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Abstract: Predicting genes likely to be involved in human diseases is an important task in bioinformatics field. Nowa-
days, the accumulation of human protein–protein interactions (PPIs) data provides us an unprecedented
opportunity to gain insight into human diseases. In this paper, we adopt the topological similarity in hu-
man protein–protein interaction network to predict disease-related genes. As a computational algorithm to
speed up the identification of disease-related genes, the topological similarity has substantial advantages
over previous topology-based algorithms. First of all, it provides a global measurement of similarity be-
tween two vertices. Secondly, quantity which can measure new topological feature has been integrated
into the notion of topological similarity. Our method is specially designed for predicting disease-related
genes of single disease-gene family. The proposed method is applied to human protein–protein interaction
and hepatocellular carcinoma (HCC) data. The results show a significant enrichment of disease-related
genes that are characterized by higher topological similarity than other genes.
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1. Introduction

Mining genes associated with human diseases is an im-portant task in bioinformatics field. It can help in under-standing the pathogenic mechanism of diseases. Thereare two traditional approaches for disease gene discovery:the candidate gene approach [1] and positional cloning
via linkage analysis [2]. In the traditional approaches, re-searchers would need to analyze a large number of genes.This will cost too much man power and resources. There-
∗E-mail: twinsheros@126.com
†E-mail: tang_yii@126.com (Corresponding author)

fore, an efficient algorithm for predicting disease-relatedgenes is needed, which can help researchers narrow downthe search scope and speed up the identification processof disease-related genes.

Large-scale molecular interaction networks in humanssuch as human protein–protein interaction network havejust become available in the past three or four years. Thelarge-scale high-throughput experiments have yielded alarge amount of PPIs data, such as yeast two-hybrid(Y2H) system [3] and affinity purification followed by massspectrometry (AP-MS) [4]. More databases are becomingavailable in recent years. Gandhi et al. [5] have collected
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over 38,000 human LC (literature-curated) protein inter-actions in the HPRD database and in OPHID [6] Brownand Jurisica have collected over 90000 human protein in-teractions. The development of experimental technolo-gies and the availability of more PPIs databases providean unprecedented opportunity to discover disease-relatedgenes from PPIs network.
Various features and patterns have been exploited to pre-dict disease-related genes, such as sequence features [7],expression patterns [8] and so on. Recently, some re-searchers have studied methods based on the topologicalfeatures in PPIs network [9, 10]. The theoretical basis ofthese topology-based methods is that genes associatedwith a particular phenotype or function, such as disease,are not randomly positioned in the network. They tend toexhibit high connectivity, cluster together, and reside incentral network locations [11]. More topological featureshave been discovered and exploited in recent years. Tu et
al. [12] found that the degrees of disease genes are sig-nificantly higher than other genes in the PPIs network.Oti et al. [9] found that genes neighboring disease re-lated genes were more likely to be also disease relatedgenes. Other methods that measure a variety of topologi-cal features have been decribed. Xu et al. [10] developed aclassifier in which five quantities were employed to mea-sure five different topological features. The same idea ofprevious topology-based methods is that measurementsof similarity are generally determined by local informa-tion of topology. The methods based on local topolog-ical information are well-suited to predict genes whichare neighbors or next neighbors of known disease genes.However when predicting disease-related genes within asingle disease-gene family, neighbors and next neighborsof known disease genes just cover a limited scope of net-work. For example, there are 73 genes which can betreated as high confidence lung cancer genes1. In ourPPIs network (LC dataset), there are 3558 genes whichare neither neighbors or next neighbors of the 73 knowndisease gene. To solve this problem, we propose a methodwhich is based on topological similarity [13]. The pro-posed method has substantial advantages over previoustopology-based methods. Firstly, it is global. It dependson the whole graph and allows two vertexes to be similarwithout sharing neighbors. Secondly, quantity which canmeasure new topological feature has been integrated intotopological similarity. A detailed description of topologi-cal similarity and our method is presented in the Methodssection.
1 Lung Cancer Gene Database. Obtained through the
internet: www.bioinformatics.org/LuGenD/genelist.htm

2. Methods
2.1. Hepatocellular carcinoma data and hu-
man PPIs datasets
In order to evaluate the results of our method, a certainamount of known disease genes are needed. In this paper,hepatocellular carcinoma (HCC) data originating from On-coDB.HCC [14] was employed. OncoDB.HCC is the firstcomprehensive oncogenomic database for hepatocellularcarcinoma (HCC). In this database, researchers compileda list of 614 significant genes which were selected underfollowing criteria:

• Criterion 1: genes significantly up- or down- reg-ulated in at least three independent HCC microar-ray/proteomic reports.
• Criterion 2: genes were selected with consistentexpression level changes for at least 2 folds in morethan 70% patients after reprocessing Stanford HCCmicroarray data.
• Criterion 3: genes with wet-lab experimental datafrom previous reports.

We choose 310 genes evidenced by wet–lab experimen-tal results and PPI data and were therefore treated as ahigh confidence disease-gene set (we call it disease-geneset for convenience). Herein, we propose to provide a de-tailed explanation as follows. Cancer, similar to commondisease, is a disease due to malfunction involing multiplefactors. It is very difficult to say with hundred percentcertainty that some genes are related to cancer but othergenes are not. Although many mutated genes been iden-tified in HCC or other cancers, it is very difficult to con-clude that specifically mutated genes are cancer genes.Therefore compiling a list of genes that are are positivelycancer genes is a difficult or even impossible task. In On-coDB.HCC, genes which both have additional referencesfrom wet-lab animal experiments and human tissue datamight be recognized as high confidence cancer genes [14].Human protein–protein interactions datasets were down-loaded from database OPHID [6]. PPIs data ofOPHID were collected from three sources: (1) Literature-curated (LC) interactions; (2) High-throughput experi-ments (EXP);(3) Interactions predicted from model organ-isms (PDT), such as Drosophila, Saccharomyces cere-visiae etc. We will focus on proteins that are locatedin the largest connected network component (main com-ponent) because the topological similarity is incalculablefor proteins which do not belong to the main component.The total number of unique proteins and disease genes inthe main component are listed in Tab. 1. It should be noted
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that there are 1332 genes which are neither neighbors nornext neighbors of known HCC genes in LC dataset.
2.2. Building training samples
In recent studies, researchers have found that there arethousands of essential genes in the human genome, whichare different from both disease and non-disease genes.They proposed to divide the gene population into threeparts namely essential genes, disease genes, and non-disease genes. Researchers compiled a list of ubiquitouslyexpressed human genes (UEHGs) as an approximation ofhuman essential genes [12]. The number of these essentialgenes in the main component is also listed in Tab. 1.In the main component of LC network, we exclude dis-ease genes and essential genes from the 9894 proteinsand the remaining 8210 genes are called ‘control-geneset’. Some genes are randomly selected from the control-gene set. These selected genes are regarded as negativetraining samples. The “control-gene set” of PDT and EXPdatasets can be obtained in the same way.

Table 1. The PPI datasets. Disease Essential ControlDatasets PPIs Proteins genes genes genesLC 45099 9894 310 1445 8210PDT 33833 5048 155 975 3957EXP 7904 3464 114 589 2792

2.3. The notion of topological similarity
Firstly, we want to introduce the notion of topologicalsimilarity which was first proposed by Leicht et al. [13]. Inthis definition of similarity, vertex i is said to be similarto vertex j if i has any network neighbor v that is itselfsimilar to j . This definition is apparently recursive, be-cause vertex v could also be similar to vertex j throughany neighbor of v . In order to make the results convergeto a useful limit, a starting point for the recursion shouldbe provided. The starting point we have selected is tomake each vertex similar to itself. Thus the definition oftopological similarity has two components: the neighborterm and the self-similarity term. The definition can bewritten as follows

Sij = φ
∑
v
AivSvj + ψδij . (1)

Here, Sij is the similarity between gene i and gene j . Aiv

is the iv element of adjacency matrix A. δij is the Kro-necker’s function
δij = { 1 if i = j,0 if i 6= j.

(2)
The first term of Eq. (1) is the neighbor term, which isdetermines whether i has any network neighbor v thatis itself similar to j . Parameter φ can be treated as theweight of neighbor term. The second term of Eq. (1) saysthat a vertex is similar to itself. Parameter ψ can betreated as the weight of the self-similarity term. φ and ψcontrol the balance between these two components of thesimilarity.We can write Eq. (1) in matrix form as

S = φAS + ψI, (3)
where S is the similarity matrix, and Sij is the ij elementof S. Matrix A is the adjacency matrix of the network.
I is the identity matrix. Eq. (3) can also be written as
S = ψ[I − φA]−1. Because we only consider the relativesimilarity of different pairs of vertices, Parameter ψ canbe safely set to 1. Now, Eq. (3) can be written as

S = [I − φA]−1. (4)
Then we can expand Eq. (4) as a power series

S = I + φA+ φ2A2 + φ3A3 + · · · . (5)
It should be noted that [Al]ij is equal to the number ofnetwork paths of length l from i to j . Eq. (5) gives us aterm-by-term interpretation of the topological similarity.The first term denotes that a vertex is similar to itself.The second term denotes that vertices that are immedi-ate neighbors of one another have similarity φ. The thirdterm denotes that vertices that are next neighbors of oneanother have similarity φ2, and so forth. φl represents theweight of paths of length l and short paths have higherweight than long paths. In previous research, measure-ments of similarity are generally determined by local in-formation of topology. From Eq. (5), we can see that, topo-logical similarity is a global measurement of similarity. Itis based on the global topology. Not only paths lengthof 1 or 2, but also paths of any length can contribute tothe similarity. Although genes which are functionally re-lated usually locate in one or more modules, the number ofknown disease genes is so few when predicting disease-related genes of single disease-gene family. Neighborsand next neighbors of known disease genes just cover alimited scope of the network. By applying the definitionof topology similarity to predict disease genes, some im-portant disease genes that are distant from known disease



Predicting disease-related genes by topological similarity in human protein-protein interaction network

genes may be found. Our thoughts are tested by hepa-tocellular carcinoma (HCC) data from OncoDB.HCC. Wewill discuss it in the Results section.The calculation of the similarity matrix S is achieved bythis equation:
DSD = α

λ1 A(DSD) + I. (6)
Eq. (6) is the final form of deduction and it can be directlyused in the algorithm. The deducing process from Eq. (5)to Eq. (6) is beyond the scope of this paper. For more de-tails of deduction, we refer the reader to Leicht et al. [13].In Eq. (6), D denotes the diagonal matrix having the de-grees of the vertices in its diagonal elements: Dij = Kiδij .
Ki is the degree of vertex i.λ1 is the largest eigen-valueof matrix A. λ1 can be calculated after we know the ad-jacency matrix A. α is a tunable parameter. The effect ofthe parameter α is to reduce the contribution of long pathsrelative to short ones. Leicht et al. developed a model andused it to test the performance of topological similarity.Their experience suggested that the measurement resultswould be closest to the underlying model if α was set to0.97 [13]. Detailed meaning of parameter α can be foundin Leicht et al. [13]. Because the diagonal matrix D in-cludes the information of the degrees of vertices, we willuse DSD as the similarity matrix so that our algorithmcan cover the feature of degrees. The elements of matrixDSD are initially set to constant 0. If Eq. (6) is iterateda approx. a 100 times, and then a good convergence willbe found.
2.4. K-nearest neighbors classification algo-
rithm (KNN)
After we get the similarity matrix S, we then seek for theK-highest values of every column, which represent the K-nearest neighbors of every gene. In our method, a genewill be predicted to be disease-related genes only if allof the K-nearest neighbors are known disease genes. Forexample, if the K value is set to 2, it means that a genewill be predicted to be a disease-related gene only if the2 nearest neighbors are known disease genes.
3. Results

3.1. The validity of topological similarity
In order to prove that topological similarity is an effectivemeasurement which can differentiate disease genes andcontrol genes, we have performed two different statisti-cal analyses. One is to test whether the average level of

topological similarity between two disease genes is dif-ferent from two control genes. Here, we take LC datasetas an example where there are 310 known disease genesin the dataset. After obtaining the similarity matrix S ofLC network, the submatrix SD is extracted from S. Thereare 310 rows and 310 colomns in SD where every row andcolumn of SD corresponds to a disease gene. The ij ele-ment of SD represents the topological similarity betweendisease gene i and disease gene j . The average topolog-ical similarity between two disease genes is calculatedby
Sij =

∑
i∈D,i6=j

∑
j∈D,j 6=iSij

n2
D − nD

. (7)
D denotes the disease-gene set which has 310 diseasegenes. nD is the number of genes in D. Sij is the averagevalue of elements of matrix SD . We don’t consider the sim-ilarity between a gene and itself, therefore the diagonalelements are excluded from the sum of matrix elements.We gradually decrease the percentage of disease genesin the submatrix SD . For example, in Fig. 1 (LC dataset),the x-coordinate “90%” denotes that the percentage of dis-ease genes in submatrix SD is reduced to 90%. That means279 disease genes (90% of D) are randomly sampled fromthe disease-gene set D. The remaining 31 genes are ran-domly sampled from the control-gene set which has 8210control genes. In order to avoid sampling bias, the randomsampling is repeated 1000 times and the average valuesof Sij are shown in Fig. 1 (LC dataset). The same proce-dures are also performed on PDT and EXP datasets. Theresults are shown in Fig. 1. Because disease genes ofsingle disease-gene family are functionally related, Fig. 1actually suggests that gene pairs which are functionallyrelated will have higher topological similarity. The de-crease of Sij is a consequence of the decrease of suchfunctionally related genes. In Fig. 1 (LC dataset), the x-coordinate ”0%” means that all the 310 disease genes hasbeen replaced by control genes. The values here repre-sent the average topological similarity between two con-trol genes. From Fig. 1 (LC dataset), we can see that theaverage topological similarity between two disease genes(100%) is more than 10-fold higher than that between twocontrol genes (0%).Another issue is to test whether the average level of topo-logical similarity between a disease gene and the wholedisease-gene set D is different from that between a controlgene and D. The average topological similarity betweensingle gene i and the whole disease-gene set D is calcu-lated by

Sij (j ∈ D) =
∑
j∈D

Sij

nD
. (8)
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Figure 1. The mean of Sij with the decrease of disease genes.
The x-coordinate denotes that the percentage of disease
genes in submatrix SD . The y-coordinate denotes the Sij .
“100%” denotes that all genes in submatrix SD are disease
genes. We gradually decrease the percentage of disease
genes in the submatrix SD until all disease genes are re-
placed by control genes (0%). At each percentage, the
random sampling is repeated 1000 times so that we can
get the mean of Sij .

Gene i could be any control gene or disease gene. Me-dians of Sij (j ∈ D) are shown in Tab. 2. There are two

different gene populations in Tab. 2: control-gene set anddisease-gene set. Statistical significance between the twogene populations (P-values) is calculated by rank sumtest. In LC dataset, we can see that there are signifi-cant differences between control-gene set and disease-gene set. In PDT and EXP datasets, the differences areweaker than those in LC dataset. Tab. 2 tells us thatthe average topological similarity between single diseasegene and the whole disease-gene set D is significantlyhigher than that between a control gene and D(exceptEXP dataset).
3.2. Performance of the classification algo-
rithm

We use the 5-fold cross validation to evaluate the predic-tion quality of our algorithm. The whole gene populationis divided into 5 subsets. Each time, one of the 5 sub-sets is used as the test set and the other 4 subsets areput together to form a training set. After that, we usethe training set to classify the test set. Three quantitiesare employed to evaluate the prediction quality. Thesequantities are accuracy, sensitivity and precision.

Table 2. Medians of Sij (j ∈ D) between the disease-gene set and control-gene set. The statistical significance between these two gene popula-
tions is calculated by rank sum test.

LC dataset PDT dataset EXP datasetDisease Control P-value Disease Control P-value Disease Control P-value6.81E-04 1.26E-04 2.82E-56 1.63E-04 8.34E-05 6.46E-04 4.80E-04 4.01E-04 7.52E-02

Accuracy = TP + TN
TP + TN + FP + FN ,Sensitivity = TP
TP + FN ,Precision = TP
TP + FP .

(9)

In Eq. (9), TP, FP, TN, FN represents true positive, falsepositive, true negative and false negative. The detailedinformation of prediction quality is listed in Tab. 3. Whenthe K value is set to 2, in LC dataset, the classification al-gorithm can correctly recover 72% of known disease geneswith a precision of 70%. The corresponding accuracy is73%. The performance of classification algorithm on PDT

and EXP datasets is not as good as that on LC dataset.There are two possible reasons for this. First, our methodis based on the topological structure of a network, butthe topologies of these three PPIs networks are differ-ent. Each network has its own features. For example, inLC network, disease genes communicate with each othermore quickly. Researchers also found that there exist a lotof heavily connected disease genes in the LC network [10].The differences of topologies may be a potential reasonfor the disparity of performance. Second, in PDT andEXP datasets, the differences between disease-gene setand control-gene set are weaker than those in LC dataset.This may be another important factor which can influencethe performance of algorithm.
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We adopt the method mentioned in Xu et al. [10] to eval-uate the performance of our method. 50%-80% of diseasegenes are randomly sampled from the original disease-gene set and used as positive training samples. The re-maining true disease genes are called “leave-out genes”.These leave-out genes are treated as “unknown novel dis-ease genes” and mixed with the negative training sampleswhich are randomly sampled from the control-gene set(discussed in Sec. 2.2). In order to avoid sampling bias, ateach percentage, the random sampling is repeated 1000times and the average values of accuracy, sensitivity, pre-cision are listed in Tab. 4. From Tab. 4, we can learn thatthe classification algorithm has certain robustness to thechanging of positive training samples during 5-fold crossvalidation and the performance becomes better with theincrease of positive training samples.We use the leave-out genes to test the ability of diseasegene predicting of our algorithm. In LC network, 50% ofdisease genes (155 genes) are randomly sampled from theoriginal disease-gene set and used as positive trainingsamples. The remaining 155 disease genes are treated

as “unknown novel disease genes” and mixed with neg-ative training samples which are randomly sampled fromthe control-gene set. It is not appropriate to perform sta-tistical analysis on negative training sample which size iseither too large or too small. Therefore, we randomly se-lect 2945 control genes as negative training samples. Theclassification algorithm is used to predict disease genesfrom these 3100(155+2945) unknown genes. In Fig. 2b,when the K value is set to 2, on average, among the pre-dicted novel disease genes, 13.5% genes are already listedin the 155 leave-out genes. Before using the method,among the 3100 candidate genes, 5 %( 155/3100) genesare leave-out genes. Therefore we can see about 2.7-fold(13.5/5) enrichment relative to the random prediction. Thefluctuation of the dots becomes larger if we adopt morestrict restrictions (K=2). This is due to so few known dis-ease genes when dealing with the case of single disease-gene family. Because K=3 is too strict, many diseasegenes will be excluded. In practical use, we set safely theK value to 2.

Table 3. Statistical performance of the classification algorithm.

LC dataset PDT dataset EXP datasetAccuracy Sensitivity Precision Accuracy Sensitivity Precision Accuracy Sensitivity PrecisionK=1 0.73 0.74 0.74 0.71 0.70 0.73 0.67 0.63 0.61K=2 0.73 0.72 0.70 0.70 0.72 0.70 0.65 0.62 0.60

Table 4. The average performance of classification algorithm with the increase of positive training samples (50%-80%). Results were obtained
using K=2.

LC dataset PDT dataset EXP datasetAccuracy Sensitivity Precision Accuracy Sensitivity Precision Accuracy Sensitivity Precision50% 0.71 0.73 0.75 0.67 0.65 0.67 0.61 0.59 0.5760% 0.74 0.72 0.77 0.69 0.67 0.68 0.61 0.61 0.5870% 0.75 0.75 0.76 0.69 0.68 0.71 0.63 0.61 0.6080% 0.78 0.76 0.79 0.72 0.70 0.72 0.64 0.62 0.60

3.3. Predicting HCC genes from human PPIs
network

Hepatocellular carcinoma (HCC) is one of the major can-cers in the world. Every year more than 250 thousandpeople die of HCC. Mining genes associated with HCCis an important step towards understanding the detailed

mechanisms of hepatocarcinogenesis and discovering newtarget molecules for drugs. In this section we take HCCdata from OncoDB.HCC as a biological example and ana-lyze it with our method. We set the K value to 2 and applythe classification algorithm to LC network. 482 genes arepredicted to be HCC-related genes. These 482 genes are



Lei Zhang, Ke Hu, Yi Tang

Figure 2. The ability of disease gene predicting of our algorithm.
(a) The parameter K is set to 1. (b) The parameter K is
set to 2. 50% of the disease genes are randomly sam-
pled from the original disease-gene set and used as pos-
itive training samples. The leave-out disease genes are
mixed with other unknown genes to test the ability of dis-
ease genes predicting for our algorithm. The Horizontal
axes represents the random sampling process. The ver-
tical axes represents the percentage of leave-out genes
in the predicted novel disease genes. The sampling is
repeated 1000 times and the average percentage is ob-
tained. The dot line represents the random prediction.

listed in supplementary materials. Among the predictedHCC genes, some genes have been shown to be evidentfrom experiments or literatures. These genes are listedin Tab. 5. There are three types of evidence: abnormalexpression level in HCC, literatures and mammalian ex-periments (such as murine model of HCC). If a gene hasevidential support from one of these sources, the corre-sponding term will be “YES”. From Tab. 5, we can see that,when predicting disease-related genes of single disease-gene family, the proposed method can find out not onlygenes which are neighbors or next neighbors of knowndisease genes, but also genes which are neither neigh-bors nor next neighbors. The detecting scope is the wholenetwork. There are 110 genes listed in Tab. 5 and we hopethat information compiled in Tab. 5 can help researchersnarrow down the search scope and speed up the identifi-cation process of HCC related genes.In Tab. 5b, gene CCR7 is the receptor for the chemokine.It can be found in various lymphoid tissues and activates

B and T lymphocytes. CCR7 is reported to be involvedin various cancers, such as breast cancer, colon cancer,lung cancer, gastric carcinoma, and thyroid cancer [15].In gastric carcinoma and lung cancer, CCR7 was foundto be associated with lymph node metastasis [16, 17]. InHCC, researchers also found that CCR7 is significantlyassociated with locally progressed tumors and lymph nodemetastases [15]. These evidences imply CCR7 as a newdisease gene candidate for HCC. CCR7 may be closelyrelated to the process of lymph node metastases existingin various cancers.In Tab. 5b gene BAAT encodes a liver enzyme that cat-alyzes the conjugation of bile acid with glycine or taurine.It is mainly expressed in fully differentiated and quiescentliver cells. Researchers have found that low expression ofBAAT is significantly associated with a decreased proba-bility of survival in HCC patients [18]. Massive and uncon-trollable recurrence of HCC tends to occur in the groupof patients who have low BAAT expression. BAAT wasalso found to be a reliable indicator for both survival andrecurrence in HCC patients [18]. These evidences suggestthat gene BAAT may play a role in the recurrence of HCC.The JAK/STAT signaling pathway plays a central role inprincipal cell fate decisions, regulating the processes ofcell proliferation, differentiation and apoptosis. It hasbeen reported in association with cancer by many re-searchers [19–21]. The activation of this pathway may pro-mote the occurance of cancer. In Tab. 5a, nine genes areinvolved in this pathway. They are JAK2, STAT1, STAT3,STAT5, PIAS1, PIAS4, PTPN11, PIK3R1, and CCND2.We can see that, most central member of JAK/STAT signal-ing pathway have been predicted by our method. Amongthese genes, a structurally abnormal form of JAK2 hasbeen reported in human cancer, and the inhibition of JAK2may play an important role in the treatment of HCC [21].STAT1, STAT3, and STAT5 are signal transducer and ac-tivator of transcription. Constitutive activation of STAT1,STAT3, and STAT5 has been discovered in various can-cer types [22–24]. Each STAT gene has different functions.STAT1 functions as a tumor suppressor gene [22], whereasSTAT3 and STAT5 have shown to play a role in develop-ment and tumor progression [23, 24]. Recently, researchersfound that activation of STAT5 was associated with HCCaggressive behavior, it induced HCC invasiveness throughEpithelial-mesenchymal transition (EMT) [25]. PIAS1 andPIAS4 are a E3 SUMO-protein ligase and protein in-hibitor of activated STAT respectively, and has been re-ported that these two genes will influence the ability oftumor suppressor p53 PIAS1 may involve in the Sumoyla-tion of p53 [26], PIAS4 inhibited the DNA-binding activityof p53 in nuclear extracts and blocked the ability of p53to induce expression of two of its target genes [27].
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Table 5. The predicted genes which have evidences from databases and literatures,ldenotes the length of shortest path to the nearest disease
neighbor.a. neighbors and next neighbors of known disease genes (l ≤ 2)

Swiss-Prot ID Protein name Gene Abnormal Literatures mammalianExpression experimentsCell cycle Q6FG59 CDC37 protein CDC37 YES YESP49454 Centromere protein F CENPF YESP06493 Cell division control protein 2 homolog CDK1 YESP24941 Cell division protein kinase 2 CDK2 YESP30279 G1/S-specific cyclin-D2 CCND2 YESP98082 Disabled homolog 2 DAB2 YESQ00535 Cell division protein kinase 5 CDK5 YESO60729 Dual specificity protein phosphatase CDC14B YESTranscription Q14186 Transcription factor Dp-1 TFDP1 YESP08047 Transcription factor Sp1 SP1 YESP40763 Signal transducer, activator of transcription 3 STAT3 YESQ96T58 Msx2-interacting protein SPEN YESP51532 Probable global transcription activator SMARCA4 YESP42224 Activator of transcription 1-alpha/beta STAT1 YESO15164 Transcription intermediary factor 1-alpha TRIM24 YES YESP42229 Signal transducer,activator of transcription STAT5 YES YESQ06945 Transcription factor SOX-4 SOX4 YESTumor-associated O14763 Tumor necrosis factor receptor 10B TNFRSF10B YESQ9H3D4 Tumor protein 63 TP63 YESO00220 Tumor necrosis factor receptor 10A TNFRSF10A YESP46108 Proto-oncogene C-crk (p38) CRK YESP51587 Breast cancer type 2 susceptibility protein BRCA2 YESMAPK pathway Q92918 Mitogen-activated protein kinase 1 MAP4K1 YESApoptosis Q14790 Caspase-8 CASP8 YESQ9UET8 Apoptosis signaling receptor FAS FAS YES YESMiscellaneous Q5T186 SHC-transforming protein 1 SHC1 YESO00230 Cortistatin CORT YESP84022 Mothers against decapentaplegic homolog 3 SMAD3 YESQ05639 Elongation factor 1-alpha 2 EEF1A2 YES YESP12757 Ski-like protein SKIL YESP08069 Insulin-like growth factor 1 receptor IGF1R YES YESP09619 Platelet-derived growth factor receptor PDGFRB YESP22681 E3 ubiquitin-protein ligase CBL CBL YESP29317 Ephrin type-A receptor 2 EPHA2 YESP11388 DNA topoisomerase 2-alpha TOP2A YESP63244 Guanine nucleotide-binding protein subunit GNB2L1 YESQ86UL8 Membrane-associated guanylate kinase MAGI2 YESO60674 Tyrosine-protein kinase JAK2 JAK2 YESP27986 Phosphatidylinositol kinase regulatory subunit PIK3R1 YESQ06124 Tyrosine-protein phosphatase non-receptor PTPN11 YESP35968 Vascular endothelial growth factor receptor 2 KDR YESO14828 Secretory carrier- membrane protein 3 SCAMP3 YESP05106 Integrin beta-3,Platelet membrane glycoprotein ITGB3 YESQ7Z419 E3 ubiquitin-protein ligase RNF144B RNF144B YESP05783 Keratin, type I cytoskeletal 18 KRT18 YESP06748 Nucleophosmin,Nucleolar phosphoprotein NPM1 YES
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a. continued O75925 E3 SUMO-protein ligase PIAS1 PIAS1 YESQ8N2W9 E3 SUMO-protein ligase PIAS4 PIAS4 YESQ8TEW0 Partitioning defective 3 homolog PARD3 YESQ13153 Serine/threonine-protein kinase PAK 1 PAK1 YESQ15172 PP2A,B subunit,PR61 alpha isoform PPP2R5A YES YESQ92963 GTP-binding protein Rit1 RIT1 YESQ9H2X6 Homeodomain-interacting protein kinase 2 HIPK2 YESP41240 Tyrosine-protein kinase CSK CSK YES YESQ14289 Protein tyrosine kinase 2 beta PTK2B YESQ9H4B4 Serine/threonine-protein kinase PLK3 PLK3 YESO60496 Docking protein 2, tyrosine kinase 2 DOK2 YESP19174 Phosphoinositide phospholipase C PLCG1 YESP04083 Phospholipase A2 inhibitory protein ANXA1 YESP17706 Tyrosine-protein phosphatase non-receptor PTPN2 YESP51813 Cytoplasmic tyrosine-protein kinase BMX BMX YESQ14451 Growth factor receptor-bound protein 7 GRB7 YESQ8IZW8 Tensin-4,C-terminal tensin-like protein CTEN YESQ03135 Caveolin-1 CAV1 YESP10599 Thioredoxin,ATL-derived factor TRX YESQ12778 Forkhead box protein O1 FOXO1 YES YESP51398 28S ribosomal protein S29, mitochondrial DAP3 YESQ9UPS7 Tensin-like C1 domain-containing phosphatase TENC1 YESQ9UM63 Zinc finger protein PLAGL1 PLAGL1 YESP30291 Wee1-like protein kinase WEE1 YESP19793 Retinoic acid receptor RXR-alpha RXRA YESP41161 ETS translocation variant 5 ETV5 YESP10826 Retinoic acid receptor beta RARB YESQ04756 Hepatocyte growth factor activator HGFAC YESP42167 Lamina-associated polypeptide 2 TMPO YESQ99466 Neurogenic locus notch homolog protein 4 NOTCH4 YESQ14116 Interleukin-18 (IL-18) IL18 YESQ9UMN6 Histone-lysine N-methyltransferase MLL4 MLL2 YESO00497 DNA mismatch repair protein hMLH1 YESO43392 Aryl hydrocarbon receptor nuclear translocator ARNT YESQ7L311 Armadillo repeat-containing X-linked protein 2 ARMCX2 YES YESQ9H2L5 Ras association domain-containing protein 4 RASSF4 YESP48029 Sodium, chloride-creatine transporter SLC6A8 YESP58658 Uncharacterized protein C21orf63 (SUE21) C21orf63 YESQ14432 cGMP-inhibited 3’,5’-cyclic phosphodiesterase PDE3A YESQ96KS0 Egl nine homolog 2 EGLN2 YESQ13547 Histone deacetylase 1 HDAC1 YES YESQ02297 Pro-neuregulin-1,membrane-bound isoform NRG1 YESb. neither neighbors nor next neighbors of known disease genes (l > 2)
Swiss-Prot ID Protein name Gene Abnormal Literatures mammalianExpression experimentsQ9NTJ3 Chromosome-associated polypeptide C SMC4 YESQ15493 Regucalcin (RC) RGN YESP32248 C-C chemokine receptor type 7 CCR7 YESP27707 Deoxycytidine kinase DCK YESQ96FF9 Cell division cycle-associated protein 5 CDCA5 YESO15444 C-C motif chemokine 25 SCYA25 YESO75936 Gamma-butyrobetaine dioxygenase BBOX1 YESP50120 Retinol-binding protein 2 RBP2 YESP16422 Tumor-associated calcium signal transducer 1 TACSTD1 YESQ9NZN3 EH domain-containing protein 3 EHD3 YESQ5VZM2 Ras-related GTP-binding protein B RAGB YESP22033 Methylmalonyl-CoA mutase, mitochondrial MUT YESO14657 Torsin-1B (Torsin family 1 member B) TOR1B YES
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b. continued Q8WWA0 Intelectin-1 (ITLN-1) ITLN1 YESP04798 Cytochrome P450 1A1 CYP1A1 YESP22003 Bone morphogenetic protein 5 BMP5 YESP32754 4-hydroxyphenylpyruvate dioxygenase HPD YESQ9UMW8 Ubl carboxyl-terminal hydrolase 18 USP18 YESP51684 C-C chemokine receptor type 6 CCR6 YESQ16563 Synaptophysin-like protein 1 SYPL1 YESQ02985 Complement factor H-related protein 3 CFHR3 YESQ14032 Bile acid-CoA:amino acid N-acyltransferase BAAT YES

It is well known that p53 is an important tumor suppressor,the dysfunction of p53 will cause various cancers [28]. SoPIAS1 and PIAS4 may have influence on cancer via genep53. PTPN11 is widely expressed in most tissues andplays a regulatory role in various cell signaling events.Researchers have found a class of PTPN11 mutants whichshown oncogenic activity in Hepatocellular carcinoma [29].Gene PIK3R1 is a subunit of PI3K (Phosphatidylinositol-3-kinase). Evidences from literatures have shown thatproper liver function and development depend on intactPI3K signal transduction. When dysregulated, the PI3Kpathway is linked to the development of hepatocellularcarcinoma [30]. Protein encoded by CCND2 will forma complex and function as a regulatory subunit of geneCDK4 or CDK6, whose activity is required for cell cycleG1/S transition. CCND2 is discovered to be involved invarious cancers [31], abnormal expression level of CCND2has also been observed in Hepatocellular carcinoma [32].Evidences described above suggest that these nine genesmay be potential HCC candidate genes and the JAK/STATsignaling pathway may play a more important role in theprogression of HCC than previously thought.
4. Discussion

The availability of large-scale molecular interaction net-works in humans such as PPIs network provides an op-portunity to understand the basis of human diseases. Inthis paper, we proposed a topological similarity-basedmethod which is designed to predict disease-related genesfrom single disease-gene family. Topological similarityhas substantial advantages over previous topology-basedmethods. First, it has a transparent theoretical ratio-nale. Topological similarity can gather information fromthe whole graph, and gives a global measurement of sim-ilarity between two vertices. It allows candidate genesand known disease genes to be similar without sharingneighbors. Secondly, quantity which can measure a newtopological feature has been integrated into topologicalsimilarity, such as the number of paths of any given length.

In the notion of topological similarity, vertices that havemany paths of a given length are considered more similarthan those that have few. From the results, we can seethat topological similarity is an effective measurement indifferentiating disease genes and control genes (Sec. 3.1),and there is a 2.7-fold higher likelihood of disease geneprediction than random prediction when the K value wasset to 2 (Fig. 2).There is still ample room to develop our topology-basedmethods. First, there is practical limitation to methodbased on single pattern or feature. A promising way to im-prove the prediction is to integrate various patterns, suchas sequence features and expression patterns. We be-lieve that method based on various patterns can enhancethe difference between disease genes and non-diseasegenes. Secondly, methods which can integrate variouslarge-scale biological datasets are needed in the future.However researchers need to develop methods which canextract useful information from different kinds of large-scale data sets and properly handle the difference amongthem. With the development of large-scale experimen-tal technologies, we believe that the accuracy of diseasegenes prediction will become better.
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