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Abstract

Quantitative Structure-Activity Relationship (QSAR) modeling and toxicogenomics are used 

independently as predictive tools in toxicology. In this study, we evaluated the power of several 

statistical models for predicting drug hepatotoxicity in rats using different descriptors of drug 

molecules, namely their chemical descriptors and toxicogenomic profiles. The records were taken 

from the Toxicogenomics Project rat liver microarray database containing information on 127 

drugs (http://toxico.nibio.go.jp/datalist.html). The model endpoint was hepatotoxicity in the rat 

following 28 days of exposure, established by liver histopathology and serum chemistry. First, we 

developed multiple conventional QSAR classification models using a comprehensive set of 

chemical descriptors and several classification methods (k nearest neighbor, support vector 

machines, random forests, and distance weighted discrimination). With chemical descriptors 

alone, external predictivity (Correct Classification Rate, CCR) from 5-fold external cross-

validation was 61%. Next, the same classification methods were employed to build models using 

only toxicogenomic data (24h after a single exposure) treated as biological descriptors. The 

optimized models used only 85 selected toxicogenomic descriptors and had CCR as high as 76%. 

Finally, hybrid models combining both chemical descriptors and transcripts were developed; their 

CCRs were between 68 and 77%. Although the accuracy of hybrid models did not exceed that of 
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the models based on toxicogenomic data alone, the use of both chemical and biological descriptors 

enriched the interpretation of the models. In addition to finding 85 transcripts that were predictive 

and highly relevant to the mechanisms of drug-induced liver injury, chemical structural alerts for 

hepatotoxicity were also identified. These results suggest that concurrent exploration of the 

chemical features and acute treatment-induced changes in transcript levels will both enrich the 

mechanistic understanding of sub-chronic liver injury and afford models capable of accurate 

prediction of hepatotoxicity from chemical structure and short-term assay results.

Keywords

Quantitative Structure Activity Relationship (QSAR) modeling; toxicogenomics; biological 

descriptors; hepatotoxicity

Introduction

Hepatotoxicity is a major factor contributing to the high attrition rate of drugs. At least a 

quarter of the drugs are prematurely terminated or withdrawn from the market due to liver-

related liabilities (1). As a result, modern drug development has evolved into a complex 

process relying on the iterative evaluation of multiple data sources to eliminate potentially 

harmful drug candidates as cheaply and as early as possible. In addition, high throughput, 

high content, and other data-rich experimental techniques, accompanied by the appropriate 

informatics tools, are rapidly incorporated into the toxicity testing.

Quantitative structure-activity relationship (QSAR) modeling is widely used as a 

computational tool that allows one to relate the potential activity (e.g., toxicity) of an agent 

to its structural features represented by multiple chemical descriptors. As with any 

multivariate statistical modeling, rigorous validation procedures are necessary to guard 

against overfitting and overestimating model predictivity (2). QSAR models have 

demonstrated good predictivity especially for specific endpoints such as solubility or 

binding affinity to a certain target. However, QSAR predictivity is generally poor in the case 

of a complex endpoint such as hepatotoxicity where the structure-activity relationship is less 

straightforward due to multiple mechanisms of action (3).

Toxicogenomics is now routinely used in drug and chemical safety evaluation, providing 

valuable mechanistic understanding of the molecular changes associated with the disease or 

treatment (4). In addition, its utility for predicting toxicity has been explored. Blomme et al. 

(5) developed models using transcriptional changes after short term (5 days) exposure to 

predict bile duct hyperplasia that otherwise required long-term in vivo experiments. Fielden 

et al. (6) developed a 37-gene classification model using microarray data following short-

term (1–5 days) exposure to predict non-genotoxic hepatocarcinogenicity with over 80% 

accuracy. Zidek et al. (7) reported high accuracy with a 64-gene classifier for the prediction 

of acute hepatotoxicity. The Toxicogenomics Project in Japan, set up by the Ministry of 

Health, Labour and Welfare, National Institute of Health Sciences, and 15 pharmaceutical 

companies, has also identified several toxicogenomic signatures indicative of the various 

toxic modes of action such as phospholipidosis (8), glutathione depletion (9), bilirubin 

elevation (10), non-genotoxic hepatocarcinogenesis (11), and peroxisome proliferation (12).
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Most previous studies on statistical modeling of toxicity used either chemical descriptors 

(conventional QSAR), or toxicogenomic profiles independently for model development. 

However, in our recent studies, we have demonstrated the benefits of hybrid classification 

models of in vivo carcinogenicity (13) and toxicity (14), and employing both chemical 

descriptors and biological assay data (treated as biological descriptors). In the first study of 

this type (13), we used the results of high-throughput screening assays of environmental 

chemicals along with their chemical descriptors to arrive at improved models of rat 

carcinogenicity. This approach was extended to predicting acute toxicity half-maximal lethal 

dose in rats using dose-response in vitro data as quantitative biological descriptors (14).

Following our hybrid (chemical and biological descriptors) data modeling paradigm, we 

sought to integrate QSAR and toxicogenomic data to develop classification models of 

hepatotoxicity using a data set of 127 drugs studied in the Japanese Toxicogenomics Project 

(15). We built classifiers combining chemical descriptors and toxicogenomic data alongside 

the conventional QSAR, as well as toxicogenomic models. Our objective was to investigate 

if chemical descriptors and biological descriptors, such as gene expression, could be 

complementary. In addition, we sought to enhance the interpretation of the models in terms 

of elucidating the chemical structural features and biological mechanisms associated with 

hepatotoxicity. We show that statistically significant and externally predictive models can be 

developed by combining chemical and biological descriptors and can be used to predict 

hepatotoxicity and prioritize chemicals for toxicogenomics and other in vivo studies.

Materials and Methods

Data

The chemical name, dosage, administration route and vehicle for the 127 compounds used in 

this study are summarized in Table I of the Supporting Information. The detailed protocol 

for the animal study was described previously (15). Briefly, 6-week old male Sprague–

Dawley rats (Charles River Japan, Inc., Kanagawa, Japan) with five animals per group were 

used in the study. Animals were sacrificed 24 hours after a single dose, or 24 hours after 

repeat daily treatment for 28 days. Blood samples were collected from the abdominal aorta 

under ether anesthesia. Serum chemical indicators included alanine aminotransferase (ALT), 

aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TBIL), direct 

bilirubin (DBIL), and gamma-glutamyl transpeptidase (GGT). The livers were quickly 

removed following exsanguination and sections of the livers were placed in 10% phosphate-

buffered formalin for histopathology. Formalin-fixed liver tissue was embedded in paraffin 

and sections were stained with hematoxylin and eosin and examined histopathologically 

under light microscopy. Remaining liver tissues from left lateral lobes were soaked in 

RNALater (Ambion Inc., Austin, TX) and stored at –80°C until used for microarray 

analysis. Detailed methods for microarray analysis were previously reported (15). Raw 

microarray data files with individual animal histopathological data are available (http://

toxico.nibio.go.jp/datalist.html). In this study, toxicogenomic data obtained from rats treated 

with a single dose of a drug or vehicle for 24 hours was used. The experimental protocols 

were reviewed and approved by the Ethics Review Committee for Animal Experimentation 

of the National Institute of Health Sciences (Tokyo, Japan).
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Liver histopathology and serum chemistry in animals treated for 28 days were assessed for 

the determination of the hepatotoxicity endpoint for prediction. Histopathology was graded 

by two trained pathologists in a blinded manner as follows: no change, very slight 

(minimal), slight, moderate, severe. Spontaneously observed lesions (e.g., minimal focal 

necrosis and microgranuloma) were not used for grading. The results of a histopathology 

analysis were considered positive if the grade recorded was other than “no change.” Table I 

of the Supporting Information lists serum chemistry and histopathology classification for 

each compound. A compound was denoted hepatotoxic if it exhibited histopathology 

characteristic of hepatotoxicity (e.g., hepatocellular necrosis/degeneration, inflammatory 

cells infiltration, bile duct proliferation, etc.) regardless of the findings from serum 

chemistry. Conversely, a compound was deemed non-hepatotoxic if it did not result in 

adverse histopathological features. When the histopathological observations were 

inconclusive (e.g., hepatocellular hypertrophy, vacuolization, etc.), serum chemistry data 

was considered. Under these circumstances, significant changes (Dunnett's test) in at least 

one enzyme marker would render the compound hepatotoxic. Otherwise, the compounds 

with inconclusive histopathology and normal serum chemistry were denoted non-

hepatotoxic. In total, there were 53 (42%) hepatotoxic and 74 (58%) non-hepatotoxic 

compounds.

Curation of chemical data

The data set was curated according to the procedures described by Fourches et al. (16). 

Briefly, counter ions and duplicates were removed, specific chemotypes such as aromatic 

and nitro groups were normalized using several cheminformatics software ChemAxon 

Standardizer (v.5.3, ChemAxon, Budapest, Hungary), HiT QSAR (17), and ISIDA (18). 

Following the automated curation, the data set was inspected manually and two inorganic 

compounds for which most chemical descriptors were not applicable, cisplatin and 

carboplatin, were removed. Chemical descriptors were calculated with Dragon (v.5.5, Talete 

SRL, Milan, Italy), Molecular Operating Environment (MOE, v.2009.10, Chemical 

Computing Group, Montreal, Canada) software. Simplex representation of molecular 

structure (SiRMS) descriptors were derived as detailed elsewhere (19). After range scaling 

(from 0 to 1), low variance (SD < 10−6) and highly correlated descriptors (if pair-wise 

r2>0.9, one of the pair was randomly removed) were removed. QSAR models were built 

separately using 304 Dragon, or 116 MOE, or 271 SiRMS descriptors (Figure 1).

Selection of transcripts

Transcripts were selected for modeling using various feature selection methods. Of the 

31,042 transcripts measured, we removed those consistently absent across all compounds. 

Then we extracted 2,991 transcripts with sufficient variation across all the compounds based 

on the following criteria: the largest change of any transcript over its untreated equivalent 

must exceed 1.5 fold and the smallest false discovery rate (Welch t-test) must be less than 

0.05. Next, transcripts with low variance (all, or all but one value is constant) and high 

correlation (if pair-wise r2>0.9, one of the pair, chosen randomly, was removed) were 

excluded leaving 2,923 transcript variables (Figure 1) which were range scaled.
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Then, supervised selection methods were used to filter genes differentially expressed 

between hepatotoxic and non-hepatotoxic compounds. Significance analysis of microarrays 

(SAM) (20), a permutation variant of the t-test commonly used for transcript selection, was 

used. Top ranked transcripts were filtered for modeling. Different sets of transcripts were 

selected for each modeling set and used in 5-fold external cross-validation to avoid selection 

bias introduced by a supervised selection process.

Modeling and validation

K nearest neighbors (kNN) (21), support vector machines (SVM) (22), random forest (RF) 

(23) and distance weighted discrimination (DWD) (24) machine learning techniques, 

designed to effectively handle high dimension-low sample size data, were used for 

modeling. The modeling workflow (2; 25) used both internal and external validation (Figure 

1 of the Supporting Information). In a 5-fold external cross validation, 127 compounds were 

randomly partitioned into 5 subsets of nearly equal size. Each subset was paired with the 

remaining 80% of the compounds to form a pair of external and modeling sets respectively. 

The data within each modeling set were further divided into multiple pairs of training and 

test sets for internal validation.

Although models were built using the training set, model selection depended on their 

performance on both the training and test sets (i.e., internal validation) since training set 

accuracy alone is insufficient to establish robust and externally predictive models (26). The 

prediction outcome for each model was categorized as “0” for non-toxic compounds, or “1” 

for toxic ones. Selected models were then pooled into a consensus model by simple 

averaging and used to predict the hepatotoxicity of compounds in the external sets (i.e., 

external validation). The toxicity threshold was set at 0.5 unless otherwise mentioned, i.e., a 

compound is predicted to be non-toxic if a consensus mean is less than 0.5 and toxic 

otherwise.

Y-randomization test was employed to ensure that there was no chance correlation between 

selected descriptors and hepatotoxicity. After random permutation of the hepatotoxicity 

labels in the modeling sets, models were rebuilt following the same workflow and their CCR 

values for both training and test sets were collected and compared. This test was repeated at 

least three times. Models generated from the randomized labels were expected to perform 

significantly worse than those derived from the original data set.

All reported model predictivity measures, specificity, sensitivity, and correct classification 

rate, were obtained from 5-fold external cross validation. Specificity denotes the true 

negative rate, or the rate correctly predicted within the non-hepatotoxic class. Similarly, 

sensitivity, the true positive rate, measures the rate correctly predicted within the 

hepatotoxic class. CCR is the average of the rates correctly predicted within each class 

(CCR = [specificity + sensitivity]/2). Coverage is the percentage of compounds in the 

external set within the applicability domain (AD) of the model. The AD is a similarity 

threshold within which compounds can be reliably predicted (27).

Chemical and toxicogenomic descriptors found to be predictive were subsequently analyzed. 

Ingenuity Pathway Analysis (Ingenuity Systems, Redwood City, CA) software was used for 
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the functional analysis of the significant transcripts. The networks were constructed based 

on pre-defined molecular interactions in the Ingenuity database and the Ingenuity score was 

used to rank pathways for analysis. Chemicals were clustered by the selected toxicogenomic 

descriptors using an unsupervised self-organizing map (SOM) in R (Kohonen package). 

Chemical structural alerts for hepatotoxicity were identified using HiT QSAR (17) and 

verified with XCHEM (28). Briefly, XCHEM searches for common structural motifs within 

each class and ranks them by their relative frequencies.

Results

Model development

First, we developed QSAR models of sub-chronic (28 days of treatment) hepatotoxicity 

using various types of chemical descriptors (Table 1). Prediction performance was generally 

poor (55–61% CCR) across all descriptor types and classification methods. Three 

compounds (tannic acid, vancomycin and cyclosporine) with molecular weights exceeding 

1,200 (median molecular weight of the data set was 285) were excluded from the data set, 

corresponding to a coverage of 98% for some of the models. Given the generally 

unpromising results of the QSAR models described in Table 1, further Combi-QSAR (29) 

efforts to systematically combine each descriptor type with each classification method were 

not attempted.

Second, we developed classification models of sub-chronic (28 days of treatment) 

hepatotoxicity using liver toxicogenomic data obtained after a single dose treatment as a 

predictor of future toxicity. To find the optimal number of variables (transcripts), several 

sets of top ranking transcripts were selected (based on SAM analysis) for modeling by SVM, 

and the outcomes were compared (Figure 2). CCR ranged from 72% with top 4 significant 

transcripts per modeling fold to 78% with all 2,923 significant transcripts. An optimal model 

with a CCR of 76% was achieved when 30 transcripts per fold were used. These 5 sets of 30 

transcripts per fold comprised of 85 unique transcripts across all folds, which may serve as 

predictive biomarkers (Table II of the Supporting Information for a complete list). We used 

these 85 transcripts to develop additional models employing other classification methods 

(Table 2). The RF model had the highest performance with a CCR of 76%. DWD was also 

applied to the full set of 2,923 transcripts and had CCR of 73%. The difference in 

performance between the QSAR and the toxicogenomic models was significant (p<0.001).

Third, we developed hybrid models of sub-chronic (28 days of treatment) hepatotoxicity 

using both chemical descriptors and single-dose treatment toxicogenomic data as biological 

descriptors. We studied how SVM model predictivity was affected when both the number of 

chemical descriptors and the number of transcripts were varied. To that effect, SAM was 

applied to independently rank chemical descriptors and transcripts, after which, different 

portions of top ranked variables were used for SVM modeling. Figure 2 shows that the CCR 

of the hybrid models did not exceed that of the models based on toxicogenomic data alone. 

However, hybrid models identified both important chemical descriptors and transcripts for 

the enhanced interpretation of the modeling outcomes. We could not have reliably detected 

the important chemical features from the poorly fitted QSAR models. Adding transcripts 

boosted the predictivity of the hybrid models such that important chemical features were 
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identified with greater confidence. Specifically, contributions of SiRMS descriptors used in 

RF hybrid models were interpreted using the approach of Polishchuk et al. (23) to uncover 

chemical substructures critical to hepatotoxicity. The substructures obtained through this 

analysis were compared to the predictions derived using XCHEM (28) and found to be 

concordant. The largest and most frequent substructures within each toxicity class are listed 

in Table 3 and provide evidence of structure-activity relationship in the hybrid model. All 

QSAR, toxicogenomics and hybrid models were significantly better than Y-randomized 

models (p<0.05 by Z-test), indicating that our models were not the result of chance 

correlations.

The toxicity threshold of the consensus models was set to 0.5, below which the compounds 

were classified as non-toxic and above which they were classified as toxic. Because the 

compounds on the margin are typically predicted with less confidence, we sought to 

determine the effect of adjusting toxicity threshold on prediction performance. Figure 3A 

shows the distribution of QSAR-predicted values (using kNN method) for non-toxic and 

toxic compounds. Overall, the separation was poor due to a large proportion of non-toxic 

compounds that were predicted as toxic. While alternative thresholds yielding models with 

very high CCR may be selected (Figure 3C), severely reduced coverage of such models is a 

considerable drawback (Figure 3E). For example, setting two thresholds (dashed lines in 

Figure 3A), one at 0.36 (<0.36 are assigned non-toxic) and the second one at 0.56 (>0.56 are 

assigned as toxic) increased CCR to 68%, as compared to 59% with a single threshold of 

0.5. However, the coverage of such model was only 80% because the compounds whose 

predicted activities were between 0.36 and 0.56 could no longer be classified. Conversely, 

the toxicogenomic model developed with kNN showed good separation between toxic and 

non-toxic compounds (Figure 3B). A change in thresholds had a minor effect on the model’s 

CCR and coverage (Figures 3D and F), showing that a single threshold was sufficient and 

optimization of the activity thresholds would not be necessary. The optimal thresholds will 

be useful in the prediction of additional external compounds.

Model interpretation

Toxicogenomic data-based models were most predictive of hepatotoxicity. To explore the 

biological significance and the mechanistic relevance of the selected 85 transcripts (64 up-

regulated and 21 down-regulated), functional pathway analysis was performed. Hepatic 

nuclear factor 4α (Hnf4a)- and v-myc myelocytomatosis viral oncogene homolog (Myc)-

centered interactomes were the two highest ranked networks involving large numbers of the 

64 selected up-regulated genes (Figures 5A–B and Table IVa of the Supporting 

Information). Canonical pathway analysis revealed that the eukaryotic initiation factor (Eif) 

2 signaling pathway responsible for protein translation was up-regulated (Table IVb of the 

Supporting Information). Among the down-regulated genes, the network involving cellular 

function and maintenance including transporters and inflammatory responses was the 

highest ranked network (Figure 5C and Table IVc of the Supporting Information). Canonical 

pathway analysis also revealed that many down-regulated genes were involved in the 

complement pathway (Table IVd of the Supporting Information).
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In addition, we used an unsupervised self-organizing map to cluster chemicals based on their 

gene expression profiles (Figure 6 and Figure 2 of the Supporting Information). The 

objective was to uncover commonalities within clusters with similar gene expression 

profiles. As expected, the non-hepatotoxic agents were tightly clustered (green background). 

Among the hepatotoxic drugs (orange background), there were several clusters of 

compounds which may act through similar mechanisms of action. For example, oxidative 

stress-inducing agents (red text) such as acetaminophen, methapyriline, and nimesulide; and 

peroxisome proliferator-activated alpha (PPARα) agonists (blue text) such as fenofibrate, 

WY-14643, benzbromarone, clofibrate, and gemfibrozil formed two sub-clusters among the 

hepatotoxicants. The model-selected 85 transcripts were sufficient to cluster the drugs into 

toxicologically meaningful groups with similar modes of hepatotoxicity.

Understanding this difference in performance between the QSAR and the toxicogenomic 

models warrants an in-depth examination of the spatial distribution of compounds in their 

chemical and toxicogenomic space. Principal component analysis of the chemical features 

(Dragon descriptors, Figure 4A) and toxicogenomic data (85 selected transcripts, Figure 4B) 

demonstrated that the separation between non-toxic and toxic classes was poor in the 

chemical space. Table IIIa of the Supporting Information lists 40 most chemically similar 

pairs of compounds. Half of them had opposite toxicities. Conversely, among pairs of 

compounds with the most similar gene expression profiles, only 23% exhibited opposite 

toxicities (Table IIIb of the Supporting Information). In other words, pairs of compounds 

with similar gene expression profiles were more likely to have the same hepatotoxicity than 

pairs of chemically similar compounds.

The best hybrid model had similar performance to the best toxicogenomic model (76–77% 

CCR), differing only in the predictions of 3 compounds (ajmaline, griseofulvin, 

propylthiouracil). Examining the compounds in their chemical and toxicogenomic spaces 

separately (by QSAR and toxicogenomic models respectively) revealed instances for which 

the models were complementary and thus boosted the overall predictivity. When both QSAR 

and toxicogenomics models were in agreement, it implied greater reliability of the prediction 

(Table 4). When they were discordant, deferring to the toxicogenomics model (superior to 

the QSAR model) would more likely return correct predictions. However, of note were 19 

compounds (shaded in Table 4) mispredicted by the toxicogenomics model but correctly 

predicted by the QSAR model. PCA showed that many of these compounds (denoted by 

crosses in Figures 4A and B) were surrounded by toxicogenomic neighbors of opposite 

toxicities (Figure 4B) but have chemical neighbors of similar toxicities (Figure 4A). For 

example, non-toxic danazol has toxic toxicogenomic neighbors (Figure 4B) but non-toxic 

chemical neighbors (Figure 4A). Some of these mispredicted compounds, e.g. gemfibrozil 

(PPARα activator) and lomustine (genotoxic hepatocarcinogen), exhibit late-onset toxicity 

which could explain the failure of 24h expression profiles to capture relevant changes and 

consequently, to predict their 28-day hepatotoxicity.

While toxicogenomics was in general better at discriminating between toxic and non-toxic 

drugs, there remained a few exceptions whose chemical neighbors were more indicative of 

their hepatotoxicity. In such cases, overall predictivity would be augmented by 

complementing toxicogenomic models with QSAR models.
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Discussion

Our study showed that chemical features and toxicogenomic data were useful and relevant 

for the development of classification models for understanding and predicting 

hepatotoxicity. High classification accuracy of toxicogenomic models supports the use of 

early transcriptional response as an indicator for long term toxicity and for understanding a 

potential mode of action. Even though chemical-based QSAR models were less predictive, 

they will continue to be used for initial virtual screening in cases where no experimental data 

(e.g., toxicogenomics) are available. By developing hybrid models using both chemical 

descriptors and toxicogenomic data, we identified both chemical features and transcripts, 

which provided additional insights into understanding drug-induced liver injury.

Biological pathways involved in liver injury

Toxicogenomic data from single exposure were not only useful for the classification of 28-

day liver injury phenotype, but they also provided important mechanistic insights into 

pathways that may lead to long-term toxicity. Pathway analysis showed that the 85 most 

predictive transcripts were in Hnf4α-, Myc-, and Eif2-centered networks, all of which have 

been implicated in hepatotoxicity. Hnf4α, a transcriptional factor of the nuclear hormone 

receptor family, is known to play an important role in the liver function, morphological and 

functional differentiation of hepatocytes, cell proliferation and detoxification (30). Although 

the Hnf4α gene itself was not among the selected transcripts, Hnf4α-regulated genes were 

up-regulated in the early stage of hepatocellular injury.

In addition, Hnf4α is essential for controlling the acute phase response of the liver induced 

by endoplasmic reticulum (ER) stress (31). ER stress is a common response to many 

toxicants and under conditions of severe or prolonged ER stress, apoptosis is triggered by 

accumulation of incompletely assembled or misfolded proteins (32). Activation of Eif2 

signaling pathway is widely recognized as a key contributor to ER stress. In the present 

study, we found the characteristic up-regulation of several genes involved in Eif2 signaling 

pathway after treatment with several hepatotoxicants, such as Eif2 subunit 1 alpha (Eif2s1), 

Eif3 subunits G (Eif3G) and J (Eif3J), and Eif4a1. Thus, our analysis provided additional 

supporting evidence that Eif2 signaling pathway may be a common mechanism involved in 

early liver damage through ER stress.

Myc is a transcription factor which regulates cell proliferation, differentiation and apoptosis 

(33). In the present study, we found up-regulations of several genes in the Myc-centered 

network including transcription factors nucleophosmin 1 (Npm1), TAF9 RNA polymerase 

II, TATA box binding protein (TBP)-associated factor (Taf9), Eif4a1, and general 

transcription factor IIIC polypeptide 3 (Gtf3c3). While further studies are needed to link the 

effects of individual chemicals to transcriptional changes in the Myc-centered network, our 

analysis shows that these transcripts may be important early predictive biomarkers for sub-

chronic hepatocellular injury.

Biological pathway analysis revealed down-regulation of genes involved in cellular function 

and maintenance, consisting of transporters and inflammatory response, such as the 

complement system pathway. Abnormal homeostasis and cellular function are often 
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associated with hepatotoxicity. In particular, coagulopathy is often involved because many 

factors in coagulation system are synthesized in the liver. Recently, toxicogenomic 

biomarkers for diagnosis and prognosis of hepatotoxicity-related coagulation abnormalities 

have been reported (34). Our results further support that malfunction of the coagulation 

system is a common feature in liver injury and the down-regulation of complement 8, beta 

polypeptide (C8b), complement 9 (C9), and complement factor B (Cfb) may be an early 

indicator of impaired liver function by different types of drugs.

Many of the 85 selected transcripts have also been previously implicated with liver diseases 

by the same chemicals on the Comparative Toxicogenomics Database (http://

ctd.mdibl.org/). For instance, ubiquitin specific peptidase 10 (Usp10) has been associated 

with the Myc-centered network in acetaminophen-induced liver toxicity (35). It is also 

closely related to ubiquitin specific peptidase 2 (Usp2) which is among the 37 genes used to 

derive a toxicogenomic model for hepatotumorigenesis by Fielden et al. (6). The agreement 

with previous findings lends credence to our selected list of transcripts as biomarkers for 

hepatotoxicity.

Hybrid models afford exploration of chemical structural alerts

Development of QSAR models of hepatotoxicity for structurally diverse chemicals is a 

challenge (36) and the results of this study show that a correct classification rate of such 

models ranged between 55 and 61%. Thus, interpretation of such models with regards to the 

potential chemical “structural alerts” for hepatotoxicity may be futile. However, when 

chemical descriptors and toxicogenomic data were used together to develop hybrid models, 

significantly higher predictive accuracy (as high as 77%) of the models provided additional 

confidence for considering the chemical fragments selected by the models as potentially 

predictive of an increased risk of liver toxicity. By examining the chemical substructures 

suggested by the predictive models (see Table 3), we observe that an unbiased feature 

selection identified several well-known toxicophores. This finding provides a strong 

indication of the value of the hybrid modeling for identification of the toxicophores as 

compared to the traditional QSAR which is plagued by a much weaker predictive power.

Substructure A (Acetanilide). Toxic species formed: N-hydroxylamines and 

nitroso compounds—The acetanilide substructure was present in several hepatotoxic 

drugs, as well as the non-toxic phenylbutazone. The acetanilide substructure is especially 

susceptible to N-oxidation (37). The N-hydroxylamine and nitroso products are highly 

reactive. However, some compounds may be toxic due to activation at sites outside of the 

acetanilide substructure. For example, acetaminophen owes much of its toxicity to the 

quinone imine metabolite despite its chemical similarity with phenacetin. Its only difference 

from phenacetin is its 4-hydroxyl group which is preferentially oxidized by CYP2E1 to the 

reactive quinone imine. In phenacetin and bucetin, the 4-hydroxyl group is replaced by an 

alkoxyl substituent which renders them less susceptible to quinone formation and more 

likely to be activated by N-hydroxylation (38). Phenylbutazone also undergoes another 

transformation (aromatic hydroxylation) instead of N-hydroxylation (39). This probably 

explains its lack of rat hepatotoxicity in this study despite containing the acetanilide 

substructure.
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Substructure B (Thioamide). Toxic species formed: sulfur species of various 

oxidation states—Our models showed that the presence of thioamide (Table 3, 

substructure B) is associated with hepatotoxicity. Thiocarbonyls are often oxidized or 

desulfurated by to produce toxic sulfur-containing species. Thioacetamide S-oxide is highly 

polar and forms adducts with proteins (40). Disulfiram, despite being a dithiocarbamate 

instead of a thioamide, also forms a sulfoxide that binds to proteins and inhibits their 

activity. Such protein binding is also responsible for disulfiram’s therapeutic inhibition of 

aldehyde dehydrogenase (41). The only non-toxic drug that has this substructure was 

methimazole. Although methimazole was defined as non-hepatotoxic in this study, it has 

been reported to yield atomic sulfur species that bind and inhibit P450 activity, possibly 

leading to liver necrosis (42).

Substructure C (Alkyl chloride). Toxic species formed: alkyl radicals—

Hepatotoxicity of alkyl chloride compounds has been attributed to the homolytic cleavage of 

the C-Cl bond which produces damaging free radicals. This is a well-studied phenomenon 

best exemplified by carbon tetrachloride and its alkyl halide analogues such as chloroform 

and bromotrichloromethane (43). However, other chlorinated alkanes studied here, 

cyclophosphamide, lomustine and chloramphenicol, do not share the same toxic mechanism 

as carbon tetrachloride and cannot be attributed to the C-Cl bond. For instance, the ultimate 

toxicant responsible for cyclophosphamide hepatotoxicity is acrolein which is formed 

independently of the alkyl chloride group.

Substructure D (Styrene). Toxic species formed: epoxides—The non-aryl double 

bond in substructure D when it is part of a benzofuran or benzopyran is especially prone to 

epoxide formation (44). Such epoxides often form DNA and protein adducts (45). 

Coumarin’s toxicity requires the formation of an epoxide which is followed by subsequent 

rearrangement of the epoxide to o-hydroxyphenylacetaldehyde which is considered to be the 

hepatotoxic intermediate (46). Hence, it is comparatively more toxic in rat than in humans 

because of the rat’s metabolism via the 3,4-epoxide (47) while in humans, coumarin 

primarily undergoes aromatic hydroxylation instead of forming the above mentioned 

epoxide (46; 48). The three benzofurans in our study, benziodarone, benzbromarone and 

amiodarone, are known hepatotoxic agents whose toxicity has been attributed to the 2-

substituted benzofuran (44). Although amiodarone was not found to be hepatotoxic based on 

its 28-day histopathology and serum chemistry results, hepatocellular vacuolization 

indicative of phospholipidosis was noted (Table I of the Supporting Information).

Limitations

The performance of QSAR models generally suffers when predicting complex toxicity 

endpoints such as hepatotoxicity, a phenotype with several complex mechanisms. There are 

numerous examples of chemically similar compounds with widely divergent liver effects. 

While ibuprofen is safe in humans, ibufenac, lacking a methyl group, is toxic (36). In our 

data set, non-toxic caffeine and toxic theophylline differ by a methyl group. This 

phenomenon is known as an “activity cliff” where very similar molecules possess disparate 

activities, such that the profile of activity plotted against compound is akin to a rugged 

landscape with many cliffs (49). QSAR can be realistically applied if there are enough 
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compounds to adequately represent the complex activity landscape. Unfortunately, this was 

not the case for our data set. The high proportion (50%) of opposite activities among 

chemically similar pairs compounded by the lack of congeners in our chemically diverse set 

posed further challenges to QSAR modeling. Hence, it was not surprising that the CCR of 

the QSAR models could barely exceed 60% in predicting the biologically complex 

hepatotoxicity endpoint.

In conclusion, this study shows that while QSAR and toxicogenomics are both important 

predictive tools on their own, concomitant exploration in chemical and transcriptomics 

spaces, through hybrid models, will elicit deeper insight. Consistent with results from other 

toxicogenomics studies, we showed that toxicogenomics is predictive and provides valuable 

mechanistic information. The pathways suggested several mechanisms such as ER stress and 

coagulopathy that could be related to hepatotoxicity. As QSAR is entirely computational and 

obviates the need for experiments, it will remain an important virtual screening tool. In 

agreement with previous reports of improved predictivity after adding in vitro assays as 

biological descriptors into QSAR modeling. The performance of QSAR can be augmented 

by the addition of toxicogenomic data which helps to predict complex biological endpoints 

unexplained by chemical descriptors alone. Consequently, structural alerts can be identified 

with greater confidence from the better fitted hybrid models. Although hybrid models were 

not more predictive than toxicogenomics models, examining the compounds in multiple 

spaces afforded additional neighbors for inferring hepatotoxicity. The development of novel 

consensus models may be needed to further exploit the complementarities between QSAR 

and toxicogenomic models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Workflow illustrating data curation and selection for modeling.
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Figure 2. 
CCR accuracy of the models with respect to the number of chemical descriptors and 

transcripts used. All models were generated by SVM classification with 5-fold external cross 

validation.
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Figure 3. 
External prediction results of the QSAR (A, C, E) and toxicogenomic (B, D, F) models by 

kNN using different classification criteria. Distribution of the predicted values (A and B) 

and heat maps illustrating classification accuracy (C and D, CCR) and coverage (E and F, 

percent chemicals within the applicability domain) results are shown. Dashed (A and B) and 

diagonal (B–F) lines denote a default single-threshold classification (threshold=0.5). An 

example of a double-threshold classification (non-toxic if activity < 0.36; toxic if activity > 

0.56) is shown by the dashed lines (C and E).
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Figure 4. 
Principal component analysis of the chemical (A) and toxicogenomic (B) descriptors. Toxic 

and non-toxic compounds are colored red and black, respectively. Compounds mispredicted 

by the toxicogenomic model but correctly predicted by the QSAR model are marked as 

crosses (×) or circles (●) otherwise. An example of a non-toxic compound (danazol, DNZ) 

which has distant toxic toxicogenomic neighbors but close non-toxic chemical neighbors is 

shown.
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Figure 5. 
Molecular networks representing the toxicogenomic predictors of hepatotoxicity. Hnf4a-

centered (A), Myc-centered (B), cellular function and maintenance-related (C) interactomes 

were selected as the highest ranked networks among the 64 up- or 21 down-regulated genes 

used in modeling. Red and green represent molecules up-regulated or down-regulated, 

respectively, by the hepatotoxic compounds. Ellipse, square, triangle, trapezoid, lozenge and 

circle represent transcription regulator, cytokine, kinase, transporter, enzyme and other 

molecules, respectively. Arrows indicate molecular interactions while lines indicate binding. 
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Dashed arrows or lines indicate indirect interactions or binding. See Tables IIIa–d in the 

Supporting Information for a complete list of networks.
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Figure 6. 
Self-organizing map of the compounds clustered by the expression of the 85 selected 

transcripts. Non-toxic (underlined) compounds are tightly clustered in the bottom right. 

PPARα activating and oxidative stress-inducing chemicals are colored in blue and red, 

respectively.
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Table 1

5-fold external cross validation prediction performance of QSAR models.

Descriptors Dragon Dragon MOE SiRMS

Method kNN SVM kNN RF

Specificity SDa 0.620.17 0.620.16 0.600.18 0.770.08

Sensitivity SD 0.560.14 0.480.17 0.560.16 0.450.14

CCR SD 0.590.11 0.550.09 0.580.12 0.610.10

Coverage (%) 98 98 98 100

a
SD refers to the standard deviation of the external predictivity measures (e.g. specificity) across the 5 folds.
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Table 2

5-fold external cross validation prediction performance of toxicogenomic models based on the 85 selected 

transcripts (see Table II of the Supporting Information for a complete list).

Method kNN SVM DWD RF

Specificity SD 0.820.08 0.840.10 0.770.11 0.840.05

Sensitivity SD 0.570.07 0.670.12 0.620.17 0.660.20

CCR SD 0.700.06 0.760.09 0.690.11 0.760.10

Coverage (%) 95 99 99 100
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Table 3

Structural alerts mapped onto example compounds. All compounds are toxic unless denoted with an “*”.
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