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Abstract

Background: The ubiquity of electronic health records (EHR) offers an opportunity to observe trajectories of

laboratory results and vital signs over long periods of time. This study assessed the value of risk factor trajectories

available in the electronic health record to predict incident type 2 diabetes.

Study design and methods: Analysis was based on a large 13-year retrospective cohort of 71,545 adult, non-

diabetic patients with baseline in 2005 and median follow-up time of 8 years. The trajectories of fasting plasma

glucose, lipids, BMI and blood pressure were computed over three time frames (2000–2001, 2002–2003, 2004)

before baseline. A novel method, Cumulative Exposure (CE), was developed and evaluated using Cox proportional

hazards regression to assess risk of incident type 2 diabetes. We used the Framingham Diabetes Risk Scoring (FDRS)

Model as control.

Results: The new model outperformed the FDRS Model (.802 vs .660; p-values <2e-16). Cumulative exposure

measured over different periods showed that even short episodes of hyperglycemia increase the risk of developing

diabetes. Returning to normoglycemia moderates the risk, but does not fully eliminate it. The longer an individual

maintains glycemic control after a hyperglycemic episode, the lower the subsequent risk of diabetes.

Conclusion: Incorporating risk factor trajectories substantially increases the ability of clinical decision support risk

models to predict onset of type 2 diabetes and provides information about how risk changes over time.
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Background

The early identification of individual risk for developing

type 2 diabetes is essential for effective targeting of prevent-

ive measures. Early intervention through lifestyle change

and/or metformin therapy have shown robust results in

preventing or postponing the onset of diabetes [1, 2]. More

precise identification of individual risk allows limited

resources to be balanced against individual needs.

Diabetes risk scores, also known as diabetes indices or

risk equations, are currently used to estimate individual

risk for developing diabetes [3–9]. Besides estimating

individual risk, these risk scores can also deepen our

understanding of how diabetes develops, and inform us of

interactions between a specific risk factor and subsequent

development of complications. Many risk scores exist with

the sole purpose of risk estimation [6, 7] and numerous

diabetes models have been developed for the purpose of

biomarker discovery, [10, 11] but very few, if any, models

are able to simultaneously address both goals.

The Framingham diabetes score is a widely used model

for estimating diabetes risk [12]. In this score, weights are

assigned to seven risk factors, and the weights of the risk

factors that a patient presents with are summed. The

Framingham score is a paper-and-pencil score, [13] which

is easy to compute during a patient visit. The ease of

computation, however, trades accuracy for simplicity, and

hides the heterogeneity and the wide array of clinical risk

factors [14] associated with diabetes. In response, a stream

of increasingly accurate but increasingly complex risk

models followed (see [5, 6, 9, 15] for systematic reviews),

often relying on measurements related to nutrition, caloric

intake and lifestyle, that are not commonly recorded in
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routine clinical practice. These scores (or rather equa-

tions) are highly multivariate, and are no longer comput-

able with paper and pencil. The adoption of electronic

health records (EHR) systems can, in theory, alleviate the

problems stemming from running complex predictive

models; however, the reliance of these diabetes scores on

data elements not commonly available in the EHR system

renders these models impractical. More importantly, the

pursuit of increasingly marginal improvements in predict-

ive accuracy and the lack of temporal frames limit our

understanding of the disease and its progression.

We have previously shown that the order in which

patients develop comorbidities is predictive of the risk of

diabetes, even after adjusting for the severity of the comor-

bidities [16]. In another study, Hulsegge et al. compared

trajectories of laboratory results and vital signs between pa-

tients who developed diabetes and those who did not, over

21 years, taking a snapshot every 5 years. They showed that

laboratory results can be different as many as 15–20 years

before the diagnosis of diabetes, but they did not associate

trajectories with risk of diabetes [17]. None of the diabetes

risk scores take patient trajectory into account.

In this paper, we develop a novel methodology, Cumu-

lative Exposure, to associate trajectories of lab results

observed at a finer granularity with incidence of type 2

diabetes. The model embraces both goals of risk score

development: it offers state-of-the-art prediction accur-

acy using only data elements that we extracted from our

EHR system and it simultaneously allows us to generate

new hypothesis about the temporal aspect of diabetes.

Methods

Study setting

Mayo Clinic provides primary care to residents of Olm-

sted County, Minnesota, and it has an integrated

electronic health record system including diagnoses, medi-

cations, laboratory results and clinical notes. These

records are part of the Rochester Epidemiology Project

(REP), a comprehensive research data repository over

several decades, approved for medical research. The

resources available for the REP have been described else-

where [18]. The primary care clinics at Mayo Clinic pro-

vide routine health care similar to any primary care clinic

elsewhere. The study was approved by Mayo Clinic IRB.

Study design

We used a retrospective cohort of de-identified data

from 71,454 primary care patients at Mayo Clinic, Roch-

ester, MN with research consent. The cohort consists of

patients aged ≥18 at baseline on Jan. 1st, 2005, having at

least one visit before and after baseline. These patients

were followed until 2015 (median follow-up time is 8

years). We extracted diagnoses (ICD-9), laboratory re-

sults, vital signs, and medications longitudinally for three

non-overlapping time periods: 2000–2001, 2002–2003

and the year of 2004. Patients with pre-existing diagnosis

of diabetes at baseline (5891 patients), without fasting

plasma glucose (FPG) measurements during any of the

three time periods (32,852) and those with suspected

diabetes (indicated by insulin or oral antidiabetic medi-

cation use or a single FPG > 125mg/dl; 2427 patients) at

any time before baseline were excluded. The final cohort

consists of 30,284 patients. Table 1 contains a descrip-

tion of the cohort.

Predictors

The predictor variables include age, gender, ICD-9 diag-

noses categorized into four diabetes risk factors (hyper-

tension, dyslipidemia, impaired fasting glucose, obesity)

and medication use for the above categories rolled up to

National Drug File Reference Terminology NDF-RT

pharmaceutical subclasses at baseline, vital signs (BMI,

systolic and diastolic blood pressure; SBP and DBP,

respectively), and laboratory results (LDL, HDL, triglyc-

erides, and fasting plasma glucose; FPG). Glucose values

were used if they were fasting glucose value obtained

during routine clinical care in the ambulatory setting.

Glucose values done in the emergency department and

hospital setting were excluded. Point-of-care glucose

measurements, which usually use capillary whole-blood,

were also excluded. All the laboratory tests were done

by Mayo Clinic Laboratories which are fully certified by

the College of American Pathology and the Clinical La-

boratory Improvement Amendments. These data yield

three sets of predictor variables. The first set is baseline,

and it contains the latest measurements before baseline.

The second set is extreme measurements, which contains

Table 1 Description of the cohort. For lab results and vitals, the

median and interquartile range and for medication usage and

progression to diabetes the number and percentage of patients

are reported

Variable Median Interquartile Range

Age [years] 51 41, 62

Male [%] 38.4

LDL [mg/dL] 111 91, 32

TG [mg/dL] 114 81, 161

HDL [mg/dL] 52 43, 64

SBP [Hg mm] 122 110, 132

DBP [Hg mm] 73 66, 80

FPG [mg/dL] 92 87, 99

Follow-up [years] 9.5 8.0, 9.8

Number of patients Percent

Antihypertensive medication 6571 21.7

Antilipemic medication 5395 17.8

Progressed to DM 2972 9.8
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the most extreme (minimum for HDL, maximum for

the others) result over the 5-year period of 2000–

2004. The third set is the proposed cumulative expos-

ure. Through linear interpolation, a segment-wise lin-

ear curve of the lab results and vital signs were

obtained, and the area under the curve was computed

for three non-overlapping time periods: 2000–2001,

2002–2003, and 2004. If the curve could not be esti-

mated via linear interpolation for a time period (e.g.

there was no result before 2000 for the 2000–2001

time period), the cumulative exposure variable for

that time period was marked missing. To complete

the curve between the last measurement and Jan 1st,

2005, the last measurement was carried forward (the

measurement was assumed to stay constant). The cu-

mulative exposure can be interpreted as our best esti-

mate of the average of the daily lab values of the

patient for each time period.

Outcomes

The study endpoint was incident type 2 diabetes mellitus

as defined by a first ICD-9 diagnosis code or a fasting

glucose measurement in excess of 125mg/dl.

Statistical modeling

Cox proportional hazards regression models were con-

structed with type 2 diabetes mellitus (T2DM) as the

dependent variable using age, gender, and some of the

above sets of clinical predictor variables. Specifically,

four models were constructed:

1. Baseline using demographic information (age,

gender) and the baseline predictors (latest lab

results and vital signs before baseline);

2. Cumulative Exposure (CE) using demographics,

baseline and the cumulative exposure variables;

3. Extreme values (EV) using demographics, baseline

and the extreme measurements (most extreme lab

results and vitals over 2000–2004); and

4. Extreme plus Cumulative (EV + CE) which uses

all variable sets (demographics, most recent, extreme

measurement, and cumulative exposure).

Laboratory results and vital signs completely missing

throughout the years 2000–2005 were handled through

mean imputation with the addition of missingness indi-

cator variables. When results were missing for one of

the three time periods, carry-forward imputation was

used. Patients with missing fasting glucose measure-

ments were discarded. Backwards elimination was used

for variable selection.

The four models were compared to the Framingham

Diabetes Risk Scoring Model (FDRSM) [12].

Model evaluation

Model performance was evaluated using bootstrap es-

timation with 1000 replications and survival concord-

ance as the evaluation metric measured on the out-

of-bag samples. Survival concordance is the probabil-

ity that for any pair of patients in which one patient

remained free of progression to overt diabetes longer

than the other, the one who developed diabetes earl-

ier has higher predicted risk. Survival concordance is

the C-statistic for censored data. We report the

model performances as the median, upper and lower

quartiles of the 1000 performance measurements. All

models were evaluated on the same 1000 replications,

so paired t-test was used for pairwise comparison of

model performances.

Applying CE to study episodic prediabetic populations

We apply the Cumulative Exposure model to study the

effect of episodic pre-diabetes on incident diabetes. By

‘episodic prediabetes’, we refer to a short (no more than

2–3 years long) episode of prediabetes (FPG between

100 and 125 mg/dl) where the patient returned to

normoglycemia without pharmacological intervention.

We study two subpopulations that differ in the duration

of normoglycemia following the prediabetic episode and

two kinds of controls: patients who did not return to

normoglycemia (two subpopulations) and patients who

did not develop prediabetes. Specifically, we have the fol-

lowing subpopulations:

1) patients who were prediabetic in 2000–2001 and

returned to normoglycemia in 2002–2003 (‘pnn’);

2) patients who were prediabetic in 2002–2003 and

returned to normoglycemia in 2004 (‘npn’);

3) patients who became prediabetic in 2004 (‘nnp’);

4) patients who were normoglycemic in 2001–2002

and developed prediabetes in 2002–2003 (‘npp’);

5) patients who did not developed prediabetes before

2005 (‘nnn’).

We fit the Baseline, the Cumulative Exposure, and the

Extreme Value models to the entire population as de-

scribed above. Missing value imputation was applied to

the entire population before the subpopulations were

created. We used these models to estimate the risk of

developing overt diabetes in these specific subpopula-

tions. We defined our risk as the per-patient expected

number of diabetes incidents in each subpopulation dur-

ing the 10 follow-up years (2005–2015) and we defined

the error as the (signed) Martingale residual (difference

between the per-patient estimated and observed number

of diabetes incidents). We wish to know how diabetes

risk varies across the subpopulations and how well the

two models can estimate them.
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Sensitivity Analysis

We carried out a sensitivity analysis in patients with at

least one FPG measurement in all three time periods

(2000–2001; 2002–2003; and 2004) and at least five dur-

ing follow-up to ascertain that our conclusions are not

unduly impacted by the intermittent nature of the pa-

tient visits.

Results

Baseline cohort characteristics

Table 1 shows the clinical characteristics of the cohort

at baseline, 2005.

Performance of the predictive models

The performance of the new models, Baseline, Cumula-

tive Exposure, Extreme Values and Extreme plus Cumu-

lative Models, each outperformed the FDRS Model, with

concordance of 0.767, 0.783, 0.802, 0.805 and 0.660 re-

spectively, all p-values <2e-16 (Fig. 1). Among the four

new models, only Baseline lacks the ability to take the

patient’s past trajectory into account and accordingly

has a substantially lower performance than the other

models.

Table 2 shows the coefficients of the statistically sig-

nificant laboratory results and vital signs after backwards

elimination in each model. Each row within a model cor-

responds to a variable set and timeframe (baseline, ex-

treme measurements, cumulative exposure over the

three timeframes labeled as 2000-2001, 2002-2003 and

2004) and each column corresponds to a laboratory

result or vital sign. Consider, for example, the effect of

FPG (column ‘fasting’) in the Cumulative Exposure

model. The Cumulative Exposure model is the second

group from the top in Table 2 and has four rows (time-

frames): 2000-2001, 2002-2003, 2004 and baseline. A

unit increase in the cumulative exposure of FPG, which

is essentially the estimated daily average FPG level, in

the timeframe of 2000-2001 independently increases the

relative hazard of diabetes by exp(.034)=1.04. Addition-

ally, a unit increase in 2002-2003 further increases the

relative hazard (independently of other timeframes) by

exp(.035)=1.04 and the baseline measurement increases

it further by exp(.041). The cumulative exposure to FPG

in 2004 was not significant (because the most recent

FPG is mostly the only measurement from 2004). The

other lab results and vitals can be interpreted

analogously.

Using the cumulative exposure model to study episodic

pre-diabetic subpopulations

Table 3 presents a comparison of the five subpopulations

in terms of their median lab results, vitals, age, follow-up

time, and percentage of medication use. None of the pa-

tients in the cohort used anti-diabetic medications.

Table 4 summarizes the estimates from the Most Re-

cent, the Cumulative Exposure, and the Extreme Value

models for five subpopulations. The results from the Ex-

treme Plus Cumulative model are very similar to the Ex-

treme Value model, so we omitted them from Table 3.

For each model, the estimated risk (Pred) and the

Fig. 1 Performance comparison of the four regression models and the Framingham score. FDRS: Framingham Diabtes Risk Score, CE: Cumulative

Exposure, EV: Extreme Value, EV + CE: Extreme Plus Cumulative Exposure. Performance is measured through survival concordance using bootstrap

estimation with 1000 replications. The performance difference between any two models is statistically significant at .05 level
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estimation error (Error) are displayed. We will refer to

each group by their row number.

Risk of diabetes in the five subpopulations

Patients who returned to normoglycemia after an epi-

sode of hyperglycemia (groups 1 and 2) had lower risk

of progression to overt diabetes than patients who did

not return to normoglycemia (groups 3 and 4): the

adjusted risks in groups 1 and 2 were .087 and .103, as

compared to groups 3 and 4, where it was .139 and .207

as estimated by the Cumulative Exposure model. Pa-

tients who returned to normoglycemia (groups 1 and 2)

Table 2 Coefficients of the four models organized by timeframe. 2000–2001 refers to the cumulative exposure between 01/01/2000

and 12/31/2001; 2001–2002 refers to the cumulative exposure between 01/01/2002 and 12/31/2003; 2004 is the cumulative

exposure in 2004; ‘Baseline’ refers to the latest observations before baseline; and ‘5-year extreme’ refers to the most extreme

(minimum for HDL and maximum for others) observations between 01/01/2000 and 12/31/2004

fasting bmi sbp dbp ldl hdl trigl

Baseline

Most recent 0.064 0.009 0.011 −0.021 0.002

Cumulative Exposure

2000–2001 0.034 0.010 0.001

2002–2003 0.035 −0.002

2004 0.011

Most recent 0.041 0.005 0.009 −0.017 0.001

Extreme Values

Most recent 0.018 0.011 0.009 −0.018 0.001

5-year extreme 0.072 −0.004 0.004 −0.001 0.001

Extreme Plus Cumulative

2000–2001 0.008 0.016 −0.009

2002–2003 0.022 0.018

2004

Most recent 0.015 0.013 0.008 −0.015 0.001

5-year extreme 0.062 −0.009 0.009 −0.001 0.001

Table 3 Comparison of the 5 subpopulations. The label of the subpopulation is derived from the diabetes status of the patients in

the three time periods: 2000–2001, 2002–2003, and 2004. For example, ‘pnn’ patients were pre-diabetic in 2000–2001, normal in

2002–2003 and normal in 2004; ‘npn’ patients were normal in 2000–2001, prediabetic in 2002–2003 and normal in 2004. The other

subpopulation labels can be interpreted analogously

All pnn npn nnp npp nnn

N 30,284 2181 1193 1065 889 14,387

Age [median; years] 51 55 56 54 55 49

Male [%] 38 42 42 37 48 32

LDL [median; mg/dL] 111 111 109 113 113 111

TG [median; mg/dL] 114 120 118 129 135 106

HDL [median; mg/dL] 53 54 52 53 50 56

SBP [median; Hg mm] 122 124 124 124 125 120

DBP [median; Hg mm] 73 74 74 74 76 72

FPG [median; mg/dL] 92 93 93 104 105 89

BMI [median; kg/m2] 27 28 28 29 29 26

Antihypertensive medication [%] 21.7 27.0 32.4 29.9 29.8 17.6

Antihyperlipidemi medication [%] 17.8 22.2 27.8 22.5 23.3 15.2

Fullow-up [median; years] 9.51 9.55 9.55 9.56 9.43 9.59

Diabetes outcome [%] 9.8 8.9 12.2 14.1 19.9 4.4
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had higher adjusted risk of developing overt diabetes

than patients who did not develop prediabetes (group 5):

the adjusted risk of diabetes was .087 and .103 vs .051 by

the Cumulative Exposure model. The risk estimates

from the Baseline and the Extreme Value model show

similar trends but with higher estimation errors.

In patients who returned to normoglycemia after an

episode of documented fasting hyperglycemia, and pa-

tients who had an episode of hyperglycemia earlier (and

hence remained normoglycemic longer) had a lower risk

of progression to diabetes. The adjusted risk by the Cu-

mulative Exposure model for patients who had their pre-

diabetic episode in 2000–2001 was .087 vs .103 for those

who had it in 2002–2003.

Accuracy of the estimation

The estimation error for the Cumulative Exposure

model was 1.5 to 50 times lower than for the Baseline

model: it was highest in group 3 with .057 vs .001 and

lowest in group 2 with .026 vs .019. In the predominant

group (group 5 with 14,387 patients), the CE model had

less than half the error of the Baseline model (.007 vs

.016). In all groups except group 3, the estimation error

of CE was lower than 1%. In contrast, the Baseline

model had estimation errors as high as 5.7% and had an

estimation error less than 1% only in one subpopulation

(group 1). The Extreme Value model had almost perfect

estimate in group 5 (patients who did not develop predi-

abetes) with an estimation error less than one tenth of a

percent, but it had higher estimation error than the Cu-

mulative Exposure model in all other groups, and it even

had higher estimation error than the Baseline model in

the first three groups.

Sensitivity analysis

Results from the sensitivity analysis show similar tenden-

cies as Table 4.

Discussion

Predictive performance of the models

Our results showed that it is possible to build diabetes

risk models with state of the art predictive performance

using variables that are commonly available in the elec-

tronic health records. Among the four models we con-

structed, the Baseline model, which is built using

diagnoses, medication prescriptions, lab results (lipids

and FPG) and vitals (blood pressure and BMI) at base-

line, and does not even take trajectories into account,

achieved a survival concordance of .767 (±.006). This

performance represents a 14% improvement over the

performance of the Framingham score (.660 ± .006) and

is highly comparable to the performance of state-of-the-

art risk models published in a large validation study [7];

thus, the Baseline model can be considered a state-of-

the-art model in its own right.

Taking historic information about laboratory results

and vital sign into account significantly improves pre-

dictive accuracy. The simplest way to incorporate history

is to compute the most extreme measurement during

the period of 2000–2004. Adding these predictors to the

Baseline model results in the Extreme Value model,

which has almost 5% higher concordance than the Base-

line model (.802 vs .767; p-value < 2.2e-16). Having one

historic measurement in 2000–2004 and the most recent

measurement for most patients forms a trajectory, albeit

a very crude one. The results from the Extreme Value

model show that incorporating any trajectory informa-

tion is very beneficial; even this crude representation of

a trajectory brought almost half as much improvement

as adding all the predictors to the Framingham score

that the Baseline model has.

Finally, the cumulative exposure variables refined the

notion of trajectories, further improving the perform-

ance to .805 (±.005). This improvement is important

because it represents a substantial difference in certain

subpopulations. The key difference between the Extreme

Model and the Cumulative Exposure model is granular-

ity, which gives us two pieces of information: (i) the time

frame in which the extreme value occurred, and (ii)

whether or not the patient was normal in other time

frames. The cumulative exposure model opens up a tem-

poral dimension, allowing us to directly model situations

where patients can have intermittent abnormal labora-

tory results, and are brought back under control through

Table 4 Estimating diabetes risk in subpopulations that developed pre-diabetes at different time points. Some groups returned to

normoglycemia thereafter. The table shows the number of patients (N), mean predicted diabetes risk as the expected number of

incidents in 10 years (Pred) and the estimation error (Error) by the Baseline, Cumulative Exposure, and the Extreme Value models

Subpopulation N Baseline Cumulative Extreme

Pred Error Pred Error Pred Error

PreDM in 2000–2001, normal from 2003 onwards 2181 .135 .006 .145 .001 .181 −.018

PreDM in 2002–2003, normal before and after 1193 .157 .026 .175 .019 .262 −.034

Normal before 2004, PreDM in 2004 1065 .332 −.057 .235 .001 .282 −.234

Normal before 2002–2003, PreDM since then 889 .411 −.029 .384 −.008 .402 −.019

Normal throughout 2000–2004 14,387 .092 −.016 .080 −.007 .069 −.001
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(say) lifestyle changes. The Cumulative Exposure

achieved higher predictive ability to assess the risk of

diabetes in patients who had prediabetes at some point

in the past than the Baseline or the Extreme Values

model.

Importance of incorporating trajectories

Not only does incorporating trajectories through the Cu-

mulative Exposure variables improve predictive perform-

ance, it also improves our understanding of diabetes.

While many of the metabolic risk factors of diabetes are

well known, [14, 19] their temporal behavior is not.

We have demonstrated through the use of the cumula-

tive exposure model that even episodic (short-term; no

more than 2–3 years of) prediabetes increases the risk of

developing overt diabetes, and that returning to normo-

glycemia mitigates this risk, but does not fully eliminate

it. We could not find any evidence in the literature indi-

cating whether or not returning to normoglycemia elimi-

nates the increase in risk possibly caused by previous

prediabetes, it is well understood that prediabetic pa-

tients face an increased risk of developing type 2 dia-

betes, and it is also known that sustained successful

intervention either via lifestyle change or pharmaco-

logical intervention can delay the onset of diabetes by 4–

5 years [1, 2].

Moreover, our results also suggest that the longer a pa-

tient remains normoglycemic after an episode of hypergly-

cemia, the lower the risk of developing diabetes. Our

results suggest that temporarily returning to normogly-

cemia between two episodes of hyperglycemia has a posi-

tive effect on mitigating the risk of developing diabetes.

Obesity trajectories

While we did not perform a subpopulation analysis spe-

cifically for obese patients, the coefficients of the Cumu-

lative Exposure model suggest that an analogous

relationship exists between BMI and obesity. Becoming

obese even for a short period of time increases the pa-

tient’s risk of developing overt type 2 diabetes and losing

weight thereafter mitigates this risk. Similar to prediabe-

tes, the effect of previous short-term obesity is attenu-

ated over time: the longer the patient has been non-

obese, the lower the effect of any previous incidence of

obesity. After 5 years, the effect of previous obesity

appears to lose any significant effect. This observation

requires a cautionary statement. When exactly the effect

becomes insignificant depends on the sample size,

thus the 5-year period we observed in our sample

may be a statistical artifact, but the attenuation in the

effect size is not. In other words, in a larger cohort,

2000–2001 BMI could have been statistically signifi-

cant, but we expect its effect size to be smaller than

the effect size in 2002–2003.

Metabolic memory

In the context of progression from diabetes to its com-

plications, the concept of metabolic memory of glucose

control has been proposed. Several studies have shown

that better early glycemic control has enduring effect

that persists over time [20]. For example, in the Diabetes

Control and Complications Trial (DCCT), patients with

type 1 diabetes were randomized to intensive or stand-

ard insulin regimens to control their blood sugars [21].

Because the group in the intensive arm achieved pro-

found reductions in the rate of microvascular complica-

tions, the trial was stopped early and all patients were

switched to intensive therapy. In a follow up trial with

this same population (EDIC trial) it was found that those

initially assigned to the intensive arm continued to have

lower incidence of complications despite the fact that

both groups had subsequently achieved similar glycemic

control for several years after switching to the intensive

therapy [22]. In other words, initial better glucose con-

trol has sustained long-term benefits.

Our study presents a complementary but compatible

viewpoint. We found that even short-term loss of con-

trol can result in long-term disadvantages. Exposure to

hyperglycemia also has “memory”: elevated FPG in the

past continues to increase risk of diabetes in the future

despite having achieved similar control (returning to

normoglycemia). However, our study also suggests that

this memory fades over time. Returning to normogly-

cemia attenuates the negative effect of prior exposure.

Our findings are compatible with previous findings in

the sense that among patients with similar control

(normoglycemic at baseline), achieving better control

(return to normoglycemia earlier) has future benefits.

Although the UKPDS blood pressure control trial

failed to demonstrate “memory” for blood pressure, we

found that cumulative exposure to elevated blood pres-

sure was significant for the most recent timeframe [23].

This could be due to loss of power, since patients with

missing blood pressure measurement during 2000–2004

were included, while patients with similarly missing glu-

cose were excluded.

Limitations

Our study cohort was defined so that patients have mul-

tiple FPG measurements; however, other laboratory re-

sults and vital signs could be missing. Specifically, there

are 2200 patients who have no blood pressure measure-

ments and 1600 patients who have no lipid measure-

ments during the entire period of 2000–2004. The lack

of statistical significance of lipid trajectories may be due

to the lower statistical power of these variables. These

results are only applicable to health care provided in the

ambulatory care setting, specifically, primary care, and

using fasting plasma glucose measurements.
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This is a single center study, with limited racial

variability; therefore, the effect of race could not be in-

corporated. Social history and family history was avail-

able only for a limited number of patients. The study

was based on EHR data. As such, non-pharmacological

interventions, such as lifestyle changes, were not consist-

ently documented.

Conclusion

We have demonstrated that laboratory results and vital

sign trajectories that can be extracted from EHR data

provide better risk estimates than current models using

baseline measurements. The metabolic memory of ex-

posure to even mildly elevated glucose levels exists, but

fades over time when glucose is under control. Incorpor-

ating these data into risk estimates provides better iden-

tification of individual risk, and allows for allocation of

resources to be more precisely balanced against individ-

ual need.
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