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Abstract
Identifying novel drug-protein interactions is cru-
cial for drug discovery. For this purpose, many ma-
chine learning-based methods have been develope-
d based on drug descriptors and one-dimensional
(1D) protein sequences. However, protein se-
quence can’t accurately reflect the interactions in
3D space. On the other hand, a direct input of 3D
structure is of low efficiency due to the sparse 3D
matrix, and is also prevented by limited number
of co-crystal structures available for training. In
this work, we propose an end-to-end deep learning
framework to predict the interactions by represent-
ing proteins with 2D distance map from monomer
structures (Image), and drugs with molecular lin-
ear notation (String), following the Visual Question
Answering mode. For an efficient training of the
system, we introduced a dynamic attentive convo-
lutional neural network to learn fixed-size represen-
tations from the variable-length distance maps and
a self-attentional sequential model to automatically
extract semantic features from the linear notations.
Extensive experiments demonstrate that our model
obtains competitive performance against state-of-
the-art baselines on the DUD-E, Human and Bind-
ingDB benchmark datasets. Further attention vi-
sualization provides biological interpretation to de-
pict highlighted regions of both protein and drug
molecules.

1 Introduction
Prediction of drugprotein interactions (DPIs) is of crucial im-
portance for drug design and development. Though experi-
mental assays remain to be the most reliable approach for de-
termining DPIs, experimental characterization of every pos-
sible drug-protein pair is daunting due to the vast amount of
money and labors in experiments.

Computational prediction of DPIs has therefore made
rapid progress recently. In general, it falls roughly into t-
wo categories: physic-based and machine-learning method-
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s. Physic-based methods such as molecular docking apply
physics-inspired predetermined energy functions to assess
drug-protein interactions at the atomic level [Trott and Ol-
son, 2010]. However, these methods are usually of limited
accuracy due to difficulties to evaluate the conformational en-
tropy and solvent contributions. Furthermore, these atom lev-
el methods are sensitive to structural fluctuations and can’t
process protein flexibility well.

With the recent increase in protein structural data and
protein-ligand interaction datasets, there is a rapid progress
in machine learning-based methods [Ragoza et al., 2017;
Tsubaki et al., 2018; Gao et al., 2018]. Usually, the predic-
tion is treated as a task of binary classification by integrating
information of ligands, proteins, and their interactions in a
unified framework.

Drug molecules can be well represented by their linear no-
tations since most drugs contain less than 100 heavy atom-
s, and thus have a relatively small structural space. Recen-
t studies have proven that current deep learning techniques
can accurately predict structural properties from their linear
representation [Zheng et al., 2018; Öztürk et al., 2018]. In
contrast, protein molecules are much bigger, typically con-
taining more than 1000 heavy atoms. The prediction from
1D sequence to 3D structure is the well-known challenging
problem called protein folding. Therefore, traditional repre-
sentation by 1D protein sequence is insufficient to capture the
structural features in 3D space that decides the prediction of
DPIs. Although the direct input of 3D structure was attempt-
ed in recent studies [Wallach et al., 2015; Ragoza et al., 2017;
Stepniewska-Dziubinska et al., 2018], they achieved relative-
ly low accuracy due to a few reasons. First, the irregular pro-
tein 3D structure needs a big 3D matrix to contain the whole
structure. The high-dimension, sparse matrix caused a large
number of tedious input variables. Secondly, these studies
suffered from small number of high-quality 3D structures be-
cause they need co-crystal structures of protein-ligand pairs
that are difficult to determine by experiments.

As a balance, proteins can be alternatively represented by
2D pairwise distance map. Previous studies indicated that the
distance map can recover protein 3D structures [Skolnick et
al., 1997]. More recently, DeepMind group1 predicted pro-
tein structures more precisely than prior state-of-the-art so-
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lutions by using 2D image feature from a predicted distance
map.

Inspired by these studies, we will utilize 2D distance map
to represent proteins, and thus the DPI task can be converted
into a classical Visual Question Answering (VQA) problem.
Here, images are the distance maps for proteins, questions
are the molecular linear notations for drugs, and answers are
whether they will interact. This framework enables a train-
ing on protein monomer structures without need of co-crystal
structures with their binding ligands, which significantly ex-
pands usable datasets for training.

However, there exists to be differences between VQA and
DPI prediction. First, in many VQA scenarios, image size can
be resized to a fixed value, but the distance map represents
the real-world scale and can’t be resized. Second, the gram-
matical rules of chemical language are different from natural
language, which force us to utilize customized tokenization
process and suitable model for obtaining the semantic feature
of molecular sequence. Third, our training set is still much s-
maller than other applications, which requires us to carefully
design the networks.

To address the above problems, we present a VQA-inspired
interpretable model that predicts DPIs directly from protein
distance map and chemical language. The 2D map and chem-
ical language are respectively encoded by a dynamic convo-
lutional neural network (DynCNN) and bi-directional long
short-term memory (BiLSTM) with attention, and the outputs
are concatenated to dense layer to make prediction.

The proposed model is shown to outperform state-of-the-
art approaches over three public DPI datasets. More impor-
tantly, the learned attentions enable visualized individual con-
tributions between binding regions on proteins and ligands
that is important for ligand refinement.

In summary, the main contributions of our work are as fol-
lows. To our best knowledge,

• this is the first study to utilize protein 2D distance map
for predicting DPI;

• this is the first attempt to solve the DPI prediction with
the VQA framework;

• extensive experiments are conducted on different level
public datasets to demonstrate the effectiveness of our
method.

2 Related works
Current drug-protein interaction prediction approaches could
mainly be summarized as below:

Docking-based methods, such as [Trott and Olson, 2010;
Koes et al., 2013], are widely used to predict the binding
mode and affinity given the 3D structure inputs of a drug
compound and a protein. These methods apply predefined
force fields to estimate the binding score to assess DPIs at the
atomic level.

Machine learning-based methods have been investigat-
ed to predict DPIs. For example, [Bleakley and Yamanishi,
2009] proposed the bipartite local model by training local
SVM classifiers from chemical structure similarity and pro-
tein sequence similarity. [Ballester and Mitchell, 2010] used

random forest algorithm to capture binding effects during
molecular docking process; [Durrant and McCammon, 2011]
presented a scoring function based on fully connected neu-
ral networks to characterize the binding affinities of protein-
ligand complexes; [Tabei and Yamanishi, 2013] further im-
proved the DPI prediction by using hashing algorithm with
more compact fingerprints of compound-protein pairs.

Recently, deep learning techniques have been introduced to
predict DPIs by direct use of 3D protein-compound complex-
es [Wallach et al., 2015; Ragoza et al., 2017; Stepniewska-
Dziubinska et al., 2018]. Since the input features were based
on 3D matrix defined around pocket-ligand complexes, these
methods generated a large number input variables, and suf-
fered from limited number of training set.

In addition, though a few representation learning studies
predicted DPIs based on protein sequence or their functional
annotations [Tsubaki et al., 2018; Gao et al., 2018; Öztürk et
al., 2018], their accuracies were limited with a lack of protein
structural information.

3 Model
3.1 Problem Formulation
Our task is to predict the interaction between a drug com-
pound and a target protein. Concretely, drug compound is
represented in SMILES format, a text string for the topo-
logical information based on chemical bonding rules. For
example, the benzene ring can be encoded as ’c1ccccc1’.
Each lowercase ’c’ represents an aromatic carbon atom and
’1’ for the start and closing of a cycle. All hydrogen atoms
weren’t shown because they can be deduced via simple rules.
To preserve important chemical features, we tokenized drug
molecules using the following regular expression inspired by
the work of [Olivecrona et al., 2017]:

tokenregex = ”(\[[ˆ\[\]]{1, 6}\])” (1)

Additionally, we replaced the multi-character symbols using
the following rules: ’Br’:R, ’Cl’:L, ’Si’:A, ’Se’:Z.

Suppose we have a drug molecular linear notation contain-
ing n tokens, the molecule can be represented in a sequence
of molecular embeddings as M = (t1, . . . , tn), where ti is
a vector of d-dimensional token embedding for the i-th to-
ken. Thus, M ∈ Rn×d is a representation of 2D matrix by
concatenating all the token embeddings together.

Similarly, a protein can be simply described as a linear se-
quence that consists of a list of amino acids residues P =
(r1, . . . , rl), where ri is a one-hot representative vector with
length of 20 for the amino acid type at position i, and l is the
sequence length. Additionally, we calculate a 2D pairwise
distance map by:

ŝ(ri, rj) =
1

1 + d(ri, rj)/d0
, ri, rj ∈ P (2)

where d(ri, rj) is the distance between Cα atoms of residues i
and j, and d0 is set to 3.8 Å. Let ŝi ∈ [ŝ(ri, r1), . . . , ŝ(ri, rl)]
be the l-dimensional distance vector with all the residues in
P of ri . The protein can be represented as a distance matrix:

P = [ŝ1, ŝ2, ..., ŝl]l×l (3)



Figure 1: The framework of our proposed DrugVQA model. It consists of two main components, dynamic CNN with sequential attention
and BiLSTM with multi-head self-attention.

The goal of DPI prediction is to learn a system that takes
a pair (M ;P ) as input and outputs label y ∈ {0, 1}, where
y = 1 means an interaction between M and P .

Figure 1 is the architecture of our DrugVQA model. It
comprises two main components: dynamic CNN with se-
quential attention (Sec.3.2) and BiLSTM with multi-head
self-attention (Sec.3.3).

3.2 Dynamic attentive CNN
Preliminary. In our model, adapted CNN is employed to
code protein distance maps to fixed-size vector representa-
tions. Our CNN module consists of stacked residual blocks
and a sequential self-attention block. For the residual block,
we use modified Resnet [He et al., 2016] to process protein
inputs. Concretely, given a protein distance map P ∈ Rl×l,
we apply a 3 × 3 convolutional layer with Nf1 filters. The
output is then processed with stacked residue blocks. The in-
puts of each intermediate residue units can be represented by
xq , where q(1 ≤ q ≤ Q) is the block unit index.

Each residue block could be defined as:

yq = H(xq) + F(xq +Wq), (4)
xq+1 = f(yq) (5)

where xq and xq+1 are input and output of the q-th block
unit, and F is a residual function,H(xq) = xq set as an iden-
tity mapping. Wq = {wq,Nq

f
} is a set of weights associated

with the q-th residual unit, where Nq
f is the number of filters.

The f function in Equation(5) is the activation function, and
we utilize the Exponential Linear Unit (ELU) [Clevert et al.,
2015] instead of traditionally used Rectified Linear Unit (Re-
LU). As shown in Figure 2(a), each residual unit is stacked
by a 5×5 convolutional layer and a 3×3 convolutional layer.

Dynamic processing. Different from VQA tasks that often
preprocess images to the same size, the real-world proteins
are of different lengths of amino acids and can’t be scaled.
Therefore, we want to design a dynamic neural network that
could 1) handle inputs of variable lengths and 2) predict the
importance of each amino acid. For this purpose, we take
off the pooling layers between the residual block and use ze-
ro padding to two sides of input to ensure that the results of

residual blocks have the same size as the input. Thus, the
output of the last residual block remains the dimension of
l × l × Nf . Afterward, we apply average pooling to com-
press the information-enriched output of residual blocks for
the downstream processing.

Sequential attention. Through average pooling, we ob-
tain a protein feature map Pq ∈ Rl×Nf . Practically, Pq can
be viewed as protein sequential representation where l is the
number of amino acids (sites) in the protein, and Nf repre-
sents the spatial feature of each site. As most sites are not di-
rectly related to the binding with drugs, recognizing the small
portion binding sites is critical for the accurate prediction of
DPIs. Inspired by the work of [Lin et al., 2017], we adopt a
multi-head sequential attention mechanism to fully use these
features for classification. As shown in Figure 2(b), the atten-
tion mechanism takes the Pq as input, and outputs a vector of
weights ap:

ap = softmax(wp2tanh(Wp1P
T
q ))

I∑
i=1

(api ) = 1,∀i, 1 ≤ i ≤ l
(6)

where Wp1 ∈ Rda×Nf , and wp2 is a vector of parameters
with size dp, the dp is an adjustable hyper-parameter. This
vector representation usually focuses on a set of consecu-
tive sites of protein sequence. Since a protein binding-pocket
is composed of multiple consecutive sites neighbored in s-
pace, we further extend the wp2 into a rp-by-dp matrix, noted
as Wp2, to capture the overall structural information of the
binding-pocket. Thus, ap is converted to a multi-head atten-
tion weight Ap ∈ Rrp×l as,

Ap = softmax(Wp2tanh(Wp1P
T
q )) (7)

Practically, Equation (7) can be deemed as a 2-layer multi-
layer perceptron (MLP) without bias, whose hidden unit num-
bers is da, and parameters are {Wp1,Wp2}. We compute the
rp weighted sums by multiplying the annotation matrix Ap

and feature map Pq:

Pa = ApPq (8)



where Pa is an attentive feature map containing the laten-
t relationship between contribution of sites on the interaction.
The size of Pa is rp-by-Nf .

Figure 2: Dynamic attentive CNN. It includes two key components:
(a) stacked residual blocks and (b) attention block.

3.3 Self-attentive BiLSTM
Each drug molecular SMILES string is encoded to a two-
dimensional embedding matrix M ∈ Rn×d. Token vec-
tors in the molecular matrix M are independent to each oth-
er. To gain some dependency between adjacent tokens with-
in a molecule, a bi-directional LSTM is used to process a
molecule:

−→
hi =

−−−−→
LSTM(ti,

−−→
hi−1) (9)

←−
hi =

←−−−−
LSTM(ti,

←−−
hi+1) (10)

−→
hi is concatenated with

←−
hi , and a hidden state hi is obtained

to replace token embedding ti, and thus ht becomes a more
information-enriched vector that gains some dependency be-
tween adjacent tokens in a molecule. For simplicity, we note
all hi in every time step i as H .

hi = (
−→
hi ,
←−
hi) (11)

H = (h0, hi · · ·hn) (12)

If the hidden unit number for each uni-directional LSTM
is set as u, the shape of H would be n-by-2u.

The next goal is to know which part of the molecule con-
tributed most to the interaction prediction. In other words, we
want to identify the relationship between tokens and interac-
tion, which can be used for a chemist to design or improve

chemical compounds. Similarly, we achieve this by intro-
ducing multi-head self-attention mechanism. The attention
mechanism takes the whole LSTM hidden states H as input,
and outputs a vector of weights Am as

Am = softmax(MLP (HT )) (13)

where hidden unit numbers of MLP is dm, and parameters are
{Wm1,Wm2}. We compute the weighted sums by multiply-
ing the annotation matrix Am and LSTM hidden states H , the
resulting matrix is the self-attentive molecular embedding:

Ma = AmH (14)

where Ma is a self-attentive drug molecular feature map that
contains the latent relationship between tokens contribution
of interaction. The size of Ma is rm-by-2u, where rm is an
adjustable hyper-parameter representing the number of atten-
tion vectors.

3.4 Classifier
For Pa and Ma, we summed up over all the attention vectors,
and then normalized the resulting weight vector to sum up to
1. This process enables us to obtain two information-enriched
1-D vectors P̂a and M̂a, which will be fed into the classifi-
cation layer. We concatenate P̂a and M̂a, i.e., [P̂a;M̂a], and
obtain an output vector o ∈ R2, which is the input to DPI
classifer:

o = Wo[P̂a; M̂a] + bo (15)

where Wo ∈ R2×(Nf+2u) is the weight matrix and bo ∈ R2

is the bias vector. Finally, a sigmoid function is appended on
top of the output layer o = [y0, y1] to model the DPI proba-
bility as follows:

pt = σ(o) =
1

1 + e−o
(16)

where t ∈ {0, 1} denotes the binary label (i.e., interact or
not) and pt is the probability of t, and we denote ŷ as the
probability of t = 1.

3.5 Training
Given a dataset D = {(mi, pi, yi)}, the training objective is
to minimize the loss function L, given as the cross-entropy
loss as follows:

L(Θ) = −
N∑
i=1

yilogŷ+ (1− yi)log(1− ŷ) +
λ

2
∥Θ∥22 (17)

where Θ is the set of all weight matrices and bias vectors in
our system, and N is the total number of drug-protein pairs
in the training dataset, and λ is an L2 regularization hyper-
parameter. Θ is trained using the backpropagation algorithm.

4 Experiments
4.1 Dataset
To enable head-to-head comparisons of DrugVQA to existing
machine learning-based methods and docking programs, we
evaluated our proposed model on three public DPI dataset-
s: the DUD-E dataset, the Human dataset, and BindingDB
dataset.



DUD-E: The DUD-E is a well-known benchmark consist-
ing of 102 targets across 8 protein families [Mysinger et al.,
2012]. On average, each target has 224 actives and over
10,000 decoys. Computational decoys are chosen such that
they are physically similar but topologically dissimilar to the
actives. The finally dataset contains 22, 645 positive exam-
ples and 1, 407, 145 negative examples. We adopt a three-
fold cross-validation strategy to train and evaluate our model
on the DUD-E dataset following [Ragoza et al., 2017]. The
folds were split between targets, where all ligands of the same
target belong to the same fold. To avoid the impact of homol-
ogous proteins, targets belonging to the same protein families
were strictly kept in the same fold. For a fast training of mod-
els, we used balanced set (all positives and randomly chosen
equivalent negatives for each target) for training, but kept us-
ing the whole set (unbalanced ones) for evaluation.

Human. Created by [Liu et al., 2015], this dataset includes
highly credible negative samples of compound-protein pairs
obtained by using a systematic screening framework. Follow-
ing [Tsubaki et al., 2018], we use a balanced dataset, where
the ratio of positive and negative samples is 1:1. Finally, the
human dataset contains 6, 675 interactions and 1, 998 unique
proteins. We adopt the same five-fold cross validation strate-
gy as in the original paper.

BindingDB. We further choose the BindingDB datasets
[Gilson et al., 2015] as the real-world dataset to evaluate our
model. BindingDB is a public database of experimentally
measured binding affinities, focusing chiefly on the interac-
tions of small molecules and proteins. In our experiments, we
use the customized BindingDB dataset constructed by [Gao et
al., 2018] for head-to-head comparisons. The dataset contain-
s 39, 747 positive examples and 31, 218 negative examples
from bindingDB. We report the results on their customized
testing datasets.

4.2 Implementation and Evaluation Strategy
Proposed Model. We implemented the proposed model with
Pytorch 0.4.0 [Paszke et al., 2017]. The training process lasts
at most 50 epochs on all the datasets using the Adam optimiz-
er with a learning rate of 0.001 and batch size of 1. Consider-
ing the limitation of memory of the used GPU (GTX1080Ti
12GB), we employed 30 residual blocks with 16 and 32 filters
(the Nf2 and Nf3 in Figure 2), respectively. The hidden state
of BiLSTM was set to 64 (the u in Sec 3.3), 0.2 dropout was
applied on the BiLSTM and self-attention MLP unit. In addi-
tion, attention MLPs both in CNN and BiLSTM had a hidden
layer with 100 units (the dp), and we chose the matrix embed-
ding to have 10 rows (the rp) for protein and 18 rows (the rm)
for drug. The coefficient of L2 regularization was 0.001. We
explored hyperparameters in a wide range and find the above
set of hyperparameters yields the highest performance.

Evaluation Metrics. Performance were evaluated by the
area under the receiver operating characteristic curve (AUC).
In addition, for Human dataset, we report the Precision and
Recall value following [Tsubaki et al., 2018]. For DUD-E
dataset, we report the ROC enrichment metric (RE) following
the work of [Ragoza et al., 2017]. Specifically, the RE score
is defined as the ratio of the true positive rate (TPR) to the
false positive rate (FPR) at a given FPR threshold. Here, we

Method AUC Recall Precision
k-NN 0.860 0.927 0.798
RF 0.940 0.897 0.861
L2 0.911 0.913 0.861
SVM 0.910 0.950 0.966
GNN 0.970 0.918 0.923
DrugVQA(seq) 0.968 0.930 0.911
DrugVQA 0.987 0.963 0.955

Table 1: Comparison results of proposed models and baselines on
Human Dataset.

report the RE scores at 0.5%, 1%, 2%, and 5% FPR thresh-
olds. For BindingDB dataset, we also report the accuracy
following [Gao et al., 2018].

4.3 Comparisons on the Human dataset
Compared Models. In this section, we compare our
DrugVQA with the state-of-the-art DPI approaches on the
Human dataset. We compare it with k-NN, random forest (R-
F), L2-logistic (L2), SVM models (results obtained from [Liu
et al., 2015]), and GNN [Tsubaki et al., 2018] (we retrained
the model with the same parameter settings as in the original
papers). To verify the effectiveness of our proposed model,
we also include a version of our model by replacing protein
distance map with protein sequence (DrugVQA(seq)). The
protein sequences were processed as drug SMILES through
self-attentive BiLSTM.

Results. As shown in Table 1, DrugVQA outperforms pro-
tein sequence-based model with an increase of 1.9%, 3.3%,
and 4.4% on AUC, recall, and precision, respectively. This
agrees with our expectation that the distance maps contain
more information than sequences for the prediction of DPI.
The DrugVQA (seq) is comparable to GNN method though
GNN employed graphical neural network for coding chemi-
cal structure of drugs. Due to relatively simple structure of
drugs, the GNN doesn’t bring significant changes compared
to our self-attentive BiLSTM. Other descriptor-based ma-
chine learning techniques have low performance with AUC
ranging from 0.86 to 0.94, indicating that the end-to-end
learned representations can learn important information from
proteins and drugs for DPI prediction.

4.4 Comparisons on the DUD-E dataset
Compared Models. We compare our DrugVQA with the
state-of-the-art DPI approaches on DUD-E dataset, which
can be divided into three categories: 1) conventional dock-
ing approaches Vina [Trott and Olson, 2010]; Smina [Koes et
al., 2013]; 2) machine-learning scoring functions NN-Score
[Durrant and McCammon, 2011]; RF-Score [Ballester and
Mitchell, 2010]; 3) deep learning-based method 3D-CNN
[Ragoza et al., 2017]; AtomNet [Wallach et al., 2015]; GNN
[Tsubaki et al., 2018].

Results. As listed in Tab 2, DrugVQA achieved an order-
of-magnitude improvement over baselines at a level of accu-
racy useful for drug discovery. On the full DUD-E dataset,
DrugVQA outperforms the state-of-the-art GNN model with
an average AUC of 0.971 versus 0.94. Though 3D-CNN have
employed three-dimensional structure for training, it has the



lowest performance among three deep learning methods. This
is likely due to the sparse data in 3D space, whereas the 2D
pairwise distance map provides a good balance. As a result,
DrugVQA outperforms 3D-CNN for 96% of the DUD-E tar-
gets on a per-target basis.

Model AUC 0.5% RE 1.0% RE 2.0% RE 5.0% RE
Vina 0.716 9.139 7.321 5.811 4.444
Smina 0.696 - - - -
NN-score 0.584 4.166 2.980 2.460 1.891
RF-score 0.622 5.628 4.274 3.499 2.678
3D-CNN 0.868 42.559 26.655 19.363 10.710
AtomNet 0.895 - - - -
GNN 0.940 - - - -
DrugVQA 0.971 87.766 58.511 34.479 17.383

Table 2: Mean AUC and ROC Enrichment (RE) across targets on
the DUD-E Dataset for proposed models and baselines.

4.5 Comparisons on the BindingDB dataset
Compared Models. We further assess our model on the
BindingDB dataset. We compare our model with four base-
lines: 1) Similarity-based method Tiresias [Fokoue et al.,
2016]; 2) DBN [Wen et al., 2017], a deep learning method
using middle-level features from predefined molecular finger-
prints and protein descriptors; 3) E2E [Gao et al., 2018] using
GCN and LSTM to process drug molecules and protein high-
level information (Gene Ontology annotations) respectively;
4) GNN [Tsubaki et al., 2018].

Results. The experimental results on BindingDB dataset
are demonstrated in Figure 3. Our approach consistently per-
forms well across the test sets and all metrics. Three baselines
(Tiresias, DBN, and GNN) perform well on seen proteins, but
have much worse performance on unseen proteins. This in-
dicates there exists to be over-fitting over proteins used for
training. On the other hand, E2E give a consistent perfor-
mance for seen and unseen proteins, but it is consistently low-
er than DrugVQA by 2.6% and 2.3% for AUC and accuracy
in average.

Figure 3: Performance comparisons of our proposed method and
baselines on seen and unseen protein targets from the BindingDB.

5 Case study
Another advantage of our model is its interpretability. To ex-
emplify this, we selected two top predicted interactions in

DUD-E dataset: protein Hsp90 (PDB: 3EKR) and CDK2
(PDB: 2DUV) with their corresponding actives. As shown
in Fig 4, the green highlighted the sites with high attention-
s in the binding pocket, and the red cloud indicates drug
atoms with attentions. Darker colors indicate higher atten-
tion coefficients. In both cases, molecular components with
weights higher than 0.6 overlap substantially with the inter-
action sites between a molecule and a protein. In the mean-
while, for Hsp90 (left), the pocket importance map highlights
residues Asn51A, Asp93A, Met98A, which highly overlap
with the key pocket residues observed in the co-crystal com-
plex (PDB: 2DUV). For CDK2 (right), the highlighted key
residues (Phe80A, Asp145A) and ligand functional group-
s in the importance maps show high similarity to observed
interactions in the 3EKR. This result suggests that our model
can provide reasonable cues for drug-protein binding mode,
which is helpful for finding promiscuous domains and design-
ing the active improved drug compounds.

Figure 4: Importance visualization of pocket and ligand pairs (PDB
ID:3EKR, 2DUV). The green highlighted the sites with high atten-
tions in the binding pocket, and the red cloud indicates drug atoms
with attentions. Darker colors indicate higher attention coefficients.

6 Conclusion
In this article, we have presented a novel end-to-end deep
learning framework like Visual Question Answering (VQA)
task to predict drug-protein interactions. It is the first time to
employ self-attentive convolutional and recurrent structures
for extracting features simultaneously from protein 2D dis-
tance map and molecular language in DPI study. Experimen-
tal evaluations demonstrate that our model consistently shows
the best performances on three public datasets. Furthermore,
the model is shown to be able to provide biological insights
for understanding the nature of molecular interactions.
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