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Abstract: This paper describes an emotion recognition system for dogs automatically identifying the
emotions anger, fear, happiness, and relaxation. It is based on a previously trained machine learning
model, which uses automatic pose estimation to differentiate emotional states of canines. Towards
that goal, we have compiled a picture library with full body dog pictures featuring 400 images with
100 samples each for the states “Anger”, “Fear”, “Happiness” and “Relaxation”. A new dog keypoint
detection model was built using the framework DeepLabCut for animal keypoint detector training.
The newly trained detector learned from a total of 13,809 annotated dog images and possesses the
capability to estimate the coordinates of 24 different dog body part keypoints. Our application is able
to determine a dog’s emotional state visually with an accuracy between 60% and 70%, exceeding
human capability to recognize dog emotions.

Keywords: neural networks; machine learning; dog emotion detection; dog emotion

1. Introduction

Dogs play an important social role in western society and can assist with various tasks.
Service dogs assist visually impaired people, patients fighting anxiety issues, and mentally
or physically disabled people. Law enforcement uses dogs in several fields, for example,
officer protection, track search, or drug inspection. The field of medicine also benefits
from dogs since their superior sense of smell can perceive illnesses such as Parkinson’s
disease [1].

Along with many other possible uses, all share the need for extensive training adapted
to the dog. Even for a pet dog, training and education are usually required to live along
with people. In order to train dogs optimally, it is relevant to possess the ability to read and
interpret their body language correctly. Hasegawa et al. [2] showed that a dog’s learning
performance is best when it displays an attentive body posture and a positive mood. Thus,
assessing a dog’s emotions is essential for resource-efficient, successful training.

According to a study by Amici et al. [3], the probability that an adult human of
European origin, regardless of his or her experience with dogs, will correctly analyze
the emotional state of a dog based on its facial expression is just over 50%. Given this
background, a way of reliably and objectively assessing dogs’ emotions seems quite de-
sirable to improve individual training and to enable new ways of utilizing dogs’ abilities.
There is also the opportunity of applying the software for educational purposes to enhance
peoples’ emotional understanding of dogs. This kind of knowledge has been proven to be
of significant impact when it comes to reducing dog abuse [4]. Computer-aided emotion
recognition ensures dogs’ well-being across distances or numerous animals simultaneously
without high manual effort. Furthermore, dog emotion detection can assist users who have
little experience in dealing with dogs to recognize angry or aggressive dogs early, and thus
evade a potential attack. Another application area would be veterinary medicine, which
could initiate diagnostics earlier if a dog has an increased perception of dissatisfaction.
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A variety of scientific work related to dog emotions has already been published.
Many analyze the psychological and social aspects of dogs’ cohabitation with humans.
A group of international researchers developed the Dog Facial Action Coding System
(DogFACS), which maps certain canine facial micro-expressions to different emotions [5].
Considering studies that deal with automatic recognition of canine emotions, the University
of Exeter implemented an emotion recognition system relying on facial recognition and the
previously mentioned DogFACS [6]. Franzoni et al. [7] applied machine learning techniques
on emotion image data sets to create a dog emotion classifier relying on facial analysis.

Furthermore, scientific work exists to analyze dog body language by machine learning:
Brugarolas et al. [8] developed a behavior recognition application that needs data from
a wireless sensor worn by the dog. Aich et al. [9] designed and programmed a canine
emotion recognizer based on sensors. In this case, the sensors are worn around the dog’s
neck and tail, and their data output was fed into an artificial neural network in the training
phase. Another relevant scientific contribution was provided by Tsai et al. [10], who
developed a dog surveillance tool. The authors combined machine learning techniques
for image recognition on continuous image and bark analysis to compute a dog’s mood
differentiating the emotions happiness, anger and sadness as well as a neutral condition
from each other. Maskeliunas et al. [11] analyzed emotions of dogs from their vocalizations,
using cochleagrams to categorize dog barking into the categories angry, crying, happy, and
lonely. Raman et al. [12] used CNNs and DeepLabCut to automatically recognize dog body
parts and dog poses.

2. Chosen Approach

This work aims to create a dog emotion detector by applying machine learning tech-
niques to photographically recorded body postures of dogs. Thereby, landmark points,
such as the tail’s position, will be extracted first and then used for model training. In
contrast to other research in image-based dog emotion recognition, this work should be
able to analyze the entire image of the dog and detect subtle differences in the position of
the animal. In contrast to work focusing on facial emotions, this software artifact should
work more reliably in practice since the dog’s head does not have to be constantly aligned
with the camera. Especially with moving dogs, this will result in a more practical detector.

At the beginning of this work, possible target values of dog emotions need to be
specified. The literature is mainly agreeing on the existence of some basic emotions:
Most prominent an emotion appointed with happiness, joy, playfulness, contentment
or excitement, further only referred to as happiness, is named. The opposing emotion
sadness, distress or frustration is also often listed. Other basic emotions that have been
identified to apply to dogs are anger, fear, surprise and disgust [3,13–15]. The findings of the
psychologist Stanley Coren [14] should be emphasized here, who, based on the knowledge
that the quality of an average dog’s intelligence resembles a human child of 2.5 years,
concludes that the emotional maturity should also be similar. Therefore, Coren includes
the sentiments of affection, love and suspicion to his specification of canine emotions.

For this work, the emotions anger, fear and happiness are taken into account, since
the existence of these canine sentiments is accepted in the majority of dog-related research
and these sentiments are possible to determine by posture analysis. Although sadness,
surprise and disgust are frequently mentioned emotions, they will not be examined here
since they are mostly not recognizable through posture observation but through facial
analysis [13]. In addition, a state of mind titled “relaxation” is considered for the automatic
emotion recognition system to prevent the over-interpretation of only minor physical signs
by the algorithm.

The software development is structured as follows (compare Figure 1):

1. Collecting Dog Emotion Images;
2. Image Preprocessing;

(a) Detect area(s) containing a dog;
(b) Resize image and adjust view direction of the dog;
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3. Landmark Detection Model;
4. Dog Emotion Detection Model:

(a) Neural Network using all landmark data;
(b) Decision Tree with few calculated pose metrics.

Figure 1. Workflow diagram of the proposed approach.

As a first step, a suitable dataset of dog images reflecting the emotions anger, fear,
happiness and relaxation has to be selected. Since there is no appropriate dog emotion
data set consisting of labeled full-body images publicly available, photographs showing
the entire body displaying one of the selected emotions must be collected. Pictures that
depict a puppy are excluded, as they are probably not yet emotionally mature and their
physical markers, such as raised ears, might might not yet be developed. Furthermore,
dogs showing signs of docking, such as cropped ears or tails, are excluded because their
emotional communication capabilities are restricted [16]. The actual collection of images
is done by a manual search on online video and image platforms. In this case, stimuli
describe the circumstances in which a photograph was taken. When it comes to canine
emotion studies, the usage of stimuli is a common tactic to assure that a certain emotion
is shown in an image. Combining the insights and procedures of some of those kinds of
studies, the following mapping of the selected emotions and stimuli is possible:

After establishing the target emotions, several search engines were then queried using
various search terms describing situations where the above stimuli would occur. The
pictures have been labeled by the first author, verifying and checking the labels initially
given by the person uploading a picture or video on the Web. A subset of the images has
been verified and relabeled by an additional team of students. The resulting images were
subsequently filtered and standardized in terms of size and quality. An object detector
was then applied to all images identifying the area where the dog is most likely located.
Cropping the images to this area ensures optimal input for landmark detection and prevents
potential detection errors.

A landmark detector is then used to capture as many relevant reference points of the
dog images as possible. The objective of landmark detection algorithms is to be robust to
changes in perspective, changes in size, and motion of the object being observed [17]. From
the detected points, the pose or essential aspects of the pose can be computed by relating
the points. In particular, coordinates for the animal’s joints are necessary to reconstruct
its pose as accurately as possible. For this purpose, the landmark detector DeepLabCut by
Mathis et al. [18] was used, which was previously trained with the Stanford Extra Data Set
by Biggs et al. [19] and the Animal Pose Data Set by Cao et al. [20].

Finally, the extracted landmark points are used to train two models to detect dog
emotions. First, a neural network that uses raw coordinates from the landmark detector as
training data and second, a decision tree that was trained using calculated pose metrics:

1. Tail Position: Angle between tail and spine;
2. Head Position: Elevation degree of head;
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3. Ear Position: Angle of ear in relation to line of sight;
4. Mouth Condition: Opening degree of mouth;
5. Front Leg Condition: Bending degree of front leg(s);
6. Back Leg Condition: Bending degree of back leg(s);
7. Body Weight Distribution: Gradient degree of spine.

3. Materials and Methods
3.1. Dog Emotion Data Set

Since there is no publicly available image data set that matches dog images to emotions,
various search engines were used to collect images. In order to get a target emotion label
for each image, the stimuli described in Table 1 were mapped to search terms as shown in
Table 2:

Table 1. Mapping of target emotions to different stimuli [3,13,21–23].

Emotion Stimuli

Anger Combination of excitement and an attack
Confrontation with an inaccessible resource

Fear Encounter with a stronger conspecific partner
Trimming of toenails

Visiting the veterinarian
Perception of an active thunderstorm

Happiness Interaction with a trusted partner, such as the owner
Playing (e.g., ball play)

Presentation of food

Relaxation Absence of any events

Table 2. Mapping of target emotions to search terms.

Emotion Search Terms

Anger

dog attack
dog attacking
dog dominant

dog territory protection
dog territorial

Fear

dog thunderstorm
dog scared vet

dog fear vet
dog anxious vet

dog scared toenail trim
dog fear toenail trim

dog anxious toenail trim
dog scared submissive

dog fear submissive
dog anxious submissive

Happiness

dog play
dog with toy
dog play bow

dog plays with owner
dog and owner
dog with owner

dog gets food
dog gets treat

dog food

Relaxation dog standing
dog waiting
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Based on extensive interactive and exploratory Google searches for the most promising
language spaces and image websites containing the most dog pictures, these search terms
were then translated into Russian, German, Italian, French, Spanish and Chinese, and used
for image searches on bing.com, depositphotos.com, duckduckgo.com, flickr.com, google.
de, pexels.com, pinterest.de, yahoo.com, youtube.com and yandex.ru (30 January 2022).

3.2. Landmark Detector

Mathis et al. [18] published a keypoint detection framework called DeepLabCut (DLC),
which is based on a deep learning approach and can determine animal body keypoints after
an initial training phase with labeled example images. The authors state that the system
allows successful predictions starting from a training dataset of 200 images. Models trained
with the DLC framework can provide a probability value for their keypoint predictions. If
a keypoint is occluded, i.e., obscured by the dog itself or another object, the detector will
attempt to approximate its position, but generally return a lower probability value for the
estimated coordinates.

Since DLC works best when the region of interest, i.e., the animal’s body parts of
interest, is “picked to be as small as possible” [18]. Consequently, object detection is be
applied to all images to obtain the coordinates of a bounding box containing the dog. If
the area containing the dog can be identified, the image is cropped accordingly. For this
task the software library ImageAI from Olafenwa & Olafenwa [24] is used. Their library can
detect 1000 different objects via image recognition, including dogs.

Two datasets were selected as training data for the custom DLC landmark detector:

1. The Stanford Extra Data Set builds upon the Stanford Dogs Data Set composed by
Khosla et al. [25] that represents a collection of 20,580 dog images of 120 different
breeds. Biggs et al. [19] performed annotations on 12,000 images of the set and pro-
vided them as a JSON file. Their annotations consist of coordinates for a bounding box
enclosing the depicted dog, coordinates for keypoints and segmentation information
describing the dog’s shape.

2. The Animal Pose Data Set was assembled by Cao et al. [20] as part of a paper on animal
pose estimation and covers annotations and images for dogs, cats, cows, horses and
sheep. In total 1809 examples of dogs are contained in the data set with some images
containing more than one animal. Similar to Stanford Extra, the Animal Pose Data Set
contains annotations for 20 keypoints in total.

Figure 2 shows the available keypoints of both datasets. This combination results in a
total of 23 detectable landmark points, which are later used for model training.

3.3. Dog Emotion Detector

In this work, two different approaches for training a dog emotion recognition model
are explored:

1. Coordinate data from landmark detection are used directly as the training input for a
neural network. This approach has the advantage of providing all available data to
the model.

2. Various pose metrics (e.g., the weight distribution) are calculated by relating multiple
landmarks. By using this less complex training data for a basic classification algorithm
(e.g., a decision tree), counterfactual explanation techniques can be used to explore
further how dogs express emotions.

For the model development, the widely used python library sklearn is used.

bing.com
depositphotos.com
duckduckgo.com
flickr.com
google.de
google.de
pexels.com
pinterest.de
yahoo.com
youtube.com
yandex.ru
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Figure 2. Available keypoints for landmark detection datasets. The colors indicate which data set
contains the respective point.

3.3.1. Neural Network

Since the object detector delivers images of different sizes, preprocessing the landmark
points is necessary. Comparability between images is achieved by setting all coordinates in
relation to the size of the cropped image. In addition, images are mirrored based on the
arrangement of the landmark points to ensure that all dogs are facing the same direction.

The emotion classes Anger, Fear, Happiness, and Relaxation were one-hot encoded.
Thus, a binary field is added to all data points for each class. In contrast to integer
encoding, this prevents the classifier from exploiting the natural order of these numbers in
its predictions.

Before the final model training, a grid search with cross-validation as explained in
Section 4.3.1 is performed to determine the most appropriate hyperparameters.

3.3.2. Decision Tree

To develop appropriate metrics for predicting a dog’s emotion, various base postures
are first broken down into the condition of individual body parts.

For this purpose, seven body postures of a dog [26,27] are considered:

1. A Neutral position expresses that a dog is relaxed and approachable since he feels
unconcerned about his environment.

2. An alarmed dog detected something in his surroundings and is in an aroused or
attentive condition. This mood is usually followed by an inspection of the regarding
area to identify a potential threat or an object of interest.

3. Dominant aggression is shown by a dog to communicate its social dominance and
that it will answer a challenge with an aggressive attack.

4. A defensive aggressive dog may also attack, but is motivated by fear.
5. An active submissive canine is fearful and worried, and shows weak signals of

submission.
6. Total surrender and submission is shown by passive submissive behavior and indi-

cates extreme fear in the animal.
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7. The “play bow” signals that a dog is playful, invites others to interact with it and is
mostly accompanied by a good mood.
The effects of these postures on individual body parts are listed in Table 3.

Table 3. Dog posture characteristics [26,27].

Posture Front End Back End Head Ears Tail Mouth

Neutral Normal Normal Up Up Down Open, tongue
visible

Alarmed Normal Normal Up Up, forward Horizontal Slightly open

Dominant
Aggressive

Strongly
upright

Strongly
upright Up Up, forward Up Open, teeth

visible

Defensive
Aggressive Lowered Strongly

Lowered Down Down, back Down, tucked Closed

Active
Submissive Lowered Lowered Down Down, flat,

back Down Closed

Passive
Submissive

Underbelly
exposed Down Down, back Down Closed

Playful Strongly
lowered Normal Moving Up Up Open, tongue

visible

Based on these postures, pose metrics are defined to represent the four target emotion
classes. These are introduced in detail in the next chapter. After calculating the pose metrics
for each input image, a grid search with cross-validation is performed in the same way as
for a neural network.

3.3.3. Pose Metrics

The general idea underlying the formulas for measuring the dog’s posture is to
determine various angles that are as independent as possible of breed, other characteristics
of the dog, or other objects in the photograph. Figure 2 can be referred to for interpretation
of the landmark numbers. Preliminary testing of the newly trained DLC detector showed
that the keypoint detection performs significantly worse when the dog is not standing or
sitting. Therefore, no calculations are performed to determine an exposed belly, which is a
strong sign of submission in dogs.

The body weight distribution of a dog can be calculated using the slope of the hy-
pothetical line between the withers (keypoint 22) and the base of the tail (keypoint 12) as
shown in Figure 3. To prevent an uneven surface or the dog’s posture from affecting the
slope, the angle α is calculated using the to line between the front (keypoint 0/6) and back
(keypoint 3/9) paws of one side. If possible, the paw coordinates of the side facing the
camera are used, as these are usually more accurate. If the intersection of the two lines
considered is in front of the withers (keypoint 22), i.e., in the direction of the dog’s head,
the angle between the lines is recorded as positive. In the opposite case, a negative degree
is recorded, and in the case of parallelism, the value zero is recorded.

Figure 3. Calculation of the body weight distribution.
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If the withers are obscured, it should be possible to measure the body weight distribu-
tion using the throat keypoint (23). For comparability of both calculations, the following
linear equation was obtained to convert the throat-based angle:

body weight distribution = −14.1 + 0.3 × (throat-based body weight distribution) (1)

This equation was obtained by applying a linear model to all keypoint pairs (with-
ers/throat).

The tail position can be calculated by using the angle α displayed in Figure 4 between
the hypothetical line connecting the withers (keypoint 22) and the base of the tail (keypoint
12), hereafter referred to as the dorsal line, and the hypothetical line between the base of the
tail (keypoint 12) and the tip of the tail (keypoint 13). A raised tail, characterized by the tip
of the tail being above the extended dorsal line, is recorded as a positive value. A lowered
tail, recognizable by a tail tip below the extended dorsal line, is given a negative sign. Zero
is measured for the tail position if the tail tip is exactly on the extended dorsal line.

Figure 4. Calculation of the tail position.

Again, it should be possible to perform the calculation using the throat point (23)
instead of the withers point (22). The following equation is used for the conversion:

tail position = 18.7 + 0.98 × (throat-based tail position) (2)

The head position measures the degree of elevation of a dog’s head by observing the
slope of the line connecting the withers (keypoint 22) and the nose (keypoint 16), as shown
in Figure 5. Like the body weight distribution calculation, the angle α is calculated using
the baseline between a front (keypoint 0/6) and back (keypoint 3/9) paw. A raised head is
measured positively, while a lowered head indicates a negative value. In the case of hidden
withers, the throat-based calculation can be converted using the following equation:

head position = −2.78 + 0.06 × (throat-based head position) (3)

Figure 5. Calculation of the head position.

The ear position describes the orientation of the ears in relation to the head as de-
scribed by the angle α and displayed in Figure 6. Since usually, just the keypoints of one ear
are entirely available, only one ear is considered for the calculation and, if possible, the one
facing the camera. This procedure is based on the hypothesis that the ears usually point in
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a similar direction. If this is not the case, the used calculation method can, of course, be
problematic. However, it seems the best option under the given restriction of inaccurate
or not recognizable keypoint coordinates. The ear position is determined by regarding a
line between the nose keypoint (16) and the ear base keypoint (14/15) in relation to the
slope of the line starting at the ear base keypoint (14/15) and ending at the ear tip keypoint
(18/19). A raised ear, i.e., the ear tip exceeds the extended head position line, is measured
as a positive value, while a lowered ear indicates a negative value.

Figure 6. Calculation of the ear position.

The mouth condition measures the degree to which the dog’s snout is open (compare
Figure 7). For this purpose, the angle α between the nose (keypoint 16), the base of the ear
(keypoint 14/15) and the chin (keypoint 16) is calculated. If possible, the ear base keypoint
of the dog side facing the camera is used. The calculated mouth opening angles reflect
a correct tendency, but a mouth opening of zero is practically impossible since the nose
and chin keypoints are used for the calculation. Thus, a slightly higher value than zero
represents a closed mouth.

Figure 7. Calculation of the mouth condition.

The front leg condition represents the bending angle of one of the front legs by the
angle α between a front paw keypoint (0/6), a front elbow keypoint (2/8) and the withers
keypoint (22), as shown in Figure 8. This procedure results in high values being assigned to
extended legs and low values to flexed legs. Again, replacing the withers keypoint (22) with
the throat keypoint (23) should be possible. The conversion formula for the throat-based
calculation is as follows:

front leg condition = 83.78 + 0.61 ∗ (throat-based front leg condition) (4)

Figure 8. Calculation of the front leg condition.

Similarly, the back leg condition displayed in Figure 9 represents the bending angle
of one of the back legs. For calculating the bending degree, the angle α between a back paw
keypoint (3/9), a back elbow keypoint (5/11) and the tail set keypoint (12) are used.
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Figure 9. Calculation of the back leg condition.

4. Results
4.1. Dog Emotion Data Set

The objective was to generate a balanced data set in which all classes are equally
represented. The class “fear” turned out to be the limiting factor for the total size of the
dataset. This may be because such images are less likely to be published, as they may reflect
poorly on the holder. Therefore, the search was stopped when no more images were found
for the “fear” class. The images are split among the classes as follows:

1. Anger: 111 Images;
2. Fear: 104 Images;
3. Happiness: 109 Images;
4. Relaxation: 106 Images.

For model training, an even, easily dividable number of samples is desirable, since
the data set must be split multiple times for cross-validation and final testing. Therefore,
all categories were reduced to a number of 100 images each by discarding photos with
the lowest probability of correct recognition, such as images with poor exposure, low
resolution, blur, unfavorable perspective, or objects too close to the dog. In addition, photos
in which dogs are only partially visible or puppies are visible were also excluded.

In total, the dataset contains 36 different breeds and mostly individual dogs, rather
than multiple images of one animal.

4.2. Landmark Detector

After the Stanford Extra and Animal Pose datasets were merged, a neural network
based on DLC could be trained. As recommended by the authors [6], training was per-
formed for 200,000 iterations and the loss settled between 0.015 and 0.017.

Testing the trained model proved that the detector is capable of achieving very accurate
detection results. In some cases, it can even locate the position of occluded body parts
accurately and with high prediction probability.

Since the different body parts in the training data do not occur with equal frequency
due to two different datasets, it is impossible to use only one uniform probability threshold
to accept coordinates. Instead, manual tests on sample images showed that a minimum
probability value of 5% is appropriate for all body parts included in the Stanford Extra
Data Set (compare Figure 2). For all body parts that are exclusively part of the Animal Pose
Data Set (compare Figure 2), a minimum probability value of 0.5% proved suitable. Since
significantly less training data was available for these body parts, the model automatically
computes a lower value to reflect the ratios of the training data.

In addition to this self-trained detector, the pre-trained detectors DLC model zoo,
North DLC model [6] and Dog body part detection model [28] were tested. In order to
provide the necessary data for dog posture analysis, the detectors were all used together
since each offers a different subset of the needed landmark points. In a manual comparison
of both approaches (self-trained vs. combined), the self-trained detector performed better
and was selected for further work. In particular, the self-trained detector delivered better
results in detecting hidden landmark points and the recognition of the tail. Furthermore, it
was not possible to determine the position of the ears with the combined approach.
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4.3. Dog Emotion Detector

As the main component of the Dog Emotion Detector, a Neural Network and a
Decision Tree were trained and then compared in terms of their performance. Since the
neural network can work with missing values, the raw coordinates of the landmark detector
are used as training data. For the decision tree, the calculated pose metrics were used as
input, for which the respective average filled missing values.

A stratified test set of 40 images (10%) was sampled for the final accuracy evaluation
of both classifiers. The remaining 360 images were split into multiple training/validation
sets during the grid search using 10-fold cross-validation.

4.3.1. Neural Network

To optimize the neural network, a grid search with typical tuning parameters according
to Géron [29] is conducted: Activation function, number of layers and number of nodes.
Table 4 summarizes the considered grid search values, the grid search results and all other
parameters used for training.

Table 4. Parameters for neural network training.

Name Grid Search Values Value

Activation Function (for Hidden Layers) Sigmoid, ReLU, Tanh Tanh

Number of Layers 1, 2, 3, 4 1

Number of Nodes in First Hidden Layer 96, 48, 24 15

Number of Nodes in Last Hidden Layer 16, 8, 6

Batch Size 5

Output Activation Function Softmax

Optimizer ADAM

Loss Function Categorical
Cross-Entropy

Epochs 200

Training the model for 200 epochs represents a medium-high number of epochs. It is
chosen to get a good impression of the performance of the parameter combination from
the grid search while avoiding overfitting. After determining the best parameter combi-
nation, an epoch fine-tuning was conducted to balance the network between underfitting
and overfitting.

The fine-tuning showed a local minimum of model loss between 100 and 350 epochs
on the test set (compare Figure 10). According to Howard and Gugger (2020, pp. 212–213)
the local minimum of the loss measured on the test set for each epoch will indicate the
best-suited number of epochs. Finally, a model with the best performing hyperparameters
was trained on the training and validation set over 240 epochs. Evaluating this model on
the test data set achieved an accuracy of 67.5%.

4.3.2. Decision Tree

Before training the decision tree classifier, a check was made to verify that the previ-
ously calculated pose metrics were suitable for predicting a dog’s emotion. The Confusion
matrix in Figure 11 shows the correlations between emotion classes and pose metrics. These
values suggest that the metrics are suitable for determining emotions. For example, in
Table 3, anger is assigned to “defensive aggressive” posture. Its typical signs, raised ears
and tail, uplifted head, and a widely opened mouth, show as positive correlation values in
the matrix.
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Figure 10. Neural network performance over epochs.

Figure 11. Correlation matrix for pose calculations.

However, there are also deviations from the characteristic features of the assigned
attitudes. For example, raised ears are typically an indicator for the attitude “playful”,
which is assigned to the emotion class “happiness”. This correlation is not reflected in the
data since the posture “playful” might be just one of the possible expressions of happiness
in dogs and the strong variation of body signals for “happiness” influences the results.

Since the decision tree classifier cannot be trained with incomplete data sets, the
missing values were filled by the average value of each parameter within its emotion class.
In this process, values for 32 samples in total (8% of the complete data set) were filled with
1.5 empty parameter cells per sample on average.

The grid search of the decision tree classifier resulted in a set of best hyperparameters
listed in Table 5. Training the model with these parameters and then evaluating on the test
set resulted in an accuracy of 62.5%. To increase the comprehensibility and compactness
of the final model, all unnecessary splits, i.e., those where all resulting leaves lead to the
prediction of the same class, were removed by pruning. Figure 12 displays an illustrated and
annotated graphical representation of the decision tree generated by the learning algorithm.
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Table 5. Parameters for Decision Tree Training.

Name Grid Search Values Value

Criterion gini, entropy entropy
Maximum Depth 2–10 4

Minimum Sample Split 0.025, 0.05, 0.1, 0.15, 0.2 0.05
Minimum Sample Leaf 0.01, 0.025, 0.05, 0.075, 0.1 0.1

Figure 12 highlights the importance of the tail posture for emotion recognition in
dogs. Moreover, the decision path relevant to the “happiness” class suggests that only dogs
showing the play posture are considered happy. Another interesting finding provided by
the graphical tree is the irrelevance of the back leg condition and the ear position for the
predictions of this decision tree.

Figure 12. Explanatory illustration of the decision tree.

The neural network confusion matrix shown in Figure 13 shows a balanced model
performance for all emotion classes. On the other hand, the decision tree matrix shows
strong recognition of the class “fear”, but relatively poor recognition of “happiness”. As
mentioned before, predicting the emotion “happiness” might suffer from the large variety
of poses in the training set, which are not adequately represented by the pose metrics.

Figure 13. Confusion matrices of the neural network and decision tree.
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4.3.3. Additional Classifiers

In addition to the classifiers already described, a logistic regression model and a
support vector machine were trained. Table 6 summarizes the accuracies of all exam-
ined models.

Table 6. Overview of model performance.

Model Accuracy Explanatory
Abilities

Ability to Deal with
Missing Data

Neural Net 67.5% - X
Decision Tree 62.5% X -

Logistic Regression 62.5% - -
Support Vector Machine 67.5% - -

5. Discussion

Multiple models were developed to determine a dog’s emotional state based on input
images with an accuracy between 62.5% and 67.5%. Relying on the scientific findings
of Amici et al. [3], this degree of emotion recognition capabilities in dogs exceeds the
human one. Image-based emotion recognition promises wide everyday application for
automatic emotion analysis of animals. In contrast to sensor-based emotion detection [8,9],
the method explored in this work is more cost-efficient and more practicable since no sensor
needs to be attached to the animal.

The neural network seems to be better suited for practical applications since it can
handle missing landmark points and therefore provides results even for low-quality input
images. The Decision Tree can be used not only for prediction, but also for a better
understanding of how dogs express emotions.

Nevertheless, several aspects could be improved to increase emotion recognition
accuracy further. Since the dataset contains only 100 images per class, an extension could
contribute to the better generalizability of the model. Additionally, the chosen stimuli-
based labeling approach of training data described in Chapter 2.1 could be questioned and
possibly replaced by expert labeling.

Additional emotion classes could be introduced to provide more precise informa-
tion about the dog’s mood. In particular, the emotion “happiness” shows signs of high
ambiguity for which a split into several categories might be suitable.

This work focuses mainly on posture and less on facial expression. Therefore, more
pose metrics focusing on the facial landmark points could be added.

When comparing the developed emotion predictor to sensor-based canine emotion
detection [8,9], it becomes apparent that photography induced pose analysis currently
cannot compete with the more accurate information that can be received from sensor data.
The sound produced by the animal might also be of interest. For example, refs. [10,30] have
already successfully conducted studies that analyzed dog barks in terms of their emotional
content. A video recording could capture both the image and the sound information
and would allow us to feed more data into the emotion recognition. Nonetheless, the
exclusively image-based emotion recognition is still highly relevant since its method of
operation promises a wider everyday application for automatic emotion analysis of animals.
Additionally, the photographic method can be assumed to be more cost efficient and less
disturbing to the animal than the sensor-based analysis.

Author Contributions: Conceptualization, K.F. and P.A.G.; methodology, K.F.; software, K.F.; valida-
tion, K.F. and T.S.; data curation, K.F.; writing—original draft preparation, K.F. and T.S.; writing—
review and editing, T.S. and P.A.G.; supervision, P.A.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.



Future Internet 2022, 14, 97 15 of 16

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available at request from the authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Akins, N.J. Dogs and People in Social, Working, Economic or Symbolic Interaction; Snyder, L.M., Moore, E.A., Eds.; Oxbow Books:

Oxford, UK, 2006; Volume 146.
2. Hasegawa, M.; Ohtani, N.; Ohta, M. Dogs’ Body Language Relevant to Learning Achievement. Animals 2014, 4, 45–58. [CrossRef]

[PubMed]
3. Amici, F.; Waterman, J.; Kellermann, C.; Karim, K.; Bräuer, J. The Ability to Recognize Dog Emotions Depends on the Cultural

Milieu in Which We Grow Up. Sci. Rep. 2019, 9, 1–9. [CrossRef]
4. Kujala, M. Canine Emotions: Guidelines for Research. Anim. Sentience 2018, 2, 18. [CrossRef]
5. Waller, B.; Peirce, K.; Correia-Caeiro, C.; Oña, L.; Burrows, A.; Mccune, S.; Kaminski, J. Paedomorphic Facial Expressions Give

Dogs a Selective Advantage. PLoS ONE 2013, 8, e82686. [CrossRef] [PubMed]
6. North, S. Digi Tails: Auto-Prediction of Street Dog Emotions. 2019. Available online: https://samim.io/p/2019-05-05-digi-tails-

auto-prediction-of-street-dog-emotions-htt/ (accessed on 30 January 2022)
7. Franzoni, V.; Milani, A.; Biondi, G.; Micheli, F. A Preliminary Work on Dog Emotion Recognition. In Proceedings of the

IEEE/WIC/ACM International Conference on Web Intelligence—Companion Volume, New York, NY, USA, 14–17 October 2019;
pp. 91–96. [CrossRef]

8. Brugarolas, R.; Loftin, R.; Yang, P.; Roberts, D.; Sherman, B.; Bozkurt, A. Behavior recognition based on machine learning
algorithms for a wireless canine machine interface. In Proceedings of the 2013 IEEE International Conference on Body Sensor
Networks, Cambridge, MA, USA, 6–9 May 2013; pp. 1–5. [CrossRef]

9. Aich, S.; Chakraborty, S.; Sim, J.S.; Jang, D.J.; Kim, H.C. The Design of an Automated System for the Analysis of the Activity and
Emotional Patterns of Dogs with Wearable Sensors Using Machine Learning. Appl. Sci. 2019, 9, 4938. [CrossRef]

10. Tsai, M.F.; Lin, P.C.; Huang, Z.H.; Lin, C.H. Multiple Feature Dependency Detection for Deep Learning Technology—Smart Pet
Surveillance System Implementation. Electronics 2020, 9, 1387. [CrossRef]

11. Maskeliunas, R.; Raudonis, V.; Damasevicius, R. Recognition of Emotional Vocalizations of Canine. Acta Acust. United Acust.
2018, 104, 304–314. [CrossRef]

12. Raman, S.; Maskeliūnas, R.; Damaševičius, R. Markerless Dog Pose Recognition in the Wild Using ResNet Deep Learning Model.
Computers 2022, 11, 2. [CrossRef]

13. Bloom, T.; Friedman, H. Classifying dogs’ (Canis familiaris) facial expressions from photographs. Behav. Process. 2013, 96, 1–10.
[CrossRef] [PubMed]

14. Coren, S. Which Emotions Do Dogs Actually Experience? Psychology Today, 14 March 2013.
15. Meridda, A.; Gazzano, A.; Mariti, C. Assessment of dog facial mimicry: Proposal for an emotional dog facial action coding

system (EMDOGFACS). J. Vet. Behav. 2014, 9, e3. [CrossRef]
16. Mellor, D. Tail Docking of Canine Puppies: Reassessment of the Tail’s Role in Communication, the Acute Pain Caused by Docking

and Interpretation of Behavioural Responses. Animals 2018, 8, 82. [CrossRef] [PubMed]
17. Rohr, K. Introduction and Overview. In Landmark-Based Image Analysis: Using Geometric and Intensity Models; Rohr, K., Ed.;

Computational Imaging and Vision; Springer: Dordrecht, The Netherlands, 2001; pp. 1–34. [CrossRef]
18. Mathis, A.; Mamidanna, P.; Cury, K.M.; Abe, T.; Murthy, V.N.; Mathis, M.W.; Bethge, M. DeepLabCut: Markerless pose estimation

of user-defined body parts with deep learning. Nat. Neurosci. 2018, 21, 1281–1289. [CrossRef] [PubMed]
19. Biggs, B.; Boyne, O.; Charles, J.; Fitzgibbon, A.; Cipolla, R. Who Left the Dogs Out? 3D Animal Reconstruction with Expectation

Maximization in the Loop. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020.
[CrossRef]

20. Cao, J.; Tang, H.; Fang, H.S.; Shen, X.; Lu, C.; Tai, Y.W. Cross-Domain Adaptation for Animal Pose Estimation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019.

21. Caeiro, C.; Guo, K.; Mills, D. Dogs and humans respond to emotionally competent stimuli by producing different facial actions.
Sci. Rep. 2017, 7, 15525. [CrossRef] [PubMed]

22. Racca, A.; Guo, K.; Meints, K.; Mills, D.S. Reading Faces: Differential Lateral Gaze Bias in Processing Canine and Human Facial
Expressions in Dogs and 4-Year-Old Children. PLoS ONE 2012, 7, e36076. [CrossRef] [PubMed]

23. Riemer, S. Social dog—Emotional dog? Anim. Sentience 2017, 2, 9. [CrossRef]
24. Olafenwa, M.; Olafenwa, J. ImageAI Documentation. 2022. Available online: https://buildmedia.readthedocs.org/media/pdf/

imageai/latest/imageai.pdf (accessed on 30 January 2022)
25. Khosla, A.; Jayadevaprakash, N.; Yao, B.; Li, F.F. Novel Dataset for Fine-Grained Image Categorization. In Proceedings of the

CVPR Workshop on Fine-Grained Visual Categorization (FGVC), Colorado Springs, CO, USA, 25 June 2011.
26. Coren, S. How To Read Your Dog’s Body Language. Available online: https://moderndogmagazine.com/articles/how-read-

your-dogs-body-language/415 (accessed on 30 January 2022)
27. Simpson, B.S. Canine Communication. Vet. Clin. N. Am. Small Anim. Pract. 1997, 27, 445–464. [CrossRef]

http://doi.org/10.3390/ani4010045
http://www.ncbi.nlm.nih.gov/pubmed/26479883
http://dx.doi.org/10.1038/s41598-019-52938-4
http://dx.doi.org/10.51291/2377-7478.1350
http://dx.doi.org/10.1371/journal.pone.0082686
http://www.ncbi.nlm.nih.gov/pubmed/24386109
https://samim.io/p/2019-05-05-digi-tails-auto-prediction-of-street-dog-emotions-htt/
https://samim.io/p/2019-05-05-digi-tails-auto-prediction-of-street-dog-emotions-htt/
http://dx.doi.org/10.1145/3358695.3361750
http://dx.doi.org/10.1109/BSN.2013.6575505
http://dx.doi.org/10.3390/app9224938
http://dx.doi.org/10.3390/electronics9091387
http://dx.doi.org/10.3813/AAA.919173
http://dx.doi.org/10.3390/computers11010002
http://dx.doi.org/10.1016/j.beproc.2013.02.010
http://www.ncbi.nlm.nih.gov/pubmed/23485925
http://dx.doi.org/10.1016/j.jveb.2014.09.012
http://dx.doi.org/10.3390/ani8060082
http://www.ncbi.nlm.nih.gov/pubmed/29857482
http://dx.doi.org/10.1007/978-94-015-9787-6_1
http://dx.doi.org/10.1038/s41593-018-0209-y
http://www.ncbi.nlm.nih.gov/pubmed/30127430
http://dx.doi.org/10.1007/978-3-030-58621-8
http://dx.doi.org/10.1038/s41598-017-15091-4
http://www.ncbi.nlm.nih.gov/pubmed/29138393
http://dx.doi.org/10.1371/journal.pone.0036076
http://www.ncbi.nlm.nih.gov/pubmed/22558335
http://dx.doi.org/10.51291/2377-7478.1255
https://buildmedia.readthedocs.org/media/pdf/imageai/latest/imageai.pdf
https://buildmedia.readthedocs.org/media/pdf/imageai/latest/imageai.pdf
https://moderndogmagazine.com/articles/how-read-your-dogs-body-language/415
https://moderndogmagazine.com/articles/how-read-your-dogs-body-language/415
http://dx.doi.org/10.1016/S0195-5616(97)50048-9


Future Internet 2022, 14, 97 16 of 16

28. Divyang. Dog Body Part Detection. 2020. Original-Date: 2020-05-31T04:37:34Z. Available online: https://www.researchgate.net/
publication/346416235_SUPPORT_VECTOR_MACHINE_SVM_BASED_ABNORMAL_CROWD_ACTIVITY_DETECTION
(accessed on 30 January 2022)

29. Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent
Systems, 2nd ed.; O’Reilly Media: Beijing, China, 2019.

30. Hantke, S.; Cummins, N.; Schuller, B. What is my Dog Trying to Tell Me? The Automatic Recognition of the Context and
Perceived Emotion of Dog Barks. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 5134–5138. [CrossRef]

https://www.researchgate.net/publication/346416235_SUPPORT_VECTOR_MACHINE_SVM_BASED_ABNORMAL_CROWD_ACTIVITY_DETECTION
https://www.researchgate.net/publication/346416235_SUPPORT_VECTOR_MACHINE_SVM_BASED_ABNORMAL_CROWD_ACTIVITY_DETECTION
http://dx.doi.org/10.1109/ICASSP.2018.8461757

	Introduction
	Chosen Approach
	Materials and Methods
	Dog Emotion Data Set
	Landmark Detector
	Dog Emotion Detector
	Neural Network
	Decision Tree
	Pose Metrics


	Results
	Dog Emotion Data Set
	Landmark Detector
	Dog Emotion Detector
	Neural Network
	Decision Tree
	Additional Classifiers


	Discussion
	References

