classifier.

By ranking all important features for KNN, XGB, and RF
classifiers, the top 5 most were the screen regularity index,
screen status entropy, internet regularity index, screen
status–normalized entropy, and the screen off count SD. App
count SD is the least important feature for all classifiers (Figures
1-3), and could be removed to improve ML classifier
performance in the case of RF and KNN.

Figure 1. Mean permutation feature importance across 10-fold cross-validation with the XGBoost machine learning classifier.
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Figure 2. Mean permutation feature importance across 10-fold cross-validation with the random forest machine learning classifier.

Figure 3. Mean permutation feature importance across 10-fold cross-validation with the K-nearest neighbor machine learning classifier.
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Discussion

Overview of Data Set Employed
Our objective was to investigate the feasibility of predicting
depression using multivariate digital biomarkers quantified from
smartphone data sets collected in a real-world study. In this
study, we used 13,898 days of smartphone data set, and 1374
PHQ-8 depression assessments from 629 participants to explore
the feasibility of detecting depression from participants’
behavioral markers (ie, digital biomarkers) quantified from their
smartphones. We focused on finding the relationship between
repeated measures of depression scores and participant’s digital
biomarkers and developing predictive models to classify
depressed and nondepressed symptom severity scores.

Principal Results
This data set was collected from a heterogeneous geographic
(ie, from at least 56 different countries), occupational, and
educational population, with high interindividual differences
(ie, 75.84% interclass correlation).

Despite this heterogeneity, digital biomarkers extracted from
participants’ smartphone data set were able to predict
participants’ depression state (ie, depressed or nondepressed)
with high predictive performance using ML models. The ML
models achieved the following: precision, 85.55%-92.51%;
recall, 92.19%-95.56%; F1, 88.73%-94.00%; AUC,
94.69%-99.06%; Cohen κ, 86.61%-92.90%; and accuracy,
96.44%-98.14%. These findings show that predictive modeling
of mental health using digital biomarkers is not only possible
in small homogenous populations [83,84], but also in a more
general population, which further supports the scalability of
this approach and its potential positive impact on health care if
implemented (eg, early detection of mental disorders, RED-flag
systems after treatment).

Moreover, we found that the predictive performances of ML
classifiers improved when demographic characteristics were
included among predictors, indicating that such variables should
also be included in clinical applications. Previous studies suggest
a relationship between demographic factors, smartphone usage
behavior, and depression [38,85,86]. Thus, encoded in the
demographic data of this study’s population is additional
information that is useful in predicting the depression state of
the participants. Therefore, the inclusion of additional data from
clinical information systems (eg, blood parameters, previous
clinical diagnosis) might be a valuable way to further increase
the performance of prediction models.

Interestingly, tree-based, nearest neighbor–based classifiers had
superior performance over linear classifiers, including SVM
with RBF kernel, corroborating the existence of nonlinear
relationships between digital biomarkers and depression. This
finding further supported the correlation finding, which failed
to replicate previous results reported in Saeb et al [33]. We
could only identify that participants with depression symptoms
were more likely to lock and unlock their phone’s screen in a
random and uncertain manner (ie, significant positive correlation
between screen status–normalized entropy and depression,
r=0.14, P<.001). The screen status–normalized entropy

biomarker quantified the frequency and distribution (ie,
complexity and uncertainty) in the transition of the participants’
phone screen on and off states. All other indicators were
nonsignificant. Moreover, correlation coefficients only measure
the extent of the linear relationship between variables [87,88].
Instead of correlations, previous studies on mental health relied
on the mutual information (MI) method from Information theory
[87-89]. The advantage of using the MI method is that the MI
measures both linear and nonlinear statistical dependencies
between variables.

Given the high ICC, we tested whether LMM, a much robust
method for finding linear relationships, can identify additional
linear relationships. However, the results from the association
analyses further showed that a unit increase in the screen
status–normalized entropy positively increases the average
depression score (β=.48, P=.03), but all other variables remained
nonsignificant. This suggests that conventional statistical
methods (eg, correlation or LMM) may not depict the complex
nonlinear relationship between digital biomarkers and
depression, and indeed more powerful methods such as ML
models (eg, XGB) are needed to make better predictions [90].

The heterogeneity and inconsistency in correlation findings (ie,
linear relationships) in the field are common issues [26]. Until
now, it is unclear whether this is due to differences in
sociodemographic characteristics in samples, in used sensors,
in the method to calculate features, small sample sizes and lack
of power, or even due to other between-study factors.
Meta-analysis on digital markers and health outcomes (eg,
depression) would be highly valuable to clearly show whether
and to which extent linear relationships exist. Using
meta-regression, the factors causing the differences in
correlation findings may also be identified.

Nevertheless, both the correlation findings and the feature
importance analysis in the prediction models clearly showed
that participants’ phone screen (lock and unlock) behaviors,
such as routinely and randomly locking and unlocking phone
screen, and internet connectivity behaviors played the most
important role in predicting their depression state. The findings
in this study are also supported by prior research that
investigated the relationship between screen interactions and
mental health [3,27,28,33]. Passively sensed participants’
smartphone screen interaction (ie, on and off states) behavior
was demonstrated to be an important predictor of mental health
[27]. Similar findings have been reported previously [3,33],
where the number of times a participant interacts with their
phone, including screen lock and unlocks, was found to correlate
with participants’ mental health state. In a neuroscience study
[91], screen unlocks were found to be important behavioral
markers that correlate and predict resting state brain functional
connectivity, which is known to be associated with depression
[92]. On internet usage behaviors, research has demonstrated
an association between internet usage patterns and depression
[93,94], which was also a key feature in our analysis. Thus,
including these features in future studies is highly recommended.

Limitations and Future work
Given the crowdsourced nature of the deployment of the Carat
app, the sample size in the data set is small (N=629) and may
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not be representative of the general population. Despite the data
set having a fair distribution of age groups, with a spread over
several countries, it is biased toward highly educated and
professional occupations. The data set is also biased toward
males in gender distribution. Future research with a larger
sample size and a balanced gender distribution could explore
correlations, associations, and prediction performance for
population subgroups.

Clinical diagnosis of depression was not an inclusion criterion
for our sample population. The data set also does not contain a
clinical or self-reported baseline assessment of depression and
has scarce high depression scores. Because of the crowdsourced
rolling recruitment nature of participants, the data set contained
an unequal number of repeated depression assessments for all
participants. Future research should benefit from replicating the
experiment in a clinical population and a more controlled
experimental design. With a clinical baseline data set, future
research could study the differences in features between
depressed and nondepressed groups.

The correlation and association between behavioral patterns
extracted from the data set in this study and depression do not
necessarily imply causal relationships. For example, the
correlation between screen status–normalized entropy and
depression may be caused by other confounding variables. In
addition, the correlation and association between screen
status–normalized entropy and depression are not strong and
may not generalize in other populations. Further research is
needed to establish the extent to which such behaviors cause or
are a consequence of depression.

Lastly, the data set was collected from Android participants
only, and the long-term use of the Carat app could influence
participants’ behavior [38,39]. Research has shown that
participant’s behavior and sociodemographics may differ
between Android platforms and other mobile platforms such as
iOS [44,95]. Future research could replicate this study to explore
the extent of the differences in the participants’ behaviors (ie,

digital biomarkers of participants using Android, iOS, and other
mobile platforms).

Replicating the findings from this study with additional
biomarkers from GPS and wearable sensor data sets and
comparing their correlation and biomarker predictive importance
will be interesting in future work. There would be a major design
implication for depression intervention development if the
behavioral markers from screen and internet connectivity
achieve similar promising results as biomarkers from GPS and
wearable devices. We hypothesize that screen interaction and
internet connectivity data sets alone are less privacy intrusive,
could better capture behaviors of immobile persons, and people
may be more willing to donate such data sets to science. For
example, Apple’s Screen Time and Google’s Digital Wellbeing
app are processing and presenting such data to users to inform
where and how users spent their time on smartphones.

Conclusions
In summary, this study sought to find whether we can detect
changes in human behavior that would be indicative of
depression using smartphones. In addition, we sought to find
what objective measures of human behavior from smartphones
are insightful in understanding depression. Our results
established a positive statistically significant linear correlation
and association between depression and screen
status–normalized entropy behavior quantified from smartphone
data sets. Our findings also establish that behavioral markers
extracted from smartphone data sets can predict whether or not
a participant is depressed based on the PHQ-8 depression score,
and that phone screen and internet connectivity behaviors were
the most insightful behaviors that influence depression in
participants. The findings in this study are supported by previous
research findings and contribute to compelling evidence on the
utility of digital biomarkers in augmenting traditional assessment
of depression, thus enabling continuous and passive monitoring
of the complex vectors of depression.
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