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ORIGINAL ARTICLE

Predicting Drug Concentration-Time Profiles in Multiple
CNS Compartments Using a Comprehensive
Physiologically-Based Pharmacokinetic Model

Yumi Yamamoto1, Pyry A. V€alitalo1, Dymphy R. Huntjens2, Johannes H. Proost3, An Vermeulen2, Walter Krauwinkel4,
Margot W. Beukers5, Dirk-Jan van den Berg1, Robin Hartman1, Yin Cheong Wong 1, Meindert Danhof1,
John G. C. van Hasselt1 and Elizabeth C. M. de Lange1*

Drug development targeting the central nervous system (CNS) is challenging due to poor predictability of drug concentrations
in various CNS compartments. We developed a generic physiologically based pharmacokinetic (PBPK) model for prediction of
drug concentrations in physiologically relevant CNS compartments. System-specific and drug-specific model parameters
were derived from literature and in silico predictions. The model was validated using detailed concentration-time profiles from
10 drugs in rat plasma, brain extracellular fluid, 2 cerebrospinal fluid sites, and total brain tissue. These drugs, all small
molecules, were selected to cover a wide range of physicochemical properties. The concentration-time profiles for these
drugs were adequately predicted across the CNS compartments (symmetric mean absolute percentage error for the model
prediction was <91%). In conclusion, the developed PBPK model can be used to predict temporal concentration profiles of
drugs in multiple relevant CNS compartments, which we consider valuable information for efficient CNS drug development.
CPT Pharmacometrics Syst. Pharmacol. (2017) 6, 765–777; doi:10.1002/psp4.12250; published online 11 September 2017.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� Lack of knowledge of the target-site concentrations

in the CNS is a major hurdle in the development of new

CNS drugs.
WHAT QUESTION DID THIS STUDY ADDRESS?
� A generic PBPK model in the rat CNS was proposed.
WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� The developed PBPK model was able to predict

time-dependent concentration profiles of many drugs

with distinctively different physicochemical properties in
multiple physiologically relevant compartments in the
CNS.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� The developed model structure can be used to pre-
dict concentration-time profiles in rats and offers a sci-
entific basis for the development of CNS drugs, in
principle, without the need of using animals.

The development of drugs targeting diseases of the central

nervous system (CNS) represents one of the most signifi-

cant challenges in the research of new medicines.1 Charac-

terization of exposure-response relationships at the drug

target site may be of critical importance to reduce attrition.

However, unlike for many other drugs, prediction of target-

site concentrations for CNS drugs is complex, among other

factors, due to the presence of the blood-brain barrier

(BBB) and the blood-cerebrospinal fluid barrier (BCSFB).

Moreover, direct measurement of human brain concentra-

tions is highly restricted for ethical reasons. Therefore, new

approaches that can robustly predict human brain concen-

trations of novel drug candidates based on in vitro and in

silico studies are of great importance.

Several pharmacokinetic (PK) models to predict CNS

exposure have been published with different levels of com-

plexity.2 The majority of these models depend on animal

data. Furthermore, these models have typically not been

validated against human CNS drug concentrations.2 We

previously published a general multicompartmental CNS

PK model structure, which was developed using PK data

obtained from rats.
Quantitative structure-property relationship (QSPR)

models can be used to predict drug BBB permeability and

Kp,uu,brainECF (unbound brain extracellular fluid-to-plasma

concentration ratio)3–5 without performing novel experi-

ments, but these QSPR models have not taken into

account the time course of CNS distribution. Therefore,

there exists an unmet need for approaches to predict drug
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target-site concentration-time profiles without the need of in
vivo animal experiments.

Physiologically based pharmacokinetic (PBPK) modeling
represents a promising approach for the prediction of CNS
drug concentrations. Previously, such models have been
widely used to predict tissue concentrations.6 The PBPK
models typically distinguish between drug-specific and
system-specific parameters, therefore, enabling predictions
across drugs and species. However, PBPK models for the
CNS have been of limited utility due to a lack of relevant
physiological details for mechanism of transport across the
BBB and BCSFB, and for drug distribution within the CNS.2

Capturing the physiological compartments, flows, and
transport processes in a CNS PBPK model is critically
important to predict PK profiles in the CNS. The CNS com-
prises of multiple key physiological compartments,2 includ-
ing brain extracellular fluid (brainECF), brain intracellular
fluid (brainICF), and multiple cerebrospinal fluid (CSF) com-
partments. The brainECF and brainICF compartments are
considered highly relevant target sites for CNS drugs,
whereas CSF compartments are often used to measure
CNS-associated drug concentrations, if brainECF and brai-
nICF information cannot be obtained. Furthermore, cerebral
blood flow (CBF) and physiological flows within the CNS,
such as the brainECF flow and CSF flows, influence drug
distribution across CNS compartments. Next to binding to
protein and lipids, pH-dependent distribution in subcellular
compartments, such as trapping of basic compounds in
lysosomes, needs to be considered. With regard to the
transfer processes across the BBB and BCSFB, passive
diffusion via the paracellular and transcellular pathways and
active transport by influx and/or efflux transporters need to
be addressed.

At both BBB and BCSFB barriers, the cells are intercon-
nected by tight junctions, which limit drug exchange via the
paracellular pathway.7 Paracellular and transcellular diffu-
sion depend on the aqueous diffusivity coefficient and
membrane permeability of the compound, which can be
related to the physicochemical properties. The combination
of these transport routes may differ between individual
drugs, which complicate the prediction of plasma-brain
transport.

System-specific information on physiological parameters
can be used in scaling between species. Many of these
system-specific parameters can or have been obtained
from in vitro and in vivo experiments. Drug-specific parame-
ters can be derived by in vitro and QSPR approaches, and
can be used for the scaling between drugs. A comprehen-
sive CNS PBPK model can integrate system-specific and
drug-specific parameters to potentially enable the prediction
of the brain distribution of drugs without the need to con-
duct in vivo animal studies.

The purpose of the current work is to develop a compre-
hensive PBPK model to predict drug concentration-time
profiles in the multiple physiologically relevant compart-
ments in the CNS, based on system-specific and drug-
specific parameters without the need to generate in vivo
data. We specifically consider the prediction of PK profiles
in the CNS during pathological conditions, which may have
distinct effects on paracellular diffusion, transcellular

diffusion, and active transport. Therefore, we include a
range of such transport mechanisms in our CNS PBPK
model. This model is evaluated using previously published
detailed multilevel brain and CSF concentration-time data
for 10 drugs with highly diverse physicochemical properties.

MATERIALS AND METHODS

We first empirically modeled plasma PK using available
plasma PK data, which was used as the basis for the CNS
PBPK model. This CNS model was based entirely on
parameters derived from literature and in silico predictions.
Model development was performed using NONMEM ver-
sion 7.3.

Empirical plasma PK model
Plasma PK models were systematically developed using in
vivo data with a mixed-effects modeling approach. One,
two, and three-compartment models were evaluated. Inter-
individual variability and interstudy variability were incorpo-
rated on each PK parameter using exponential models.
Proportional and combined additive-proportional residual
error models were considered. Model selection was guided
by the likelihood ratio test (P<0.05), precision of the
parameter estimates, and standard goodness of fit plots.8

CNS PBPK model development
A generic PBPK model structure was developed based on
the previously published generic multicompartmental CNS
distribution model (Figure 1),9 which consists of plasma,
brainECF, brainICF, CSF in the lateral ventricle (CSFLV), CSF
in the third and fourth ventricle (CSFTFV), CSF in the cis-
terna magna (CSFCM), and CSF in the subarachnoid space
(CSFSAS) compartments. We added new components:
(1) an acidic subcellular compartment representing lyso-
somes to account for pH-dependent drug distribution; (2) a
brain microvascular compartment (brainMV) to account for
CBF vs. permeability rate-limited kinetics; and (3) separa-
tion of passive diffusion at the BBB and BCSFB into its
transcellular and paracellular components.

System-specific parameters
Physiological values of the distribution volumes of all the
CNS compartments, flows, surface area (SA) of the BBB
(SABBB), SA of the BCSFB (SABCSFB), SA of the total brain
cell membrane (BCM; SABCM), and the width of BBB
(WidthBBB) were collected from literature. The SABCFSB was
divided into SABCSFB1, which is a surface area around
CSFLV, and SABCSFB2, which is a surface area around
CSFTFV. The lysosomal volume was calculated based on the
volume ratio of lysosomes to brain intracellular fluid of brain
parenchyma cells (1:80),10 and the SA of the lysosome (SAL-

YSO) is calculated by obtaining the lysosome number per cell
using the lysosomal volume and the diameter of each lyso-
some.11 Transcellular and paracellular diffusion were sepa-
rately incorporated into the models, therefore, the ratio of
SABBB and SABCSFB for transcellular diffusion and paracellu-
lar diffusion were required for the calculation. Based on elec-
tron microscopic cross-section pictures of brain capillary, the
length of a single brain microvascular endothelial cell was
estimated to be around 17 mm and the length of the
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intercellular space was estimated to be around 0.03 mm.12

The presence of tight junctions in the intercellular space of
the BBB and BCSFB significantly reduces paracellular trans-
port.7 Therefore, correcting for the effective pore size for par-
acellular diffusion is important. The transendothelial electrical
resistance (TEER) is reported to be around 1,800 X cm2 at
the rat BBB,13 whereas the TEER is around 20–30 X cm2 at
the rat BCSFB.14 According to a study on the relationship
between TEER and the pore size,15 the pore size at the
BBB and BCSFB can be assumed to be around 0.0011 mm
and 0.0028 mm, respectively. Thus, it was expected that
99.8% of total SABBB and 99.8% of total SABCSFB is used for
the transcellular diffusion (SABBBt and SABCSFBt, respec-
tively), whereas 0.006% of total SABBB and 0.016% of total
SABCSFB are used for paracellular diffusion (SABBBp and
SABCSFBp, respectively). Note that, due to the presence of
tight junction proteins, not all intercellular space can be used
for paracellular diffusion.

Drug-specific parameters
Aqueous diffusivity coefficient. The aqueous diffusivity coef-

ficient was calculated using the molecular weight of each

compound with the following equation16:

log Daq524:11320:46093log MW (1)

where Daq is the aqueous diffusivity coefficient (in cm2/s)

and MW is the molecular weight (in g/mol).

Permeability. Transmembrane permeability was calculated

using the log P of each compound with the following

equation17:

log P0
transcellular 50:9393log P26:210 (2)

where P transcellular
0 is the transmembrane permeability (in

cm/s), log P is the n-octanol lipophilicity value.

Active transport. The impact of the net effect of active

transporters on the drug exchange at the BBB and BCSFB

was incorporated into the model using asymmetry factors

(AFin1–3 and AFout1–3). The AFs were calculated from

Kp,uu,brainECF, Kp,uu,CSFLV (unbound CSFLV-to-plasma

concentration ratio) and Kp,uu,CSFCM (unbound CSFCM-to-

plasma concentration ratio), such that they produced the

same Kp,uu values within the PBPK model at the steady-

state. Therefore, the AFs were dependent on both the

Kp,uu values and the structure and parameters of the

PBPK model. If the Kp,uu values were larger than 1 (i.e.,

net active influx), then AFin1, AFin2, and AFin3 were

derived from Kp,uu,brainECF, Kp,uu,CSFLV, and

Kp,uu,CSFCM, respectively, whereas AFout1–3 were fixed

to 1. If the Kp,uu values were smaller than 1 (i.e., net active

efflux), then AFout1, AFout2, and AFout3 were derived

from Kp,uu,brainECF, Kp,uu,CSFLV, and Kp,uu,CSFCM,

respectively, whereas AFin1–3 were fixed to 1. In the

Figure 1 The developed model structure. The model consists of a plasma pharmacokinetic (PK) model and a central nervous system
(CNS) physiologically based pharmacokinetic (PBPK) model with estimated plasma PK parameters, and system-specific and drug-
specific parameters (colors) for CNS. Peripheral compartments 1 and 2 were used in cases where the plasma PK model required them
to describe the plasma data adequately. AFin1–3, asymmetry factor into the CNS compartments 1–3; AFout1–3, asymmetry factor out
from the CNS compartments 1–3; BBB, blood-brain barrier; BCSFB, blood-cerebrospinal fluid barrier; BF, binding factor; brainECF, brain
extracellular fluid; brainICF, brain intracellular fluid; brainMV, brain microvascular; CSFCM, cerebrospinal fluid in the cisterna magna;
CSFLV, cerebrospinal fluid in the lateral ventricle; CSFSAS, cerebrospinal fluid in the subarachnoid space; CSFTFV, cerebrospinal fluid in
the third and fourth ventricle; PHF1–7, pH-dependent factor 1–7; QBCM, passive diffusion clearance at the brain cell membrane; QCBF,
cerebral blood flow; QCSF, cerebrospinal fluid flow; QECF, brainECF flow; QLYSO, passive diffusion clearance at the lysosomal membrane;
QpBBB, paracellular diffusion clearance at the BBB; QpBCSFB1, paracellular diffusion clearance at the BCSFB1; QpBCSFB2, paracellular
diffusion clearance at the BCSFB2; QtBBB, transcellular diffusion clearance at the BBB; QtBCSFB1, transcellular diffusion clearance at
the BCSFB1; QtBCSFB2, transcellular diffusion clearance at the BCSFB2.

PBPK Model for Brain Target-Site Concentrations
Yamamoto et al.

767

www.psp-journal.com



analysis, Kp,uu,brainECF, Kp,uu,CSFLV, and Kp,uu,CSFCM

were derived from previous in vivo animal experiments.9

The steady-state differential equations in the PBPK model

were solved using the Maxima Computer Algebra System

(http://maxima.sourceforge.net) to obtain algebraic solutions

for calculating AFs from the Kp,uu values. The detailed

algebraic solutions for each AF are provided in Supple-

mentary Material S1.

Combined system-specific and drug-specific

parameters
Passive diffusion across the brain barriers. Passive diffu-

sion clearance at the BBB and BCSFB (QBBB and QBCSFB,

respectively) was obtained from a combination of paracellu-

lar and transcellular diffusion, Qp and Qt, respectively

(Eq. 3).

QBBB=BCSFB mL=minð Þ5QpBBB=BCSFB1QtBBB=BCSFB (3)

where QBBB/BCSFB represents the passive diffusion clear-

ance at the BBB/BCSFB, QpBBB/BCSFB represents the para-

cellular diffusion clearance at the BBB/BCSFB, and QtBBB/

BCSFB represents the transcellular diffusion clearance at the

BBB/BCSFB.
The paracellular diffusion clearance was calculated with

the aqueous diffusivity coefficient (Daq), WidthBBB/BCSFB,

and SABBBp or SABCSFBp using Eq. 4.

QpBBB=BCSFB mL=minð Þ5 Daq
WidthBBB=BCSFB

3SABBBp=BCSFBp (4)

The transcellular diffusion clearance was calculated with

the transmembrane permeability and SABBBt or SABCSFBt

using Eq. 5.

QtBBB=BCSFB mL=minð Þ51
2
� P0

transcellular 3SABBBt=BCSFBt (5)

where the factor 1/2 is the correction factor for passage

over two membranes instead of one membrane in the

transcellular passage.

Active transport across the brain barriers. To take into

account the net effect of the active transporters at the BBB

and BCSFB, AFs were added on QtBBB/BCSFB (Eqs. 6 and

7).

QBBB=BCSFB in mL=minð Þ5QpBBB=BCSFB1QtBBB=BCSFB � AFin (6)

QBBB=BCSFB out withoutPHF mL=minð Þ5QpBBB=BCSFB1QtBBB=BCSFB � AFout

(7)

where QBBB/BCSFB_in represents the drug transport clearance

from brainMV to brainECF/CSFs, and QBBB/BCSFB_out_withoutPHF

represents the drug transport clearance from brainECF/

CSFs to brainMV without taking into account the pH-

dependent kinetics (to be taken into account separately;

see below).

Cellular and subcellular distribution. Passive diffusion at the

BCM (QBCM) and at the lysosomal membrane (QLYSO) was

described with the transmembrane permeability together

with SABCM or SALYSO, respectively (Eqs. 8 and 9).

QBCM mL=minð Þ5P0
transcellular 3SABCM (8)

QLYSO mL=minð Þ5P0
transcellular 3SALYSO (9)

where QBCM represents the passive diffusion clearance at

the BCM, and QLYSO represents the passive diffusion clear-

ance at the lysosomal membrane.

pH-dependent partitioning. We considered the differences

in pH in plasma (pH 7.4) and in relevant CNS compart-

ments, namely brainECF (pHECF 7.3), CSF (pHCSF 7.3), brai-

nICF (pHICF 7.0), and lysosomes (pHlyso 5.0).18 The impact

of pH differences on the passive diffusion clearance from

brainECF to brainMV (PHF1), from CSFLV to brainMV (PHF2),

from CSFTFV to brainMV (PHF3), from brainECF to brainICF

(PHF4), from brainICF to brainECF (PHF5), from brainICF to

lysosomes (PHF6), and from lysosomes to brainICF (PHF7)

were described by pH-dependent factors, which were

defined as the ratio of the unionized fraction of each com-

pound at the pH in a particular compartment and the union-

ized fraction in plasma. The PHFs were calculated from the

pKa of each compound and the pH of a particular compart-

ment. The equations are developed using the classical

Henderson-Hasselbalch equation,19,20 and are based on

the assumption that there is no active transport.

PHFbase15PHFbase45
10pKa27:411

10pKa2pHECF 11
(10)

PHFbase25PHFbase35
10pKa27:411

10pKa2pHCSF 11
(11)

PHFbase55PHFbase65
10pKa27:411

10pKa2pHICF 11
(12)

PHFbase75
10pKa27:411

10pKa2pHLYSO 11
(13)

PHFacid 15PHFacid 45
107:42pKa11

10pHECF 2pKa11
(14)

PHFacid 25PHFacid 35
107:42pKa11

10pHCSF 2pKa11
(15)

PHFacid 55PHFacid 65
107:42pKa11

10pHICF 2pKa11
(16)

PHFacid 75
107:42pKa11

10pHLYSO 2pKa11
(17)

where PHFbase1-7 are PHF1-7 for basic compounds,

PHFacid1-7 are PHF1-7 for acidic compounds, and 7.4 is

the pH in the plasma compartment.
The impact of pH differences on the drug distribution

among brainECF, CSF, brainICF, and lysosomes was added

on QBCM and QLYSO using PHFs with the following

Eqs. 18–24 based on the assumption that the transport

clearance is proportional to the unionized fraction of each

compound.
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QBBB out mL=minð Þ5QBBB out withoutPHF 3PHF1 (18)

QBCSFB1 out mL=minð Þ5QBCSFB withoutPHF 3PHF2 (19)

QBCSFB2 out mL=minð Þ5QBCSFB withoutPHF 3PHF3 (20)

QBCM in mL=minð Þ5QBCM3PHF4 (21)

QBCMout mL=minð Þ5QBCM3PHF5 (22)

QLYSO in mL=minð Þ5QLYSO3PHF6 (23)

QLYSO out mL=minð Þ5QLYSO3PHF7 (24)

where QBBB_out represents the drug transport clearance

from brainECF to brainMV, QBCSFB1_out represents the drug

transport clearance from CSFLV to brainMV, QBCSFB2_out rep-

resents the drug transport clearance from CSFTFV to

brainMV, QBCM_in represents the drug transport clearance

from brainECF to brainICF, and QBCM_out represents the drug

transport clearance from brainICF to brainECF. The QLYSO_in

represents the drug transport clearance from brainICF to

lysosomes, and QBCM_out represents the drug transport

clearance from lysosomes to brainICF.

Drug binding. Drug binding to brain tissue components was

taken into account in the model using a binding factor (BF)

under the assumption that drug binding to the tissue hap-

pens instantly. The BF was calculated from Kp (total brain-

to-plasma concentration ratio) by solving the BF that results

in the same Kp value in the model, using the Maxima pro-

gram, as described above (Supplementary Material S1).

The Kp for each compound was calculated using the com-

pounds’ log P, the composition of brain tissue and plasma,

free fraction in plasma (fu,p) and free fraction in brain (fu,b)

with the following equation21:

Kp5
10log P3 Vnlb10:33Vphbð Þ10:73Vphb1Vwb=fu; b
� �

10log P3 Vnlp10:33Vphpð Þ
� �

10:73Vphp1Vwp=fu; p�
(25)

where Vnlb, Vphb, Vwb, Vnlp, Vphp, and Vwp represent the

rat volume fractions of brain neutral lipids (0.0392), brain

phospholipids (0.0533), brain water (0.788), plasma neutral

lipids (0.00147), plasma phospholipids (0.00083), and

plasma water (0.96), respectively.22

In vivo data collection for model evaluation
In vivo data obtained from multiple brain locations were

used to evaluate the developed model.9,23–29 An overview

of experimental design and data for 10 compounds with

substantially different physicochemical characteristics is

provided in Table 1.9,23–29 All data were previously pub-

lished, except the remoxipride total brain tissue data. Gen-

eral animal surgery procedures, experimental protocol, and

bioanalytical methods for remoxipride total brain tissue data

are described in Supplementary Material S2, and experi-

mental protocol details for each drug are summarized in

Supplementary Table S1.

Evaluation of the PBPK model
The PBPK model performance was evaluated by the com-

parison of model predictions with the concentration-time

profiles in brainECF, CSFLV, CSFCM, and total brain tissue of T
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10 compounds. We performed 200 simulations for each
compound, including random effect estimates for the
plasma PK model. Based on these, we calculated the pre-
diction error (PE) and symmetric mean absolute percentage
error (SMAPE), see Eqs. 26 and 27.

PE5
YOBS;ij 2YPRED;ij

YOBS;ij 1YPRED;ij
� �

=2
(26)

SMAPE5
1
N

XN

k51

jPEj3100 (27)

where YOBS,ij is the jth observation of the ith subject, YPRE-

D,ij is the jth mean prediction of the ith subject, and N is the

number of observations.

RESULTS
Plasma PK model
The estimated parameters for the descriptive plasma PK

models were obtained with good precision and summarized

in Table 2. The models describe plasma concentration-time
profiles very well for all compounds except risperidone

(Supplementary Figure S1). For remoxipride, a small

underprediction was observed at later time points.

CNS PBPK model
The NONMEM model codes for the 10 compounds are pro-
vided in Supplementary Material S3–S13. The values of

the system-specific and drug-specific parameters are sum-

marized in Tables 330–44 and 4, respectively. The combined

system-specific and drug-specific parameters are summa-
rized in Table 5. Overall, the developed generic PBPK model

could adequately predict the rat data in brainECF, CSFLV,

CSFCM, and total brain tissue. Figure 2 shows the PE for
each compound and each CNS compartment. The PE for

risperidone brainECF and CSFCM showed modest underpre-

diction. For the other drugs, the PEs were distributed within

two standard deviations and no specific trends were
observed across time, compounds, and CNS locations. The

SMAPEs for the model prediction in brainECF, CSFLV,

CSFCM, and total brain tissue were 72%, 71%, 69%, and

91%, respectively, indicating that the model could predict
concentration-time profiles in these compartments with less

than twofold prediction error. The concentration-time plots of

individual predictions vs. observations across drugs and
dose levels are provided (Supplementary Figure S1).

Impact of cerebral blood flow
Cerebral blood flow (QCBF) is 1.2 mL/min.44 Therefore, for

strong lipophilic compounds, for instance, quinidine, the

drug transport clearance from plasma to the brainECF (BBB

permeability) is limited by QCBF because QBBB_in and
QBBB_out of quinidine were 9.1 and 5.1 mL/min, respectively

(Tables 3 and 5).

Impact of distinct paracellular and transcellular

pathways on total diffusion at the BBB, and BCSFB
(QBBB, QBCSFB1, and QBCSFB2)
The QBBB, QBCSFB1, and QBCSFB2 were determined by the

combination of paracellular and transcellular diffusion in the

model. Even though the SABBBp is very small compared to

the SABBBt (0.006: 99.8), paracellular diffusion had an

impact on the values of QBBB, QBCSFB1, and QBCSFB2 espe-

cially for hydrophilic compounds. For instance, the values of

transcellular diffusion (QtBBB) and paracellular diffusion

(QpBBB) for methotrexate, which is the most hydrophilic

compound in this study, were 0.000080 and 0.087 mL/min,

respectively (Table 5). Thus, the QBBB of methotrexate was

determined mainly by paracellular diffusion. For quinidine,

which is the most lipophilic compound in the study, the

QBBB was mainly determined by CBF limited transcellular

diffusion (QtBBB and QpBBB were 7.6 and 0.10 mL/min,

respectively).

Rate limiting drug transport clearance for

intra-extracellular exchange (QBCM_in and QBCM_out)
The QBCM_in and QBCM_out were higher than QBBB_in and

QBBB_out for acetaminophen, paliperidone, phenytoin, quini-

dine, raclopride, remoxipride, and risperidone. The QBCM_in

and QBCM_out are lower than QBBB_in and QBBB_out for meth-

otrexate (Table 5). This suggests that the transport clear-

ance from brainMV, via brainECF, to brainICF is limited by

QBBB_in and QBBB_out for acetaminophen, paliperidone, phe-

nytoin, quinidine, raclopride, remoxipride, and risperidone,

whereas it is limited by QBCM_in and QBCM_out for

methotrexate.

Surface area of BCSFB to determine the paracellular

and transcellular diffusion clearance around CSFLV and

CSFTFV

In our model, we assumed that the SA of the BCSFB

around CSFLV (SABCSFB1) and CSFTFV (SABCSFB2) are

equal in size (50% of the total SABCSFB for each). The SA

is one of the key factors that determine the paracellular and

transcellular diffusion clearance across the BCSFB1 and

BCSFB2. However, the early-time predictions for CSFLV for

acetaminophen, quinidine, and remoxipride indicate an

overprediction of the paracellular and transcellular diffusion

clearance (Figure 2 and Supplementary Figure S1), sug-

gesting that the SA of BCSFB1 is <50% of the total

SABCSFB.

Impact of active transporters to determine the extent of

drug exposure in the CNS compartments
Active transporters govern the extent of drug exposure in

the brain and CSFs. For most of the compounds, the

impact of active transporters among Kp,uu,brainECF,

Kp,uu,CSFLV, and Kp,uu,CSFCM was assumed to be identi-

cal, except for methotrexate. Different Kp,uu,CSFLV

(0.0066) and Kp,uu,CSFCM (0.0024) were observed for

methotrexate, which were taken into account in the PBPK

model by asymmetry factors AFout2 and AFout3. The

extent of drug entry into the brain and CSF was predicted

well for all compounds, except for morphine at the 4 mg/kg

dose (Supplementary Figure S1).

DISCUSSION

The developed CNS PBPK model resulted in adequate pre-

dictions of concentration-time courses for 10 diverse drugs

PBPK Model for Brain Target-Site Concentrations
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in the brainECF, CSFLV, CSFCM, and total brain tissue with
less than twofold prediction error. In comparison, QSPR
studies that predict Kp,uu,brainECF of drugs have similar
prediction error magnitudes, even though only one parame-
ter was predicted.4,5 Therefore, the twofold prediction error
is considered to be a good result.

A small underprediction was observed in brainECF and
CSFCM for risperidone, and in brainECF for morphine at the
4 mg/kg dose. The underprediction of risperidone brainECF

and CSFCM concentrations (Figure 2) likely results from dif-
ficulties in the plasma PK modeling of risperidone, which
leads to propagation of an error in the PBPK model. Ris-
peridone plasma PK data appeared to follow a two-
compartment PK model but data were insufficient to
describe this two-compartment kinetics. The small under-
prediction for morphine brainECF profiles at a dosage of
4 mg/kg might be related to a large interstudy variability for
morphine, because the predictions for morphine at the
other dosage groups could adequately capture the observa-
tions (Supplementary Figure S1 and Table S1).

This is the first time that the transcellular and paracellular
diffusion clearance at the BBB/BCSFB were addressed sep-
arately, by using the information of the intercellular space
and the effective pore size. As the contribution of these
pathways may depend on the condition of the barriers (i.e.,
in certain disease conditions the tight junctions may become
less tight), therefore, assessment of these system-specific
parameters is important. From the electron microscopic
cross-section picture of brain capillary,12 the intercellular
space was measured to be 0.03 mm, which is comparable to
the 0.02 mm width reported.45 Based on the relationship of
the pore size and TEER, which were obtained from in vitro

studies,15 we assumed the effective pore size of the BBB
and BCSFB to be 0.0011 mm and 0.0028 mm, respectively.
The effective pore size derived for the rat BBB (0.0011 mm)
is within the range reported in literature (0.0007–0.0018
mm).46,47 Therefore, it is reasonable to assume that our esti-
mations for these system-specific parameter values are
appropriate. In this study, no compound with sole paracellu-
lar transport (such as mannitol) has been used, as no such
data were available in literature.

For the PBPK model, the drug-specific parameters were
obtained from in silico predictions using the compounds’
physicochemical properties, except for AF values. The AF
values were calculated using Kp,uu values, as obtained
from the previously published in vivo animal experiments.9

It should be noted that Kp,uu values can also be obtained
from several published QSPR models using the com-
pound’s physicochemical properties.3–5

Unlike previously developed PBPK models for the CNS,2

our PBPK model contains a number of key relevant physio-
logical processes and compartments.

We discriminated between paracellular and transcellular
diffusion processes. The relative impact of the paracellular
diffusion on QBBB or QBCSFB for each compound varied
from around 100% (methotrexate) to 1.3% (quinidine). For
hydrophilic compounds, QBBB and QBCSFB were impacted
most by paracellular diffusion, whereas transcellular diffu-
sion largely determined the QBBB and QBCSFB of lipophilic
compounds. The separation of the two processes is
expected to be meaningful for the prediction of the CNS
drug concentrations in disease conditions, because patho-
physiological conditions may differently affect paracellular
and transcellular diffusion.

Table 3 System-specific parameters of the PBPK model

Description Parameter Value Reference

Volumes Brain Vtot 1880 ml 30

BrainECF VbrainECF 290 ml 31

BrainICF VbrainICF 1440 ml 32

Total lysosome VLYSO 18 ml Calculateda

CSFLV VCSFLV 50 ml 33,34

CSFTFV VCSFTFV 50 ml 33,34

CSFCM VCSFCM 17 ml 35,36

CSFSAS VCSFSAS 180 ml 33,37

BrainMV VMV 60 ml 38

Flows Cerebral blood flow QCBF 1.2 mL/min 44

BrainECF flow QECF 0.0002 mL/min 39

CSF flow QCSF 0.0022 mL/min 31

Surface areas BBB SABBB 263 cm2b 40

BCSFB SABCSFB 25 cm2c,d 41

Total BCM SABCM 3000 cm2 42

Total lysosomal membrane SALYSO 1440 cm2 Calculatede

Width BBB WidthBBB 0.3–0.5 mm (0.5 was used in the model) 43

BBB, blood-brain barrier; BCM, brain cell membrane; BCSFB, blood-cerebrospinal barrier; CBF, cerebral blood flow; CM, cisterna magna; CSF, cerebrospinal

fluid; ECF, extracellular fluid; ICF, intracellular fluid; LV, lateral ventricle; LYSO, lysosome; MV, microvascular; SA, surface area; SAS, subarachnoid space; TFV,

third and fourth ventricle; TOT; total; V, volume.
aBased on the volume ratio of lysosomes to brainICF (1:80).10

bA total of 99.8% of SABBB are used for transcellular diffusion, and 0.006% of SABBB are used for paracellular diffusion.
cA total of 99.8% of SABCSFB are used for transcellular diffusion and 0.016% of SABCSFB are used for paracellular diffusion.
dSABCSFB1 and SABCSFB2 are assumed to be 12.5 cm2 and 12.5 cm2, respectively.
eBased on the lysosome number per cell which was calculated using the total lysosomal volume and diameter of each lysosome (0.5–1.0 mm).11
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We also demonstrated the relevance of considering CBF-

limited kinetics on the drug transfer at the BBB. For the

lipophilic compounds, QBBB_in and QBBB_out are higher than

QCBF, indicating that the drug transfer clearance on the

BBB is largely determined by QCBF.
The importance of the separation between brainECF and

brainICF compartments was shown. The QBCM_in and

QBCM_out were either higher or lower than QBBB_in and

QBBB_out, depending on the molecular weight, the log P, and

the pKa of the compound, which led to differences in drug

distribution into brainICF from brainMV.

We identified differences in methotrexate drug concen-

tration in CSFLV and CSFCM.23 Therefore, it is expected

that the expression level (function) of some of the active

transporters may be different between the BCSFB around

CSFLV and CSFTFV. Methotrexate is known to be a sub-

strate of various transporters, such as RFC1, MRP,

BCRP, OATP, and OAT transporters,23 even though there

is no detailed information about their exact location.

Therefore, we incorporated this in our model by including

QBCSFB1 and QBCSFB2 to describe transport for

methotrexate.

Figure 2 Prediction accuracy of the physiologically based pharmacokinetic (PBPK) model. The plots were stratified by the central ner-
vous system (CNS) compartments (panels). (a) Selected individual observed drug concentrations (dots) and 95% prediction interval
(red lines). (b) Box-whisker plots for the prediction errors (PEs) across all 10 drugs evaluated. Blue dots are PEs for each observation.
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All of the parameters for our CNS PBPK model can be

derived from either literature or in silico predictions. There-

fore, the model can be used to assess newly developed

CNS drugs without in vivo data and contributes to the

“refinement, reduction, and replacement” of animals in drug

research. Although the reported values of the system-

specific parameters for humans are sparse and variable,2

theoretically, the model can be scaled to humans by replac-

ing the system-specific parameters to predict target-site

concentrations in the human brain, representing an impor-

tant tool for translational development of new CNS drugs.
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