7%
university of 59/,
groningen L

i

University Medical Center Groningen

University of Groningen

Predicting Drug Concentration-Time Profiles in Multiple CNS Compartments Using a
Comprehensive Physiologically-Based Pharmacokinetic Model

Yamamoto, Yumi; Valitalo, Pyry A; Huntjens, Dymphy R; Proost, Johannes H; Vermeulen, An;
Krauwinkel, Walter; Beukers, Margot W; van den Berg, Dirk-Jan; Hartman, Robin; Wong, Yin
Cheong

Published in:
CPT: Pharmacometrics & Systems Pharmacology

DOI:
10.1002/psp4.12250

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/lUMCG research database

Citation for published version (APA):

Yamamoto, Y., Valitalo, P. A., Huntjens, D. R., Proost, J. H., Vermeulen, A., Krauwinkel, W., Beukers, M.
W., van den Berg, D-J., Hartman, R., Wong, Y. C., Danhof, M., van Hasselt, J. G. C., & de Lange, E. C. M.
(2017). Predicting Drug Concentration-Time Profiles in Multiple CNS Compartments Using a
Comprehensive Physiologically-Based Pharmacokinetic Model. CPT: Pharmacometrics & Systems
Pharmacology, 6(11), 765-777. https://doi.org/10.1002/psp4.12250

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.


https://doi.org/10.1002/psp4.12250
https://research.rug.nl/en/publications/591a1f42-52ff-4ac5-bf41-98a955084f87
https://doi.org/10.1002/psp4.12250

Citation: CPT Pharmacometrics Syst. Pharmacol. (2017) 6, 765-777; doi:10.1002/psp4.12250
©2017 ASCPT  Allrights reserved

ORIGINAL ARTICLE

Predicting Drug Concentration-Time Profiles in Multiple
CNS Compartments Using a Comprehensive
Physiologically-Based Pharmacokinetic Model

Yumi Yamamoto', Pyry A. Valitalo', Dymphy R. Huntjens?, Johannes H. Proost®, An Vermeulen?, Walter Krauwinkel*,
Margot W. Beukers®, Dirk-Jan van den Berg', Robin Hartman', Yin Cheong Wong ©', Meindert Danhof',
John G. C. van Hasselt' and Elizabeth C. M. de Lange'*

Drug development targeting the central nervous system (CNS) is challenging due to poor predictability of drug concentrations
in various CNS compartments. We developed a generic physiologically based pharmacokinetic (PBPK) model for prediction of
drug concentrations in physiologically relevant CNS compartments. System-specific and drug-specific model parameters
were derived from literature and in silico predictions. The model was validated using detailed concentration-time profiles from
10 drugs in rat plasma, brain extracellular fluid, 2 cerebrospinal fluid sites, and total brain tissue. These drugs, all small
molecules, were selected to cover a wide range of physicochemical properties. The concentration-time profiles for these
drugs were adequately predicted across the CNS compartments (symmetric mean absolute percentage error for the model
prediction was <91%). In conclusion, the developed PBPK model can be used to predict temporal concentration profiles of
drugs in multiple relevant CNS compartments, which we consider valuable information for efficient CNS drug development.

CPT Pharmacometrics Syst. Pharmacol. (2017) 6, 765-777; doi:10.1002/psp4.12250; published online 11 September 2017.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE
TOPIC?

M Lack of knowledge of the target-site concentrations
in the CNS is a major hurdle in the development of new
CNS drugs.

WHAT QUESTION DID THIS STUDY ADDRESS?

M A generic PBPK model in the rat CNS was proposed.
WHAT THIS STUDY ADDS TO OUR KNOWLEDGE

M The developed PBPK model was able to predict
time-dependent concentration profiles of many drugs

The development of drugs targeting diseases of the central
nervous system (CNS) represents one of the most signifi-
cant challenges in the research of new medicines.! Charac-
terization of exposure-response relationships at the drug
target site may be of critical importance to reduce attrition.
However, unlike for many other drugs, prediction of target-
site concentrations for CNS drugs is complex, among other
factors, due to the presence of the blood-brain barrier
(BBB) and the blood-cerebrospinal fluid barrier (BCSFB).
Moreover, direct measurement of human brain concentra-
tions is highly restricted for ethical reasons. Therefore, new
approaches that can robustly predict human brain concen-
trations of novel drug candidates based on in vitro and in
silico studies are of great importance.

with distinctively different physicochemical properties in
multiple physiologically relevant compartments in the
CNS.

HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?

M The developed model structure can be used to pre-
dict concentration-time profiles in rats and offers a sci-
entific basis for the development of CNS drugs, in
principle, without the need of using animals.

Several pharmacokinetic (PK) models to predict CNS
exposure have been published with different levels of com-
plexity.?2 The majority of these models depend on animal
data. Furthermore, these models have typically not been
validated against human CNS drug concentrations.> We
previously published a general multicompartmental CNS
PK model structure, which was developed using PK data
obtained from rats.

Quantitative  structure-property relationship (QSPR)
models can be used to predict drug BBB permeability and
Kp,uu,braingcg (unbound brain extracellular fluid-to-plasma
concentration ratio)>® without performing novel experi-
ments, but these QSPR models have not taken into
account the time course of CNS distribution. Therefore,
there exists an unmet need for approaches to predict drug
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target-site concentration-time profiles without the need of in
vivo animal experiments.

Physiologically based pharmacokinetic (PBPK) modeling
represents a promising approach for the prediction of CNS
drug concentrations. Previously, such models have been
widely used to predict tissue concentrations.® The PBPK
models typically distinguish between drug-specific and
system-specific parameters, therefore, enabling predictions
across drugs and species. However, PBPK models for the
CNS have been of limited utility due to a lack of relevant
physiological details for mechanism of transport across the
BBB and BCSFB, and for drug distribution within the CNS.2

Capturing the physiological compartments, flows, and
transport processes in a CNS PBPK model is critically
important to predict PK profiles in the CNS. The CNS com-
prises of multiple key physiological compartments,? includ-
ing brain extracellular fluid (braingcg), brain intracellular
fluid (brain,cg), and multiple cerebrospinal fluid (CSF) com-
partments. The braingcg and braincg compartments are
considered highly relevant target sites for CNS drugs,
whereas CSF compartments are often used to measure
CNS-associated drug concentrations, if braingcg and brai-
nicr information cannot be obtained. Furthermore, cerebral
blood flow (CBF) and physiological flows within the CNS,
such as the braingcg flow and CSF flows, influence drug
distribution across CNS compartments. Next to binding to
protein and lipids, pH-dependent distribution in subcellular
compartments, such as trapping of basic compounds in
lysosomes, needs to be considered. With regard to the
transfer processes across the BBB and BCSFB, passive
diffusion via the paracellular and transcellular pathways and
active transport by influx and/or efflux transporters need to
be addressed.

At both BBB and BCSFB barriers, the cells are intercon-
nected by tight junctions, which limit drug exchange via the
paracellular pathway.” Paracellular and transcellular diffu-
sion depend on the aqueous diffusivity coefficient and
membrane permeability of the compound, which can be
related to the physicochemical properties. The combination
of these transport routes may differ between individual
drugs, which complicate the prediction of plasma-brain
transport.

System-specific information on physiological parameters
can be used in scaling between species. Many of these
system-specific parameters can or have been obtained
from in vitro and in vivo experiments. Drug-specific parame-
ters can be derived by in vitro and QSPR approaches, and
can be used for the scaling between drugs. A comprehen-
sive CNS PBPK model can integrate system-specific and
drug-specific parameters to potentially enable the prediction
of the brain distribution of drugs without the need to con-
duct in vivo animal studies.

The purpose of the current work is to develop a compre-
hensive PBPK model to predict drug concentration-time
profiles in the multiple physiologically relevant compart-
ments in the CNS, based on system-specific and drug-
specific parameters without the need to generate in vivo
data. We specifically consider the prediction of PK profiles
in the CNS during pathological conditions, which may have
distinct effects on paracellular diffusion, transcellular

CPT: Pharmacometrics & Systems Pharmacology

diffusion, and active transport. Therefore, we include a
range of such transport mechanisms in our CNS PBPK
model. This model is evaluated using previously published
detailed multilevel brain and CSF concentration-time data
for 10 drugs with highly diverse physicochemical properties.

MATERIALS AND METHODS

We first empirically modeled plasma PK using available
plasma PK data, which was used as the basis for the CNS
PBPK model. This CNS model was based entirely on
parameters derived from literature and in silico predictions.
Model development was performed using NONMEM ver-
sion 7.3.

Empirical plasma PK model

Plasma PK models were systematically developed using in
vivo data with a mixed-effects modeling approach. One,
two, and three-compartment models were evaluated. Inter-
individual variability and interstudy variability were incorpo-
rated on each PK parameter using exponential models.
Proportional and combined additive-proportional residual
error models were considered. Model selection was guided
by the likelihood ratio test (P<0.05), precision of the
parameter estimates, and standard goodness of fit plots.®

CNS PBPK model development

A generic PBPK model structure was developed based on
the previously published generic multicompartmental CNS
distribution model (Figure 1),° which consists of plasma,
braingcg brainics CSF in the lateral ventricle (CSF.y), CSF
in the third and fourth ventricle (CSFtry), CSF in the cis-
terna magna (CSFgy), and CSF in the subarachnoid space
(CSFsas) compartments. We added new components:
(1) an acidic subcellular compartment representing lyso-
somes to account for pH-dependent drug distribution; (2) a
brain microvascular compartment (brainyy) to account for
CBF vs. permeability rate-limited kinetics; and (3) separa-
tion of passive diffusion at the BBB and BCSFB into its
transcellular and paracellular components.

System-specific parameters

Physiological values of the distribution volumes of all the
CNS compartments, flows, surface area (SA) of the BBB
(SAggg), SA of the BCSFB (SAgcsks), SA of the total brain
cell membrane (BCM; SAgcum), and the width of BBB
(Widthggg) were collected from literature. The SAgcrsg was
divided into SAgcsrei, Which is a surface area around
CSF., and SAgcsese, Which is a surface area around
CSFtryv. The lysosomal volume was calculated based on the
volume ratio of lysosomes to brain intracellular fluid of brain
parenchyma cells (1:80),'° and the SA of the lysosome (SA_.
vso) is calculated by obtaining the lysosome number per cell
using the lysosomal volume and the diameter of each lyso-
some."" Transcellular and paracellular diffusion were sepa-
rately incorporated into the models, therefore, the ratio of
SAggs and SAgcsrs for transcellular diffusion and paracellu-
lar diffusion were required for the calculation. Based on elec-
tron microscopic cross-section pictures of brain capillary, the
length of a single brain microvascular endothelial cell was
estimated to be around 17 um and the length of the
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Figure 1 The developed model structure. The model consists of a plasma pharmacokinetic (PK) model and a central nervous system
(CNS) physiologically based pharmacokinetic (PBPK) model with estimated plasma PK parameters, and system-specific and drug-
specific parameters (colors) for CNS. Peripheral compartments 1 and 2 were used in cases where the plasma PK model required them
to describe the plasma data adequately. AFin1-3, asymmetry factor into the CNS compartments 1-3; AFout1-3, asymmetry factor out
from the CNS compartments 1-3; BBB, blood-brain barrier; BCSFB, blood-cerebrospinal fluid barrier; BF, binding factor; braingcg brain
extracellular fluid; brainicg brain intracellular fluid; brainy, brain microvascular; CSFcy, cerebrospinal fluid in the cisterna magna;
CSF,y, cerebrospinal fluid in the lateral ventricle; CSFsas, cerebrospinal fluid in the subarachnoid space; CSFrgy, cerebrospinal fluid in
the third and fourth ventricle; PHF1-7, pH-dependent factor 1-7; Qgcy, passive diffusion clearance at the brain cell membrane; Qggg
cerebral blood flow; Qcsr cerebrospinal fluid flow; Qecg braingcr flow; Qyso, passive diffusion clearance at the lysosomal membrane;
Qpegg, paracellular diffusion clearance at the BBB; Qpgcsrri, paracellular diffusion clearance at the BCSFB1; Qpgcsrea2, paracellular
diffusion clearance at the BCSFB2; Qtggg, transcellular diffusion clearance at the BBB; Qtgcses1, transcellular diffusion clearance at
the BCSFB1; Qtgcsrra, transcellular diffusion clearance at the BCSFB2.

intercellular space was estimated to be around 0.03 pm.'2 Permeability. Transmembrane permeability was calculated
The presence of tight junctions in the intercellular space of using the log P of each compound with the following
the BBB and BCSFB significantly reduces paracellular trans-  equation'”:

port.” Therefore, correcting for the effective pore size for par-

acellular diffusion is important. The transendothelial electrical log p, ranscelluiar =0.939xlog P—6.210 @)
resistance (TEER) is reported to be around 1,800 Q cm? at

the rat BBB,'® whereas the TEER is around 20-30 Q cm? at ~ where Panseeluar s the transmembrane permeability (in
the rat BCSFB.'* According to a study on the relationship  cm/s), log P is the n-octanol lipophilicity value.

between TEER and the pore size,'® the pore size at the

BBB and BCSFB can be assumed to be around 0.0011 pm Active transport. The impact of the net effect of active
and 0.0028 pum, respectively. Thus, it was expected that  transporters on the drug exchange at the BBB and BCSFB
99.8% of total SAggs and 99.8% of total SAgcss is used for ~ was incorporated into the model using asymmetry factors
the transcellular diffusion (SAggs: and SAgcsra:;, respec- (AFin1-3 and AFout1-3). The AFs were calculated from
tively), whereas 0.006% of total SAggs and 0.016% of total ~ Kp,uu,braingcs  Kp,uu,CSF, (unbound CSF\to-plasma
SAgcsrs are used for paracellular diffusion (SAggg, and concentration ratio) and Kp,uu,CSFcy (unbound CSFcpy-to-
SAgcsrep respectively). Note that, due to the presence of plasma concentration ratio), such that they produced the
tight junction proteins, not all intercellular space can be used same Kp,uu values within the PBPK model at the steady-

for paracellular diffusion. state. Therefore, the AFs were dependent on both the
iee Kp,uu values and the structure and parameters of the
Drug-specific parameters .
Aqueous diffusivity coefficient. The aqueous diffusivity coef- ~ PBPK model. If the Kp,uu values were larger than 1 (i.e.,
ficient was calculated using the molecular weight of each ~ net active influx), then AFin1, AFin2, and AFin3 were
compound with the following equation®: derived  from  Kp,uubraingcr, ~ Kp,uu,CSFy,  and
Kp,uu,CSFcy, respectively, whereas AFout1-3 were fixed
log Dag=—4.113—0.4609xlog MW 1) to 1. If the Kp,uu values were smaller than 1 (i.e., net active

efflux), then AFout1, AFout2, and AFout3 were derived
where Dagq is the aqueous diffusivity coefficient (in cm?/s) from Kp,uu,braingcs  Kp,uu,CSF.y, and Kp,uu,CSFgpm,
and MW is the molecular weight (in g/mol). respectively, whereas AFin1-3 were fixed to 1. In the

www.psp-journal.com
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analysis, Kp,uu,braingcr, Kp,uu,CSF, and Kp,uu,CSFcum
were derived from previous in vivo animal experiments.®
The steady-state differential equations in the PBPK model
were solved using the Maxima Computer Algebra System
(http://maxima.sourceforge.net) to obtain algebraic solutions
for calculating AFs from the Kp,uu values. The detailed
algebraic solutions for each AF are provided in Supple-
mentary Material S1.

Combined system-specific and drug-specific

parameters ) ‘ . .
Passive diffusion across the brain barriers. Passive diffu-

sion clearance at the BBB and BCSFB (Qggg and Qgcsks,
respectively) was obtained from a combination of paracellu-
lar and transcellular diffusion, Qp and Qt, respectively

(Eq. 3).
Qasa/scsra(ML/min) = Qpass,scsra + Qlass/aesra ©)]

where Qgggscsrs represents the passive diffusion clear-
ance at the BBB/BCSFB, Qpggg/scsre represents the para-
cellular diffusion clearance at the BBB/BCSFB, and Qtggg,
BcsFe represents the transcellular diffusion clearance at the
BBB/BCSFB.

The paracellular diffusion clearance was calculated with
the aqueous diffusivity coefficient (Daq), Widthggg/scsra,
and SABBBp or SABCSFBp using Eq. 4.

Daq

Qpgas/scsra(mL/min) = X SAggp/Bcsray (4)

Widthgsg /acsrs

The transcellular diffusion clearance was calculated with
the transmembrane permeability and SAggg: Or SAgcsrat
using Eq. 5.

o1
OtBBB/BCSFB (mL/mm) :E * Py transcellular v SABBB?/BCSFBI (5)

where the factor 1/2 is the correction factor for passage
over two membranes instead of one membrane in the
transcellular passage.

Active transport across the brain barriers. To take into
account the net effect of the active transporters at the BBB
and BCSFB, AFs were added on Qtgggiecsrs (Egs. 6 and
7).

Qass/acsra_in(ML/min) = Qpgag,sesrs + Qtass/scses * AFin - (6)

QBBa/8CsFB_out _withoutrtF (ML/min) = Qpeag, sesrs + Qlass/acsrs * AFout

(7)

where Qpgs/seses in Fepresents the drug transport clearance
from brainyy to braingce/CSFs, and Qge/scsFe_out_withoutPHF
represents the drug transport clearance from braingcg/
CSFs to brainyy without taking into account the pH-
dependent kinetics (to be taken into account separately;
see below).

Cellular and subcellular distribution. Passive diffusion at the
BCM (Qgcm) and at the lysosomal membrane (Qoyso) was

CPT: Pharmacometrics & Systems Pharmacology

described with the transmembrane permeability together
with SAgcm or SA yso, respectively (Egs. 8 and 9).

QBCM ( mL /min) =P, transcellular xS, Ascu (8)

OLYSO(mL/min> — PO transcellular X SALYSO (9)

where Qgcm represents the passive diffusion clearance at
the BCM, and Q.yso represents the passive diffusion clear-
ance at the lysosomal membrane.

pH-dependent partitioning. We considered the differences
in pH in plasma (pH 7.4) and in relevant CNS compart-
ments, namely braingcg (PHecr 7.3), CSF (pHgse 7.3), brai-
nice (PHice 7.0), and lysosomes (pHyyso 5.0).'® The impact
of pH differences on the passive diffusion clearance from
braingcr to brainyy (PHF1), from CSF,y to brainy (PHF2),
from CSFtpy to brainyy (PHF3), from braingce to brainice
(PHF4), from brain,cg to braingcg (PHF5), from brain,cg to
lysosomes (PHF6), and from lysosomes to brain,ce (PHF7)
were described by pH-dependent factors, which were
defined as the ratio of the unionized fraction of each com-
pound at the pH in a particular compartment and the union-
ized fraction in plasma. The PHFs were calculated from the
pKa of each compound and the pH of a particular compart-
ment. The equations are developed using the classical
Henderson-Hasselbalch equation,’®?° and are based on
the assumption that there is no active transport.

10°PKa 7444

PHFbasg1 :PHFbase4: W

(10)
10°PKa 74 44

PHFyzs62=PHFpase 3= 107K PP 4 q

(11)
10pKa—7.4 +1

PHFpase5=PHF 256 = W

(12)
1 OpKa*7.4 +1

PHFbaseT= 10PKa—PHvso 4 4

(13)
107477 41

PHF acig1=PHFzcig4 = 71 OPHECF*PK5+1

(14)
107477 41

PHFacidQZPHFacidsz 710PHCSF*PK3+1

(15)
10747PKa 41

PHFaC,'ds:PHFacjd6: W

(16)
10747PKa 44

PHFacid7 = 71 OPHLvso—PKa 1

(17)

where PHFp.se1-7 are PHF1-7 for basic compounds,
PHF,.iq1-7 are PHF1-7 for acidic compounds, and 7.4 is
the pH in the plasma compartment.

The impact of pH differences on the drug distribution
among braingcg CSF, braincg and lysosomes was added
on Qgcm and Quyso using PHFs with the following
Egs. 18-24 based on the assumption that the transport
clearance is proportional to the unionized fraction of each
compound.


http://maxima.sourceforge.net

QBaa_out(ML/min) = Qagp_out_withouteHF X PHF1 (
Qscsrt_out (ML/Min) = Qpcsra_uitouterr X PHF2 (
Qscsrgz_out (ML/Min) = Qpcsra_uithouter X PHF3 (

Qeowm_in(mL/min) = Qgcy < PHF4 @
Qsem,,, (mL/min) = Qgey X PHFS (
Quyso_in(mL/min) =Qyyso X PHFB (
Quyso_out(mL/min) =QLyso X PHF7 (

where Qpggg out represents the drug transport clearance
from braingce to braingy, Qscsesi out epresents the drug
transport clearance from CSFy to brainyy, Qscsesz out rep-
resents the drug transport clearance from CSFrg, to
brainmy, Qscm_in represents the drug transport clearance
from braingcg to brainicg and Qgcm_out represents the drug
transport clearance from braincg to braingce The Qivso in
represents the drug transport clearance from brainicg to
lysosomes, and Qgcm out represents the drug transport
clearance from lysosomes to brain,cg

Drug binding. Drug binding to brain tissue components was
taken into account in the model using a binding factor (BF)
under the assumption that drug binding to the tissue hap-
pens instantly. The BF was calculated from Kp (total brain-
to-plasma concentration ratio) by solving the BF that results
in the same Kp value in the model, using the Maxima pro-
gram, as described above (Supplementary Material S1).
The Kp for each compound was calculated using the com-
pounds’ log P, the composition of brain tissue and plasma,
free fraction in plasma (fu,p) and free fraction in brain (fu,b)
with the following equation®":

Ko [10°97 X (Vnib+0.3 Viphb) +0.7 X Vphb+ Vb / fu, b] 5)
P [10°9P X (Vnlp+0.3 Viphp)| +0.7 Vphp+ Vwp /fu, p]

where Vnlb, Vphb, Vwb, Vnip, Vphp, and Vwp represent the
rat volume fractions of brain neutral lipids (0.0392), brain
phospholipids (0.0533), brain water (0.788), plasma neutral
lipids (0.00147), plasma phospholipids (0.00083), and
plasma water (0.96), respectively.??

In vivo data collection for model evaluation

In vivo data obtained from multiple brain locations were
used to evaluate the developed model.®232° An overview
of experimental design and data for 10 compounds with
substantially different physicochemical characteristics is
provided in Table 1.9232° All data were previously pub-
lished, except the remoxipride total brain tissue data. Gen-
eral animal surgery procedures, experimental protocol, and
bioanalytical methods for remoxipride total brain tissue data
are described in Supplementary Material S2, and experi-
mental protocol details for each drug are summarized in
Supplementary Table S1.

Evaluation of the PBPK model

The PBPK model performance was evaluated by the com-
parison of model predictions with the concentration-time
profiles in braingcr, CSF\, CSFcpm, and total brain tissue of

PBPK Model for Brain Target-Site Concentrations
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Table 1 Summary of rat multilevel brain and CSFs data for model evaluation

Remoxipride Risperidone

Atenolol Methotrexate Morphine Morphine Paliperidone Phenytoin Quinidine Raclopride = Remoxipride

Acetaminophen

Study design

16
2 (20)

65
0.7, 5.2, 14 (10)

29
4, 8, 16 (30)

19
0.56 (10)

41

10, 20 (10)

14
20, 30, 40 (10)

65 18 21
10,40 (10) 0.5 (20)

4, 10, 40 (10)

23
40, 80 (10)

No. of animals

10 (1)

(10

15

Dosage, mg/kg
(infusion

time, min)

Data

Plasma

Braingcr
CSFy

CSFcm
Total brain tissue

X (new data)
9 (except total

X (new data)

30 (except total

28

27

26

23

25

24

References

769

brain
tissue data)

brain
tissue data)

Braingcr brain extracellular fluid compartment; CSFy, cerebrospinal fluid compartment in the lateral ventricle; CSFgy, cerebrospinal fluid compartment in the cisterna magna.
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10 compounds. We performed 200 simulations for each
compound, including random effect estimates for the
plasma PK model. Based on these, we calculated the pre-
diction error (PE) and symmetric mean absolute percentage
error (SMAPE), see Egs. 26 and 27.

Yoss.j— YrReDj
pe— _ Yossi—YereDj 2
(Yoss,j+ Yeren.j) /2 e
1 N
MAPE= > |PE|X1 21
S 3 |PE[x100 (27)

where Yogg j is the jth observation of the ith subject, Ypge.
p,j is the jth mean prediction of the ith subject, and N is the
number of observations.

RESULTS

Plasma PK model

The estimated parameters for the descriptive plasma PK
models were obtained with good precision and summarized
in Table 2. The models describe plasma concentration-time
profiles very well for all compounds except risperidone
(Supplementary Figure S1). For remoxipride, a small
underprediction was observed at later time points.

CNS PBPK model

The NONMEM model codes for the 10 compounds are pro-
vided in Supplementary Material S3-S13. The values of
the system-specific and drug-specific parameters are sum-
marized in Tables 3%~ and 4, respectively. The combined
system-specific and drug-specific parameters are summa-
rized in Table 5. Overall, the developed generic PBPK model
could adequately predict the rat data in braingcg CSFy,
CSFcn, and total brain tissue. Figure 2 shows the PE for
each compound and each CNS compartment. The PE for
risperidone braingcg and CSF¢y showed modest underpre-
diction. For the other drugs, the PEs were distributed within
two standard deviations and no specific trends were
observed across time, compounds, and CNS locations. The
SMAPEs for the model prediction in braingcg CSF.y,
CSFcum, and total brain tissue were 72%, 71%, 69%, and
91%, respectively, indicating that the model could predict
concentration-time profiles in these compartments with less
than twofold prediction error. The concentration-time plots of
individual predictions vs. observations across drugs and
dose levels are provided (Supplementary Figure S1).

Impact of cerebral blood flow

Cerebral blood flow (Qggg) is 1.2 mL/min.** Therefore, for
strong lipophilic compounds, for instance, quinidine, the
drug transport clearance from plasma to the braingcr (BBB
permeability) is limited by Qcgr because Qpggg in and
Qg _out Of quinidine were 9.1 and 5.1 mL/min, respectively
(Tables 3 and 5).

Impact of distinct paracellular and transcellular
pathways on total diffusion at the BBB, and BCSFB
(QeBB; QBCsFa1; and Qpcseaz)

The QBBB! QBCSFB1! and QBCSFBQ were determined by the
combination of paracellular and transcellular diffusion in the

CPT: Pharmacometrics & Systems Pharmacology

model. Even though the SAgggy, is very small compared to
the SAggg: (0.006: 99.8), paracellular diffusion had an
impact on the values of Qggg, Qgcsra1, and Qgcsea2 €spe-
cially for hydrophilic compounds. For instance, the values of
transcellular diffusion (Qtggg) and paracellular diffusion
(Qpes) for methotrexate, which is the most hydrophilic
compound in this study, were 0.000080 and 0.087 mL/min,
respectively (Table 5). Thus, the Qggg of methotrexate was
determined mainly by paracellular diffusion. For quinidine,
which is the most lipophilic compound in the study, the
Qgee Was mainly determined by CBF limited transcellular
diffusion (Qtggg and Qpggg were 7.6 and 0.10 mL/min,
respectively).

Rate limiting drug transport clearance for
intra-extracellular exchange (Qgcm_in and Qgcm_out)

The Qgcm in and Qgcm out Were higher than Qggg in and
Qgges_out for acetaminophen, paliperidone, phenytoin, quini-
dine, raclopride, remoxipride, and risperidone. The Qgcm_in
and Qgcm_out are lower than Qggg_in and Qggp_out for meth-
otrexate (Table 5). This suggests that the transport clear-
ance from brainyy, via braingcy to braincg is limited by
Qgss_in and Qggs out for acetaminophen, paliperidone, phe-
nytoin, quinidine, raclopride, remoxipride, and risperidone,
whereas it is limited by Qgcwm.in and Qgcm out fOr
methotrexate.

Surface area of BCSFB to determine the paracellular
and transcellular diffusion clearance around CSF,, and
CSFrry

In our model, we assumed that the SA of the BCSFB
around CSFLV (SABCSFB1) and CSFTFV (SABCSFBZ) are
equal in size (50% of the total SAgcses for each). The SA
is one of the key factors that determine the paracellular and
transcellular diffusion clearance across the BCSFB1 and
BCSFB2. However, the early-time predictions for CSFy for
acetaminophen, quinidine, and remoxipride indicate an
overprediction of the paracellular and transcellular diffusion
clearance (Figure 2 and Supplementary Figure S1), sug-
gesting that the SA of BCSFB1 is <50% of the total

SAscsrs-

Impact of active transporters to determine the extent of
drug exposure in the CNS compartments

Active transporters govern the extent of drug exposure in
the brain and CSFs. For most of the compounds, the
impact of active transporters among Kp,uu,braingcgy
Kp,uu,CSFy, and Kp,uu,CSF¢cy was assumed to be identi-
cal, except for methotrexate. Different Kp,uu,CSF.,
(0.0066) and Kp,uu,CSFcy (0.0024) were observed for
methotrexate, which were taken into account in the PBPK
model by asymmetry factors AFout2 and AFout3. The
extent of drug entry into the brain and CSF was predicted
well for all compounds, except for morphine at the 4 mg/kg
dose (Supplementary Figure S1).

DISCUSSION

The developed CNS PBPK model resulted in adequate pre-
dictions of concentration-time courses for 10 diverse drugs
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Table 3 System-specific parameters of the PBPK model

Description Parameter Value Reference
Volumes Brain Viot 1880 ul 30
Braingcr Vbraingcg 290 ul 31
Brain,cg Vbrain,cg 1440 pl 32
Total lysosome Vivso 18 ul Calculated?®
CSFLy VCSFy 50 pl 33,34
CSFrry VCSFrey 50 pl 33,34
CSFcm VCSFcm 17wl 35,36
CSFsas VCSFsas 180 ul 33,37
Brainyy Vv 60 pl 38
Flows Cerebral blood flow Qcer 1.2 mL/min 44
Braingcr flow Qecr 0.0002 mL/min 39
CSF flow Qcsr 0.0022 mL/min 31
Surface areas BBB SAgss 263 cm?® 40
BCSFB SAgcsrs 25 cm?2>d 41
Total BCM SAgcm 3000 cm? 42
Total lysosomal membrane SAivso 1440 cm? Calculated®
Width BBB Widthggg 0.3-0.5 um (0.5 was used in the model) 43

BBB, blood-brain barrier; BCM, brain cell membrane; BCSFB, blood-cerebrospinal barrier; CBF, cerebral blood flow; CM, cisterna magna; CSF, cerebrospinal
fluid; ECF, extracellular fluid; ICF, intracellular fluid; LV, lateral ventricle; LYSO, lysosome; MV, microvascular; SA, surface area; SAS, subarachnoid space; TFV,

third and fourth ventricle; TOT; total; V, volume.

@Based on the volume ratio of lysosomes to brain,cg (1:80).™

PA total of 99.8% of SAggg are used for transcellular diffusion, and 0.006% of SAggg are used for paracellular diffusion.
°A total of 99.8% of SAgcsrs are used for transcellular diffusion and 0.016% of SAgcsrs are used for paracellular diffusion.

9SAgcsre1 and SAgcsrez are assumed to be 12.5 cm? and 12.5 cm?, respectively.

°Based on the lysosome number per cell which was calculated using the total lysosomal volume and diameter of each lysosome (0.5-1.0 ym).""

in the braingcg, CSFLy, CSFcy, and total brain tissue with
less than twofold prediction error. In comparison, QSPR
studies that predict Kp,uu,braingcg of drugs have similar
prediction error magnitudes, even though only one parame-
ter was predicted.*® Therefore, the twofold prediction error
is considered to be a good result.

A small underprediction was observed in braingcg and
CSFgw for risperidone, and in braingcg for morphine at the
4 mg/kg dose. The underprediction of risperidone braingcg
and CSF¢y concentrations (Figure 2) likely results from dif-
ficulties in the plasma PK modeling of risperidone, which
leads to propagation of an error in the PBPK model. Ris-
peridone plasma PK data appeared to follow a two-
compartment PK model but data were insufficient to
describe this two-compartment kinetics. The small under-
prediction for morphine braingcg profiles at a dosage of
4 mg/kg might be related to a large interstudy variability for
morphine, because the predictions for morphine at the
other dosage groups could adequately capture the observa-
tions (Supplementary Figure S1 and Table S1).

This is the first time that the transcellular and paracellular
diffusion clearance at the BBB/BCSFB were addressed sep-
arately, by using the information of the intercellular space
and the effective pore size. As the contribution of these
pathways may depend on the condition of the barriers (i.e.,
in certain disease conditions the tight junctions may become
less tight), therefore, assessment of these system-specific
parameters is important. From the electron microscopic
cross-section picture of brain capillary,'® the intercellular
space was measured to be 0.03 pm, which is comparable to
the 0.02 pm width reported.*® Based on the relationship of
the pore size and TEER, which were obtained from in vitro

CPT: Pharmacometrics & Systems Pharmacology

studies,’® we assumed the effective pore size of the BBB

and BCSFB to be 0.0011 um and 0.0028 um, respectively.
The effective pore size derived for the rat BBB (0.0011 pum)
is within the range reported in literature (0.0007—0.0018
um).*647 Therefore, it is reasonable to assume that our esti-
mations for these system-specific parameter values are
appropriate. In this study, no compound with sole paracellu-
lar transport (such as mannitol) has been used, as no such
data were available in literature.

For the PBPK model, the drug-specific parameters were
obtained from in silico predictions using the compounds’
physicochemical properties, except for AF values. The AF
values were calculated using Kp,uu values, as obtained
from the previously published in vivo animal experiments.®
It should be noted that Kp,uu values can also be obtained
from several published QSPR models using the com-
pound’s physicochemical properties.>™

Unlike previously developed PBPK models for the CNS,?
our PBPK model contains a number of key relevant physio-
logical processes and compartments.

We discriminated between paracellular and transcellular
diffusion processes. The relative impact of the paracellular
diffusion on Qggg Or Qgcsrs for each compound varied
from around 100% (methotrexate) to 1.83% (quinidine). For
hydrophilic compounds, Qggg and Qgcsrs Were impacted
most by paracellular diffusion, whereas transcellular diffu-
sion largely determined the Qggg and Qgcsrs Of lipophilic
compounds. The separation of the two processes is
expected to be meaningful for the prediction of the CNS
drug concentrations in disease conditions, because patho-
physiological conditions may differently affect paracellular
and transcellular diffusion.
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Figure 2 Prediction accuracy of the physiologically based pharmacokinetic (PBPK) model. The plots were stratified by the central ner-
vous system (CNS) compartments (panels). (a) Selected individual observed drug concentrations (dots) and 95% prediction interval
(red lines). (b) Box-whisker plots for the prediction errors (PEs) across all 10 drugs evaluated. Blue dots are PEs for each observation.

We also demonstrated the relevance of considering CBF-
limited kinetics on the drug transfer at the BBB. For the
lipophilic compounds, Qggg_in and Qggg out are higher than
Qcpr indicating that the drug transfer clearance on the
BBB is largely determined by Qcgr

The importance of the separation between braingcg and
brainicg  compartments was shown. The Qgcmin and
Qgcm out Were either higher or lower than Qggg in and
Qgss_out, depending on the molecular weight, the log P, and
the pKa of the compound, which led to differences in drug
distribution into brain,cg from brainy.

We identified differences in methotrexate drug concen-
tration in CSF., and CSFcw.2® Therefore, it is expected
that the expression level (function) of some of the active
transporters may be different between the BCSFB around
CSF.y and CSFyry. Methotrexate is known to be a sub-
strate of various transporters, such as RFC1, MRP,
BCRP, OATP, and OAT transporters,®® even though there
is no detailed information about their exact location.
Therefore, we incorporated this in our model by including
Qgcsre1 and  Qgcsree to  describe  transport  for
methotrexate.
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All of the parameters for our CNS PBPK model can be
derived from either literature or in silico predictions. There-
fore, the model can be used to assess newly developed
CNS drugs without in vivo data and contributes to the
“refinement, reduction, and replacement” of animals in drug
research. Although the reported values of the system-
specific parameters for humans are sparse and variable,?
theoretically, the model can be scaled to humans by replac-
ing the system-specific parameters to predict target-site
concentrations in the human brain, representing an impor-
tant tool for translational development of new CNS drugs.
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