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Abstract

Background: Drug-disease associations provide important information for the drug discovery. Wet experiments

that identify drug-disease associations are time-consuming and expensive. However, many drug-disease

associations are still unobserved or unknown. The development of computational methods for predicting

unobserved drug-disease associations is an important and urgent task.

Results: In this paper, we proposed a similarity constrained matrix factorization method for the drug-disease association

prediction (SCMFDD), which makes use of known drug-disease associations, drug features and disease semantic

information. SCMFDD projects the drug-disease association relationship into two low-rank spaces, which

uncover latent features for drugs and diseases, and then introduces drug feature-based similarities and

disease semantic similarity as constraints for drugs and diseases in low-rank spaces. Different from the

classic matrix factorization technique, SCMFDD takes the biological context of the problem into account. In

computational experiments, the proposed method can produce high-accuracy performances on benchmark

datasets, and outperform existing state-of-the-art prediction methods when evaluated by five-fold cross

validation and independent testing.

Conclusion: We developed a user-friendly web server by using known associations collected from the CTD

database, available at http://www.bioinfotech.cn/SCMFDD/. The case studies show that the server can find out

novel associations, which are not included in the CTD database.
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Background

A drug is a chemical that treats, cures, prevents, or diag-

noses diseases. The drug design has three stages: discov-

ery stage, preclinical stage and clinical development

stage [1], and the development of a new drug take

15 years [2] and cost 800 million dollars [3].

The drug-disease associations refer to the events that

drugs exert effects on diseases, which can be classified

into two types: drug indications and drug side-effects.

Some drugs could have a therapeutic role in a disease,

e.g. a drug treats leukemia & lymphoma; other drugs

could play a role in the etiology of a disease, e.g. expos-

ure to a drug causes lung cancer [4]. Drug-disease

associations reveal the close relations between drugs and

diseases, and have gained great attention. Computational

methods can screen possible drug-disease associations,

and complement or guide laborious and costly wet

experiments.

In recent years, a great number of computational

methods have been proposed to predict drug-disease as-

sociations. As shown in Fig. 1, existing methods are

roughly classified as two types. One type of methods

makes use of biological elements shared by drugs and

diseases to predict drug-disease associations. Eichborn J

et al. [5] studied drug-disease relations based on drug

side effects. Wang et al. [6] and Wiegers et al. [7]

considered drug-gene-disease relations. Yu et al. [8] used

common protein complexes related to drugs and dis-

eases. These methods have to use elements shared by

drugs and diseases, but many drugs and diseases do not

* Correspondence: zhangwen@whu.edu.cn; fliuwhu@whu.edu.cn
1School of Computer Science, Wuhan University, Wuhan 430072, China

Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Zhang et al. BMC Bioinformatics  (2018) 19:233 

https://doi.org/10.1186/s12859-018-2220-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2220-4&domain=pdf
http://www.bioinfotech.cn/SCMFDD
mailto:zhangwen@whu.edu.cn
mailto:fliuwhu@whu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


share any elements, and these methods fail to work in

this case. The other type of methods predicts novel

drug-disease associations by using known drug-disease

associations, drug features and disease features. Gottlieb

et al. [9] constructed a universal predictor named PRE-

DICT for drug repositioning to express drug-disease as-

sociations in a large-scale manner that integrated

molecular structure, molecular activity and disease se-

mantic data. Yang et al. [10] built Naive Bayes models to

predict indications for diseases based on their side ef-

fects. Wang et al. [11] proposed the method “PreDR”

that trained a support vector machine (SVM) model

based on drug structures, drug target proteins, and drug

side effects. Huang et al. [12] combined three different

networks of drugs, genomic and disease phenotypes to

build a heterogeneous network to predict drug-disease

associations. Oh et al. [13] proposed scoring methods to

obtain quantified scores as features between drugs and

diseases, and built classifiers based on the extracted

features to predict novel drug-disease associations.

Wang et al. [14] proposed a three-layer heterogeneous

network model (TL-HGBI), and applied the approach on

drug repositioning by using existing omics data of dis-

eases, drugs and drug targets. Martínez et al. [15] built a

network of interconnected drugs, proteins and diseases

to identify their relations. Wang et al. [16] adopted rec-

ommendation systems to predict drug-disease relations.

Moghadam et al. [17] combined drug features and dis-

ease features by using kernel fusion, and then built

SVM-based prediction model. Liang et al. [18] proposed

a Laplacian regularized sparse subspace learning method

(LRSSL), which integrated drug chemical information,

drug target domain information and target annotation

information.

A great number of drug-disease associations have been

identified and stored in databases. However, many asso-

ciations remain unobserved and need to be discovered.

In this paper, we proposed a similarity constrained

matrix factorization method for the drug-disease

association prediction (SCMFDD), which makes use of

known drug-disease associations, drug features and dis-

ease semantic information. SCMFDD projects the

drug-disease association relationship into two low-rank

spaces, which uncover latent features for drugs and dis-

eases, and then introduces drug feature-based similarity

and disease semantic similarity as constraints for drugs

and diseases in low-rank spaces. Different from the clas-

sic matrix factorization technique, SCMFDD can take

the biological context of the problem into account.

Computational experiments show that SCMFDD can

produce high-accuracy performances on benchmark

datasets and outperform existing state-of-the-art predic-

tion methods, i.e. PREDICT, TL-HGBI and LRSSL when

evaluated by five-fold cross validation and independent

testing on the same datasets. Moreover, a web server is

constructed on known associations collected from the

CTD database [4], and case studies show that the web

server can help to find out novel associations.

The main contributions of this paper include: 1) we pro-

posed a novel matrix factorization approach (SCMFDD),

which is different from the traditional matrix factorization

methods. SCMFDD incorporates drug features and dis-

ease semantic information into the matrix factorization

frame; 2) an efficient optimization algorithm is developed

Fig. 1 Two types of drug-disease association prediction methods. a Infer drug-disease associations without known associations; b Infer

unobserved drug-disease associations based on known associations

Table 1 The summary of SCMFDD-S dataset and SCMFDD-L dataset

Dataset Drugs Diseases Associations Richness Drug features

Substructure Target Enzyme Pathway Drug Interactions

SCMFDD-S 269 598 18,416 11.4% 881 623 247 465 2086

SCMFDD-L 1323 2834 49,217 1.31% 881 N.A. N.A. N.A. N.A.

Numbers for drug features represent the numbers of descriptors. For example, the PubChem Compound defines 881 types of substructure descriptors for

compound substructures, and a drug has some substructures and is thus described by a subset of substructure descriptors. Richness is the ratio of association

number vs drug-disease pair number. N.A. indicates that the information is not available
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to obtain the solution of SCMFDD; 3) we developed a

user-friendly web server to facilitate the drug-disease

association prediction, available at http://www.bioinfo

tech.cn/SCMFDD/.

Methods

Datasets

CTD database [4] is a publicly available database that in-

tends to advance understanding about how environmen-

tal exposures affect human health. CTD database

provides curated and inferred chemical-disease associa-

tions. The curated associations are real associations ex-

tracted from literature. Several databases describe

features for drugs and diseases. PubChem Compound

database [19] provides drug substructures. DrugBank

database [20] is a comprehensive resource for drug tar-

gets, drug enzymes and drug-drug interactions. KEGG

DRUG database [21] provides pathway information for

approved drugs in Japan, USA and Europe. U.S. National

Library of Medicine stores disease MeSH descriptors,

which reflect the hierarchy of diseases.

We downloaded real drug-disease associations from

CTD database, and collected features for drugs and

diseases to compile our datasets. In order to avoid spars-

ity of drug-disease associations, we selected drugs that

are associated with more than 10 diseases, and also

selected diseases that are associated with more than 10

drugs. Moreover, we collected drug features: substruc-

tures, targets, enzymes, pathways and drug-drug interac-

tions as well as disease MeSH descriptors. Thus, we

compiled a dataset named “SCMFDD-S”, which contains

18,416 associations between 269 drugs and 598 diseases.

Further, we selected drugs associated with at least one

disease as well as diseases associated with at least one

drug, and collected drug substructures and disease

MeSH descriptors. Thus, we compiled a larger dataset

named “SCMFDD-L”, which contains 49,217 associations

between 1323 drugs and 2834 diseases. Table 1 summa-

rizes the datasets “SCMFDD-S” and “SCMFDD-L”.

Several benchmark datasets were used in the

drug-disease association prediction. Gottlieb et al. [9]

compiled a dataset with 1933 associations between 593

drugs in DrugBank and 313 diseases in OMIM, and used

it for the method “PREDICT”. This dataset contains five

types of drug-drug similarities and two types of

disease-disease similarities. Three drug-drug similarities

Fig. 2 The basic idea of similarity constrained matrix factorization

Fig. 3 The bipartite network and the association network
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are calculated based on drug-related genes, by using

Smith-Waterman sequence alignment score [22], all-pairs

shortest paths algorithm [23] and semantic similarity

scores [24] respectively; other two drug-drug similarities

are drug structure-based Tanimoto similarity and drug

side effect-based Jaccard similarity. Two disease-disease

similarity measures are semantic similarity and genetic

similarity. Wang et al. [14] compiled a dataset with 1461

interactions between 1409 drugs in DrugBank database

and 5080 diseases in OMIM database, and used it for the

method “TL-HGBI”. The dataset also contains the

drug-drug structure similarity and disease semantic simi-

larity. Liang et al. [18] obtained 3051 associations between

763 drugs and 681 diseases from the study [25], and

collected drug substructures, protein domains of tar-

get proteins, gene ontology terms of target proteins

to calculate three types of drug-drug similarities as well

as the disease-disease semantic similarity. The dataset

was used for the method “LRSSL”. We name these data-

sets as “PREDICT dataset”, “TL-HGBI dataset” and

“LRSSL datasets”.

Therefore, we adopt SCMFDD-S dataset,

SCMFDD-L dataset, PREDICT dataset, TL-HGBI

dataset and LRSSL datasets as benchmark datasets.

Similarity constrained matrix factorization method

The aim of this study is to predict unobserved

drug-disease associations by using drug features, disease

semantic information and known associations. Figure 2

illustrates the basic idea of the similarity constrained

matrix factorization method for the drug-disease associ-

ation prediction (SCMFDD).

Drug-drug similarities

Actually, a feature is a set of descriptors. A drug has a

subset of descriptors, and thus is represented as a bit

vector, whose dimensions indicate the presence or

absence of corresponding descriptors with the value 1 or

0. Let P and Q denote feature vectors of two drugs, we

can calculate the Jaccard similarity between two drugs

by using,

J P;Qð Þ ¼
j P∩Q j

j P∪Q j

where P ∩Q∣ is the number of bits where P and Q both

have the value 1, and P ∪Q∣ is the number of bits where

either P and Q has the value 1.

When we have different features of a drug, i.e. sub-

structures, targets, enzymes, pathways and drug-drug in-

teractions, we can represent them as feature vectors in

different feature spaces, and calculate different types of

drug-drug similarities.

Disease-disease semantic similarity

MeSH is the National Library of Medicine’s controlled

vocabulary thesaurus, and MeSH provides hierarchical

descriptors for diseases. As described in [26–28], we can

calculate disease-disease semantic similarity by using

MeSH information.

For each disease, a directed acyclic graph (DAG) is

constructed based on hierarchical descriptors, in which

nodes represent disease MeSH descriptors (or disease

terms) and the edges represent the relationship between

the current node and its ancestors. For the disease A,

the DAG is denoted as DAG(A) = (N(A), E(E)), where

N(A) is the set of all ancestors of A (including itself ) and

E(A) is the set of their corresponding links.

We define the contribution of a node d d in DAG(A)

to the semantic value of disease A:

CA dð Þ ¼
1 if d ¼ A

max ∆ � CA d0ð Þjd0∈children of dg if d≠Af

�

Fig. 4 The influence of parameters on SCMFDD models. a the influnce of μ and λ b the influence of k
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where ∆ is the semantic contribution factor, and we set

∆ = 0.5 in the study.

The semantic value of disease A is defined as,

DV Að Þ ¼
X

d∈N Að Þ

CA dð Þ

The semantic similarity between two diseases A and B

is calculated by,

SA;B ¼

P

d∈N Að Þ∩N Bð Þ CA dð Þ þ CB dð Þð Þ

DV Að Þ þ DV Bð Þ

Objective Function

The observed drug-disease associations can be formu-

lated as a bipartite network, and represented by a binary

matrix A ∈ Rn ×m, where n is the number of drugs and m

is the number of diseases. aij is the (i, j)th entry of A. If

the vertex (drug) di and the vertex (disease) disj are con-

nected, aij = 1; otherwise aij = 0. The bipartite network

and the association matrix are demonstrated in Fig. 3.

SCMFDD factorizes the drug-disease association

matrix A into two low-rank feature matrices X ∈ Rn × k

and Y ∈ Rm × k, where k is the dimension of drug feature

and disease feature in the low-rank spaces. The

drug-disease association can be approximated by inner

product between the drug feature vector and the disease

feature vector: aij ≈ xiy
T
j , where xi is the ith row of X,

and yj is the jth row of Y.The objective function is de-

fined as:

min
1

2

X

ij

aij−xiy
T
j

� �2

ð1Þ

Then, to avoid overfitting problem, L2 regularization

terms of xi and yj are added to the objective function

(1),

min
1

2

X

ij

aij−xiy
T
j

� �2

þ
μ

2

X

i

xik k2

þ
μ

2

X

j

y j

�

�

�

�

�

�

2

ð2Þ

where μ is the regularization parameter for xi and yj.

Recent studies on manifold learning theory [29, 30],

spectral graph theory [31, 32] and their applications

[33–38] show that the geometric and topological struc-

ture of data points may be maintained when they are

mapped from high dimensional space into low dimen-

sional space. Considering that the similarity matrix wd

and ws not only can be defined to represent statistical

correlation but also can be regarded as geometric prop-

erties of the data points, we introduce the similarity con-

straint terms RX and RY:

RX ¼
1

2

X

ij

xi−x j

�

�

�

�

2
wd
ij ð3Þ

RY ¼
1

2

X

ij

yi−y j

�

�

�

�

�

�

2

ws
ij ð4Þ

where wd
ij denotes the similarity between the drug di and

the drug dj, which is calculated in the drug feature space;

ws
ij denotes the similarity between the disease disi and

the disease disj, which is calculated in the disease feature

space. It is generally believed that the similarity between

two data points is higher if the distance of them is

smaller. Therefore, RX(or RY) incurs a heavy penalty if

drug di and the drug dj(disease disi and the disease disj)

are close in the drug feature space (or disease feature

space) and thus minimizing it further incurs that drug di
and the drug dj(or disease disi and the disease disj) are

mapped closely in low-rank spaces. Hence, we could

maintain effectively the topological structure of drug

data points and disease data points by minimizing RX

and RY.

By combining RX and RY with the original objective

function (2), we propose the objective function of

SCMFDD,

min
X;Y

L ¼
1

2

X

ij

aij−xiy
T
j

� �2

þ
μ

2

X

i

xik k2

þ
μ

2

X

j

y j

�

�

�

�

�

�

2

þ
λ

2

X

ij

xi−x j

�

�

�

�

2
wd
ij

þ
λ

2

X

ij

yi−y j

�

�

�

�

�

�

2

ws
ij ð5Þ

where λ is the hyper parameter controlling the smooth-

ness of the similarity consistency.

Optimization algorithm

Here, we develop an efficient optimization algorithm

to solve the objective function in (5). First, we cal-

culate the partial derivatives of L with respect to

xi and yj,

∇ xi
L ¼

X

j

xiy
T
j −aij

� �

y j þ μxi

þ λ
X

j

xi−x j

� �

wd
ij−
X

j

x j−xi
� �

wd
ji

 !

¼ xi Y TY þ μI þ λ
X

j

wd
ij þ

X

j

wd
ji

 !

I

 !

−A i; :ð ÞY−λ
X

j

wd
ij þ wd

ji

� �

x j

ð6Þ
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∇ y j
L ¼

X

i

y jx
T
i −aij

� �

xi þ μy j

þ λ
X

i

y j−yi

� �

ws
ji−
X

i

yi−y j

� �

ws
ij

 !

¼ y j XTX þ μI þ λ
X

i

ws
ij þ

X

i

ws
ji

 !

I

 !

−A :; jð ÞTX−λ
X

i

ws
ij þ ws

ji

� �

yi

ð7Þ

A(i, :) represents the ith row of A and A(:, j) represents

the jth column of A.

Then, we can calculate the second derivatives of L

with respect to xi and yj:

∇
2
xi
L ¼ Y TY þ μI þ λ

X

j

wd
ij þ

X

j

wd
ji

 !

I ð8Þ

∇
2
y j
L ¼ XTX þ μI þ λ

X

i

ws
ij þ

X

i

ws
ji

 !

I ð9Þ

Utilizing Newton’s method, we have:

xi←xi−∇ xi
L ∇

2
xi
L

� �−1

ð10Þ

y j←y j−∇ y j
L ∇

2
y j
L

� �−1

ð11Þ

Thus, we can obtain the updating rules:

xi ¼ A i; :ð ÞY þ λ
X

j

wd
ij þ wd

ji

� �

x j

 !

Y TY þ μI þ λ
X

j

wd
ij þ

X

j

wd
ji

 !

I

 !−1

ð12Þ

y j ¼ A :; jð ÞTX þ λ
X

i

ws
ij þ ws

ji

� �

yi

 !

XTX þ μI þ λ
X

i

ws
ij þ

X

i

ws
ji

 !

I

 !−1

ð13Þ

We alternatively update xi and yj with Eq. (12) and

Eq. (13) until convergence. The prediction matrix is

given by

Apredict ¼ XY T ð14Þ

The score of (Apredict)ij represents the probability

that the drug di and the disease disj has the associ-

ation. The optimization algorithm is summarized in

Algorithm 1.

Algorithm 1 Algorithm to solve objective function (5)

Input: known drug-disease association matrix, A ∈ Rn ×m;
drug similarity matrix, Wd

∈ Rn × n;
disease similarity matrix, Ws

∈ Rm ×m;
dimension of the low-rank feature space, k <min(m, n);
regularization parameter, μ > 0, λ > 0;
Output: the prediction matrix Apredict
1 Initialize X ∈ Rn × k, Y ∈ Rm × k as two random matrices;
2 Repeat
3 Update X:
4 for each i(1≤ i ≤ n) do
5 update xi by Eq. (12);
6 end
7 Update Y:
8 for each j(1≤ j ≤m) do
9 update yj by Eq. (13);
10 end
11 Until Converges;
12 Calculate the prediction matrix Apredict by Eq. (14);
13 Output Apredict;

Results and discussion

Evaluation metrics

In our experiments, we adopted five-fold cross validation

(5-CV) to test performances of prediction models. To

implement five-fold cross validation, we randomly split

all known drug-disease associations into five equal-sized

subsets. In each fold, we combined four subsets as the

training set, and used the other subset as the testing set.

We constructed the prediction model based on known

associations in the training set, and predicted associa-

tions in the testing set. Training and testing were re-

peated five times, and the average of performances was

adopted.

AUC and AUPR are popular metrics for evaluating

prediction models. Since drug-disease pairs without as-

sociations are much more than known drug-disease as-

sociations, we adopted AUPR as the primary metric,

which takes into recall and precision. We also consid-

ered several binary classification metrics, i.e. sensitivity

(SN, also known as recall), specificity (SP), accuracy

(ACC) and F-measure (F).

Performances of SCMFDD

First of all, we discussed the influence of parameters on

SCMFDD models by using SCMFDD-S dataset.

SCMFDD has three parameters, i.e. the number of latent

variables k, the regularization parameter μ and the

regularization parameter λ. k is the dimension of drugs

and diseases in low-rank spaces, and k is less than row

number and column number of the association matrix,

and k < k0 =min(m, n). For simplicity, we set k as the

percentage of k0.

SCMFDD builds prediction model constrained by

drug-drug similarity and disease-disease semantic simi-

larity. We have several drug features in SCMFDD-S

Zhang et al. BMC Bioinformatics  (2018) 19:233 Page 6 of 12



dataset, and can calculate several types of drug-drug

similarities. Here, we used the drug interaction-based

similarity and the disease semantic similarity to build

SCMFDD models for analysis. We considered all combi-

nations of following values λ ∈ {2−3, 2−2, 2−1, 20, 21, 22, 23},

μ ∈ {2−3, 2−2, 2−1, 20, 21, 22, 23} and k ∈ {5%, 10%, 15 %…,

50%} to build SCMFDD models, and implemented

five-fold cross validation to evaluate models. The experi-

ments for all parameter combinations cost about 12 h

on a PC with Intel i7 7700 K CPU and 16GB RAM.

In computational experiments, SCMFDD produced

the best AUPR score when k = 45 % , μ = 20 and λ = 22.

Then, we fixed the latent variable number k = 45%, and

evaluated the influence of parameters μ and λ, and

results are shown in Fig. 4a. Clearly, μ and λ have great

impact on the model. When μ is a small value, greater λ

could lead to better performances; when μ is a great

value, greater λ contributes to poorer performances.

Further, we fixed the parameters μ = 20 and λ = 22, and

tested the influence of the latent variable number k. The

latent variable numbers and AUPR scores of corresponding

models are shown in Fig. 4b. Clearly, performances of

SCMFDD will increase as k increases, and remain

unchanged after reaching a threshold.

Further, we tested the impact of different similarity

constraints on SCMFDD models. We have various

features of drugs, and can calculate different types of

drug-drug similarities, i.e. substructure similarity, target

similarity, pathway similarity, enzyme similarity and drug

interaction similarity. These similarities can be used as

the constraint terms for SCMFDD models. We set k =

45%, μ = 20 and λ = 22 in the experiments. As shown in

Table 2, SCMFDD models using different drug-drug

similarities produce high-accuracy and robust perfor-

mances. Since drug structures directly influence func-

tions and drug interactions may induce drug effects,

drug substructures and drug interactions lead to better

results than other features.

The known drug-disease association is an important

resource for predicting unobserved drug-disease associa-

tions. The data richness, which is the ratio of association

number vs drug-disease pair number, may influence per-

formances of SCMFDD. Here, we used the dataset

SCMFDD-L for analysis. We removed drugs that are as-

sociated with less than m diseases, and removed diseases

that associated with less than m drugs from SCMFDD-L

dataset, m ∈ {2, 3, 4, 5, 6…10}. As displayed in Fig. 5, the

data richness will increase as the threshold m increases,

and then improve performances of SCMFDD models.

Although the data richness influences the performances,

SCMFDD could still produce robust performances.

Comparison with state-of-the-art prediction methods

In this section, we compared our method with three

state-of-the-art drug-disease association prediction

methods: PREDICT [9], TL-HGBI [14] and LRSSL

[18]. PREDICT constructed a universal predictor for

drug repositioning to express drug-disease associations in

a large-scale manner that integrates molecular structure,

molecular activity and semantic data. TL-HGBI was a

computational framework based on a three-layer hetero-

geneous network model, which made use of Omics data

about diseases, drugs and drug targets to make predic-

tions. LRSSL was a Laplacian regularized sparse subspace

learning method, which integrated drug chemical infor-

mation, drug target domains and target annotation infor-

mation to make predictions. We obtained datasets of

PREDICT [9], datasets and source codes of TL-HGBI [14]

Table 2 The performances of SCMFDD models based on

different drug features

AUPR AUC SN SP ACC F

Substructure 0.2644 0.8737 0.3329 0.9795 0.9632 0.3130

Target 0.1947 0.8410 0.2751 0.9751 0.9575 0.2456

Pathway 0.2582 0.8706 0.3435 0.9771 0.9611 0.3079

Enzyme 0.2496 0.8671 0.3331 0.9768 0.9606 0.2990

Drug interaction 0.2638 0.8734 0.3505 0.9769 0.9611 0.3120

Fig. 5 The influence of association exclusion criteria on data richness (a) and model performance (b)
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from authors. The datasets and source codes of LRSSL

[18] are publicly available. Therefore, we can adopt these

methods as benchmark methods for fair comparison.

First, we compared our method with PREDICT based

on the PREDICT dataset by using five-fold cross valid-

ation. SCMFDD uses one drug similarity constraint and

one disease similarity constraint. The PREDICT dataset

contains five kinds of drug-drug similarities and two kinds

of diseases-disease similarity. Thus, we built 10 different

SCMFDD models by combining drug-drug similarities

and diseases-disease similarities. As shown in Table 3,

SCMFDD models and PREDICT produce similar AUC

scores, but SCMFDD models yield much greater AUPR

scores than PREDICT. Moreover, SCMFDD models were

robust to different similarities, and the models based on

the drug Genes-Waterman similarity and disease Gene

Signature similarity produced the best results.

Then, we compared our method with TL-HGBI by

using TL-HGBI dataset. TL-HGBI dataset contains one

drug chemical structure similarity and one disease pheno-

typic similarity. We constructed the SCMFDD model by

using drug structure similarity and disease phenotypic

similarity. As shown in Table 4, SCMFDD produced simi-

lar AUC score but much greater AUPR score compared

with TL-HGBI.

Further, we compared SCMFDD and LRSSL by using

LRSSL dataset. Since LRSSL dataset contains three

features of drugs: chemical substructures, protein

domains of target proteins, gene ontology information of

target proteins. Three drug similarities were calculated,

and disease semantic similarity was provided as well.

Therefore, we can construct three SCMFDD models by

combing three drug similarities and the disease semantic

similarity. Table 5 shows the performances of prediction

models evaluated by five-fold cross validation. Clearly,

three SCMFDD models can produce better performance

than LRSSL.

Independent experiments

In this section, we conducted independent experiments

to test performances of our method in predicting novel

drug-disease associations.

CTD database is an up-to-date resource about the

experimentally determined drug-disease associations.

Since PREDICT dataset and LRSSL dataset were com-

piled several years ago, we can build prediction

models by using PREDICT dataset and LRSSL dataset,

and check up the predictions in the CTD database.

Different drugs and diseases could be matched ac-

cording to their names and synonyms (provided by

CTD database “Chemical vocabulary” and “Disease

vocabulary”). PREDICT dataset and LRSSL dataset in-

clude different types of drug-drug similarities, and we

build different similarity-based SCMFDD models for

the comprehensive comparison. The PREDICT model

and the LRSSL model respectively predict novel inter-

action by using PREDICT dataset and LRSSL dataset.

We considered the top predictions from top 2 to top

1000 in a step size of 2, and respectively counted how

many predicted associations can be confirmed in CTD

database. Figure 6 shows the number of checked

predictions and the number of confirmed associations.

Clearly, our method finds out more novel associations

than benchmark methods, and has the good

performances in the independent experiments.

Web server and applications

To facilitate the drug-disease association prediction, we

developed a web server named “SCMFDD” by using the

dataset SCMFDD-L, available at http://www.bioinfo

tech.cn/SCMFDD/. Users can predict novel drug-disease

Table 3 Performance of PREDICT and SCMFDD on PREDICT

Dataset

Methods AUPR AUC SN SP ACC F

PREDICT 0.1507 0.9020 0.3414 0.9929 0.9915 0.1437

SCMFDD-Che-GS 0.3141 0.9005 0.3663 0.9988 0.9974 0.3753

SCMFDD-Che-Phen 0.3153 0.9038 0.3678 0.9988 0.9974 0.3769

SCMFDD-SE-GS 0.3157 0.9082 0.3663 0.9988 0.9974 0.3753

SCMFDD-SE-Phen 0.3176 0.9109 0.3678 0.9988 0.9974 0.3769

SCMFDD-GP-GS 0.3210 0.9129 0.3720 0.9988 0.9975 0.3811

SCMFDD-GP-Phen 0.3224 0.9157 0.3714 0.9988 0.9975 0.3806

SCMFDD-GO-GS 0.3147 0.9035 0.3678 0.9988 0.9974 0.3769

SCMFDD-GO-Phen 0.3159 0.9065 0.3678 0.9988 0.9974 0.3769

SCMFDD-GW-GS 0.3249 0.9173 0.3389 0.9991 0.9977 0.3843

SCMFDD-GW-Phen 0.3284 0.9203 0.3776 0.9988 0.9975 0.3870

For drugs, Che Chemical fingerprints Similarity, SE Side Effect Similarity, GP

Genes-Perlman Similarity, GO Genes- Ovaska Similarity, GW Genes-Waterman

Similarity. For diseases, GS Gene Signature Similarity, Phen

Phenotypic Similarity

Table 4 Performance of TL-HGBI and SCMFDD on TL-HGBI

Dataset

Methods AUPR AUC SN SP ACC F

TL-HGBI 0.0492 0.9584 0.1697 0.9999 0.9998 0.0840

SCMFDD 0.1500 0.9752 0.2136 0.9990 0.9990 0.0168

Table 5 Performance of LRSSL and SCMFDD on Liang Dataset

Methods AUPR AUC SN SP ACC F

LRSSL 0.1789 0.8250 0.2167 0.9989 0.9979 0.2018

SCMFDD-Che-Sem 0.2518 0.9020 0.2799 0.9993 0.9985 0.3030

SCMFDD-Dom-Sem 0.2673 0.9228 0.2851 0.9993 0.9985 0.3088

SCMFDD-Go-Sem 0.2585 0.9210 0.2897 0.9993 0.9985 0.3137

For drugs, Che Chemical Similarity, Dom Protein Domains Similarity, Go Gene

ontology Similarity. For diseases, Sem: Semantic Similarity
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associations for a given drug or a given disease, and then

visualize predictions. Here, we used two case studies to

illustrate the usefulness for the drug-disease association

prediction of our web server.

Clozapine is an effective drug to treat patients with

refractory schizophrenia [39, 40]. Clozapine works by

changing the actions of chemicals in the brain. Here,

the web server predicts diseases that are associated with

Clozapine. Table 6 lists top 10 predictions among all

unknown relationships between Clozapine and diseases in

the SCMFDD-L dataset. Then, we analyze these predicted

diseases case by case. From https://en.wikipedia.org/wiki/

Clozapine (access on 2018–2-1), three diseases: sleep initi-

ation and maintenance disorders (also insomnia), status

epilepticus and headache have been reported as side ef-

fects of Clozapine, indicating that they have associations

with the drug “Clozapine”. Further, the study [41] found

that Clozapine improved the syndrome of inappropriate

antidiuretic hormone secretion(SIADH) in a patient; the

studies [42, 43] revealed that Clozapine can be used for

the treatment of post-traumatic stress disorder (PTSD);

the study [44] demonstrated that Clozapine can be used

for the treatment of Parkinson’s disease; the study [45]

indicated that Clozapine can affect the visual memory.

Alzheimer’s disease (AD) is a chronic

neurodegenerative disorder that leads to disturbances of

cognitive functions. The radical cause and effective

treatment of AD remain unclear, and AD has attracted

many scientists to study its pathogenic mechanism and

therapeutic function. Table 7 lists top 10 predicted drugs

associated with Alzheimer’s disease, and evidence is

available for six drugs. For example, the study [46]

revealed that Olanzapine appears to be effective in

treating psychotic and behavioral disturbances

associated with AD; the study [47] found that

stimulation of the dopaminergic system could improve

Fig. 6 The number of confirmed associations in top predictions of PREDICT, LRSSL, SCMFDD. (a) For drugs, Che: Chemical Similarity, SE: Chemical

Similarity, GP: Genes-Perlman Similarity, GO: Genes- Ovaska Similarity, GW: Genes-Waterman Similarity. For diseases, GS: Gene Signature Similarity,

Phen: Phenotypic Similarity (b) For drugs, Che: Chemical Similarity, Dom: Protein Domains Similarity, Go: Gene ontology Similarity. For diseases,

Sem: Semantic Similarity

Table 6 Top 10 predicted diseases associated with Clozapine

Index Disease Name Disease ID Score Evidence

1 Sleep Initiation and Maintenance Disorders D007319 1 https://en.wikipedia.org/wiki/Clozapine

2 Anxiety Disorders D001008 0.9117 N.A.

3 Inappropriate ADH Syndrome D007177 0.7434 A Case report [41]

4 Stress Disorders, Post-Traumatic D013313 0.7267 Report [42, 43]

5 Parkinson Disease, Secondary D010302 0.7179 Review [44]

6 Memory Disorders D008569 0.7123 An animal study [45]

7 Status Epilepticus D013226 0.6312 https://en.wikipedia.org/wiki/Clozapine

8 Headache D006261 0.6166 https://en.wikipedia.org/wiki/Clozapine

9 Torsades de Pointes D016171 0.5953 N.A.

10 Attention Deficit Disorder with Hyperactivity D001289 0.5913 N.A.

Scores are normalized by using ((score-min)/(max-min))
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cognitive function in a murine model and suggested that

Levodopa that works in the dopaminergic system could

ameliorate typical symptoms of AD: learning and

memory deficits. The study [48] revealed that the

presence of Malondialdehyde level is a risk factor for AD.

The study [49] confirmed that progesterone significantly

could reduce and inhibit tau hyperphosphorylation, a

chemical process implicated in AD. The study [50]

demonstrated that Valproic Acid (VPA) could decrease

β-amyloid(Aβ) production which is the key risk factor in

AD and improve memory deficits of AD model mice. The

study [51] showed that Ethanol protect neurons against

Aβ-induced synapse damage and explained epidemio-

logical reports that moderate alcohol consumption pro-

tects against the development of AD.

The server can visualize the predictions. Figure 7

shows the top 100 predictions for Clozapine and top 200

predictions for Alzheimer’s disease. As shown in Fig. 7a,

“dark blue circle” stands for a disease, which has a known

association with Clozapine, and “red square” stands for

predicted diseases, which have an association with

Clozapine. As shown in Fig. 7b, “dark blue circle” stands

for a drug, which has a known association with Alzheimer’s

disease, and “red square” stands for predicted drugs, which

have an association with Alzheimer’s disease. Users can

adjust the number of predictions for visualization.

Conclusion

In this paper, we proposed a computational method

“SCMFDD” to predict unobserved drug-disease associa-

tions. SCMFDD incorporate drug feature-based similar-

ities and disease semantic similarity into the matrix

factorization frame. Experimental results show that

SCMFDD can produce high-accuracy performances on

Table 7 Top 10 predicted drugs associated with Alzheimer’s disease

Index Drug Name Drug MeSH ID DrugBank ID PubChem CID Score(normalized) Evidence

1 Nitroprusside D009599 DB00325 11,963,622 1 N.A.

2 Tamoxifen D013629 DB00675 2,733,526 0.7644 N.A.

3 Olanzapine C076029 DB00334 4585 0.7269 A clinical study [46]

4 Sucralfate D013392 DB00364 70,789,197 0.7223 N.A.

5 Levodopa D007980 DB01235 6047 0.6893 An animal study [47]

6 Malondialdehyde D008315 DB03057 10,964 0.6767 A clinical study [48]

7 Progesterone D011374 DB00396 5994 0.6695 An animal study [49]

8 Valproic Acid D014635 DB00313 3121 0.6625 An animal study [50]

9 Scopolamine Hydrobromide D012601 DB00747 3,000,322 0.6522 N.A.

10 Ethanol D000431 DB00898 702 0.6402 A clinical study [51]

Scores are normalized by using ((score-min)/(max-min))

Fig. 7 Web Visualization of predictions for Clozapine a and predictions for Headache b
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five benchmark datasets when evaluated by five-fold cross

validation, and SCMFDD outperforms state-of-the-art

methods under fair comparison. Moreover, SCMFDD

produces satisfying performances for different similarity

constraints, and is also robust to the data richness. We

constructed a web server based on drug-disease associa-

tions, which are collected from the CTD database. The

server can predict novel drug-disease associations, and

also can help researchers to quickly find associations for

interested drugs or diseases.

In recent years, the deep learning methods have been

applied to similar tasks [52–54]. However, designing an

effective neural network is a hard task, and the training

process also costs a great amount of time. Compared to

deep learning-based methods, SCMFDD is easy to im-

plement, and SCMFDD can be applied into similar tasks

in bioinformatics.

However, SCMFDD still has several limitations. First,

SCMFDD has three parameters, and there is no good

way of determining suitable parameters except going

through all combinations. For our datasets, it costs

dozens of hours to determine optimal parameters.

Second, SCMFDD only uses individual drug feature-based

similarity to build prediction models. When we have mul-

tiple drug features, we can calculate different drug

feature-based similarities. Combining diverse information

can usually lead to improved performances [55–60], and

how to integrate multiple similarities in a model is our

future work. Third, the server can make predictions for

the drugs and diseases in our dataset, but can’t support

other drugs or diseases.
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