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Abstract

Identification of disease-associated circular RNAs (circRNAs) is of critical importance, especially with the dramatic increase

in the amount of circRNAs. However, the availability of experimentally validated disease-associated circRNAs is limited,

which restricts the development of effective computational methods. To our knowledge, systematic approaches for the

prediction of disease-associated circRNAs are still lacking. In this study, we propose the use of deep forests combined with

positive-unlabeled learning methods to predict potential disease-related circRNAs. In particular, a heterogeneous biological

network involving 17 961 circRNAs, 469 miRNAs, and 248 diseases was constructed, and then 24 meta-path-based

topological features were extracted. We applied 5-fold cross-validation on 15 disease data sets to benchmark the proposed

approach and other competitive methods and used Recall@k and PRAUC@k to evaluate their performance. In general, our

method performed better than the other methods. In addition, the performance of all methods improved with the

accumulation of known positive labels. Our results provided a new framework to investigate the associations between

circRNA and disease and might improve our understanding of its functions.
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Introduction

Circular RNA (circRNA) is a type of recently ‘rediscovered’ RNA

molecules that abundantly exist in various organisms [1–5]. It

is believed that most RNAs are linear structures in the past

20 years, and circRNAs with a nonlinear structure is considered

as the product of error transcription of RNA [6–8]. However, the

existence of circRNAs has nowbeen confirmed in human cells by

deep sequencing of RNA [9]. CircRNAs are characterized by their

noncollinearity, in which a splice donor attacks an upstream

acceptor, forming a covalently closed circular structure [1, 3,

9–13]. Due to this characteristic, circRNAs can escape the

digestion of exonuclease and are therefore more stable than

linear RNAs [14]. This feature in combination with their ubiquity

in cancer tissues, saliva, blood, and exosomes suggests that

circRNAs are promising as biomarkers for diseases. Some studies

have shown that circRNAs are transcribed by RNA polymerase II,

and their biogenesis is likelymediated by the spliceosome [15]. It

indicates that circRNAs affect gene regulation by competingwith

linear splicing during the cotranscription process, leading to a

change in the level of gene expression [15, 16]. Another function

of circRNAs is their capability to act as microRNA sponges [2, 3].

Specifically, one circRNA molecule can sequester multiple

miRNAs from binding to their target mRNAs, thus affecting the
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activity of miRNAs. In short, circRNAs have now been discovered

to play vital roles in biological processes.

With the facilitation of high-throughput experiments, such

as next-generation sequencing technologies, accumulating

evidence has demonstrated the associations between aberrant

expression of circRNAs and diseases [17–19]. Circular ANRIL

is a species of circRNAs. Its production is associated with

polycomb group-mediated repression of the human INK4a/ARF

locus and is correlated with the risk of human atherosclerosis

[14, 20]. UBE2A, an autophagic, phagocytic protein essential in

the sporadic Alzheimer’s disease (AD) and other progressive

inflammatory degenerations of the human CNS, is depleted

in AD brain [21, 22]. CircRNA is enriched in mammalian brain

tissue and forms a miRNA-7–circRNA system with miRNA.

This system may cause downregulation of gene expression,

such as decrease UBE2A in brain. Therefore, circRNAs have the

risk of causing AD. As microRNA sponges, circRNAs provide a

novel mechanism for regulating the expression of microRNA.

Cdr1as is a type of circRNA. Overexpression of Cdr1as in islet

cells can inhibit miR-7 function to improve insulin secretion

[23]. Similar effects of circRNAs also exist in some tumor cells.

Expression of Cdr1asmay reduce themiR-7 activity. Accordingly,

the proliferative activity and invasiveness of glioma cells, breast

cancer cells, and gastric cancer cells are significantly inhibited

[24]. The above conclusions are all verified by large numbers

of experiments. However, compared with the vast number of

catalogued circRNAs [25–28], the number of experimentally

validated disease-associated circRNAs is still scarce because

the procedures of laboratory experiments are always costly

and time-consuming. Computational approaches provide an

efficient way to explore the associations on a large scale.

Based on the assumption and data from several related

databases, Ghosal et al. [29] developed a statistical method that

calculates the likelihood of a circRNA being associated with a

disease and further compiled the potential associations between

circRNAs and diseases into a database called Circ2Traits.

However, the method of Ghosal et al. [29] has two limitations.

First, their analysis focused only on a small portion of the

currently identified circRNAs. Second, they used Bonferroni

correction to deal with the problem of multiple testing, which

tends to be conservative and may lead to a high false negative

rate, especially when applying it on a vast number of circRNAs.

Nevertheless, Circ2Traits can provide reliable association data

between circRNAs and diseases for our experiments.

As increasing numbers of circRNA species and functions are

discovered, the application and research of circRNA is more

extensive.Due to the features of circRNA in human cells, circRNA

is considered a potential biomarker for various diseases [30].

Looking for associations between circRNAs anddiseases can pro-

vide a new perspective on understanding disease mechanisms.

Systematic approaches for the prediction of disease-associated

circRNAs can effectively target large numbers of circRNAs that

have been discovered. However, only a small portion of the

known associations has been verified by experiments. How to

solve large numbers of unknown associations becomes a diffi-

cult. There is still a lack of systematic computational approaches

until now. Therefore, we proposed a practical model to predict

the associations between circRNAs and diseases.

In the present study, we performed the prediction of disease-

associated circRNAs with a positive-unlabeled learning strat-

egy that exploits deep forests. In particular, a heterogeneous

biological network involving 17 961 circRNAs, 469 miRNAs, and

248 diseases was constructed, and then 24 meta-path-based

topological featureswere extracted. Potential disease-associated

circRNAs were downloaded from Cic2Traits, and those with P-

value of <0.05 were further taken as positive labels. Nested 5-

fold cross-validation was performed on 15 disease data sets to

benchmark the proposed approaches. A series of comparative

experiments were implemented with the existing methods to

evaluate the predictive performance. The Recall@k, Precision@k

and PRAUC@k metrics show the superiority of our method.

Specifically, the average PRAUC@k of our method was ≈0.0075

for all disease data sets, while the second best method was less

than 0.0060. All these results demonstrated that our method

can provide a powerful and useful tool in predicting unknown

associations between circRNAs and diseases.

Materials and methods

Heterogeneous biological network construction

A heterogeneous information network involving circRNAs, miR-

NAs, and diseases was constructed to predict disease-associated

circRNAs. This network includes five types of biological net-

works, namely, a circRNA co-expression network, a miRNA–

miRNA functional similarity network, a miRNA–circRNA inter-

action network, a disease–disease similarity network, and a

miRNA–disease association network.

CircRNA co-expression network

We constructed a circRNA co-expression network as follows.

First, we downloaded 80 total RNA-Seq tissue samples (Table 1)

from ENCODE project [31, 32]. After data cleaning for each sam-

ple, we used CIRI [33] to detect circRNA candidates and obtained

their expression data. Candidates not catalogued in CircBase

[25] or not being detected in three samples or more were fur-

ther filtered, and 17 961 candidates remained. The expression

data of these 17 961 circRNAs were further normalized with

sequencing depth and processed with WGCNA [34] package

for co-expression analysis. As described in WGCNA, the co-

expression similarity adjacency was further transformed with

topological overlap measure, which is proportional to the num-

ber of common neighbors that a pair of nodes share and used

in our following analysis. To validate our circRNA co-expression

analysis, we found that the circRNA coexpression network, as

other biological networks, exhibited a high degree of scale-free

property with a fit index reaching 0.85 (Figure 1).

miRNA–miRNA functional similarity network

To construct a miRNA–miRNA functional similarity network, we

extracted a target gene list for each miRNA deposited in miRTar-

Base 7.0 [35]. Then, tf-idf (term frequency-inverse document fre-

quency) transformation was applied to obtain the miRNA repre-

sentationmatrix. Finally, the cosine similarity between twomiR-

NAs was computed as their functional similarities. As evidence

to support the validity of our method, we observed that the

functional similarities of miRNAs from the same miRNA family

or cluster were significantly higher than the miRNAs drawn

from different families/clusters and/or randomly (Figure 2 and

Table 2).

miRNA–circRNA interaction network

CircRNAs can sequester miRNAs. To measure the probability of

a circRNA to act as miRNA sponges, we downloaded the spliced

sequences of circRNAs from CircBase,mature miRNA sequences

from MirBase [36], and mRNA sequences from GENCODE [37].

The transcript with the longest 3′ UTR (Untranslated Region) was
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Table 1. Details of the 80 total RNA samples used in circRNA co-expression analysis

No. SRA Id Organ Sex Age #Clean %Clean

1 SRR4421868 Prostate gland M 37 38.6 100

2 SRR4422158 Prostate gland M 54 66.1 100

3 SRR4422592 Body of pancreas F 53 48.4 99.9

4 SRR4422136 Body of pancreas F 51 48.3 99.9

5 SRR4421506 Liver F 53 41.2 99.9

6 SRR4421874 Liver F 53 52.8 99.9

7 SRR4421791 Thoracic aorta M 37 47.6 98.8

8 SRR4421792 Thoracic aorta M 37 40.7 98.7

9 SRR4422345 Thoracic aorta M 54 51.9 98.8

10 SRR4422192 Ascending aorta F 53 51.3 100

11 SRR4422152, SRR4422153 Thyroid gland F 51 82.0 100

12 SRR4421528, SRR4421529 Thyroid gland F 53 73.5 100

13 SRR4421334 Spleen M 54 28.7 100

14 SRR4421642 Spleen M 37 45.6 100

15 SRR4421779 Lung F 51 47.7 99.9

16 SRR4421758 Lung F 53 47.1 99.9

17 SRR4422347 Gonad of ovary F 53 54.0 99.9

18 SRR4422625 Gonad of ovary F 51 64.2 99.9

19 SRR4422587, SRR4422588 Gonad of testis M 37 91.5 100

20 SRR4421667, SRR4421668 Gonad of testis M 54 83.8 100

21 SRR4422339 Adrenal gland F 51 51.5 100

22 SRR4422204 Adrenal gland F 53 58.3 100

23 SRR4421966 Right atrium auricular region F 53 55.9 99.9

24 SRR4421817 Right atrium auricular region F 51 43.2 99.9

25 SRR4422373 Stomach F 51 60.4 100

26 SRR4422210 Stomach F 53 57.7 100

27 SRR4421946 Skin of lower leg F 51 52.8 100

28 SRR4422571 Skin of lower leg F 53 52.3 100

29 SRR4421313 Large intestine of sigmoid colon F 53 43.9 98.9

30 SRR4422344 Large intestine of sigmoid colon F 51 40.3 98.9

31 SRR4422293 Large intestine of transverse colon F 53 77.6 98.9

32 SRR4421756 Large intestine of transverse colon F 51 74.8 100

33 SRR4421314 Esophagus muscularis mucosa F 53 50.1 99.9

34 SRR4422046 Esophagus muscularis mucosa F 51 52.8 99.9

35 SRR4421678 Esophagus squamous epithelium F 53 33.7 98.4

36 SRR4421886 Esophagus squamous epithelium F 51 39.0 98.4

37 SRR4422023 Gastrocnemius medialis F 51 50.9 99.9

38 SRR4422107 Gastrocnemius medialis F 53 60.9 99.9

39 SRR4422603 Gastroesophageal sphincter F 51 51.8 98.6

40 SRR4422217 Gastroesophageal sphincter F 53 40.4 98.5

41 SRR3192461 Uterus F 28 87.0 99.4

42 SRR3192462 Uterus F 24 70.5 99.4

43 SRR3192433 Heart F 19 75.0 97.1

44 SRR3192434 Heart F 28 93.7 97.1

45 SRR3192463 Temporal lobe F 24 141.3 99.5

46 SRR3192464 Temporal lobe F 20 30.7 99.5

47 SRR3192429 Urinary bladder F 24 104.9 98.5

48 SRR3192430 Urinary bladder F 20 109.8 99.2

49 SRR3192455 Thyroid gland F 40 87.6 99.7

50 SRR3192456 Thyroid gland F 37 77.1 99.6

51 SRR3192465 Eye F 24 73.1 98.1

52 SRR3192466 Eye F 20 70.0 97.6

53 SRR3192424 Frontal cortex M 22 114.1 99.4

54 SRR3192425 Front cortex F 20 139.1 99.3

55 SRR3192447 Skin of body F 24 113.1 99.5

56 SRR3192448 Skin of body M 22 79.4 99.5

57 SRR3192453 Skeletal muscle F 19 92.8 99.6

58 SRR3192454 Skeletal muscle M 22 100.7 99.4

59 SRR3192439 Liver F 20 85.7 99.5

60 SRR3192440 Liver M 22 103.0 99.4

(Continued)
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Table 1. Continued

No. SRA Id Organ Sex Age #Clean %Clean

61 SRR3192431 Diencephalon M 22 78.0 99.6

62 SRR3192432 Diencephalon F 20 67.2 99.6

63 SRR3192445 Parietal lobe F 24 101.8 99.5

64 SRR3192446 Parietal lobe M 22 102.3 99.5

65 SRR3192451 Spinal cord F 24 110.9 99.3

66 SRR3192452 Spinal cord M 22 100.1 99.3

67 SRR3192437 Metanephros F 24 99.5 99.5

68 SRR3192438 Metanephros F 20 95.0 99.5

69 SRR3192441 Lung F 24 113.2 97.6

70 SRR3192442 Lung F 20 112.0 96.7

71 SRR3192443 Occipital lobe F 20 89.8 98.9

72 SRR3192444 Occipital lobe M 22 110.7 98.8

73 SRR3192427 Cerebellum F 19 120.9 99.1

74 SRR3192428 Cerebellum F 37 86.2 98.9

75 SRR3192458 Tongue F 20 66.1 98

76 SRR3192457 Tongue F 24 74.6 97.9

77 SRR3192449 Stomach M 36 63.2 99.7

78 SRR3192450 Stomach F 40 68.9 99.7

79 SRR3192459 Umbilical cord M 31 167.7 98

80 SRR3192460 Umbilical cord M 20 12.0 97.7

Note.On the ‘Age’ column, since the first 40 samples are from adult tissues, the unit for them is ‘years’, while the last 40 samples are from fetus tissues and the unit is

‘months’. On the ‘#Clean’ column, the unit is ‘million read pairs’. We can see that, as highlighted in bold, the lowest sequencing depth was SRR3192460 sample, with

12.0 million read pairs after data cleaning. ‘%Clean’ column was the percentage of read pairs left after data cleaning process. Also as highlighted in bold, the minimum

was sample SRR3192442, with 96.7% data remained after cleaning, which indicated the high quality of these sequencing data. M: male; F: female.

taken as representative sequence for each protein coding gene.

Then, target prediction was performed with TargetScan [38], and

the miRNA binding density for each circRNA or mRNA was cal-

culated. Finally, the proportion of mRNAs whosemiRNA-binding

density was smaller than that of a circRNAwas computed as the

possibility of a circRNA to act as miRNA sponge.

miRNA–disease association network and disease–disease similarity

network

We constructed a miRNA–disease association network by col-

lecting data frommiR2Disease [39] and HMDD v2.0 [40], whereas

disease–disease similarity data were downloaded from the sup-

plementary data of Sun et al. [41], which was calculated based on

text mining result of disease-associated symptoms.

Meta-path-based topological features

A meta-path [42], which represents a distinct semantic relation,

is a composite of various links between two nodes in the hetero-

geneous network. Meta-path-based features were widely used

in link prediction, and long meta-paths were considered to con-

tribute only limited information to it. In this work, we enumer-

ated all the 12meta-paths between circRNAanddisease ofwhich

the length was ≤4 (Figure 3) and then calculated PathCount and

RandomWalk measures [43] to obtain the topological features.

While PathCount counted the number of path instances between

two nodes, RandomWalk measured the probability of arriving at

each terminal node (disease) when we walked from a specific

start node (circRNA).

Methods

By integrating this heterogeneous information network, we

extracted 24 meta-path-based topological features to predict

potential associations between circRNAs and diseases. We

obtained sample information of diseases and circRNAs from

the public database, and most of the associations are unknown.

Labels are appended to train machine learning models.

Deep forests combined with positive-unlabeled learning algorithm

To predict potential associations between circRNAs and dis-

eases, we computed samples from the unlabeled data that are

likely to have the positive labels.We observed that positive sam-

ples and unlabeled samples were imbalanced in our data sets.

Using traditional classification methods to predict our data sets

may get unsatisfactory results. Therefore, we proposed an effec-

tive positive-unlabeled learning algorithm to solve this imbal-

ance problem. This positive-unlabeled learning strategy we used

was divided into two steps. First, each disease data set con-

tains many unlabeled samples and a small number of positive

samples—sets U and P, respectively. We randomly extracted

one-fifth of the samples from the unlabeled set U as a subset,

assuming it is a negative sample set N. Trained a classifier

with set N and a positive sample set P, the specific parameters

of which are given in the following paragraph. Then, use this

classifier to predict the category probability of the unlabeled

sample set U and select the top 1% of the sample with the

positive probability of the category. After training for five times,

we can obtain reliable negative sample set RN with the above

combined data set. Next, we retrained a new classifier with

positive sample set P and reliable negative sample set RN. We

used 5-fold cross-validation to verify the performance of this

classifier. Finally, we exploited this classifier to predict positive

samples in our data sets (Figure 4). Among them, we used deep

forests as the classifiers in our positive-unlabeled learning strat-

egy. All hyperparameters of our model were chosen by empirical

evaluations, including number of samples extracted and training

times, etc.

Deep forests [44] outperform other classifiers on low-

dimensional data. The advantage of deep forests is the ability to

ensure the diversity of ensemble learning and the representation

of feature information on layer-by-layer. Compared with the
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A

B

Figure 1. The scale-free property of circRNA co-expression network. (A) When

we set the power of adjacency function [34] to 14, we achieved the best fitting

result with the fitting index reaching a plateau of 0.85 (the horizon purple line).

(B) Detail fitting line for degree distribution of circRNA co-expression network.

popular deep neural network, deep forests have less cost and

stronger interpretable. Also, deep forests only require very

few hyperparameters. We employed the cascade structure

of deep forests, where each level consists of two completely

random tree forests and two random forests [45]. Each forest

contains 100 trees. Each tree selects the number of feature

and generates leaf nodes according to their own type. In our

data sets, there are 24 meta-path-based topological features

as input for the first level. Each level of cascade takes feature

information from the previous layer as input. The number of

cascaded levels is determined by accuracy and does not need

extra hyperparameters. By experiments, we demonstrated that

deep forests represent excellent performance as classifiers for

our positive-unlabeled learning algorithm. In order to facilitate

the researchers to reconstruct the methods in this article, we

provided the source code and data for all methods at https://

github.com/xzenglab/DeepDCR.

Baseline and competitive methods

The baseline is the deep forest with the same structure as our

method. To prove the performance of our proposed algorithm,

A

B

Figure 2. Comparison of miRNA functional similarity among different category

(the error bars on the plotsweremean±SEM for each category). (A) The similarity

of miRNAs in the ‘intrafamily’ category was much higher than miRNAs in ‘inter-

family’ or ‘random’. (B) The similarity of miRNAs in the ‘intracluster’ category

was much higher than miRNAs in ‘intercluster’ or ‘random’.

Table 2. P-value formiRNA–miRNA functional similarity comparison

Category Intra versus inter Intra versus random

Family-wise 2.872e−33 2.914e−28

Cluster-wise 1.197e−15 1.527e−12

Note. miRNA family data were downloaded from MiRBase version 21 database

[1]. For miRNA clusters, according to Hansen et al. [2], miRNAs whose distances

are within 50 kb were treated as in the same cluster. We randomly sampled

equivalentmiRNApairs from ‘interfamily’ or ‘random’ category to comparewith

all the miRNA pairs from ‘intrafamily’. The test used was one-tailed Wilcoxon

rank sum test, with H0: ‘The functional similarity of miRNAs from “intrafamily”

was smaller than or equal to that ofmiRNAs from “interfamily”or “random”’.We

can see that the functional similarity scores of miRNAs within the ‘intrafamily’

are significantly higher thanmiRNApairs from ‘interfamily’ or ‘random’. Similar

results were obtained from the cluster-wise analysis. These results indicate

the validity of our method used to calculate the miNRA–miRNA functional

similarity.

we compared four strategies, of which a total of eight methods

were applied on our data sets. These four strategies differed

in the way they treated the unlabeled data during the training

phase.Katz and one-class support vectormachine (SVM) ignored

their information, whereas weighted strategy took them all as

negative data, and bagging strategy randomly sampled a portion
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Figure 3. Details of the 12 meta-paths used. Each meta-path denoted a distinct

semantic relationship between circRNA and disease. It enumerated all the 12

meta-paths between circRNA and disease of which the length was ≤4.

of them as the counterpart of the positive labels. Below are the

details of our description of these four strategies.

One-class SVM. When using a binary classifier, the imbalance

of training data may cause the classifier to prefer the one with

a large number of category, resulting in the bias of the model.

One-class SVM [46] ignored the potential useful information

hidden in the unlabeled data set and tried to solve the positive-

unlabeled problem by learning a function that captured the

distribution of the positive data points in the training set, and

then, the label of new test data was determined by whether it

was located in the projected ‘positive’ region.

min
w∈H

||w||2

2
+

1

vl

l
∑

i=1

ξi − ρ (1)

s.t.
(

w
⊙

∅(xi)
)

≥ ρ − ξi, ξi ≥ 0,

where w is the normal vector to the hyperplane of SVM, ξ is the

slack variable for computing the cost function and l is the total

number of positive samples, while v refers to the percentage of

noise allowed in the positive set and ρ relates to the distance

from the origin to the separating hyperplane.

Weighted strategy. For positive-unlabeled learning problem,

there are separate penalties on different misclassified labels

(if we take the unlabeled samples as negative, then intuitively,

misjudged losses on positive samples should be penalized more

heavily than losses on unlabeled samples). Then, penalties are

used to adjust classifier weights. The goal of this strategy is to

minimize losses.

L(x) = argmin

⎛

⎝

∑

j∈{+,−}

C(+,−)p
(

j|x
)

⎞

⎠ (2)

where C+ and C−are the penalty factors for the misjudgment of

positive sample and negative sample, respectively, and p
(

j|x
)

is

the category probability of classifier to the sample x.

Methods with weighted strategy, such as weighted SVMs [47],

were proven to be state-of-the-art in applications such as text

classification [47], disease gene identification [48], and com-

pound–protein interactions [49]. In the present study, weighted

logit, weighted SVM and weighted RandomForest were applied

in our work.

Bagging strategy. Bagging strategy has been successfully applied

to solve several PU (Positive-Unlabeled) learning problems [50,

51]. This strategy balanced the training data set by undersam-

pling unlabeled samples. Undersampling is a popular method

in dealing with imbalance problems, which uses only a subset

of the majority category and thus is very efficient [52]. By the

bagging of ensemble learning, avoid the loss of data information

during undersampling. Since bagging algorithm conducts sam-

pling to train themodel every time, it has a strong generalization

ability and plays a significant role in reducing the variance of

the model. To train the base classifier, we used bagging strat-

egy to randomly sample a portion of the unlabeled data as a

counterpart of the positive data set, and then, the remaining

unlabeled samples were scored by the trained classifier. This

process iterated for user-defined times, and finally, the average

score of each unlabeled sample was calculated to infer its label.

Uscore = avg

⎛

⎝

t
∑

i=1

m
∑

j=1

Sij(u)

⎞

⎠ (3)

where Sij(u) is the output result of each subclassifier to the

sample u, t is the number of subset to be sampled fromunlabeled

data set and m is the number of subclassifiers.

In our work, we combined bagging strategy with three classi-

fiers, namely, logistic regression, SVM and AdaBoost.

Katz. Katz [53] is a method that integrates different meta-paths

information to calculate the similarity between two nodes in

the heterogeneous information network. It was proved to be

effective for link prediction in social network [54]. Recently, it has

also been successfully applied in disease gene prediction [51].

Katz only considered PathCount as effective similarity metrics.

Similarly, we focused on the meta-path with the length of less

than 4 for Katz, as shown below:

Score
(

d, c
)

=

4
∑

l=1

β l
(

pathsld,c

)

(4)

where the contribution of longer meta-paths was exponentially

damped by the factor β. The association score between a disease

(d) and a circRNA (c) was calculated by summarizing the total

number of path instances of a specific length l, of which was

then multiplied by β l.

Results

With topological features extracted from the constructed hetero-

geneous biological network and the positive-unlabeled learning

methods applied, we described our experiment setup and com-

pared the results of our method and other competitive methods

in this section.

Experimental data

We downloaded the association data between circRNAs and

diseases from the Circ2Traits database. An association between

circRNA and disease would be considered as a positive instance

only when both the circRNA and the disease were within our

heterogeneous biological network, and of which the Bonferroni-

corrected P-value was <0.05. Too small a training set will make

overfitting much harder to avoid, and outliers become much

more dangerous. To avoid the randomness of the results caused

by extremely sparse data sets, we had to ensure that there are

sufficient positive samples for a disease. Thus, we only consid-

ered diseases associatedwith≥60 circRNAs.As shown in Table 3,

15 diseases satisfied the criteria.Among them,breast neoplasms

had themost positive samples,with 233 associated circRNAs,but
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Figure 4. Flowchart of deep forests combined with positive-unlabeled learning algorithm. Schematic of the proposed method. First, we constructed a heterogeneous

biological network using different sources and extracted 24 meta-path based topological features in the network. Then, the positive-unlabeled learning strategy we

used was divided into two steps. First, we randomly extracted a portion from the unlabeled samples and trained with positive samples. After training for five times,

we found reliable negative samples with the above combined data set. Then, we retrained a new classifier with positive samples and reliable negative samples. Finally,

we exploited this classifier to predict positive samples in our data sets. Among them, we used deep forests as the classifiers.

Table 3. Fifteen disease data sets used in our experiment

No. MeSHId Disease name #Pos %Pos Ratio

1 D001943 Breast neoplasms 233 1.30 76

2 D008175 Lung neoplasms 196 1.09 91

3 D006528 Carcinoma, hepatocellular 183 1.02 97

4 D007889 leiomyoma 154 0.86 116

5 D013274 Stomach neoplasms 142 0.79 125

6 D015451 Leukemia, lymphocytic, chronic, B-cell 135 0.75 132

7 D005910 Glioma 115 0.64 155

8 D011471 Prostatic neoplasms 112 0.62 159

9 D002289 Carcinoma, non-small cell lung 103 0.57 173

10 D018281 Cholangiocarcinoma 80 0.45 224

11 D010051 Ovarian neoplasms 74 0.41 242

12 D015470 Leukemia, myeloid, acute 72 0.40 248

13 D015458 Leukemia, T-cell 66 0.37 271

14 D012174 Retinitis pigmentosa 62 0.35 289

15 D012559 Schizophrenia 60 0.33 298

Note. Fifteen disease data sets were used in our experiment. #Pos: number of positive labels in the data set. %Pos: percentage of positive labels in the data set. Ratio:

ratio between unlabeled samples to positive samples.

they only accounted for 1.3% of the 17 961 circRNAs, and the ratio

between unlabeled and positive samples was about 76. With

such an extreme imbalanced class labels, it was a challenging

PU learning task.

Experimental settings and evaluation metrics

To evaluate the performance of these methods on our data sets,

we used the 5-fold cross validation to run our experiments. In

specific, we divided our data into five bins and preserved the

same percentage of positive and unlabeled samples across bins.

Each time, we rotated to take one of them as the test set for

evaluation while the other four bins as the training set. Our

positive-unlabeled learning algorithm was trained five times to

find reliable negative samples in the whole data sets, and then,

we trained a new classifier with reliable negative samples and

positive labeled samples, which was used to predict unlabeled

samples. For all the competitive methods, we also used 5-fold

cross-validation to select the optimal parameters in the training

set.Afterwe obtained the optimal parameters, themethodswere

retrained with these parameters and all the training data and

finally evaluated on the test set (Figure 5). The overall perfor-

mance was an average of the five different test sets. To reduce

the influence of sampling randomness, we repeated the whole

process for 10 times.

To evaluate the performance of a method, we only use the

top-k predictions. The motivation is to evaluate the method’s

capability of recovering a positive association in the top-k predic-

tions for a given disease [55]. Since we focused on the top-k pre-

dictions, we have redefined the performance metrics, including

Recall@k, Precision@k and PRAUC@k (k=500). Recall measured

the proportion of true positives recovered to the total number of

them in the hidden set.

Recall@k =
TP

Pk
(5)

where TP indicates the number of true positives recovered in the

top-k predictions. Pk indicates the number of positive samples
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1432 Zeng et al.

Figure 5. Nested k-fold cross-validation to evaluate the performance of methods

(k=5). Detailed experimental setting for all competitive methods. The inner 5-

fold cross-validation to select the optimal parameters in the training set, and

the outer 5-fold cross-validation retained themodelwith the optimal parameters

and evaluated the performance.

Figure 6. Precision–Recall curve of different methods. The plot shows precision

versus recall rates of different methods for different values of k thresholds,

ranging 1 ≤ k ≤ 500. Precision is the fraction of true positive association

recovered in the top-k predictions for a disease. Recall is the ratio of true positive

association recovered in the top-k predictions to the total number of positive

samples for the disease in the test set. PRAUC of the proposed method was still

in the lead.

known in the top-k predictions. Precision metric is the fraction

of true positives in the k predictions.

Precision@k =
TP

k
(6)

PRAUC@k considered the area under Precision–Recall curve,

which obtained by adjusting the threshold k. In our experiment,

we plotted the Precision–Recall curve after we obtained results

in different values of k (1≤ k≤ 500) (Figure 6). Figure 7 showed the

average Recall@k of various methods for all diseases in different

values of k.

Experimental results

Overall performance

For each method, we calculated its average recall rate on every

disease data set, and the results for all the 15 disease data sets

Figure 7. Comparison of disease–circRNA association prioritization methods. It

shows the average recall of variousmethods for all diseases in different values of

k. The vertical axis in the plots shows the probability that a positive association

is recovered in different k values (shown on the horizontal axis) predictions

for disease data sets. We observed that the proposed method consistently and

significantly outperformed competitive methods by a large margin over almost

all k values.

Figure 8. Recall@k scores of different methods. The box plot shows the distribu-

tion of recall values in 15 disease data sets for each method.

are presented in Figure 8. As shown in Figure 8, the performance

of our method was considerably better than the other meth-

ods, irrespective of whether from the perspective of average or

median of recall rate. Meanwhile, the average performance of

one-class SVM was the worst. Intriguingly, other competitive

methods, Katz, weightedLogit, weightedSVM, baggingLogit, bag-

gingSVM, weightedRandomforest and baggingAdaBoost, albeit

in different ways, performed similarly. The mean Recall@k and

Precision@k score of each method on the 15 disease data sets

were shown in Tables 4 and 5, respectively.

The average recall rate of different methods for a specific

k was also presented in Figure 7. The vertical axis in the plots

showed the probability that a positive association is recovered

in different k values (shown on the horizontal axis) predictions

for disease data sets. We observed that the proposed method

consistently and significantly outperformed competitive meth-

ods by a large margin over almost all k values. Our method

had more than 30% chance of recovering a positive association

in the top 500 predictions for disease data sets, whereas the
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Table 4. Recall@k score of each method on 15 disease data sets

Data set dF pu-dF bAda bSVM bLog I-SVM wRF wSVM wLog Katz

D001943 23.47 33.26 33.60 33.26 33.50 18.97 33.03 31.85 33.13 28.15

D002289 22.74 31.00 20.88 19.01 19.81 19.48 21.37 16.73 20.02 18.06

D005910 27.31 26.26 18.35 16.87 18.08 13.39 19.74 18.61 17.74 21.65

D006528 22.84 27.75 24.15 21.36 26.18 16.40 22.78 25.09 25.97 23.45

D007889 20.20 27.29 20.40 19.75 23.33 17.97 20.99 23.19 24.56 22.41

D008175 28.12 36.28 31.60 29.53 31.38 19.24 32.26 33.32 32.56 27.30

D010051 32.30 44.38 33.91 39.35 42.57 23.20 39.84 43.38 42.57 30.10

D011471 25.51 34.27 28.73 19.49 23.13 24.54 28.11 19.58 23.93 22.12

D012174 20.64 35.23 31.35 27.16 32.27 15.77 27.78 29.65 32.81 28.31

D012559 17.83 32.17 16.50 15.83 14.83 11.17 18.33 15.17 22.00 17.99

D013274 24.10 29.09 25.21 24.79 26.71 19.57 24.88 23.09 26.50 21.00

D015451 21.70 30.07 21.48 19.93 26.82 16.81 21.93 23.93 27.56 22.52

D015458 25.80 36.84 29.46 25.81 29.09 13.43 25.48 27.00 28.52 24.90

D015470 28.11 32.67 20.42 17.71 22.03 20.47 27.84 21.90 23.70 21.20

D018281 27.38 36.50 24.25 31.13 31.38 13.50 30.00 28.50 31.00 25.50

Average 24.54 32.87 25.35 24.07 26.74 17.59 26.29 25.40 27.50 23.64

Note. The bold data in Table 4 indicates the best performance of Recall@k on each data set. On each data set, every method was run for 10 times with different random

seed sets. The mean Recall@k score displayed on this table was multiplied by 100. The prefix ‘b’ character of method names denotes ‘bagging’ strategy, whereas ‘w’

represents ‘weighted’ strategy, and ‘I-SVM’ is one-class SVM. Ada: AdaBoost; RF: Randomforest; Log: Logistic regression; dF: deep forest; pu-dF: PU learning strategy of

deep forest.

Table 5. Precision@k score of each method on 15 disease data sets

Data set dF pu-dF bAda bSVM bLog I-SVM wRF wSVM wLog Katz

D001943 2.19 3.10 3.13 3.10 3.13 1.77 3.08 2.97 3.09 2.62

D002289 0.93 1.28 0.86 0.78 0.82 0.80 0.88 0.69 0.82 0.74

D005910 1.26 1.21 0.84 0.80 0.83 0.62 0.91 0.86 0.82 1.00

D006528 1.67 2.03 1.77 1.56 1.92 1.20 1.67 1.84 1.90 1.72

D007889 1.24 1.68 1.26 1.22 1.44 1.11 1.29 1.43 1.51 1.38

D008175 2.20 2.84 2.48 2.32 2.46 1.51 2.53 2.61 2.55 2.14

D010051 0.95 1.31 1.00 1.16 1.26 0.74 1.18 1.28 1.26 0.89

D011471 1.14 1.54 1.29 0.87 1.04 1.10 1.26 0.88 1.07 0.99

D012174 0.51 0.88 0.78 0.67 0.80 0.39 0.69 0.74 0.81 0.70

D012559 0.43 0.77 0.40 0.38 0.36 0.27 0.44 0.36 0.53 0.43

D013274 1.36 1.65 1.43 1.41 1.52 1.11 1.41 1.31 1.50 1.19

D015451 1.17 1.62 1.16 1.08 1.45 0.91 1.18 1.29 1.49 1.22

D015458 0.68 0.97 0.78 0.68 0.77 0.36 0.67 0.71 0.75 0.66

D015470 0.80 0.94 0.59 0.51 0.64 0.59 0.80 0.63 0.68 0.61

D018281 0.88 1.17 0.78 1.00 1.00 0.43 0.96 0.91 0.99 0.82

Average 1.16 1.53 1.24 1.17 1.30 0.86 1.26 1.23 1.32 1.14

Note. The bold data in Table 5 indicates the best performance of Precision@k on each data set. On each data set, every method was run for 10 times with different

random seed sets. The mean Precision@k score displayed on this table was multiplied by 100. The prefix ‘b’ character of method names denotes ‘bagging’ strategy,

whereas ‘w’ represents ‘weighted’ strategy, and ‘I-SVM’ is one-class SVM. Ada: AdaBoost; RF: Randomforest; Log: Logistic regression; dF: deep forest; pu-dF: PU learning

strategy of deep forest.

second best performed method, weightedRandomforest, had

only round 25%.

In Figure 6, we present Precision–Recall curve of different

methods for a disease. The plot showed precision versus recall

rates for different values of k thresholds, ranging 1 ≤ k ≤ 500.We

also calculated the PRAUC@kmetric for eachmethod,which also

considered the precision metric during computation. As shown

in Figure 9, our method still showed the best performance on

this metric. The baseline method also performed well, which

only used the deep forest model. This result demonstrated the

ability of deep forest models to extract valid features. Obviously,

one-class SVM still demonstrated underperformance, but the

shorter interquartile range of this method indicated that its per-

formance was more consistent among different data sets than

those of the other methods. We found that Katz achieved sub-

optimal results on this metric, and other methods still showed

a similar performance. Finally, the mean PRAUC score of each

method on the 15 disease data sets is shown in Table 6.As shown

in Table 6, the performance of our method was the best in most

data sets.Meanwhile, on D001943 andD008175, the two data sets

ofwhichwerewith themost positive labels,most of themethods

in our experiment achieved better performance than the other

methods.

Deep forests combined with positive-unlabeled learning

algorithm are important for the success of our method. Katz

only calculated PathCount to metric the similarity between

two nodes and performed well in PRAUC@k metric, which also

confirmed the validity of the topology features we extracted.

One-class SVM only focused on one type of data to solve the

unknown label problem. However, due to the small number

of positive samples, it cannot effectively capture the positive

sample boundary. For this reason, the ability of one-class SVM
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Table 6. PRAUC@k score of each method on 15 disease data sets

Data set dF pu-dF bAda bSVM bLog I-SVM wRF wSVM wLog Katz

D001943 8.0 12.7 14.2 13.2 13.4 5.2 11.6 12.6 13.6 12.5

D002289 3.4 8.6 3.1 2.2 2.1 2.7 3.9 1.6 2.1 3.9

D005910 5.0 3.9 2.6 2.6 2.1 1.6 3.0 2.9 2.6 4.2

D006528 7.4 6.7 6.5 4.3 6.4 2.8 5.6 5.9 6.1 7.8

D007889 11.0 6.9 4.2 3.6 5.3 2.9 4.2 4.2 5.8 5.9

D008175 8.2 12.1 9.4 9.2 10.3 5.5 9.6 11.5 11.1 9.2

D010051 6.5 7.9 4.3 6.9 7.4 3.9 5.8 7.6 7.2 8.2

D011471 3.0 8.7 5.5 2.3 3.0 5.4 5.7 2.4 3.4 7.3

D012174 2.0 5.5 8.7 6.5 9.4 1.7 6.2 8.8 11.7 6.4

D012559 1.3 4.1 2.3 1.0 0.8 3.7 1.4 1.9 1.8 1.8

D013274 6.3 6.5 5.7 4.0 5.2 3.1 5.7 4.7 5.6 5.8

D015451 5.1 6.8 3.7 3.8 5.8 2.3 4.6 4.3 5.4 4.1

D015458 2.2 6.8 3.7 3.3 4.1 2.6 3.6 3.2 4.0 3.6

D015470 10.6 6.1 1.5 1.9 2.1 2.1 5.9 2.7 2.3 2.3

D018281 7.3 8.8 2.5 4.4 4.3 1.9 8.1 3.9 4.5 4.4

Average 5.82 7.47 5.19 4.61 5.45 3.16 5.66 5.21 5.81 5.83

Note. The bold data in Table 6 indicates the best performance of PRAUC@k on each data set. On each data set, every method was run for 10 times with different random

seed sets. The mean PRAUC@k score displayed on this table was multiplied by 1000. The prefix ‘b’ character of method names denotes ‘bagging’ strategy, whereas ‘w’

represents ‘weighted’ strategy, and ‘I-SVM’ is one-class SVM. Ada: AdaBoost; RF: Randomforest; Log: Logistic regression; dF: deep forest; pu-dF: PU learning strategy of

deep forest.

Figure 9. PRAUC@k scores of different methods. The boxplot shows the distribu-

tion of PRAUC values in 15 disease data sets for each method.

to predict the association between circRNAs and diseases was

poor. For weighted strategies, the selection of penalty factors

depended on the training of data. However, the lack of known

information limited the function of the penalty factors. The

major shortcoming of the bagging strategy is its much higher

computational complexity.

Performance comparison among data sets

After we obtained the PRAUC@k scores of each method on the

15 disease data sets, we determined whether a performance dif-

ference exists among the data sets. We found a significant pos-

itive correlation (Pearson r=0.666, one-tailed P-value=6.67e−3)

between performance and the number of known positive labels

in the data sets (Figure 10). Interestingly, fewer known circRNAs

were associated with diseases D012174 and D010051. Most of

these methods achieved relatively high performance on these

two data sets, which suggested that further investigation of

these two data sets could provide insights to improve the per-

formance of these classifiers.

Figure 10. Relation between PRAUC and the number of positive labels in each

disease data set. The box plot shows the distribution of PRAUC values in each

disease data set. We found a significant positive correlation (Pearson r=0.666,

one-tailed P-value=6.67e−3) between performance and the number of known

positive labels in the data sets.

Compare the computational complexity

In this section, we further evaluated the computational com-

plexity of each method. Table 7 shows the running time of

each algorithm on the same disease data. As a result, Katz ran

fastest, followed by one-class SVM and the proposed method,

and bagging strategy took the longest time. Theoretically, Katz

only needs to consider the similarity between two nodes and

calculate the number of paths between two nodes (a disease and

a circRNA) and the number of path length in the network, so the

computational complexity is low. One-class SVM learnt a func-

tion that captured the distribution of the positive data points in

training set, and the proposed method used a limited number of

negative samplings to balance the data sets, effectively reducing

computational complexity. For weighted strategies, the compu-

tational complexity greatly depended on the classifier it used.

Bagging algorithms required frequent sampling and training the
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Table 7. Running time for each method

Method pu-dF bAda bSVM bLog I-SVM wRF wSVM wLog Katz

Time(s) 396 6148 5184 2330 389 1173 2708 897 0.743

This table shows the running time of each algorithm on the same disease data. The prefix. ‘b’ character of method names denotes “bagging” strategy, whereas ‘w’

represents ‘weighted’ strategy, and ‘I-SVM’ is one-class SVM. Ada, Adaboost; RF, random forest; Log, logistic regression; dF, is deep forest; pu-dF, pu-learning strategy

of deep forest.

classifier for each new sample set. Thus, bagging algorithms

have the highest computational complexity.

Conclusion

Identification of disease-associated circRNAs not only enables

us to further understand the vital roles they take part in

biological processes but also promotes improvement in disease

diagnosis and treatment. We proposed a systematic computa-

tionalmethod to predict large numbers of unknown associations

by deep forests joint positive-unlabeled learning algorithm. To

our knowledge, it is the first computational model proposed

for predicting potential associations between circRNAs and

diseases. In this work, we first constructed a heterogeneous

information network from five correlative biological networks.

Then, we extracted 24 meta-path-based topological features

in this heterogeneous information network by PathCount and

RandomWalk. In addition, we proposed a positive-unlabeled

learning strategy with deep forest methods to predict circRNA–

disease associations. Our strategy extracted valid samples from

data sets. The problem of sample imbalance is avoided to

some extent. The deep forest model of the proposed method

was shown to be reliable with 24 meta-path-based topological

features, aside from less parameter tuning. We compared a

baseline method and four strategies, Katz, one-class SVM,

weighted, and bagging, with a total of eight methods on 15

disease data sets. Our method can achieve superior prediction

performance over other methods on almost all disease data

sets. The experimental results also show that the performance

of these methods significantly correlated with the number

of known positive labels in the data sets, which suggested

that, with the accumulation of experimentally validated data

[56, 57], positive-unlabeled learning based methods would be

much more effective in the future. Moreover, we demonstrated

that the proposed method was effective for all diseases in

heterogeneous bioinformatics networks. Therefore, we believed

that the proposed method could provide a useful and effective

computational tool for biomedical researches.

Key Point

• Identification of disease-associated circRNAs provides

new ideas for disease diagnosis and treatment.
• Integrate topological features from known associated

networks to further understand the role of circRNAs in

biological processes
• The method of combining deep forests and positive-

unlabeled learning strategy performs better than other

traditional methods for data imbalance problems.
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